]> code.bitgloo.com Git - clyne/stmdsp.git/commitdiff
added presented demo files
authorClyne Sullivan <clyne@bitgloo.com>
Sat, 19 Dec 2020 22:39:51 +0000 (17:39 -0500)
committerClyne Sullivan <clyne@bitgloo.com>
Sat, 19 Dec 2020 22:39:51 +0000 (17:39 -0500)
gui/demos/1_fir_twotone.cpp [new file with mode: 0644]
gui/demos/2_iir_echo.cpp [new file with mode: 0644]

diff --git a/gui/demos/1_fir_twotone.cpp b/gui/demos/1_fir_twotone.cpp
new file mode 100644 (file)
index 0000000..2f33b45
--- /dev/null
@@ -0,0 +1,474 @@
+// Digilent Waveforms
+// Custom signal:
+// 4096 samples, X from 0 to 4095
+// sin(PI/8000*X*770)+sin(PI/8000*X*1336)
+
+#include <cstdint>
+using float32_t = float;
+
+typedef struct
+{
+    uint16_t numTaps;     /**< number of filter coefficients in the filter. */
+    float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
+} arm_fir_instance_f32;
+
+static void arm_fir_f32(const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize);
+
+adcsample_t *process_data(adcsample_t *samples, unsigned int size)
+{
+       // 1. Define our array sizes (Be sure to set Run > Set buffer size... to below value!)
+       constexpr unsigned int buffer_size = 500;
+       constexpr unsigned int filter_size = 100;
+
+       // 2. Define our filter and the working arrays
+       static float filter[filter_size] = {
+0.0004387887025183802,0.000832200098857514,0.0015307184662295217,0.0025082006379108486,0.0037734534845577567,0.005298545881839843,0.007011536790726042,0.008794237700486741,0.0104866537299476,0.011898670086639574,0.01282927474471195,0.013091387203266143,0.012539923791204348,0.011099382508792464,0.008786721087738127,0.005724922305741446,0.002144437816471804,-0.0016305355316754216,-0.005210998401135279,-0.00818522521443848,-0.0101701012867913,-0.010865871085906236,-0.01010594970823667,-0.007895785082463622,-0.00443176063435828,-0.00009684904191641966,0.004570418146137933,0.008932018058761999,0.012326603606274784,0.014157852725048914,0.013983789156387687,0.011595484863822138,0.007073052408314296,0.0008096544104778903,-0.006503129471685042,-0.013929880283520692,-0.020382390416343286,-0.024738365522063946,-0.02597487538349127,-0.02330063345756659,-0.016270714607748243,-0.004868040016583383,0.010460249064783475,0.028818398768187533,0.04893049916926163,0.06925561893929223,0.0881379889511425,0.10397551230005074,0.11538733811709222,0.12136089030896859,0.12136089030896859,0.11538733811709222,0.10397551230005074,0.0881379889511425,0.06925561893929223,0.04893049916926163,0.028818398768187533,0.010460249064783475,-0.004868040016583383,-0.016270714607748243,-0.02330063345756659,-0.02597487538349127,-0.024738365522063946,-0.020382390416343286,-0.013929880283520692,-0.006503129471685042,0.0008096544104778903,0.007073052408314296,0.011595484863822138,0.013983789156387687,0.014157852725048914,0.012326603606274784,0.008932018058761999,0.004570418146137933,-0.00009684904191641966,-0.00443176063435828,-0.007895785082463622,-0.01010594970823667,-0.010865871085906236,-0.0101701012867913,-0.00818522521443848,-0.005210998401135279,-0.0016305355316754216,0.002144437816471804,0.005724922305741446,0.008786721087738127,0.011099382508792464,0.012539923791204348,0.013091387203266143,0.01282927474471195,0.011898670086639574,0.0104866537299476,0.008794237700486741,0.007011536790726042,0.005298545881839843,0.0037734534845577567,0.0025082006379108486,0.0015307184662295217,0.000832200098857514,0.0004387887025183802
+       };
+       static float input[buffer_size];
+       static float output[buffer_size];
+       static float working[buffer_size + filter_size];
+
+       // 3. Scale 0-4095 interger sample values to +/- 1.0 floats
+       for (unsigned int i = 0; i < size; i++)
+               input[i] = (samples[i] - 2048) / 2048.f;
+
+       // 4. Compute the FIR
+       arm_fir_instance_f32 fir { filter_size, working, filter };
+       arm_fir_f32(&fir, input, output, size);
+
+       // 5. Convert float results back to 0-4095 range for output
+       for (unsigned int i = 0; i < size; i++)
+               samples[i] = output[i] * 2048.f + 2048;
+
+    return samples;
+}
+
+// Below taken from the CMSIS DSP Library (find it on GitHub)
+void arm_fir_f32(
+       const arm_fir_instance_f32 * S,
+       float32_t * pSrc,
+       float32_t * pDst,
+       uint32_t blockSize)
+{
+   float32_t *pState = S->pState;                 /* State pointer */
+   float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
+   float32_t *pStateCurnt;                        /* Points to the current sample of the state */
+   float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
+   float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7;     /* Accumulators */
+   float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0;  /* Temporary variables to hold state and coefficient values */
+   uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
+   uint32_t i, tapCnt, blkCnt;                    /* Loop counters */
+   float32_t p0,p1,p2,p3,p4,p5,p6,p7;             /* Temporary product values */
+
+   /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+   /* pStateCurnt points to the location where the new input data should be written */
+   pStateCurnt = &(S->pState[(numTaps - 1u)]);
+
+   /* Apply loop unrolling and compute 8 output values simultaneously.  
