From 53a84d17ac134dc5ba74f1afd86db2da8aa07f1c Mon Sep 17 00:00:00 2001 From: Clyne Sullivan Date: Sat, 1 Aug 2020 21:49:00 -0400 Subject: [PATCH] cleanup part 2; done --- consteval_huffman.hpp | 127 +++++++++++++++++++++++++----------------- 1 file changed, 75 insertions(+), 52 deletions(-) diff --git a/consteval_huffman.hpp b/consteval_huffman.hpp index 4b8a935..8218112 100644 --- a/consteval_huffman.hpp +++ b/consteval_huffman.hpp @@ -43,37 +43,34 @@ private: * @return Compile-time allocated array of nodes */ consteval static auto build_node_list() { - auto table = std::span(new node[256] {}, 256); + // Build a list for counting every occuring value + auto list = std::span(new node[256] {}, 256); for (int i = 0; i < 256; i++) - table[i].value = i; + list[i].value = i; for (size_t i = 0; i < data_length; i++) - table[data[i]].freq++; + list[data[i]].freq++; - std::sort(table.begin(), table.end(), [](auto& a, auto& b) { return a.freq < b.freq; }); + std::sort(list.begin(), list.end(), + [](const auto& a, const auto& b) { return a.freq < b.freq; }); - auto first_valid_node = std::find_if(table.begin(), table.end(), + // Filter out the non-occuring values, and build a compact list to return + auto first_valid_node = std::find_if(list.begin(), list.end(), [](const auto& n) { return n.freq != 0; }); - auto iter = std::copy(first_valid_node, table.end(), table.begin()); - std::fill(iter, table.end(), node()); - return table; + auto fit_size = std::distance(first_valid_node, list.end()); + auto fit_list = std::span(new node[fit_size] {}, fit_size); + std::copy(first_valid_node, list.end(), fit_list.begin()); + delete[] list.data(); + return fit_list; } /** - * Counts how many nodes in build_node_list() are valid. - * @return Number of valid nodes, i.e. the "size" of the list. + * Returns the count of how many nodes are in the node tree. */ - consteval static auto node_count() { - auto table = build_node_list(); - size_t i; - for (i = 0; table[i].freq != 0; i++); - delete[] table.data(); - return i; - } - - // Returns the count of how many nodes are in the node tree. -public: consteval static auto tree_count() { - return node_count() * 2 - 1; + auto list = build_node_list(); + auto count = list.size() * 2 - 1; + delete[] list.data(); + return count; } /** @@ -85,32 +82,37 @@ public: auto list = build_node_list(); auto tree = std::span(new node[tree_count()] {}, tree_count()); - auto list_end = node_count(); - auto tree_begin = tree.end(); - int next_merged_node_value = 0x100; - while (list[1].freq != 0) { - // Create the merged parent node + auto list_end = list.end(); // Track end of list as it shrinks + auto tree_begin = tree.end(); // Build tree from bottom + int next_parent_node_value = 0x100; // Give parent nodes unique ids + while (1) { + // Create parent node for two least-occuring values node new_node { - next_merged_node_value++, + next_parent_node_value++, list[0].freq + list[1].freq, -1, list[0].value, list[1].value }; + // Move the two nodes into the tree and remove them from the list *--tree_begin = list[0]; *--tree_begin = list[1]; + std::copy(list.begin() + 2, list_end--, list.begin()); + if (std::distance(list.begin(), list_end) == 1) { + list.front() = new_node; + break; + } - auto insertion_point = list.begin(); - while (insertion_point->freq != 0 && insertion_point->freq < new_node.freq) - insertion_point++; + // Insert the parent node back into the list + auto insertion_point = std::find_if(list.begin(), list_end - 1, + [&new_node](const auto& n) { return n.freq >= new_node.freq; }); + if (insertion_point != list_end - 1) { + *(list_end - 1) = node(); + std::copy_backward(insertion_point, list_end - 1, list_end); + } - std::copy_backward(insertion_point, list.begin() + list_end, list.begin() + list_end + 1); *insertion_point = new_node; - - std::copy(list.begin() + 2, list.begin() + list_end + 1, list.begin()); - list[list_end - 1] = node(); - list[list_end--] = node(); } // Connect child nodes to their parents @@ -130,14 +132,16 @@ public: /** * Determines