/** * consteval_huffman.hpp - Provides compile-time text compression. * Written by Clyne Sullivan. * https://github.com/tcsullivan/consteval-huffman */ #ifndef TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_ #define TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_ #include #include namespace detail { // Provides a string container for the huffman compressor. // Using this allows for automatic string data length measurement, as // well as implementation of the _huffman suffix. template struct huffman_string_container { char data[N]; consteval huffman_string_container(const char (&s)[N]) noexcept { std::copy(s, s + N, data); } consteval operator const char *() const noexcept { return data; } consteval auto size() const noexcept { return N; } }; } /** * Compresses the given data string using Huffman coding, providing a * minimal run-time interface for decompressing the data. * @tparam data The string of data to be compressed. */ template requires( std::same_as> && data.size() > 0) class huffman_compressor { using size_t = long int; using usize_t = unsigned long int; // Note: class internals need to be defined before the public interface. // See the bottom of the class definition for usage. private: // Node structure used to build a tree for calculating Huffman codes. struct node { int value = 0; size_t freq = 0; // Below values are indices into the node list int parent = -1; int left = -1; int right = -1; }; /** * Builds a list of nodes for every character that appears in the given data. * This list is sorted by increasing frequency. * @return Compile-time allocated array of nodes */ consteval static auto build_node_list() noexcept { // Build a list for counting every occuring value auto list = std::span(new node[256] {}, 256); for (int i = 0; i < 256; i++) list[i].value = i; for (usize_t i = 0; i < data.size(); i++) list[data[i]].freq++; std::sort(list.begin(), list.end(), [](const auto& a, const auto& b) { return a.freq < b.freq; }); // Filter out the non-occuring values, and build a compact list to return auto first_valid_node = std::find_if(list.begin(), list.end(), [](const auto& n) { return n.freq != 0; }); auto fit_size = std::distance(first_valid_node, list.end()); if (fit_size < 2) fit_size = 2; auto fit_list = std::span(new node[fit_size] {}, fit_size); std::copy(first_valid_node, list.end(), fit_list.begin()); delete[] list.data(); return fit_list; } /** * Returns the count of how many nodes are in the node tree. */ consteval static auto tree_count() noexcept { auto list = build_node_list(); auto count = list.size() * 2 - 1; delete[] list.data(); return count; } /** * Builds a tree out of the node list, allowing for the calculation of * Huffman codes. * @return Compile-time allocated tree of nodes, root node at index zero. */ consteval static auto build_node_tree() noexcept { auto list = build_node_list(); auto tree = std::span(new node[tree_count()] {}, tree_count()); auto list_end = list.end(); // Track end of list as it shrinks auto tree_begin = tree.end(); // Build tree from bottom int next_parent_node_value = 0x100; // Give parent nodes unique ids while (1) { // Create parent node for two least-occuring values node new_node { next_parent_node_value++, list[0].freq + list[1].freq, -1, list[0].value, list[1].value }; // Move the two nodes into the tree and remove them from the list *--tree_begin = list[0]; *--tree_begin = list[1]; std::copy(list.begin() + 2, list_end--, list.begin()); if (std::distance(list.begin(), list_end) == 1) { list.front() = new_node; break; } // Insert the parent node back into the list auto insertion_point = std::find_if(list.begin(), list_end - 1, [&new_node](const auto& n) { return n.freq >= new_node.freq; }); if (insertion_point != list_end - 1) { *(list_end - 1) = node(); std::copy_backward(insertion_point, list_end - 1, list_end); } *insertion_point = new_node; } // Connect child nodes to their parents tree[0] = list[0]; for (auto iter = tree.begin(); ++iter != tree.end();) { if (iter->parent == -1) { auto parent = std::find_if(tree.begin(), iter, [&iter](const auto& n) { return n.left == iter->value || n.right == iter->value; }); if (parent != iter) iter->parent = std::distance(tree.begin(), parent); } } delete[] list.data(); return tree; } /** * Determines the size of the compressed data. * @return A pair of total bytes used, and bits used in last byte. */ consteval static auto compressed_size_info() noexcept { auto tree = build_node_tree(); size_t bytes = 1, bits = 0; for (usize_t i = 0; i < data.size(); i++) { auto