+    * The variables acc0 ... acc7 hold output values that are being computed:  
+    *  
+    *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]  
+    *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]  
+    *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]  
+    *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]  
+    */
+   blkCnt = blockSize >> 3;
+
+   /* First part of the processing with loop unrolling.  Compute 8 outputs at a time.  
+   ** a second loop below computes the remaining 1 to 7 samples. */
+   while(blkCnt > 0u)
+   {
+      /* Copy four new input samples into the state buffer */
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+
+      /* Set all accumulators to zero */
+      acc0 = 0.0f;
+      acc1 = 0.0f;
+      acc2 = 0.0f;
+      acc3 = 0.0f;
+      acc4 = 0.0f;
+      acc5 = 0.0f;
+      acc6 = 0.0f;
+      acc7 = 0.0f;             
+
+      /* Initialize state pointer */
+      px = pState;
+
+      /* Initialize coeff pointer */
+      pb = (pCoeffs);          
+   
+      /* This is separated from the others to avoid 
+       * a call to __aeabi_memmove which would be slower
+       */
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+
+      /* Read the first seven samples from the state buffer:  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+      x0 = *px++;
+      x1 = *px++;
+      x2 = *px++;
+      x3 = *px++;
+      x4 = *px++;
+      x5 = *px++;
+      x6 = *px++;
+
+      /* Loop unrolling.  Process 8 taps at a time. */
+      tapCnt = numTaps >> 3u;
+      
+      /* Loop over the number of taps.  Unroll by a factor of 8.  
+       ** Repeat until we've computed numTaps-8 coefficients. */
+      while(tapCnt > 0u)
+      {
+         /* Read the b[numTaps-1] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-3] sample */
+         x7 = *(px++);
+
+         /* acc0 +=  b[numTaps-1] * x[n-numTaps] */
+         p0 = x0 * c0;
+
+         /* acc1 +=  b[numTaps-1] * x[n-numTaps-1] */
+         p1 = x1 * c0;
+
+         /* acc2 +=  b[numTaps-1] * x[n-numTaps-2] */
+         p2 = x2 * c0;
+
+         /* acc3 +=  b[numTaps-1] * x[n-numTaps-3] */
+         p3 = x3 * c0;
+
+         /* acc4 +=  b[numTaps-1] * x[n-numTaps-4] */
+         p4 = x4 * c0;
+
+         /* acc1 +=  b[numTaps-1] * x[n-numTaps-5] */
+         p5 = x5 * c0;
+
+         /* acc2 +=  b[numTaps-1] * x[n-numTaps-6] */
+         p6 = x6 * c0;
+
+         /* acc3 +=  b[numTaps-1] * x[n-numTaps-7] */
+         p7 = x7 * c0;
+         
+         /* Read the b[numTaps-2] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-4] sample */
+         x0 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+
+         /* Perform the multiply-accumulate */
+         p0 = x1 * c0;
+         p1 = x2 * c0;   
+         p2 = x3 * c0;   
+         p3 = x4 * c0;   
+         p4 = x5 * c0;   
+         p5 = x6 * c0;   
+         p6 = x7 * c0;   
+         p7 = x0 * c0;   
+         
+         /* Read the b[numTaps-3] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-5] sample */
+         x1 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x2 * c0;
+         p1 = x3 * c0;   
+         p2 = x4 * c0;   
+         p3 = x5 * c0;   
+         p4 = x6 * c0;   
+         p5 = x7 * c0;   
+         p6 = x0 * c0;   
+         p7 = x1 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x2 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x3 * c0;
+         p1 = x4 * c0;   
+         p2 = x5 * c0;   
+         p3 = x6 * c0;   
+         p4 = x7 * c0;   
+         p5 = x0 * c0;   
+         p6 = x1 * c0;   
+         p7 = x2 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x3 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x4 * c0;
+         p1 = x5 * c0;   
+         p2 = x6 * c0;   
+         p3 = x7 * c0;   
+         p4 = x0 * c0;   
+         p5 = x1 * c0;   
+         p6 = x2 * c0;   
+         p7 = x3 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x4 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x5 * c0;
+         p1 = x6 * c0;   
+         p2 = x7 * c0;   
+         p3 = x0 * c0;   
+         p4 = x1 * c0;   
+         p5 = x2 * c0;   
+         p6 = x3 * c0;   
+         p7 = x4 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x5 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x6 * c0;
+         p1 = x7 * c0;   
