aboutsummaryrefslogtreecommitdiffstats
path: root/deps/sol2/include/sol/call.hpp
diff options
context:
space:
mode:
authorAndy Belle-Isle <drumsetmonkey@gmail.com>2019-08-30 00:19:31 -0400
committerAndy Belle-Isle <drumsetmonkey@gmail.com>2019-08-30 00:19:31 -0400
commitbd3fe0cac583739bc0d7c4b5c8f301bb350abca0 (patch)
tree7eeb1aabcebd6999de1c3457d0882246ec0ff4d4 /deps/sol2/include/sol/call.hpp
parent2662ac356ce14dacfbc91689fd37244facff4989 (diff)
Renamed lib to deps so github will ignore it for language stats
Diffstat (limited to 'deps/sol2/include/sol/call.hpp')
-rw-r--r--deps/sol2/include/sol/call.hpp906
1 files changed, 906 insertions, 0 deletions
diff --git a/deps/sol2/include/sol/call.hpp b/deps/sol2/include/sol/call.hpp
new file mode 100644
index 0000000..811ce57
--- /dev/null
+++ b/deps/sol2/include/sol/call.hpp
@@ -0,0 +1,906 @@
+// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_CALL_HPP
+#define SOL_CALL_HPP
+
+#include "property.hpp"
+#include "protect.hpp"
+#include "wrapper.hpp"
+#include "trampoline.hpp"
+#include "policies.hpp"
+#include "stack.hpp"
+#include "unique_usertype_traits.hpp"
+
+namespace sol {
+ namespace u_detail {
+
+ } // namespace u_detail
+
+ namespace policy_detail {
+ template <int I, int... In>
+ inline void handle_policy(static_stack_dependencies<I, In...>, lua_State* L, int&) {
+ if constexpr (sizeof...(In) == 0) {
+ (void)L;
+ return;
+ }
+ else {
+ absolute_index ai(L, I);
+ if (type_of(L, ai) != type::userdata) {
+ return;
+ }
+ lua_createtable(L, static_cast<int>(sizeof...(In)), 0);
+ stack_reference deps(L, -1);
+ auto per_dep = [&L, &deps](int i) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, i);
+ luaL_ref(L, deps.stack_index());
+ };
+ (void)per_dep;
+ (void)detail::swallow{ int(), (per_dep(In), int())... };
+ lua_setuservalue(L, ai);
+ }
+ }
+
+ template <int... In>
+ inline void handle_policy(returns_self_with<In...>, lua_State* L, int& pushed) {
+ pushed = stack::push(L, raw_index(1));
+ handle_policy(static_stack_dependencies<-1, In...>(), L, pushed);
+ }
+
+ inline void handle_policy(const stack_dependencies& sdeps, lua_State* L, int&) {
+ absolute_index ai(L, sdeps.target);
+ if (type_of(L, ai) != type::userdata) {
+ return;
+ }
+ lua_createtable(L, static_cast<int>(sdeps.size()), 0);
+ stack_reference deps(L, -1);
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, static_cast<int>(sdeps.size()), detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ for (std::size_t i = 0; i < sdeps.size(); ++i) {
+ lua_pushvalue(L, sdeps.stack_indices[i]);
+ luaL_ref(L, deps.stack_index());
+ }
+ lua_setuservalue(L, ai);
+ }
+
+ template <typename P, meta::disable<std::is_base_of<detail::policy_base_tag, meta::unqualified_t<P>>> = meta::enabler>
+ inline void handle_policy(P&& p, lua_State* L, int& pushed) {
+ pushed = std::forward<P>(p)(L, pushed);
+ }
+ } // namespace policy_detail
+
+ namespace function_detail {
+ inline int no_construction_error(lua_State* L) {
+ return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
+ }
+ } // namespace function_detail
+
+ namespace call_detail {
+
+ template <typename R, typename W>
+ inline auto& pick(std::true_type, property_wrapper<R, W>& f) {
+ return f.read();
+ }
+
+ template <typename R, typename W>
+ inline auto& pick(std::false_type, property_wrapper<R, W>& f) {
+ return f.write();
+ }
+
+ template <typename T, typename List>
+ struct void_call : void_call<T, meta::function_args_t<List>> {};
+
+ template <typename T, typename... Args>
+ struct void_call<T, types<Args...>> {
+ static void call(Args...) {
+ }
+ };
+
+ template <typename T, bool checked, bool clean_stack>
+ struct constructor_match {
+ T* obj_;
+
+ constructor_match(T* o) : obj_(o) {
+ }
+
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
+ detail::default_construct func{};
+ return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj_);
+ }
+ };
+
+ namespace overload_detail {
+ template <std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) {
+ return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
+ }
+
+ template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L,
