diff options
Diffstat (limited to 'lib/sol2/include/sol')
107 files changed, 28962 insertions, 0 deletions
diff --git a/lib/sol2/include/sol/as_args.hpp b/lib/sol2/include/sol/as_args.hpp new file mode 100644 index 0000000..b2d2527 --- /dev/null +++ b/lib/sol2/include/sol/as_args.hpp @@ -0,0 +1,54 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this Spermission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_AS_ARGS_HPP +#define SOL_AS_ARGS_HPP + +#include "stack.hpp" + +namespace sol { + template <typename T> + struct as_args_t { + T src; + }; + + template <typename Source> + auto as_args(Source&& source) { + return as_args_t<Source> { std::forward<Source>(source) }; + } + + namespace stack { + template <typename T> + struct unqualified_pusher<as_args_t<T>> { + int push(lua_State* L, const as_args_t<T>& e) { + int p = 0; + for (const auto& i : e.src) { + p += stack::push(L, i); + } + return p; + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_AS_ARGS_HPP diff --git a/lib/sol2/include/sol/as_returns.hpp b/lib/sol2/include/sol/as_returns.hpp new file mode 100644 index 0000000..76448a8 --- /dev/null +++ b/lib/sol2/include/sol/as_returns.hpp @@ -0,0 +1,56 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_AS_RETURNS_HPP +#define SOL_AS_RETURNS_HPP + +#include "traits.hpp" +#include "stack.hpp" + +namespace sol { + template <typename T> + struct as_returns_t { + T src; + }; + + template <typename Source> + auto as_returns(Source&& source) { + return as_returns_t<std::decay_t<Source>>{ std::forward<Source>(source) }; + } + + namespace stack { + template <typename T> + struct unqualified_pusher<as_returns_t<T>> { + int push(lua_State* L, const as_returns_t<T>& e) { + auto& src = detail::unwrap(e.src); + int p = 0; + for (const auto& i : src) { + p += stack::push(L, i); + } + return p; + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_AS_RETURNS_HPP diff --git a/lib/sol2/include/sol/base_traits.hpp b/lib/sol2/include/sol/base_traits.hpp new file mode 100644 index 0000000..712c8b9 --- /dev/null +++ b/lib/sol2/include/sol/base_traits.hpp @@ -0,0 +1,110 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_BASE_TRAITS_HPP
+#define SOL_BASE_TRAITS_HPP
+
+#include <type_traits>
+
+namespace sol {
+ namespace detail {
+ struct unchecked_t {};
+ const unchecked_t unchecked = unchecked_t{};
+ } // namespace detail
+
+ namespace meta {
+ using sfinae_yes_t = std::true_type;
+ using sfinae_no_t = std::false_type;
+
+ template <typename T>
+ using void_t = void;
+
+ template <typename T>
+ using unqualified = std::remove_cv<std::remove_reference_t<T>>;
+
+ template <typename T>
+ using unqualified_t = typename unqualified<T>::type;
+
+ namespace meta_detail {
+ template <typename T>
+ struct unqualified_non_alias : unqualified<T> {};
+
+ template <template <class...> class Test, class, class... Args>
+ struct is_detected : std::false_type {};
+
+ template <template <class...> class Test, class... Args>
+ struct is_detected<Test, void_t<Test<Args...>>, Args...> : std::true_type {};
+ } // namespace meta_detail
+
+ template <template <class...> class Trait, class... Args>
+ using is_detected = typename meta_detail::is_detected<Trait, void, Args...>::type;
+
+ template <template <class...> class Trait, class... Args>
+ constexpr inline bool is_detected_v = is_detected<Trait, Args...>::value;
+
+ template <std::size_t I>
+ using index_value = std::integral_constant<std::size_t, I>;
+
+ template <bool>
+ struct conditional {
+ template <typename T, typename U>
+ using type = T;
+ };
+
+ template <>
+ struct conditional<false> {
+ template <typename T, typename U>
+ using type = U;
+ };
+
+ template <bool B, typename T, typename U>
+ using conditional_t = typename conditional<B>::template type<T, U>;
+
+ namespace meta_detail {
+ template <typename T, template <typename...> class Templ>
+ struct is_specialization_of : std::false_type {};
+ template <typename... T, template <typename...> class Templ>
+ struct is_specialization_of<Templ<T...>, Templ> : std::true_type {};
+ } // namespace meta_detail
+
+ template <typename T, template <typename...> class Templ>
+ using is_specialization_of = meta_detail::is_specialization_of<std::remove_cv_t<T>, Templ>;
+
+ template <typename T, template <typename...> class Templ>
+ inline constexpr bool is_specialization_of_v = is_specialization_of<std::remove_cv_t<T>, Templ>::value;
+
+ template <typename T>
+ struct identity {
+ typedef T type;
+ };
+
+ template <typename T>
+ using identity_t = typename identity<T>::type;
+
+ template <typename T>
+ using is_builtin_type = std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value>;
+
+ } // namespace meta
+} // namespace sol
+
+#endif // SOL_BASE_TRAITS_HPP
diff --git a/lib/sol2/include/sol/bind_traits.hpp b/lib/sol2/include/sol/bind_traits.hpp new file mode 100644 index 0000000..5f8fcf5 --- /dev/null +++ b/lib/sol2/include/sol/bind_traits.hpp @@ -0,0 +1,546 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_BIND_TRAITS_HPP +#define SOL_BIND_TRAITS_HPP + +#include "forward.hpp" +#include "base_traits.hpp" +#include "tuple.hpp" + +namespace sol { +namespace meta { + namespace meta_detail { + + template <class F> + struct check_deducible_signature { + struct nat {}; + template <class G> + static auto test(int) -> decltype(&G::operator(), void()); + template <class> + static auto test(...) -> nat; + + using type = std::is_void<decltype(test<F>(0))>; + }; + } // namespace meta_detail + + template <class F> + struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type {}; + + namespace meta_detail { + + template <std::size_t I, typename T> + struct void_tuple_element : meta::tuple_element<I, T> {}; + + template <std::size_t I> + struct void_tuple_element<I, std::tuple<>> { typedef void type; }; + + template <std::size_t I, typename T> + using void_tuple_element_t = typename void_tuple_element<I, T>::type; + + template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args> + struct basic_traits { + private: + using first_type = meta::conditional_t<std::is_void<T>::value, int, T>&; + + public: + static const bool is_noexcept = it_is_noexcept; + static const bool is_member_function = std::is_void<T>::value; + static const bool has_c_var_arg = has_c_variadic; + static const std::size_t arity = sizeof...