leaf = std::find_if(tree.begin(), tree.end(), [c = data[i]](const auto& n) { return n.value == c; }); while (leaf->parent != -1) { if (++bits == 8) bits = 0, bytes++; leaf = tree.begin() + leaf->parent; } } delete[] tree.data(); return std::make_pair(bytes, bits); } /** * Compresses the input data, storing the result in the object instance. */ consteval void compress() noexcept { auto tree = build_node_tree(); // Set up byte and bit count (note, we're compressing the data backwards) auto [bytes, bits] = compressed_size_info(); if (bits > 0) bits = 8 - bits; else bits = 0, bytes--; // Compress data backwards, because we obtain the Huffman codes backwards // as we traverse towards the parent node. for (auto i = data.size(); i > 0; i--) { auto leaf = std::find_if(tree.begin(), tree.end(), [c = data[i - 1]](auto& n) { return n.value == c; }); while (leaf->parent != -1) { auto parent = tree.begin() + leaf->parent; if (parent->right == leaf->value) compressed_data[bytes - 1] |= (1 << bits); if (++bits == 8) bits = 0, --bytes; leaf = parent; } } delete[] tree.data(); } /** * Builds the decode tree, used to decompress the data. * Format: three bytes per node. * 1. Node value, 2. Distance to left child, 3. Distance to right child. */ consteval void build_decode_tree() noexcept { auto tree = build_node_tree(); for (usize_t i = 0; i < tree_count(); i++) { // Only store node value if it represents a data value decode_tree[i * 3] = tree[i].value <= 0xFF ? tree[i].value : 0; usize_t j; // Find the left child of this node for (j = i + 1; j < tree_count(); j++) { if (tree[i].left == tree[j].value) break; } decode_tree[i * 3 + 1] = j < tree_count() ? j - i : 0; // Find the right child of this node for (j = i + 1; j < tree_count(); j++) { if (tree[i].right == tree[j].value) break; } decode_tree[i * 3 + 2] = j < tree_count() ? j - i : 0; } delete[] tree.data(); } public: consteval static auto compressed_size() noexcept { return compressed_size_info().first + 3 * tree_count(); } consteval static auto uncompressed_size() noexcept { return data.size(); } consteval static size_t bytes_saved() noexcept { size_t diff = uncompressed_size() - compressed_size(); return diff > 0 ? diff : 0; } // Utility for decoding compressed data. class decode_info { public: using difference_type = std::ptrdiff_t; using value_type = int; decode_info(const huffman_compressor* comp_data) noexcept : m_data(comp_data) { get_next(); } decode_info() = default; consteval static decode_info end() noexcept { decode_info ender; if constexpr (bytes_saved() > 0) { const auto [size_bytes, last_bits] = compressed_size_info(); ender.m_pos = size_bytes - 1; ender.m_bit = 1 << (7 - last_bits); } else { ender.m_pos = data.size() + 1; } return ender; } bool operator==(const decode_info& other) const noexcept { return m_bit == other.m_bit && m_pos == other.m_pos; } auto operator*() const noexcept { return m_current; } decode_info& operator++() noexcept { get_next(); return *this; } decode_info operator++(int) noexcept { auto old = *this; get_next(); return old; } private: void get_next() noexcept { if (*this == end()) return; if constexpr (bytes_saved() > 0) { auto *node = m_data->decode_tree; auto pos = m_pos; auto bit = m_bit; do { auto idx = (m_data->compressed_data[pos] & bit) ? 2u : 1u; node += node[idx] * 3u; bit >>= 1; if (!bit) bit = 0x80, pos++; } while (node[1] != 0); m_pos = pos; m_bit = bit; m_current = *node; } else { m_current = data[m_pos++]; } } const huffman_compressor *m_data = nullptr; size_t m_pos = 0; unsigned char m_bit = 0x80; int m_current = -1; friend class huffman_compressor; }; // Stick the forward_iterator check here just so it's run consteval huffman_compressor() noexcept requires (std::forward_iterator) { if constexpr (bytes_saved() > 0) { build_decode_tree(); compress(); } } auto begin() const noexcept { return decode_info(this); } auto end() const noexcept { return decode_info::end(); } auto cbegin() const noexcept { begin(); } auto cend() const noexcept { end(); } auto size() const noexcept { if constexpr (bytes_saved() > 0) return compressed_size(); else return uncompressed_size(); } private: // Contains the compressed data. unsigned char compressed_data[bytes_saved() > 0 ? compressed_size_info().first : 1] = {0}; // Contains a 'tree' that can be used to decompress the data. unsigned char decode_tree[bytes_saved() > 0 ? 3 * tree_count() : 1] = {0}; }; template constexpr auto operator ""_huffman() { return huffman_compressor(); } #endif // TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_