aboutsummaryrefslogtreecommitdiffstats
path: root/msp430/alee-msp430.cpp
blob: 1d8d157f05a3fbeb112b58a7fe2724f487582a19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/**
 * Alee Forth: A portable and concise Forth implementation in modern C++.
 * Copyright (C) 2023  Clyne Sullivan <clyne@bitgloo.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#include "alee.hpp"
#include "libalee/ctype.hpp"

#include <msp430.h>

#include "splitmemdictrw.hpp"

alignas(sizeof(Cell))
__attribute__((section(".text")))
#include "core.fth.h"

static char strbuf[80];

static void readchar(State& state);
static void serput(int c);
static void serputs(const char *s);
static void printint(DoubleCell n, char *buf);

static void initGPIO();
static void initClock();
static void initUART();
static void Software_Trim();
#define MCLK_FREQ_MHZ (8)    // MCLK = 8MHz

//__attribute__((section(".upper.bss")))
//static uint8_t hidict[16384];

int main()
{
    WDTCTL = WDTPW | WDTHOLD;
    initGPIO();
    initClock();
    initUART();
    SYSCFG0 = FRWPPW;

    (void)alee_dat_len;
    static SplitMemDictRW<sizeof(alee_dat), /*sizeof(hidict)*/16384> dict (alee_dat, 0x10000/*(uint32_t)hidict*/);
    State state (dict, readchar);

    serputs("alee forth\n\r");

    auto ptr = strbuf;
    while (1) {
        if (UCA0IFG & UCRXIFG) {
            auto c = static_cast<char>(UCA0RXBUF);
            serput(c);

            if (c == '\r') {
                *ptr = '\0';

                serputs("\n\r");

                if (auto r = Parser::parse(state, strbuf); r == Error::none) {
                    serputs(state.compiling() ? " compiled" : " ok");
                } else {
                    switch (r) {
                    case Error::noword:
                        serputs("unknown word...");
                        break;
                    default:
                        serputs("error...");
                        break;
                    }
                }

                serputs("\n\r");

                ptr = strbuf;
            } else if (c == '\b') {
                if (ptr > strbuf)
                    --ptr;
            } else if (ptr < strbuf + sizeof(strbuf)) {
                if (c >= 'A' && c <= 'Z')
                    c += 32;
                *ptr++ = c;
            }
        }
    }
}

void readchar(State& state)
{
    auto idx = state.dict.read(Dictionary::Input);
    Addr addr = Dictionary::Input + sizeof(Cell) + idx;

    while (!(UCA0IFG & UCRXIFG));
    auto c = static_cast<uint8_t>(UCA0RXBUF);
    if (isupper(c))
        c += 32;
    state.dict.writebyte(addr, c ? c : ' ');
}

void serput(int c)
{
    while (!(UCA0IFG & UCTXIFG));
    UCA0TXBUF = static_cast<char>(c);
}

void serputs(const char *s)
{
    while (*s)
        serput(*s++);
}

void printint(DoubleCell n, char *buf)
{
    char *ptr = buf;
    bool neg = n < 0;

    if (neg)
        n = -n;

    do {
        *ptr++ = static_cast<char>((n % 10) + '0');
    } while ((n /= 10));

    if (neg)
        serput('-');

    do {
        serput(*--ptr);
    } while (ptr > buf);
    serput(' ');
}

void user_sys(State& state)
{
    switch (state.pop()) {
    case 0: // .
        printint(state.pop(), strbuf);
        break;
    case 1: // unused
        state.push(static_cast<Addr>(state.dict.capacity() - state.dict.here()));
        break;
    case 2: // emit
        serput(state.pop());
        break;
    case 3:
        { auto addr = state.pop();
          *reinterpret_cast<uint8_t *>(addr) = state.pop() & 0xFFu; }
        break;
    case 4:
        state.push(*reinterpret_cast<uint8_t *>(state.pop()));
        break;
    default:
        break;
    }
}

void initGPIO()
{
    // Unnecessary, but done by TI example
    P1DIR = 0xFF; P2DIR = 0xFF;
    P1REN = 0xFF; P2REN = 0xFF;
    P1OUT = 0x00; P2OUT = 0x00;

    // Set LED pins to outputs
    P6DIR |= BIT0 | BIT1 | BIT2;
    P6OUT |= BIT0 | BIT1 | BIT2;
    P5DIR |= BIT5 | BIT6 | BIT7;
    P5OUT |= BIT5 | BIT6 | BIT7;

    // Setup buttons w/ pullups
    P3DIR &= ~BIT4; P3REN |= BIT4; P3OUT |= BIT4;
    P2DIR &= ~BIT3; P2REN |= BIT3; P2OUT |= BIT3;

    // XT1 pins (P2.0 and P2.1)
    //P2SEL1 |= BIT0 | BIT1;

    // Allow GPIO configurations to be applied
    PM5CTL0 &= ~LOCKLPM5;