(Args); + static const std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value); + typedef types<Args...> args_list; + typedef std::tuple<Args...> args_tuple; + typedef T object_type; + typedef R return_type; + typedef tuple_types<R> returns_list; + typedef R(function_type)(Args...); + typedef meta::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list; + typedef meta::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type; + typedef meta::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type; + typedef std::remove_pointer_t<free_function_pointer_type> signature_type; + template <std::size_t i> + using arg_at = void_tuple_element_t<i, args_tuple>; + }; + + template <typename Signature, bool b = has_deducible_signature<Signature>::value> + struct fx_traits : basic_traits<false, false, void, void> {}; + + // Free Functions + template <typename R, typename... Args> + struct fx_traits<R(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...); + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...); + }; + + template <typename R, typename... Args> + struct fx_traits<R(Args..., ...), false> : basic_traits<false, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...); + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args..., ...), false> : basic_traits<false, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...); + }; + + // Member Functions + /* C-Style Variadics */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...); + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...), false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...); + }; + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile; + }; + + /* Member Function Qualifiers */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) &; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...)&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) &; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) &&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...)&&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) &&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const&&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&; + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + + template <typename R, typename... Args> + struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...) noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) noexcept; + }; + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) & noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) & noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) && noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) && noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const&& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept; + }; + +#endif // noexcept is part of a function's type + +#if defined(_MSC_VER) && defined(_M_IX86) + template <typename R, typename... Args> + struct fx_traits<R __stdcall(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...); + }; + + template <typename R, typename... Args> + struct fx_traits<R(__stdcall*)(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...); + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...); + }; + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile; + }; + + /* Member Function Qualifiers */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) &; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) &&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&; + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + + template <typename R, typename... Args> + struct fx_traits<R __stdcall(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (__stdcall *)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...) noexcept; + }; + + /* __stdcall cannot be applied to functions with varargs*/ + /*template <typename R, typename... Args> + struct fx_traits<__stdcall R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (__stdcall *)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept; + };*/ + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept; + };*/ +#endif // noexcept is part of a function's type +#endif // __stdcall x86 VC++ bug + + template <typename Signature> + struct fx_traits<Signature, true> : fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {}; + + template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value> + struct callable_traits : fx_traits<std::decay_t<Signature>> { + }; + + template <typename R, typename T> + struct callable_traits<R(T::*), true> { + typedef meta::conditional_t<std::is_array_v<R>, std::add_lvalue_reference_t<R>, R> return_type; + typedef return_type Arg; + typedef T object_type; + using signature_type = R(T::*); + static const bool is_noexcept = false; + static const bool is_member_function = false; + static const std::size_t arity = 1; + static const std::size_t free_arity = 2; + typedef std::tuple<Arg> args_tuple; + typedef types<Arg> args_list; + typedef types<T, Arg> free_args_list; + typedef meta::tuple_types<return_type> returns_list; + typedef return_type(function_type)(T&, return_type); + typedef return_type(*function_pointer_type)(T&, Arg); + typedef return_type(*free_function_pointer_type)(T&, Arg); + template <std::size_t i> + using arg_at = void_tuple_element_t<i, args_tuple>; + }; + + } // namespace meta_detail + + template <typename Signature> + struct bind_traits : meta_detail::callable_traits<Signature> {}; + + template <typename Signature> + using function_args_t = typename bind_traits<Signature>::args_list; + + template <typename Signature> + using function_signature_t = typename bind_traits<Signature>::signature_type; + + template <typename Signature> + using function_return_t = typename bind_traits<Signature>::return_type; +} +} // namespace sol::meta + +#endif // SOL_BIND_TRAITS_HPP diff --git a/lib/sol2/include/sol/bytecode.hpp b/lib/sol2/include/sol/bytecode.hpp new file mode 100644 index 0000000..ab413fe --- /dev/null +++ b/lib/sol2/include/sol/bytecode.hpp @@ -0,0 +1,117 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_BYTECODE_HPP
