#include #define getWidth(w) ((w->lineCount-GEN_INC)*HLINE) // Calculates the width of world 'w' #define GEN_INC 10 // Defines at what interval y values should be calculated for the array 'line'. // As explained in World(), the last few lines in the array 'line' are incorrectly calculated // or not calculated at all, so GEN_INC is also used to decrease 'lineCount' in functions like draw() // and detect(). #define GRASS_HEIGHT 4 // Defines how long the grass layer of a line should be in multiples of HLINE. #define DRAW_Y_OFFSET 50 // Defines how many pixels each layer should be offset from each other on the y axis when drawn. #define DRAW_SHADE 30 // Defines a shade increment for draw() #define INDOOR_FLOOR_HEIGHT 100 // Defines how high the base floor of an IndoorWorld should be extern std::vector entity; extern std::vector build; float worldGetYBase(World *w){ float base = 0; World *ptr = w; while(ptr->infront){ base+=DRAW_Y_OFFSET; ptr=ptr->infront; } return base; } World::World(void){ } void World::generate(unsigned int width){ // Generates the world and sets all variables contained in the World class. unsigned int i; float inc; /* * Calculate the world's real width. The current form of generation fails to generate * the last GEN_INC lines, so we offset those making the real real width what was passed * to this function. * * Abort if the width is invalid. * */ if((lineCount = width + GEN_INC) <= 0) abort(); /* * Allocate enough memory for the world to be stored. */ line=(struct line_t *)calloc(lineCount,sizeof(struct line_t)); /* * Set an initial y to base generation off of, as generation references previous lines. */ line[0].y=80; /* * Populate every GEN_INCth line structure. The remaining lines will be based off of these. */ for(i=GEN_INC;i 70)line[i].y = 70; // Maximum bound } /* * Generate values for the remaining lines here. */ for(i=0;idraw(), * by setting an RGB value of color (red), color - 50 (green), color - 100 (blue). */ line[i].color=rand() % 20 + 100; // 100 to 120 /* * Each line has two 'blades' of grass, here we generate random heights for them. */ line[i].gh[0]=(getRand() % 16) / 3.5 + 2; // Not sure what the range resolves to here... line[i].gh[1]=(getRand() % 16) / 3.5 + 2; // line[i].gs=true; // Show the blades of grass (modified by the player) } /* * Calculate the x coordinate to start drawing this world from so that it is centered at (0,0). */ x_start=0 - getWidth(this) / 2 + GEN_INC / 2 * HLINE; /* * Nullify pointers to other worlds. */ behind = infront = toLeft = toRight = NULL; } World::~World(void){ free(line); } int worldShade = 0; void World::draw(Player *p){ static float yoff=DRAW_Y_OFFSET; // Initialize stuff static int shade; static World *current; int i,is,ie,v_offset,cx_start; struct line_t *cline; glClearColor(.1,.3,.6,0); /* * World drawing is done recursively, meaning that this function jumps * back as many 'layers' as it can and then draws, eventually coming * back to the initial or 'root' layer. LOOP1 does the recursion back * to the furthest behind layer, modifying shade and y offsets as it * does. * */ current=this; shade=worldShade; LOOP1: if(current->behind){ /* * Add to the y offset and shade values (explained further below) * and recurse. * */ yoff+=DRAW_Y_OFFSET; shade+=DRAW_SHADE; current=current->behind; goto LOOP1; } /* * Here is where the actual world drawing begins. A goto is made to * LOOP2 once the current layer is drawn and the function shifts to * draw the next closest layer. */ LOOP2: /* * Calculate the offset in the line array that the player is (or would) * currently be on. This function then calculates reasonable values for * the 'for' loop below that draws the layer. */ v_offset=(offset.x + p->width / 2 - current->x_start) / HLINE; // is -> i start is=v_offset - (SCREEN_WIDTH / 2 / HLINE) - GEN_INC; if(is<0)is=0; // Minimum bound // ie -> i end ie=v_offset + (SCREEN_WIDTH / 2 / HLINE) + GEN_INC + HLINE; if(ie>current->lineCount)ie=current->lineCount; // Maximum bound /* * Make more direct variables for quicker referencing. */ cline =current->line; cx_start=current->x_start; /* * Invert shading if desired. */ shade*=-1; /* * Draw structures in the current layer if we're on the one we started at. We draw * structures behind the dirt/grass so that the buildings corners don't stick out. */ if(current==this){ for(i=0;iinWorld==this && entity[i]->type == STRUCTURET) entity[i]->draw(); } } /* * Draw the layer up until the grass portion, which is done later. */ bool hey=false; glBegin(GL_QUADS); for(i=is;iloc.x + p->width / 2 - x_start) / HLINE; /* * If the player is on the ground, flatten the grass where the player is standing * by setting line.gs to