+         p2 = x0 * c0;   
+         p3 = x1 * c0;   
+         p4 = x2 * c0;   
+         p5 = x3 * c0;   
+         p6 = x4 * c0;   
+         p7 = x5 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x6 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x7 * c0;
+         p1 = x0 * c0;   
+         p2 = x1 * c0;   
+         p3 = x2 * c0;   
+         p4 = x3 * c0;   
+         p5 = x4 * c0;   
+         p6 = x5 * c0;   
+         p7 = x6 * c0;   
+
+         tapCnt--;
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+      }
+
+      /* If the filter length is not a multiple of 8, compute the remaining filter taps */
+      tapCnt = numTaps % 0x8u;
+
+      while(tapCnt > 0u)
+      {
+         /* Read coefficients */
+         c0 = *(pb++);
+
+         /* Fetch 1 state variable */
+         x7 = *(px++);
+
+         /* Perform the multiply-accumulates */      
+         p0 = x0 * c0;
+         p1 = x1 * c0;   
+         p2 = x2 * c0;   
+         p3 = x3 * c0;   
+         p4 = x4 * c0;   
+         p5 = x5 * c0;   
+         p6 = x6 * c0;   
+         p7 = x7 * c0;   
+
+         /* Reuse the present sample states for next sample */
+         x0 = x1;
+         x1 = x2;
+         x2 = x3;
+         x3 = x4;
+         x4 = x5;
+         x5 = x6;
+         x6 = x7;
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Decrement the loop counter */
+         tapCnt--;
+      }
+
+      /* Advance the state pointer by 8 to process the next group of 8 samples */
+      pState = pState + 8;
+
+      /* The results in the 8 accumulators, store in the destination buffer. */
+      *pDst++ = acc0;
+      *pDst++ = acc1;
+      *pDst++ = acc2;
+      *pDst++ = acc3;
+      *pDst++ = acc4;
+      *pDst++ = acc5;
+      *pDst++ = acc6;
+      *pDst++ = acc7;
+
+      blkCnt--;
+   }
+
+   /* If the blockSize is not a multiple of 8, compute any remaining output samples here.  
+   ** No loop unrolling is used. */
+   blkCnt = blockSize % 0x8u;
+
+   while(blkCnt > 0u)
+   {
+      /* Copy one sample at a time into state buffer */
+      *pStateCurnt++ = *pSrc++;
+
+      /* Set the accumulator to zero */
+      acc0 = 0.0f;
+
+      /* Initialize state pointer */
+      px = pState;
+
+      /* Initialize Coefficient pointer */
+      pb = (pCoeffs);
+
+      i = numTaps;
+
+      /* Perform the multiply-accumulates */
+      do
+      {
+         acc0 += *px++ * *pb++;
+         i--;
+
+      } while(i > 0u);
+
+      /* The result is store in the destination buffer. */
+      *pDst++ = acc0;
+
+      /* Advance state pointer by 1 for the next sample */
+      pState = pState + 1;
+
+      blkCnt--;
+   }
+
+   /* Processing is complete.  
+   ** Now copy the last numTaps - 1 samples to the start of the state buffer.  
+   ** This prepares the state buffer for the next function call. */
+
+   /* Points to the start of the state buffer */
+   pStateCurnt = S->pState;
+
+   tapCnt = (numTaps - 1u) >> 2u;
+
+   /* copy data */
+   while(tapCnt > 0u)
+   {
+      *pStateCurnt++ = *pState++;
+      *pStateCurnt++ = *pState++;
+      *pStateCurnt++ = *pState++;
+      *pStateCurnt++ = *pState++;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+   }
+
+   /* Calculate remaining number of copies */
+   tapCnt = (numTaps - 1u) % 0x4u;
+
+   /* Copy the remaining q31_t data */
+   while(tapCnt > 0u)
+   {
+      *pStateCurnt++ = *pState++;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+   }
+}
diff --git a/gui/demos/2_iir_echo.cpp b/gui/demos/2_iir_echo.cpp
new file mode 100644 (file)
index 0000000..0bd7e9d
--- /dev/null
@@ -0,0 +1,22 @@
+adcsample_t *process_data(adcsample_t *samples, unsigned int size)
+{
+       constexpr float alpha = 0.7;
+       constexpr unsigned int D = 2000;
+
+       static adcsample_t output[SIZE];
+       static adcsample_t prev[D]; // prev[0] = output[0 - D]
+
+       // Do calculations with previous output
+       for (unsigned int i = 0; i < D; i++)
+               output[i] = samples[i] + alpha * (prev[i] - 2048);
+
+       // Do calculations with current samples
+       for (unsigned int i = D; i < size; i++)
+               output[i] = samples[i] + alpha * (output[i - D] - 2048);
+
+       // Save outputs for next computation
+       for (unsigned int i = 0; i < D; i++)
+               prev[i] = output[size - (D - i)];
+
+       return output;
+}