+#define SOL_BYTECODE_HPP
+
+#include "compatibility.hpp"
+#include "string_view.hpp"
+#include <vector>
+#include <cstdint>
+#include <cstddef>
+
+namespace sol {
+
+ template <typename Allocator = std::allocator<std::byte>>
+ class basic_bytecode : private std::vector<std::byte, Allocator> {
+ private:
+ using base_t = std::vector<std::byte, Allocator>;
+
+ public:
+ using typename base_t::allocator_type;
+ using typename base_t::const_iterator;
+ using typename base_t::const_pointer;
+ using typename base_t::const_reference;
+ using typename base_t::const_reverse_iterator;
+ using typename base_t::difference_type;
+ using typename base_t::iterator;
+ using typename base_t::pointer;
+ using typename base_t::reference;
+ using typename base_t::reverse_iterator;
+ using typename base_t::size_type;
+ using typename base_t::value_type;
+
+ using base_t::base_t;
+ using base_t::operator=;
+
+ using base_t::data;
+ using base_t::empty;
+ using base_t::max_size;
+ using base_t::size;
+
+ using base_t::at;
+ using base_t::operator[];
+ using base_t::back;
+ using base_t::front;
+
+ using base_t::begin;
+ using base_t::cbegin;
+ using base_t::cend;
+ using base_t::end;
+
+ using base_t::crbegin;
+ using base_t::crend;
+ using base_t::rbegin;
+ using base_t::rend;
+
+
+ using base_t::get_allocator;
+ using base_t::swap;
+
+ using base_t::clear;
+ using base_t::emplace;
+ using base_t::emplace_back;
+ using base_t::erase;
+ using base_t::insert;
+ using base_t::pop_back;
+ using base_t::push_back;
+ using base_t::reserve;
+ using base_t::resize;
+ using base_t::shrink_to_fit;
+
+ string_view as_string_view() const {
+ return string_view(reinterpret_cast<const char*>(this->data()), this->size());
+ }
+ };
+
+ template <typename Container>
+ inline int basic_insert_dump_writer(lua_State*, const void* memory, size_t memory_size, void* userdata) {
+ using storage_t = Container;
+ const std::byte* p_code = static_cast<const std::byte*>(memory);
+ storage_t& bc = *static_cast<storage_t*>(userdata);
+ try {
+ bc.insert(bc.cend(), p_code, p_code + memory_size);
+ }
+ catch (...) {
+ return -1;
+ }
+ return 0;
+ }
+
+ using bytecode = basic_bytecode<>;
+
+ constexpr inline auto bytecode_dump_writer = &basic_insert_dump_writer<bytecode>;
+
+} // namespace sol
+
+#endif // SOL_BYTECODE_HPP
diff --git a/lib/sol2/include/sol/call.hpp b/lib/sol2/include/sol/call.hpp new file mode 100644 index 0000000..811ce57 --- /dev/null +++ b/lib/sol2/include/sol/call.hpp @@ -0,0 +1,906 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_CALL_HPP +#define SOL_CALL_HPP + +#include "property.hpp" +#include "protect.hpp" +#include "wrapper.hpp" +#include "trampoline.hpp" +#include "policies.hpp" +#include "stack.hpp" +#include "unique_usertype_traits.hpp" + +namespace sol { + namespace u_detail { + + } // namespace u_detail + + namespace policy_detail { + template <int I, int... In> + inline void handle_policy(static_stack_dependencies<I, In...>, lua_State* L, int&) { + if constexpr (sizeof...(In) == 0) { + (void)L; + return; + } + else { + absolute_index ai(L, I); + if (type_of(L, ai) != type::userdata) { + return; + } + lua_createtable(L, static_cast<int>(sizeof...(In)), 0); + stack_reference deps(L, -1); + auto per_dep = [&L, &deps](int i) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, i); + luaL_ref(L, deps.stack_index()); + }; + (void)per_dep; + (void)detail::swallow{ int(), (per_dep(In), int())... }; + lua_setuservalue(L, ai); + } + } + + template <int... In> + inline void handle_policy(returns_self_with<In...>, lua_State* L, int& pushed) { + pushed = stack::push(L, raw_index(1)); + handle_policy(static_stack_dependencies<-1, In...>(), L, pushed); + } + + inline void handle_policy(const stack_dependencies& sdeps, lua_State* L, int&) { + absolute_index ai(L, sdeps.target); + if (type_of(L, ai) != type::userdata) { + return; + } + lua_createtable(L, static_cast<int>(sdeps.size()), 0); + stack_reference deps(L, -1); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, static_cast<int>(sdeps.size()), detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + for (std::size_t i = 0; i < sdeps.size(); ++i) { + lua_pushvalue(L, sdeps.stack_indices[i]); + luaL_ref(L, deps.stack_index()); + } + lua_setuservalue(L, ai); + } + + template <typename P, meta::disable<std::is_base_of<detail::policy_base_tag, meta::unqualified_t<P>>> = meta::enabler> + inline void handle_policy(P&& p, lua_State* L, int& pushed) { + pushed = std::forward<P>(p)(L, pushed); + } + } // namespace policy_detail + + namespace function_detail { + inline int no_construction_error(lua_State* L) { + return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)"); + } + } // namespace function_detail + + namespace call_detail { + + template <typename R, typename W> + inline auto& pick(std::true_type, property_wrapper<R, W>& f) { + return f.read(); + } + + template <typename R, typename W> + inline auto& pick(std::false_type, property_wrapper<R, W>& f) { + return f.write(); + } + + template <typename T, typename List> + struct void_call : void_call<T, meta::function_args_t<List>> {}; + + template <typename T, typename... Args> + struct void_call<T, types<Args...