    // Safety measure, prevent unwarranted interrupts
    P5IFG = 0;
    P6IFG = 0;
}

void initClock()
{
    __bis_SR_register(SCG0);                 // disable FLL
    CSCTL3 |= SELREF__REFOCLK;               // Set REFO as FLL reference source
    CSCTL1 = DCOFTRIMEN_1 | DCOFTRIM0 | DCOFTRIM1 | DCORSEL_3;// DCOFTRIM=3, DCO Range = 8MHz
    CSCTL2 = FLLD_0 + 243;                   // DCODIV = 8MHz
    __delay_cycles(3);
    __bic_SR_register(SCG0);                // enable FLL
    Software_Trim();                        // Software Trim to get the best DCOFTRIM value

    CSCTL4 = SELMS__DCOCLKDIV | SELA__REFOCLK; // set default REFO(~32768Hz) as ACLK source, ACLK = 32768Hz
                                               // default DCODIV as MCLK and SMCLK source

//    // ACLK to XT1
//    do
//    {
//        CSCTL7 &= ~(XT1OFFG | DCOFFG);                // Clear XT1 and DCO fault flag
//        SFRIFG1 &= ~OFIFG;
//    }while (SFRIFG1 & OFIFG);                         // Test oscillator fault flag
//
//    CSCTL4 = SELMS__DCOCLKDIV | SELA__XT1CLK;  // set ACLK = XT1CLK = 32768Hz
//                                               // DCOCLK = MCLK and SMCLK source
//
//    // Now that osc is running enable fault interrupt
//    SFRIE1 |= OFIE;
}

void initUART()
{
    // Configure UART pins
    P5SEL0 |= BIT1 | BIT2;                    // set 2-UART pin as second function
    SYSCFG3|=USCIA0RMP;                       //Set the remapping source
    // Configure UART
    UCA0CTLW0 |= UCSWRST;
    UCA0CTLW0 |= UCSSEL__SMCLK;

    // Baud Rate calculation
    // 8000000/(16*9600) = 52.083
    // Fractional portion = 0.083
    // User's Guide Table 17-4: UCBRSx = 0x49
    // UCBRFx = int ( (52.083-52)*16) = 1
    UCA0BR0 = 52;                             // 8000000/16/9600
    UCA0BR1 = 0x00;
    UCA0MCTLW = 0x4900 | UCOS16 | UCBRF_1;

    UCA0CTLW0 &= ~UCSWRST;                    // Initialize eUSCI
}

void Software_Trim()
{
    unsigned int oldDcoTap = 0xffff;
    unsigned int newDcoTap = 0xffff;
    unsigned int newDcoDelta = 0xffff;
    unsigned int bestDcoDelta = 0xffff;
    unsigned int csCtl0Copy = 0;
    unsigned int csCtl1Copy = 0;
    unsigned int csCtl0Read = 0;
    unsigned int csCtl1Read = 0;
    unsigned int dcoFreqTrim = 3;
    unsigned char endLoop = 0;

    do
    {
        CSCTL0 = 0x100;                         // DCO Tap = 256
        do
        {
            CSCTL7 &= ~DCOFFG;                  // Clear DCO fault flag
        }while (CSCTL7 & DCOFFG);               // Test DCO fault flag

        __delay_cycles((unsigned int)3000 * MCLK_FREQ_MHZ);// Wait FLL lock status (FLLUNLOCK) to be stable
                                                           // Suggest to wait 24 cycles of divided FLL reference clock
        while((CSCTL7 & (FLLUNLOCK0 | FLLUNLOCK1)) && ((CSCTL7 & DCOFFG) == 0));

        csCtl0Read = CSCTL0;                   // Read CSCTL0
        csCtl1Read = CSCTL1;                   // Read CSCTL1

        oldDcoTap = newDcoTap;                 // Record DCOTAP value of last time
        newDcoTap = csCtl0Read & 0x01ff;       // Get DCOTAP value of this time
        dcoFreqTrim = (csCtl1Read & 0x0070)>>4;// Get DCOFTRIM value

        if(newDcoTap < 256)                    // DCOTAP < 256
        {
            newDcoDelta = 256 - newDcoTap;     // Delta value between DCPTAP and 256
            if((oldDcoTap != 0xffff) && (oldDcoTap >= 256)) // DCOTAP cross 256
                endLoop = 1;                   // Stop while loop
            else
            {
                dcoFreqTrim--;
                CSCTL1 = (csCtl1Read & (~DCOFTRIM)) | (dcoFreqTrim<<4);
            }
        }
        else                                   // DCOTAP >= 256
        {
            newDcoDelta = newDcoTap - 256;     // Delta value between DCPTAP and 256
            if(oldDcoTap < 256)                // DCOTAP cross 256
                endLoop = 1;                   // Stop while loop
            else
            {
                dcoFreqTrim++;
                CSCTL1 = (csCtl1Read & (~DCOFTRIM)) | (dcoFreqTrim<<4);
            }
        }

        if(newDcoDelta < bestDcoDelta)         // Record DCOTAP closest to 256
        {
            csCtl0Copy = csCtl0Read;
            csCtl1Copy = csCtl1Read;
            bestDcoDelta = newDcoDelta;
        }

    }while(endLoop == 0);                      // Poll until endLoop == 1

    CSCTL0 = csCtl0Copy;                       // Reload locked DCOTAP
    CSCTL1 = csCtl1Copy;                       // Reload locked DCOFTRIM
    while(CSCTL7 & (FLLUNLOCK0 | FLLUNLOCK1)); // Poll until FLL is locked
}