/// @ref core /// @file glm/detail/func_matrix.inl #include "../geometric.hpp" #include <limits> namespace glm{ namespace detail { template <template <class, precision> class matType, typename T, precision P> struct compute_transpose{}; template <typename T, precision P> struct compute_transpose<tmat2x2, T, P> { GLM_FUNC_QUALIFIER static tmat2x2<T, P> call(tmat2x2<T, P> const & m) { tmat2x2<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat2x3, T, P> { GLM_FUNC_QUALIFIER static tmat3x2<T, P> call(tmat2x3<T, P> const & m) { tmat3x2<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[2][0] = m[0][2]; result[2][1] = m[1][2]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat2x4, T, P> { GLM_FUNC_QUALIFIER static tmat4x2<T, P> call(tmat2x4<T, P> const & m) { tmat4x2<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[2][0] = m[0][2]; result[2][1] = m[1][2]; result[3][0] = m[0][3]; result[3][1] = m[1][3]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat3x2, T, P> { GLM_FUNC_QUALIFIER static tmat2x3<T, P> call(tmat3x2<T, P> const & m) { tmat2x3<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[0][2] = m[2][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[1][2] = m[2][1]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat3x3, T, P> { GLM_FUNC_QUALIFIER static tmat3x3<T, P> call(tmat3x3<T, P> const & m) { tmat3x3<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[0][2] = m[2][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[1][2] = m[2][1]; result[2][0] = m[0][2]; result[2][1] = m[1][2]; result[2][2] = m[2][2]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat3x4, T, P> { GLM_FUNC_QUALIFIER static tmat4x3<T, P> call(tmat3x4<T, P> const & m) { tmat4x3<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[0][2] = m[2][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[1][2] = m[2][1]; result[2][0] = m[0][2]; result[2][1] = m[1][2]; result[2][2] = m[2][2]; result[3][0] = m[0][3]; result[3][1] = m[1][3]; result[3][2] = m[2][3]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat4x2, T, P> { GLM_FUNC_QUALIFIER static tmat2x4<T, P> call(tmat4x2<T, P> const & m) { tmat2x4<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[0][2] = m[2][0]; result[0][3] = m[3][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[1][2] = m[2][1]; result[1][3] = m[3][1]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat4x3, T, P> { GLM_FUNC_QUALIFIER static tmat3x4<T, P> call(tmat4x3<T, P> const & m) { tmat3x4<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[0][2] = m[2][0]; result[0][3] = m[3][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[1][2] = m[2][1]; result[1][3] = m[3][1]; result[2][0] = m[0][2]; result[2][1] = m[1][2]; result[2][2] = m[2][2]; result[2][3] = m[3][2]; return result; } }; template <typename T, precision P> struct compute_transpose<tmat4x4, T, P> { GLM_FUNC_QUALIFIER static tmat4x4<T, P> call(tmat4x4<T, P> const & m) { tmat4x4<T, P> result(uninitialize); result[0][0] = m[0][0]; result[0][1] = m[1][0]; result[0][2] = m[2][0]; result[0][3] = m[3][0]; result[1][0] = m[0][1]; result[1][1] = m[1][1]; result[1][2] = m[2][1]; result[1][3] = m[3][1]; result[2][0] = m[0][2]; result[2][1] = m[1][2]; result[2][2] = m[2][2]; result[2][3] = m[3][2]; result[3][0] = m[0][3]; result[3][1] = m[1][3]; result[3][2] = m[2][3]; result[3][3] = m[3][3]; return result; } }; template <template <class, precision> class matType, typename T, precision P> struct compute_determinant{}; template <typename T, precision P> struct compute_determinant<tmat2x2, T, P> { GLM_FUNC_QUALIFIER static T call(tmat2x2<T, P> const & m) { return m[0][0] * m[1][1] - m[1][0] * m[0][1]; } }; template <typename T, precision P> struct compute_determinant<tmat3x3, T, P> { GLM_FUNC_QUALIFIER static T call(tmat3x3<T, P> const & m) { return + m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) - m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]) + m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); } }; template <typename T, precision P> struct compute_determinant<tmat4x4, T, P> { GLM_FUNC_QUALIFIER static T call(tmat4x4<T, P> const & m) { T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; tvec4<T, P> DetCof( + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02), - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04), + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05), - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05)); return m[0][0] * DetCof[0] + m[0][1] * DetCof[1] + m[0][2] * DetCof[2] + m[0][3] * DetCof[3]; } }; }//namespace detail template <typename T, precision P, template <typename, precision> class matType> GLM_FUNC_QUALIFIER matType<T, P> matrixCompMult(matType<T, P> const & x, matType<T, P> const & y) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'matrixCompMult' only accept floating-point inputs"); matType<T, P> result(uninitialize); for(length_t i = 0; i < result.length(); ++i) result[i] = x[i] * y[i]; return result; } template<typename T, precision P, template <typename, precision> class vecTypeA, template <typename, precision> class vecTypeB> GLM_FUNC_QUALIFIER typename detail::outerProduct_trait<T, P, vecTypeA, vecTypeB>::type outerProduct(vecTypeA<T, P> const & c, vecTypeB<T, P> const & r) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'outerProduct' only accept floating-point inputs"); typename detail::outerProduct_trait<T, P, vecTypeA, vecTypeB>::type m(uninitialize); for(length_t i = 0; i < m.length(); ++i) m[i] = c * r[i]; return m; } template <typename T, precision P, template <typename, precision> class matType> GLM_FUNC_QUALIFIER typename matType<T, P>::transpose_type transpose(matType<T, P> const & m) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'transpose' only accept floating-point inputs"); return detail::compute_transpose<matType, T, P>::call(m); } template <typename T, precision P, template <typename, precision> class matType> GLM_FUNC_QUALIFIER T determinant(matType<T, P> const & m) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'determinant' only accept floating-point inputs"); return detail::compute_determinant<matType, T, P>::call(m); } template <typename T, precision P, template <typename, precision> class matType> GLM_FUNC_QUALIFIER matType<T, P> inverse(matType<T, P> const & m) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'inverse' only accept floating-point inputs"); return detail::compute_inverse(m); } }//namespace glm #if GLM_ARCH != GLM_ARCH_PURE # include "func_matrix_simd.inl" #endif