>> { + static void call(Args...) { + } + }; + + template <typename T, bool checked, bool clean_stack> + struct constructor_match { + T* obj_; + + constructor_match(T* o) : obj_(o) { + } + + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const { + detail::default_construct func{}; + return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj_); + } + }; + + namespace overload_detail { + template <std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) { + return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types"); + } + + template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, + int fxarity, int start, Args&&... args) { + typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; + typedef meta::tuple_types<typename traits::return_type> return_types; + typedef typename traits::free_args_list args_list; + // compile-time eliminate any functions that we know ahead of time are of improper arity + if constexpr (!traits::runtime_variadics_t::value && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) { + return overload_match_arity(types<Fxs...>(), + std::index_sequence<In...>(), + std::index_sequence<M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + else { + if constexpr (!traits::runtime_variadics_t::value) { + if (traits::free_arity != fxarity) { + return overload_match_arity(types<Fxs...>(), + std::index_sequence<In...>(), + std::index_sequence<traits::free_arity, M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + } + stack::record tracking{}; + if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) { + return overload_match_arity(types<Fxs...>(), + std::index_sequence<In...>(), + std::index_sequence<M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); + } + } + + template <std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity_single( + types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + return overload_match_arity(types<>(), + std::index_sequence<>(), + std::index_sequence<M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + + template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity_single( + types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; + typedef meta::tuple_types<typename traits::return_type> return_types; + typedef typename traits::free_args_list args_list; + // compile-time eliminate any functions that we know ahead of time are of improper arity + if constexpr (!traits::runtime_variadics_t::value + && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) { + return overload_match_arity(types<>(), + std::index_sequence<>(), + std::index_sequence<M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) { + return overload_match_arity(types<>(), + std::index_sequence<>(), + std::index_sequence<traits::free_arity, M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match, + typename... Args> + inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx, + lua_State* L, int fxarity, int start, Args&&... args) { + typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; + typedef meta::tuple_types<typename traits::return_type> return_types; + typedef typename traits::free_args_list args_list; + // compile-time eliminate any functions that we know ahead of time are of improper arity + if constexpr (!traits::runtime_variadics_t::value && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) { + return overload_match_arity(types<Fx1, Fxs...>(), + std::index_sequence<I1, In...>(), + std::index_sequence<M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + else { + if constexpr (!traits::runtime_variadics_t::value) { + if (traits::free_arity != fxarity) { + return overload_match_arity(types<Fx1, Fxs...>(), + std::index_sequence<I1, In...>(), + std::index_sequence<traits::free_arity, M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + } + stack::record tracking{}; + if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) { + return overload_match_arity(types<Fx1, Fxs...>(), + std::index_sequence<I1, In...>(), + std::index_sequence<M...>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); + } + } + } // namespace overload_detail + + template <typename... Functions, typename Match, typename... Args> + inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + return overload_detail::overload_match_arity_single(types<Functions...>(), + std::make_index_sequence<sizeof...(Functions)>(), + std::index_sequence<>(), + std::forward<Match>(matchfx), + L, + fxarity, + start, + std::forward<Args>(args)...); + } + + template <typename... Functions, typename Match, typename... Args> + inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) { + int fxarity = lua_gettop(L) - (start - 1); + return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename T, typename... TypeLists, typename Match, typename... Args> + inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + // use same overload resolution matching as all other parts of the framework + return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>( + std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename T, bool checked, bool clean_stack, typename... TypeLists> + inline int construct_trampolined(lua_State* L) { + static const auto& meta = usertype_traits<T>::metatable(); + int argcount = lua_gettop(L); + call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot; + argcount -= static_cast<int>(syntax); + + T* obj = detail::usertype_allocate<T>(L); + reference userdataref(L, -1); + stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>); + umf(); + + construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax)); + + userdataref.push(); + return 1; + } + + template <typename T, bool checked, bool clean_stack, typename... TypeLists> + inline int construct(lua_State* L) { + return detail::static_trampoline<&construct_trampolined<T, checked, clean_stack, TypeLists...