+ int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if constexpr (!traits::runtime_variadics_t::value && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
+ return overload_match_arity(types<Fxs...>(),
+ std::index_sequence<In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ else {
+ if constexpr (!traits::runtime_variadics_t::value) {
+ if (traits::free_arity != fxarity) {
+ return overload_match_arity(types<Fxs...>(),
+ std::index_sequence<In...>(),
+ std::index_sequence<traits::free_arity, M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ }
+ stack::record tracking{};
+ if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) {
+ return overload_match_arity(types<Fxs...>(),
+ std::index_sequence<In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ }
+
+ template <std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity_single(
+ types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ return overload_match_arity(types<>(),
+ std::index_sequence<>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
+ inline int overload_match_arity_single(
+ types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if constexpr (!traits::runtime_variadics_t::value
+ && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
+ return overload_match_arity(types<>(),
+ std::index_sequence<>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
+ return overload_match_arity(types<>(),
+ std::index_sequence<>(),
+ std::index_sequence<traits::free_arity, M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match,
+ typename... Args>
+ inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx,
+ lua_State* L, int fxarity, int start, Args&&... args) {
+ typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
+ typedef meta::tuple_types<typename traits::return_type> return_types;
+ typedef typename traits::free_args_list args_list;
+ // compile-time eliminate any functions that we know ahead of time are of improper arity
+ if constexpr (!traits::runtime_variadics_t::value && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
+ return overload_match_arity(types<Fx1, Fxs...>(),
+ std::index_sequence<I1, In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ else {
+ if constexpr (!traits::runtime_variadics_t::value) {
+ if (traits::free_arity != fxarity) {
+ return overload_match_arity(types<Fx1, Fxs...>(),
+ std::index_sequence<I1, In...>(),
+ std::index_sequence<traits::free_arity, M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ }
+ stack::record tracking{};
+ if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) {
+ return overload_match_arity(types<Fx1, Fxs...>(),
+ std::index_sequence<I1, In...>(),
+ std::index_sequence<M...>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+ return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
+ }
+ }
+ } // namespace overload_detail
+
+ template <typename... Functions, typename Match, typename... Args>
+ inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ return overload_detail::overload_match_arity_single(types<Functions...>(),
+ std::make_index_sequence<sizeof...(Functions)>(),
+ std::index_sequence<>(),
+ std::forward<Match>(matchfx),
+ L,
+ fxarity,
+ start,
+ std::forward<Args>(args)...);
+ }
+
+ template <typename... Functions, typename Match, typename... Args>
+ inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) {
+ int fxarity = lua_gettop(L) - (start - 1);
+ return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename... TypeLists, typename Match, typename... Args>
+ inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
+ // use same overload resolution matching as all other parts of the framework
+ return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(
+ std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
+ }
+
+ template <typename T, bool checked, bool clean_stack, typename... TypeLists>
+ inline int construct_trampolined(lua_State* L) {
+ static const auto& meta = usertype_traits<T>::metatable();
+ int argcount = lua_gettop(L);
+ call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
+ argcount -= static_cast<int>(syntax);
+
+ T* obj = detail::usertype_allocate<T>(L);
+ reference userdataref(L, -1);
+ stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
+ umf();
+
+ construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax));
+
+ userdataref.push();
+ return 1;
+ }
+
+ template <typename T, bool checked, bool clean_stack, typename... TypeLists>
+ inline int construct(lua_State* L) {
+ return detail::static_trampoline<&construct_trampolined<T, checked, clean_stack, TypeLists...>>(L);
+ }
+
+ template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void>
+ struct agnostic_lua_call_wrapper {
+ using wrap = wrapper<meta::unqualified_t<F>>;
+
+ template <typename Fx, typename... Args>
+ static int call(lua_State* L, Fx&& f, Args&&... args) {
+ if constexpr(is_lua_reference_v<meta::unqualified_t<Fx>>) {
+ if constexpr (is_index) {
+ return stack::push(L, std::forward<Fx>(f), std::forward<Args>(args)...);
+ }
+ else {
+ std::forward<Fx>(f) = stack::unqualified_get<F>(L, boost + (is_variable ? 3 : 1));
+ return 0;
+ }
+ }
+ else {
+ using traits_type = typename wrap::traits_type;
+ using fp_t = typename traits_type::function_pointer_type;
+ constexpr bool is_function_pointer_convertible
+ = std::is_class_v<meta::unqualified_t<F>> && std::is_convertible_v<std::decay_t<Fx>, fp_t>;
+ if constexpr (is_function_pointer_convertible) {
+ fp_t fx = f;
+ return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call(
+ L, fx, std::forward<Args>(args)...);
+ }
+ else {
+ using returns_list = typename wrap::returns_list;
+ using args_list = typename wrap::free_args_list;
+ using caller = typename wrap::caller;
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
+ }
+ }
+ }
+ };
+
+ template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<var_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ if constexpr (is_index) {
+ constexpr bool is_stack = is_stack_based_v<meta::unqualified_t<decltype(detail::unwrap(f.value()))>>;
+ if constexpr (clean_stack && !is_stack) {
+ lua_settop(L, 0);
+ }
+ return stack::push_reference(L, detail::unwrap(f.value()));
+ }
+ else {
+ if constexpr (std::is_const_v<meta::unwrapped_t<T>>) {
+ return luaL_error(L, "sol: cannot write to a readonly (const) variable");
+ }
+ else {
+ using R = meta::unwrapped_t<T>;
+ if constexpr (std::is_assignable_v<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>) {
+ detail::unwrap(f.value()) = stack::unqualified_get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
+ if (clean_stack) {
+ lua_settop(L, 0);
+ }
+ return 0;
+ }
+ else {
+ return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
+ }
+ }
+ }
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, lua_CFunction_ref f) {
+ return f(L);
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, lua_CFunction f) {
+ return f(L);
+ }
+ };
+
+#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, detail::lua_CFunction_noexcept f) {
+ return f(L);
+ }
+ };
+#endif // noexcept function types
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<detail::no_prop, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, const detail::no_prop&) {
+ return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
+ }
+ };
+
+ template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, const no_construction&) {
+ return function_detail::no_construction_error(L);
+ }
+ };
+
+ template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State*, const bases<Args...>&) {
+ // Uh. How did you even call this, lul
+ return 0;
+ }
+ };
+
+ template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, std::reference_wrapper<T> f) {
+ agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack> alcw{};
+ return alcw.call(L, f.get());
+ }
+ };
+
+ template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0,
+ bool clean_stack = true, typename = void>
+ struct lua_call_wrapper {
+ template <typename Fx, typename... Args>
+ static int call(lua_State* L, Fx&& fx, Args&&... args) {
+ if constexpr (std::is_member_function_pointer_v<F>) {
+ using wrap = wrapper<F>;
+ using object_type = typename wrap::object_type;
+ if constexpr (sizeof...(Args) < 1) {
+ using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
+#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ return luaL_error(L,