false. */ if(p->ground==1){ for(i=0;i ph - 6 ) cline[i].gs=false; else cline[i].gs=true; } }else{ for(i=0;idraw(); /* * Draw non-structure entities. */ for(i=0;iinWorld==this && entity[i]->type != STRUCTURET) entity[i]->draw(); } }else{ /*for(i=0;iplatform.size();i++){ glRectf(current->platform[i].p1.x, current->platform[i].p1.y + yoff - DRAW_Y_OFFSET, current->platform[i].p2.x, current->platform[i].p2.y + yoff - DRAW_Y_OFFSET); } /* * Draw the next closest world if it exists. */ if(current->infront){ yoff -= DRAW_Y_OFFSET; shade -= DRAW_SHADE; current=current->infront; goto LOOP2; }else{ /* * If finished, reset the yoff and shade variables for the next call. */ yoff=DRAW_Y_OFFSET; shade=0; } } void World::singleDetect(Entity *e){ unsigned int i; /* * Kill any dead entities. */ if(e->alive&&e->health<=0){ e->alive=false; std::cout<<"Killing entity..."<alive){ /* * Calculate the line that this entity is currently standing on. */ i=(e->loc.x + e->width / 2 - x_start) / HLINE; /* * If the entity is under the world/line, pop it back to the surface. */ if(e->loc.y < line[i].y){ e->ground=true; e->vel.y=0; e->loc.y=line[i].y - .001 * deltaTime; /* * Otherwise, if the entity is above the line... */ }else if(e->loc.y > line[i].y - .002 * deltaTime){ /* * Check for any potential platform collision (i.e. landing on a platform) */ for(i=0;iloc.x + e->width > platform[i].p1.x) & (e->loc.x + e->width < platform[i].p2.x)) || // Check X left bounds ((e->loc.x < platform[i].p2.x) & (e->loc.x>platform[i].p1.x))){ // Check X right bounds if(e->loc.y > platform[i].p1.y && e->loc.y < platform[i].p2.y){ // Check Y bounds /* * Check if the entity is falling onto the platform so * that it doesn't snap to it when attempting to jump * through it. * */ if(e->vel.y<=0){ e->ground=2; e->vel.y=0; e->loc.y=platform[i].p2.y; //return; // May not be necessary } } } } /* * Handle gravity. */ e->vel.y-=.001 * deltaTime; } /* * Insure that the entity doesn't fall off either edge of the world. */ if(e->loc.xvel.x=0; e->loc.x=x_start + HLINE / 2; }else if(e->loc.x + e->width + HLINE > x_start + getWidth(this)){ // Right bound e->vel.x=0; e->loc.x=x_start + getWidth(this) - e->width - HLINE; } } } void World::detect(Player *p){ unsigned int i; /* * Handle the player. */ singleDetect(p); /* * Handle all remaining entities in this world. */ for(i=0;iinWorld==this){ singleDetect(entity[i]); } } } /* * The rest of these functions are explained well enough in world.h ;) */ void World::addLayer(unsigned int width){ if(behind){ behind->addLayer(width); return; } behind=new World(); behind->generate(width); behind->infront=this; } World *World::goWorldLeft(Player *p){ if(toLeft&&p->loc.xloc.x=toLeft->x_start+getWidth(toLeft)-HLINE*10; p->loc.y=toLeft->line[0].y; return toLeft; } return this; } World *World::goWorldRight(Player *p){ if(toRight&&p->loc.x+p->width>x_start+getWidth(this)-HLINE*10){ p->loc.x=toRight->x_start+HLINE*10; p->loc.y=toRight->line[toRight->lineCount-GEN_INC-1].y; return toRight; } return this; } World *World::goWorldBack(Player *p){ if(behind&&p->loc.x>(int)(0-getWidth(behind)/2)&&p->loc.xloc.x>(int)(0-getWidth(infront)/2)&&p->loc.xinWorld==this){ if(p->loc.x > build[i]->loc.x && p->loc.x + p->width < build[i]->loc.x + build[i]->width){ return (World *)build[i]->inside; } }else if(build[i]->inside==this){ p->loc.x=build[i]->loc.x + build[i]->width / 2 - p->width / 2; p->loc.y=build[i]->loc.y + HLINE; return (World *)build[i]->inWorld; } } return this; } void World::addHole(unsigned int start,unsigned int end){ unsigned int i; for(i=start;iinfront){ hey=hey->infront; goto LOOP; } return -hey->x_start*2; } IndoorWorld::IndoorWorld(void){ } IndoorWorld::~IndoorWorld(void){ free(line); } void IndoorWorld::generate(unsigned int width){ // Generates a flat area of width 'width' unsigned int i; // Used for 'for' loops lineCount=width+GEN_INC; // Sets line count to the desired width plus GEN_INC to remove incorrect line calculations. if(lineCount<=0)abort(); line=(struct line_t *)calloc(lineCount,sizeof(struct line_t)); // Allocate memory for the array 'line' for(i=0;iloc.x-x_start)/HLINE; // Calculate the player's offset in the array 'line' using the player's location 'vec' i=v_offset-SCREEN_WIDTH/2; // um if(i<0)i=0; // If the player is past the start of that world 'i' should start at the beginning // of the world ie=v_offset+SCREEN_WIDTH/2; // Set how many lines should be drawn (the drawing for loop loops from 'i' to 'ie') if(ie>lineCount)ie=lineCount; // If the player is past the end of that world 'ie' should contain the end of that world glClearColor(.3,.1,0,0); glBegin(GL_QUADS); for(i=i;iinWorld==this) entity[i]->draw(); } p->draw(); }