>>(L); + } + + template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void> + struct agnostic_lua_call_wrapper { + using wrap = wrapper<meta::unqualified_t<F>>; + + template <typename Fx, typename... Args> + static int call(lua_State* L, Fx&& f, Args&&... args) { + if constexpr(is_lua_reference_v<meta::unqualified_t<Fx>>) { + if constexpr (is_index) { + return stack::push(L, std::forward<Fx>(f), std::forward<Args>(args)...); + } + else { + std::forward<Fx>(f) = stack::unqualified_get<F>(L, boost + (is_variable ? 3 : 1)); + return 0; + } + } + else { + using traits_type = typename wrap::traits_type; + using fp_t = typename traits_type::function_pointer_type; + constexpr bool is_function_pointer_convertible + = std::is_class_v<meta::unqualified_t<F>> && std::is_convertible_v<std::decay_t<Fx>, fp_t>; + if constexpr (is_function_pointer_convertible) { + fp_t fx = f; + return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call( + L, fx, std::forward<Args>(args)...); + } + else { + using returns_list = typename wrap::returns_list; + using args_list = typename wrap::free_args_list; + using caller = typename wrap::caller; + return stack::call_into_lua<checked, clean_stack>( + returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...); + } + } + } + }; + + template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<var_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> { + template <typename F> + static int call(lua_State* L, F&& f) { + if constexpr (is_index) { + constexpr bool is_stack = is_stack_based_v<meta::unqualified_t<decltype(detail::unwrap(f.value()))>>; + if constexpr (clean_stack && !is_stack) { + lua_settop(L, 0); + } + return stack::push_reference(L, detail::unwrap(f.value())); + } + else { + if constexpr (std::is_const_v<meta::unwrapped_t<T>>) { + return luaL_error(L, "sol: cannot write to a readonly (const) variable"); + } + else { + using R = meta::unwrapped_t<T>; + if constexpr (std::is_assignable_v<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>) { + detail::unwrap(f.value()) = stack::unqualified_get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1)); + if (clean_stack) { + lua_settop(L, 0); + } + return 0; + } + else { + return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); + } + } + } + } + }; + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, lua_CFunction_ref f) { + return f(L); + } + }; + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, lua_CFunction f) { + return f(L); + } + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, detail::lua_CFunction_noexcept f) { + return f(L); + } + }; +#endif // noexcept function types + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<detail::no_prop, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, const detail::no_prop&) { + return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property"); + } + }; + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, const no_construction&) { + return function_detail::no_construction_error(L); + } + }; + + template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State*, const bases<Args...>&) { + // Uh. How did you even call this, lul + return 0; + } + }; + + template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, std::reference_wrapper<T> f) { + agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack> alcw{}; + return alcw.call(L, f.get()); + } + }; + + template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0, + bool clean_stack = true, typename = void> + struct lua_call_wrapper { + template <typename Fx, typename... Args> + static int call(lua_State* L, Fx&& fx, Args&&... args) { + if constexpr (std::is_member_function_pointer_v<F>) { + using wrap = wrapper<F>; + using object_type = typename wrap::object_type; + if constexpr (sizeof...(Args) < 1) { + using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>; +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + return luaL_error(L, + "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are " + "preceeded by the " + "actual object with '.' syntax)"); + } + object_type* o = static_cast<object_type*>(maybeo.value()); + return call(L, std::forward<Fx>(fx), *o); +#else + object_type& o = static_cast<object_type&>(*stack::unqualified_get<non_null<Ta*>>(L, 1)); + return call(L, std::forward<Fx>(fx), o); +#endif // Safety + } + else { + using returns_list = typename wrap::returns_list; + using args_list = typename wrap::args_list; + using caller = typename wrap::caller; + return stack::call_into_lua<checked, clean_stack>( + returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + else if constexpr (std::is_member_object_pointer_v<F>) { + using wrap = wrapper<F>; + using object_type = typename wrap::object_type; + if constexpr (is_index) { + if constexpr (sizeof...(Args) < 1) { + using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>; +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + if (is_variable) { + return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)"); + } + return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)"); + } + object_type* o = static_cast<object_type*>(maybeo.value()); + return call(L, std::forward<Fx>(fx), *o); +#else + object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1)); + return call(L, std::forward<Fx>(fx), o); +#endif // Safety + } + else { + using returns_list = typename wrap::returns_list; + using caller = typename wrap::caller; + return stack::call_into_lua<checked, clean_stack>( + returns_list(), types<>(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + else { + using traits_type = lua_bind_traits<F>; + using return_type = typename traits_type::return_type; + constexpr bool is_const = std::is_const_v<std::remove_reference_t<return_type>>; + if constexpr (is_const) { + (void)fx; + (void)detail::swallow{ 0, (static_cast<void>(args), 0)... }; + return luaL_error(L, "sol: cannot write to a readonly (const) variable"); + } + else { + using u_return_type = meta::unqualified_t<return_type>; + constexpr bool is_assignable = std::is_copy_assignable_v<u_return_type> || std::is_array_v<u_return_type>; + if constexpr (!is_assignable) { + (void)fx; + (void)detail::swallow{ 0, ((void)args, 0)... }; + return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); + } + else { + using args_list = typename wrap::args_list; + using caller = typename wrap::caller; + if constexpr (sizeof...