+ "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are "
+ "preceeded by the "
+ "actual object with '.' syntax)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+ return call(L, std::forward<Fx>(fx), *o);
+#else
+ object_type& o = static_cast<object_type&>(*stack::unqualified_get<non_null<Ta*>>(L, 1));
+ return call(L, std::forward<Fx>(fx), o);
+#endif // Safety
+ }
+ else {
+ using returns_list = typename wrap::returns_list;
+ using args_list = typename wrap::args_list;
+ using caller = typename wrap::caller;
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+ else if constexpr (std::is_member_object_pointer_v<F>) {
+ using wrap = wrapper<F>;
+ using object_type = typename wrap::object_type;
+ if constexpr (is_index) {
+ if constexpr (sizeof...(Args) < 1) {
+ using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
+#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
+ }
+ object_type* o = static_cast<object_type*>(maybeo.value());
+ return call(L, std::forward<Fx>(fx), *o);
+#else
+ object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
+ return call(L, std::forward<Fx>(fx), o);
+#endif // Safety
+ }
+ else {
+ using returns_list = typename wrap::returns_list;
+ using caller = typename wrap::caller;
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), types<>(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+ else {
+ using traits_type = lua_bind_traits<F>;
+ using return_type = typename traits_type::return_type;
+ constexpr bool is_const = std::is_const_v<std::remove_reference_t<return_type>>;
+ if constexpr (is_const) {
+ (void)fx;
+ (void)detail::swallow{ 0, (static_cast<void>(args), 0)... };
+ return luaL_error(L, "sol: cannot write to a readonly (const) variable");
+ }
+ else {
+ using u_return_type = meta::unqualified_t<return_type>;
+ constexpr bool is_assignable = std::is_copy_assignable_v<u_return_type> || std::is_array_v<u_return_type>;
+ if constexpr (!is_assignable) {
+ (void)fx;
+ (void)detail::swallow{ 0, ((void)args, 0)... };
+ return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
+ }
+ else {
+ using args_list = typename wrap::args_list;
+ using caller = typename wrap::caller;
+ if constexpr (sizeof...(Args) > 0) {
+ return stack::call_into_lua<checked, clean_stack>(types<void>(),
+ args_list(),
+ L,
+ boost + (is_variable ? 3 : 2),
+ caller(),
+ std::forward<Fx>(fx),
+ std::forward<Args>(args)...);
+ }
+ else {
+ using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
+ #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
+ }
+ object_type* po = static_cast<object_type*>(maybeo.value());
+ object_type& o = *po;
+ #else
+ object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
+ #endif // Safety
+
+ return stack::call_into_lua<checked, clean_stack>(
+ types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), o);
+ }
+ }
+ }
+ }
+ }
+ else {
+ agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> alcw{};
+ return alcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+ };
+
+ template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, readonly_wrapper<F>, is_index, is_variable, checked, boost, clean_stack, C> {
+ using traits_type = lua_bind_traits<F>;
+ using wrap = wrapper<F>;
+ using object_type = typename wrap::object_type;
+
+ static int call(lua_State* L, readonly_wrapper<F>&& rw) {
+ if constexpr (!is_index) {
+ (void)rw;
+ return luaL_error(L, "sol: cannot write to a sol::readonly variable");
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, std::move(rw.value()));
+ }
+ }
+
+ static int call(lua_State* L, readonly_wrapper<F>&& rw, object_type& o) {
+ if constexpr (!is_index) {
+ (void)o;
+ return call(L, std::move(rw));
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, rw.value(), o);
+ }
+ }
+
+ static int call(lua_State* L, const readonly_wrapper<F>& rw) {
+ if constexpr (!is_index) {
+ (void)rw;
+ return luaL_error(L, "sol: cannot write to a sol::readonly variable");
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, rw.value());
+ }
+ }
+
+ static int call(lua_State* L, const readonly_wrapper<F>& rw, object_type& o) {
+ if constexpr (!is_index) {
+ (void)o;
