1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/**
* consteval_huffman.hpp - Provides compile-time text compression.
* Written by Clyne Sullivan.
* https://github.com/tcsullivan/consteval-huffman
*/
#ifndef TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
#define TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
#include <algorithm>
#include <span>
/**
* Compresses the given character string using Huffman coding, providing a
* minimal run-time interface for decompressing the data.
* @tparam data The string of data to be compressed.
* @tparam data_length The size in bytes of the data, defaults to using strlen().
*/
template<const char *data, std::size_t data_length = std::char_traits<char>::length(data)>
class huffman_compress
{
using size_t = unsigned long int;
// Jump to the bottom of this header for the public-facing features of this
// class.
// The internals needed to be defined before they were used.
private:
// Node structure used to build a tree for calculating Huffman codes.
struct node {
int value = 0;
size_t freq = 0;
// Below values are indices into the node list
int parent = -1;
int left = -1;
int right = -1;
};
/**
* Builds a list of nodes for every character that appears in the given data.
* This list is sorted by increasing frequency.
* @return Compile-time allocated array of nodes
*/
consteval static auto build_node_list() {
auto table = std::span(new node[256] {}, 256);
for (int i = 0; i < 256; i++)
table[i].value = i;
for (size_t i = 0; i < data_length; i++)
table[data[i]].freq++;
std::sort(table.begin(), table.end(), [](auto& a, auto& b) { return a.freq < b.freq; });
auto first_valid_node = std::find_if(table.begin(), table.end(),
[](const auto& n) { return n.freq != 0; });
auto iter = std::copy(first_valid_node, table.end(), table.begin());
std::fill(iter, table.end(), node());
return table;
}
/**
* Counts how many nodes in build_node_list() are valid.
* @return Number of valid nodes, i.e. the "size" of the list.
*/
consteval static auto node_count() {
auto table = build_node_list();
size_t i;
for (i = 0; table[i].freq != 0; i++);
delete[] table.data();
return i;
}
// Returns the count of how many nodes are in the node tree.
public:
consteval static auto tree_count() {
return node_count() * 2 - 1;
}
/**
* Builds a tree out of the node list, allowing for the calculation of
* Huffman codes.
* @return Compile-time allocated tree of nodes, root node at index zero.
*/
consteval static auto build_node_tree() {
auto list = build_node_list();
auto tree = std::span(new node[tree_count()] {}, tree_count());
auto list_end = node_count();
auto tree_begin = tree.end();
int next_merged_node_value = 0x100;
while (list[1].freq != 0) {
// Create the merged parent node
node new_node {
next_merged_node_value++,
list[0].freq + list[1].freq,
-1,
list[0].value,
list[1].value
};
*--tree_begin = list[0];
*--tree_begin = list[1];
auto insertion_point = list.begin();
while (insertion_point->freq != 0 && insertion_point->freq < new_node.freq)
insertion_point++;
std::copy_backward(insertion_point, list.begin() + list_end, list.begin() + list_end + 1);
*insertion_point = new_node;
std::copy(list.begin() + 2, list.begin() + list_end + 1, list.begin());
list[list_end - 1] = node();
list[list_end--] = node();
}
// Connect child nodes to their parents
tree[0] = list[0];
for (auto iter = tree.begin(); ++iter != tree.end();) {
if (iter->parent == -1) {
auto parent = std::find_if(tree.begin(), iter,
[&iter](const auto& n) { return n.left == iter->value || n.right == iter->value; });
if (parent != iter)
iter->parent = std::distance(tree.begin(), parent);
}
}
delete[] list.data();
return tree;
}
/**
* Determines the size of the compressed data.
* Returns a pair: [total byte size, bits used in last byte].
*/
consteval static auto output_size() {
auto tree = build_node_tree();
size_t bytes = 1, bits = 0;
for (size_t i = 0; i < data_length; i++) {
auto leaf = std::find_if(tree.begin(), tree.end(),
[c = data[i]](auto& n) { return n.value == c; });
while (leaf->parent != -1) {
if (++bits == 8)
bits = 0, bytes++;
leaf = tree.begin() + leaf->parent;
}
}
delete[] tree.data();
return std::make_pair(bytes, bits);
}
// Compresses the input data, placing the result in `output`.
consteval void compress()
{
auto tree = build_node_tree();
size_t bytes = output_size().first;
int bits;
if (auto bitscount = output_size().second; bitscount > 0)
bits = 8 - bitscount;
else
bits = 0, bytes--;
for (size_t i = data_length; i > 0; i--) {
auto leaf = std::find_if(tree.begin(), tree.end(),
[c = data[i - 1]](auto& n) { return n.value == c; });
while (leaf->parent != -1) {
auto parent = tree.begin() + leaf->parent;
if (parent->right == leaf->value)
output[bytes - 1] |= (1 << bits);
if (++bits == 8)
bits = 0, --bytes;
leaf = parent;
}
}
delete[] tree.data();
}
// Builds the tree that can be used for decompression, stored in `decode_tree`.
consteval void build_decode_tree() {
auto tree = build_node_tree();
for (size_t i = 0; i < tree_count(); i++) {
decode_tree[i * 3] = tree[i].value <= 0xFF ? tree[i].value : 0;
size_t j;
for (j = i + 1; j < tree_count(); j++) {
if (tree[i].left == tree[j].value)
break;
}
decode_tree[i * 3 + 1] = j < tree_count() ? j - i : 0;
for (j = i + 1; j < tree_count(); j++) {
if (tree[i].right == tree[j].value)
break;
}
decode_tree[i * 3 + 2] = j < tree_count() ? j - i : 0;
}
delete[] tree.data();
}
// Contains the compressed data.
unsigned char output[output_size().first] = {};
// Contains a 'tree' that can be used to decompress the data.
public:
unsigned char decode_tree[3 * tree_count()] = {};
// Utility for decoding compressed data.
class decode_info {
public:
decode_info(const huffman_compress<data, data_length>& comp_data) :
m_data(comp_data) { get_next(); }
// Checks if another byte is available
operator bool() const {
const auto [size_bytes, last_bits_count] = m_data.output_size();
return m_pos < (size_bytes - 1) || m_bit > (8 - last_bits_count);
}
// Gets the current byte
int operator*() const { return m_current; }
// Moves to the next byte
int operator++() {
get_next();
return m_current;
}
private:
// Internal: moves to next byte
void get_next() {
auto *node = m_data.decode_tree;
do {
bool bit = m_data.output[m_pos] & (1 << (m_bit - 1));
if (--m_bit == 0)
m_bit = 8, m_pos++;
node += 3 * node[bit ? 2 : 1];
} while (node[1] != 0);
m_current = *node;
}
const huffman_compress<data>& m_data;
size_t m_pos = 0;
unsigned char m_bit = 8;
int m_current = -1;
friend class huffman_compress;
};
consteval huffman_compress() {
build_decode_tree();
compress();
}
consteval static auto compressed_size() {
return output_size().first + output_size().second;
}
consteval static auto uncompressed_size() {
return data_length;
}
consteval static auto bytes_saved() {
return uncompressed_size() - compressed_size();
}
// Creates a decoder object for iteratively decompressing the data.
auto get_decoder() const {
return decode_info(*this);
}
};
#endif // TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
|