(Args) > 0) { + return stack::call_into_lua<checked, clean_stack>(types<void>(), + args_list(), + L, + boost + (is_variable ? 3 : 2), + caller(), + std::forward<Fx>(fx), + std::forward<Args>(args)...); + } + else { + using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>; + #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + if (is_variable) { + return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)"); + } + return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)"); + } + object_type* po = static_cast<object_type*>(maybeo.value()); + object_type& o = *po; + #else + object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1)); + #endif // Safety + + return stack::call_into_lua<checked, clean_stack>( + types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), o); + } + } + } + } + } + else { + agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> alcw{}; + return alcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + }; + + template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, readonly_wrapper<F>, is_index, is_variable, checked, boost, clean_stack, C> { + using traits_type = lua_bind_traits<F>; + using wrap = wrapper<F>; + using object_type = typename wrap::object_type; + + static int call(lua_State* L, readonly_wrapper<F>&& rw) { + if constexpr (!is_index) { + (void)rw; + return luaL_error(L, "sol: cannot write to a sol::readonly variable"); + } + else { + lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; + return lcw.call(L, std::move(rw.value())); + } + } + + static int call(lua_State* L, readonly_wrapper<F>&& rw, object_type& o) { + if constexpr (!is_index) { + (void)o; + return call(L, std::move(rw)); + } + else { + lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; + return lcw.call(L, rw.value(), o); + } + } + + static int call(lua_State* L, const readonly_wrapper<F>& rw) { + if constexpr (!is_index) { + (void)rw; + return luaL_error(L, "sol: cannot write to a sol::readonly variable"); + } + else { + lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; + return lcw.call(L, rw.value()); + } + } + + static int call(lua_State* L, const readonly_wrapper<F>& rw, object_type& o) { + if constexpr (!is_index) { + (void)o; + return call(L, rw); + } + else { + lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; + return lcw.call(L, rw.value(), o); + } + } + }; + + template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef constructor_list<Args...> F; + + static int call(lua_State* L, F&) { + const auto& meta = usertype_traits<T>::metatable(); + int argcount = lua_gettop(L); + call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot; + argcount -= static_cast<int>(syntax); + + T* obj = detail::usertype_allocate<T>(L); + reference userdataref(L, -1); + stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>); + umf(); + + construct_match<T, Args...>(constructor_match<T, false, clean_stack>(obj), L, argcount, boost + 1 + static_cast<int>(syntax)); + + userdataref.push(); + return 1; + } + }; + + template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef constructor_wrapper<Cxs...> F; + + struct onmatch { + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) { + const auto& meta = usertype_traits<T>::metatable(); + T* obj = detail::usertype_allocate<T>(L); + reference userdataref(L, -1); + stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>); + umf(); + + auto& func = std::get<I>(f.functions); + stack::call_into_lua<checked, clean_stack>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj)); + + userdataref.push(); + return 1; + } + }; + + static int call(lua_State* L, F& f) { + call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1); + int syntaxval = static_cast<int>(syntax); + int argcount = lua_gettop(L) - syntaxval; + return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f); + } + }; + + template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, C> { + + template <typename F> + static int call(lua_State* L, F&& f) { + if constexpr (std::is_void_v<Fx>) { + return detail::usertype_alloc_destruct<T>(L); + } + else { + using uFx = meta::unqualified_t<Fx>; + lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{}; + return lcw.call(L, std::forward<F>(f).fx); + } + } + }; + + template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef overload_set<Fs...> F; + + struct on_match { + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) { + auto& f = std::get<I>(fx.functions); + return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f); + } + }; + + static int call(lua_State* L, F& fx) { + return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx); + } + }; + + template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef factory_wrapper<Fs...