+ return call(L, rw);
+ }
+ else {
+ lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
+ return lcw.call(L, rw.value(), o);
+ }
+ }
+ };
+
+ template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef constructor_list<Args...> F;
+
+ static int call(lua_State* L, F&) {
+ const auto& meta = usertype_traits<T>::metatable();
+ int argcount = lua_gettop(L);
+ call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
+ argcount -= static_cast<int>(syntax);
+
+ T* obj = detail::usertype_allocate<T>(L);
+ reference userdataref(L, -1);
+ stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
+ umf();
+
+ construct_match<T, Args...>(constructor_match<T, false, clean_stack>(obj), L, argcount, boost + 1 + static_cast<int>(syntax));
+
+ userdataref.push();
+ return 1;
+ }
+ };
+
+ template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef constructor_wrapper<Cxs...> F;
+
+ struct onmatch {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) {
+ const auto& meta = usertype_traits<T>::metatable();
+ T* obj = detail::usertype_allocate<T>(L);
+ reference userdataref(L, -1);
+ stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
+ umf();
+
+ auto& func = std::get<I>(f.functions);
+ stack::call_into_lua<checked, clean_stack>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj));
+
+ userdataref.push();
+ return 1;
+ }
+ };
+
+ static int call(lua_State* L, F& f) {
+ call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1);
+ int syntaxval = static_cast<int>(syntax);
+ int argcount = lua_gettop(L) - syntaxval;
+ return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
+ }
+ };
+
+ template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, C> {
+
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ if constexpr (std::is_void_v<Fx>) {
+ return detail::usertype_alloc_destruct<T>(L);
+ }
+ else {
+ using uFx = meta::unqualified_t<Fx>;
+ lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{};
+ return lcw.call(L, std::forward<F>(f).fx);
+ }
+ }
+ };
+
+ template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef overload_set<Fs...> F;
+
+ struct on_match {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
+ auto& f = std::get<I>(fx.functions);
+ return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
+ }
+ };
+
+ static int call(lua_State* L, F& fx) {
+ return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
+ }
+ };
+
+ template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef factory_wrapper<Fs...> F;
+
+ struct on_match {
+ template <typename Fx, std::size_t I, typename... R, typename... Args>
+ int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
+ auto& f = std::get<I>(fx.functions);
+ return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f);
+ }
+ };
+
+ static int call(lua_State* L, F& fx) {
+ return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
+ }
+ };
+
+ template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef meta::conditional_t<is_index, R, W> P;
+ typedef meta::unqualified_t<P> U;
+ typedef wrapper<U> wrap;
+ typedef lua_bind_traits<U> traits_type;
+ typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;
+
+ template <typename F, typename... Args>
+ static int call(lua_State* L, F&& f, Args&&... args) {
+ constexpr bool is_specialized = meta::any<
+ std::is_same<U, detail::no_prop>,
+ meta::is_specialization_of<U, var_wrapper>,
+ meta::is_specialization_of<U, constructor_wrapper>,
+ meta::is_specialization_of<U, constructor_list>,
+ std::is_member_pointer<U>>::value;
+ if constexpr (is_specialized) {
+ if constexpr (is_index) {
+ decltype(auto) p = f.read();
+ lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{};
+ return lcw.call(L, p, std::forward<Args>(args)...);
+ }
+ else {
+ decltype(auto) p = f.write();
+ lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{};
+ return lcw.call(L, p, std::forward<Args>(args)...);
+ }
+ }
+ else {
+ constexpr bool non_class_object_type = meta::any<std::is_void<object_type>,
+ meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>::value;
+ if constexpr (non_class_object_type) {
+ // The type being void means we don't have any arguments, so it might be a free functions?