the size of the compressed data. - * Returns a pair: [total byte size, bits used in last byte]. + * @return A pair of total bytes used, and bits used in last byte. */ - consteval static auto output_size() { + consteval static auto compressed_size_info() { auto tree = build_node_tree(); size_t bytes = 1, bits = 0; + for (size_t i = 0; i < data_length; i++) { auto leaf = std::find_if(tree.begin(), tree.end(), - [c = data[i]](auto& n) { return n.value == c; }); + [c = data[i]](const auto& n) { return n.value == c; }); + while (leaf->parent != -1) { if (++bits == 8) bits = 0, bytes++; @@ -148,58 +152,76 @@ public: delete[] tree.data(); return std::make_pair(bytes, bits); } - // Compresses the input data, placing the result in `output`. + + /** + * Compresses the input data, storing the result in the object instance. + */ consteval void compress() { auto tree = build_node_tree(); - size_t bytes = output_size().first; - int bits; - if (auto bitscount = output_size().second; bitscount > 0) - bits = 8 - bitscount; + + // Set up byte and bit count (note, we're compressing the data backwards) + auto [bytes, bits] = compressed_size_info(); + if (bits > 0) + bits = 8 - bits; else bits = 0, bytes--; - for (size_t i = data_length; i > 0; i--) { + + // Compress data backwards, because we obtain the Huffman codes backwards + // as we traverse towards the parent node. + for (auto i = data_length; i > 0; i--) { auto leaf = std::find_if(tree.begin(), tree.end(), [c = data[i - 1]](auto& n) { return n.value == c; }); + while (leaf->parent != -1) { auto parent = tree.begin() + leaf->parent; if (parent->right == leaf->value) - output[bytes - 1] |= (1 << bits); + compressed_data[bytes - 1] |= (1 << bits); if (++bits == 8) bits = 0, --bytes; leaf = parent; } } + delete[] tree.data(); } - // Builds the tree that can be used for decompression, stored in `decode_tree`. + + /** + * Builds the decode tree, used to decompress the data. + * Format: three bytes per node. + * 1. Node value, 2. Distance to left child, 3. Distance to right child. + */ consteval void build_decode_tree() { auto tree = build_node_tree(); for (size_t i = 0; i < tree_count(); i++) { + // Only store node value if it represents a data value decode_tree[i * 3] = tree[i].value <= 0xFF ? tree[i].value : 0; size_t j; + // Find the left child of this node for (j = i + 1; j < tree_count(); j++) { if (tree[i].left == tree[j].value) break; } decode_tree[i * 3 + 1] = j < tree_count() ? j - i : 0; + // Find the right child of this node for (j = i + 1; j < tree_count(); j++) { if (tree[i].right == tree[j].value) break; } decode_tree[i * 3 + 2] = j < tree_count() ? j - i : 0; } + delete[] tree.data(); } // Contains the compressed data. - unsigned char output[output_size().first] = {}; + unsigned char compressed_data[compressed_size_info().first] = {}; // Contains a 'tree' that can be used to decompress the data. + unsigned char decode_tree[3 * tree_count()] = {}; public: - unsigned char decode_tree[3 * tree_count()] = {}; // Utility for decoding compressed data. class decode_info { public: @@ -208,9 +230,10 @@ public: // Checks if another byte is available operator bool() const { - const auto [size_bytes, last_bits_count] = m_data.output_size(); - return m_pos < (size_bytes - 1) || m_bit > (8 - last_bits_count); + const auto [size_bytes, last_bits] = m_data.compressed_size_info(); + return m_pos < (size_bytes - 1) || m_bit > (8 - last_bits); } + // Gets the current byte int operator*() const { return m_current; } // Moves to the next byte @@ -224,7 +247,7 @@ public: void get_next() { auto *node = m_data.decode_tree; do { - bool bit = m_data.output[m_pos] & (1 << (m_bit - 1)); + bool bit = m_data.compressed_data[m_pos] & (1 << (m_bit - 1)); if (--m_bit == 0) m_bit = 8, m_pos++; node += 3 * node[bit ? 2 : 1]; @@ -246,7 +269,7 @@ public: } consteval static auto compressed_size() { - return output_size().first + output_size().second; + return sizeof(compressed_data); } consteval static auto uncompressed_size() { return data_length;