> F; + + struct on_match { + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) { + auto& f = std::get<I>(fx.functions); + return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f); + } + }; + + static int call(lua_State* L, F& fx) { + return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx); + } + }; + + template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef meta::conditional_t<is_index, R, W> P; + typedef meta::unqualified_t<P> U; + typedef wrapper<U> wrap; + typedef lua_bind_traits<U> traits_type; + typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type; + + template <typename F, typename... Args> + static int call(lua_State* L, F&& f, Args&&... args) { + constexpr bool is_specialized = meta::any< + std::is_same<U, detail::no_prop>, + meta::is_specialization_of<U, var_wrapper>, + meta::is_specialization_of<U, constructor_wrapper>, + meta::is_specialization_of<U, constructor_list>, + std::is_member_pointer<U>>::value; + if constexpr (is_specialized) { + if constexpr (is_index) { + decltype(auto) p = f.read(); + lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{}; + return lcw.call(L, p, std::forward<Args>(args)...); + } + else { + decltype(auto) p = f.write(); + lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{}; + return lcw.call(L, p, std::forward<Args>(args)...); + } + } + else { + constexpr bool non_class_object_type = meta::any<std::is_void<object_type>, + meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>::value; + if constexpr (non_class_object_type) { + // The type being void means we don't have any arguments, so it might be a free functions? + using args_list = typename traits_type::free_args_list; + using returns_list = typename wrap::returns_list; + using caller = typename wrap::caller; + if constexpr (is_index) { + decltype(auto) pf = f.read(); + return stack::call_into_lua<checked, clean_stack>( + returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf); + } + else { + decltype(auto) pf = f.write(); + return stack::call_into_lua<checked, clean_stack>( + returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf); + } + } + else { + using args_list = meta::pop_front_type_t<typename traits_type::free_args_list>; + using Ta = T; + using Oa = std::remove_pointer_t<object_type>; +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + if (is_variable) { + return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)"); + } + return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)"); + } + Oa* o = static_cast<Oa*>(maybeo.value()); +#else + Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1)); +#endif // Safety + using returns_list = typename wrap::returns_list; + using caller = typename wrap::caller; + if constexpr (is_index) { + decltype(auto) pf = f.read(); + return stack::call_into_lua<checked, clean_stack>( + returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o)); + } + else { + decltype(auto) pf = f.write(); + return stack::call_into_lua<checked, clean_stack>( + returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o)); + } + } + } + } + }; + + template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef protect_t<V> F; + + template <typename... Args> + static int call(lua_State* L, F& fx, Args&&... args) { + return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...); + } + }; + + template <typename T, typename F, typename... Policies, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, policy_wrapper<F, Policies...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef policy_wrapper<F, Policies...> P; + + template <std::size_t... In> + static int call(std::index_sequence<In...>, lua_State* L, P& fx) { + int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value); + (void)detail::swallow{ int(), (policy_detail::handle_policy(std::get<In>(fx.policies), L, pushed), int())... }; + return pushed; + } + + static int call(lua_State* L, P& fx) { + typedef typename P::indices indices; + return call(indices(), L, fx); + } + }; + + template <typename T, typename Y, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, yielding_t<Y>, is_index, is_variable, checked, boost, clean_stack, C> { + template <typename F> + static int call(lua_State* L, F&& f) { + return lua_call_wrapper<T, meta::unqualified_t<Y>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.func); + } + }; + + template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, const function_arguments<Sig, P>& f) { + lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{}; + return lcw.call(L, std::get<0>(f.arguments)); + } + + static int call(lua_State* L, function_arguments<Sig, P>&& f) { + lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{}; + return lcw.call(L, std::get<0>(std::move(f.arguments))); + } + }; + + template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true, + typename Fx, typename... Args> + inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) { + using uFx = meta::unqualified_t<Fx>; + if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) { + using real_fx = meta::unqualified_t<decltype(std::forward<Fx>(fx).func)>; + lua_call_wrapper<T, real_fx, is_index, is_variable, checked, boost, clean_stack> lcw{}; + int nr = lcw.call(L, std::forward<Fx>(fx).func, std::forward<Args>(args)...); + return lua_yield(L, nr); + } + else { + lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{}; + return lcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + + template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls, bool clean_stack = true> + inline int call_user(lua_State* L) { + auto& fx = stack::unqualified_get<user<F>>(L, upvalue_index(start)); + return call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx); + } + + template <typename T, typename = void> + struct is_var_bind : std::false_type {}; + + template <typename T> + struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {}; + + template <typename T> + struct is_var_bind<T, std::enable_if_t<is_lua_reference_or_proxy<T>::value>> : std::true_type {}; + + template <> + struct is_var_bind<detail::no_prop> : std::true_type {}; + + template <typename R, typename W> + struct is_var_bind<property_wrapper<R, W>> : std::true_type {}; + + template <typename T> + struct is_var_bind<var_wrapper<T>> : std::true_type {}; + + template <typename T> + struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {}; + + template <typename F, typename... Policies> + struct is_var_bind<policy_wrapper<F, Policies...