/// @ref core /// @file glm/detail/func_integer_simd.inl namespace glm{ namespace detail { inline __m128i _mm_bit_interleave_si128(__m128i x) { __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); __m128i const Mask1 = _mm_set1_epi32(0x33333333); __m128i const Mask0 = _mm_set1_epi32(0x55555555); __m128i Reg1; __m128i Reg2; // REG1 = x; // REG2 = y; //Reg1 = _mm_unpacklo_epi64(x, y); Reg1 = x; //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); Reg2 = _mm_slli_si128(Reg1, 2); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask4); //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); Reg2 = _mm_slli_si128(Reg1, 1); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask3); //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); Reg2 = _mm_slli_epi32(Reg1, 4); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask2); //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); Reg2 = _mm_slli_epi32(Reg1, 2); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask1); //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); Reg2 = _mm_slli_epi32(Reg1, 1); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask0); //return REG1 | (REG2 << 1); Reg2 = _mm_slli_epi32(Reg1, 1); Reg2 = _mm_srli_si128(Reg2, 8); Reg1 = _mm_or_si128(Reg1, Reg2); return Reg1; } inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y) { __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); __m128i const Mask1 = _mm_set1_epi32(0x33333333); __m128i const Mask0 = _mm_set1_epi32(0x55555555); __m128i Reg1; __m128i Reg2; // REG1 = x; // REG2 = y; Reg1 = _mm_unpacklo_epi64(x, y); //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); Reg2 = _mm_slli_si128(Reg1, 2); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask4); //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); Reg2 = _mm_slli_si128(Reg1, 1); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask3); //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); Reg2 = _mm_slli_epi32(Reg1, 4); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask2); //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); Reg2 = _mm_slli_epi32(Reg1, 2); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask1); //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); Reg2 = _mm_slli_epi32(Reg1, 1); Reg1 = _mm_or_si128(Reg2, Reg1); Reg1 = _mm_and_si128(Reg1, Mask0); //return REG1 | (REG2 << 1); Reg2 = _mm_slli_epi32(Reg1, 1); Reg2 = _mm_srli_si128(Reg2, 8); Reg1 = _mm_or_si128(Reg1, Reg2); return Reg1; } }//namespace detail }//namespace glm