+ using args_list = typename traits_type::free_args_list;
+ using returns_list = typename wrap::returns_list;
+ using caller = typename wrap::caller;
+ if constexpr (is_index) {
+ decltype(auto) pf = f.read();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
+ }
+ else {
+ decltype(auto) pf = f.write();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
+ }
+ }
+ else {
+ using args_list = meta::pop_front_type_t<typename traits_type::free_args_list>;
+ using Ta = T;
+ using Oa = std::remove_pointer_t<object_type>;
+#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE
+ auto maybeo = stack::check_get<Ta*>(L, 1);
+ if (!maybeo || maybeo.value() == nullptr) {
+ if (is_variable) {
+ return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
+ }
+ return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
+ }
+ Oa* o = static_cast<Oa*>(maybeo.value());
+#else
+ Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1));
+#endif // Safety
+ using returns_list = typename wrap::returns_list;
+ using caller = typename wrap::caller;
+ if constexpr (is_index) {
+ decltype(auto) pf = f.read();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
+ }
+ else {
+ decltype(auto) pf = f.write();
+ return stack::call_into_lua<checked, clean_stack>(
+ returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
+ }
+ }
+ }
+ }
+ };
+
+ template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef protect_t<V> F;
+
+ template <typename... Args>
+ static int call(lua_State* L, F& fx, Args&&... args) {
+ return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...);
+ }
+ };
+
+ template <typename T, typename F, typename... Policies, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, policy_wrapper<F, Policies...>, is_index, is_variable, checked, boost, clean_stack, C> {
+ typedef policy_wrapper<F, Policies...> P;
+
+ template <std::size_t... In>
+ static int call(std::index_sequence<In...>, lua_State* L, P& fx) {
+ int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value);
+ (void)detail::swallow{ int(), (policy_detail::handle_policy(std::get<In>(fx.policies), L, pushed), int())... };
+ return pushed;
+ }
+
+ static int call(lua_State* L, P& fx) {
+ typedef typename P::indices indices;
+ return call(indices(), L, fx);
+ }
+ };
+
+ template <typename T, typename Y, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, yielding_t<Y>, is_index, is_variable, checked, boost, clean_stack, C> {
+ template <typename F>
+ static int call(lua_State* L, F&& f) {
+ return lua_call_wrapper<T, meta::unqualified_t<Y>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.func);
+ }
+ };
+
+ template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
+ struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> {
+ static int call(lua_State* L, const function_arguments<Sig, P>& f) {
+ lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{};
+ return lcw.call(L, std::get<0>(f.arguments));
+ }
+
+ static int call(lua_State* L, function_arguments<Sig, P>&& f) {
+ lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{};
+ return lcw.call(L, std::get<0>(std::move(f.arguments)));
+ }
+ };
+
+ template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true,
+ typename Fx, typename... Args>
+ inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) {
+ using uFx = meta::unqualified_t<Fx>;
+ if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) {
+ using real_fx = meta::unqualified_t<decltype(std::forward<Fx>(fx).func)>;
+ lua_call_wrapper<T, real_fx, is_index, is_variable, checked, boost, clean_stack> lcw{};
+ int nr = lcw.call(L, std::forward<Fx>(fx).func, std::forward<Args>(args)...);
+ return lua_yield(L, nr);
+ }
+ else {
+ lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{};
+ return lcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
+ }
+ }
+
+ template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls, bool clean_stack = true>
+ inline int call_user(lua_State* L) {
+ auto& fx = stack::unqualified_get<user<F>>(L, upvalue_index(start));
+ return call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx);
+ }
+
+ template <typename T, typename = void>
+ struct is_var_bind : std::false_type {};
+
+ template <typename T>
+ struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {};
+
+ template <typename T>
+ struct is_var_bind<T, std::enable_if_t<is_lua_reference_or_proxy<T>::value>> : std::true_type {};
+
+ template <>
+ struct is_var_bind<detail::no_prop> : std::true_type {};
+
+ template <typename R, typename W>
+ struct is_var_bind<property_wrapper<R, W>> : std::true_type {};
+
+ template <typename T>
+ struct is_var_bind<var_wrapper<T>> : std::true_type {};
+
+ template <typename T>
+ struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {};
+
+ template <typename F, typename... Policies>
+ struct is_var_bind<policy_wrapper<F, Policies...>> : is_var_bind<meta::unqualified_t<F>> {};
+ } // namespace call_detail
+
+ template <typename T>
+ struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {};
+
+ template <typename T>
+ using is_var_wrapper = meta::is_specialization_of<T, var_wrapper>;
+
+ template <typename T>
+ struct is_function_binding : meta::neg<is_variable_binding<T>> {};
+
+} // namespace sol
+
+#endif // SOL_CALL_HPP