>> : is_var_bind<meta::unqualified_t<F>> {}; + } // namespace call_detail + + template <typename T> + struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {}; + + template <typename T> + using is_var_wrapper = meta::is_specialization_of<T, var_wrapper>; + + template <typename T> + struct is_function_binding : meta::neg<is_variable_binding<T>> {}; + +} // namespace sol + +#endif // SOL_CALL_HPP diff --git a/lib/sol2/include/sol/compatibility.hpp b/lib/sol2/include/sol/compatibility.hpp new file mode 100644 index 0000000..bd1c060 --- /dev/null +++ b/lib/sol2/include/sol/compatibility.hpp @@ -0,0 +1,51 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_COMPATIBILITY_HPP +#define SOL_COMPATIBILITY_HPP + +// The various pieces of the compatibility layer +// comes from https://github.com/keplerproject/lua-compat-5.3 +// but has been modified in many places for use with sol and luajit, +// though the core abstractions remain the same + +#include "feature_test.hpp" +#include "compatibility/version.hpp" + +#if !defined(SOL_NO_COMPAT) || !(SOL_NO_COMPAT) + +#if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA +#ifndef COMPAT53_LUA_CPP +#define COMPAT53_LUA_CPP 1 +#endif // Build Lua Compat layer as C++ +#endif +#ifndef COMPAT53_INCLUDE_SOURCE +#define COMPAT53_INCLUDE_SOURCE 1 +#endif // Build Compat Layer Inline + +#include "compatibility/compat-5.3.h" +#include "compatibility/compat-5.4.h" + +#endif // SOL_NO_COMPAT + +#endif // SOL_COMPATIBILITY_HPP diff --git a/lib/sol2/include/sol/compatibility/compat-5.3.c.h b/lib/sol2/include/sol/compatibility/compat-5.3.c.h new file mode 100644 index 0000000..94c0e96 --- /dev/null +++ b/lib/sol2/include/sol/compatibility/compat-5.3.c.h @@ -0,0 +1,890 @@ +#include <stddef.h>
+#include <stdlib.h>
+#include <string.h>
+#include <ctype.h>
+#include <errno.h>
+#include <stdio.h>
+#include "compat-5.3.h"
+
+/* don't compile it again if it already is included via compat53.h */
+#ifndef KEPLER_PROJECT_COMPAT53_C_
+#define KEPLER_PROJECT_COMPAT53_C_
+
+
+
+/* definitions for Lua 5.1 only */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
+
+#ifndef COMPAT53_FOPEN_NO_LOCK
+# if defined(_MSC_VER)
+# define COMPAT53_FOPEN_NO_LOCK 1
+# else /* otherwise */
+# define COMPAT53_FOPEN_NO_LOCK 0
+# endif /* VC++ only so far */
+#endif /* No-lock fopen_s usage if possible */
+
+#if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK
+# include <share.h>
+#endif /* VC++ _fsopen for share-allowed file read */
+
+#ifndef COMPAT53_HAVE_STRERROR_R
+# if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || \
+ (!defined (__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6))
+# define COMPAT53_HAVE_STRERROR_R 1
+# else /* none of the defines matched: define to 0 */
+# define COMPAT53_HAVE_STRERROR_R 0
+# endif /* have strerror_r of some form */
+#endif /* strerror_r */
+
+#ifndef COMPAT53_HAVE_STRERROR_S
+# if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || \
+ (defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__)
+# define COMPAT53_HAVE_STRERROR_S 1
+# else /* not VC++ or C11 */
+# define COMPAT53_HAVE_STRERROR_S 0
+# endif /* strerror_s from VC++ or C11 */
+#endif /* strerror_s */
+
+#ifndef COMPAT53_LUA_FILE_BUFFER_SIZE
+# define COMPAT53_LUA_FILE_BUFFER_SIZE 4096
+#endif /* Lua File Buffer Size */
+
+
+static char* compat53_strerror(int en, char* buff, size_t sz) {
+#if COMPAT53_HAVE_STRERROR_R
+ /* use strerror_r here, because it's available on these specific platforms */
+ if (sz > 0) {
+ buff[0] = '\0';
+ /* we don't care whether the GNU version or the XSI version is used: */
+ if (strerror_r(en, buff, sz)) {
+ /* Yes, we really DO want to ignore the return value!
+ * GCC makes that extra hard, not even a (void) cast will do. */
+ }
+ if (buff[0] == '\0') {
+ /* Buffer is unchanged, so we probably have called GNU strerror_r which
+ * returned a static constant string. Chances are that strerror will
+ * return the same static constant string and therefore be thread-safe. */
+ return strerror(en);
+ }
+ }
+ return buff; /* sz is 0 *or* strerror_r wrote into the buffer */
+#elif COMPAT53_HAVE_STRERROR_S
+ /* for MSVC and other C11 implementations, use strerror_s since it's
+ * provided by default by the libraries */
+ strerror_s(buff, sz, en);
+ return buff;
+#else
+ /* fallback, but strerror is not guaranteed to be threadsafe due to modifying
+ * errno itself and some impls not locking a static buffer for it ... but most
+ * known systems have threadsafe errno: this might only change if the locale
+ * is changed out from under someone while this function is being called */
+ (void)buff;
+ (void)sz;
+ return strerror(en);
+#endif
+}
+
+
+COMPAT53_API int lua_absindex(lua_State *L, int i) {
+ if (i < 0 && i > LUA_REGISTRYINDEX)
+ i += lua_gettop(L) + 1;
+ return i;
+}
+
+
+static void compat53_call_lua(lua_State *L, char const code[], size_t len,
+ int nargs, int nret) {
+ lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
+ if (lua_type(L, -1) != LUA_TFUNCTION) {
+ lua_pop(L, 1);
+ if (luaL_loadbuffer(L, code, len, "=none"))
+ lua_error(L);
+ lua_pushvalue(L, -1);
+ lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
+ }
+ lua_insert(L, -nargs - 1);
+ lua_call(L, nargs, nret);
+}
+
+
+static const char compat53_arith_code[] =
+"local op,a,b=...\n"
+"if op==0 then return a+b\n"
+"elseif op==1 then return a-b\n"
+"elseif op==2 then return a*b\n"
+"elseif op==3 then return a/b\n"
+"elseif op==4 then return a%b\n"
+"elseif op==5 then return a^b\n"
+"elseif op==6 then return -a\n"
+"end\n";
+
+COMPAT53_API void lua_arith(lua_State *L, int op) {
+ if (op < LUA_OPADD || op > LUA_OPUNM)
+ luaL_error(L, "invalid 'op' argument for lua_arith");
+ luaL_checkstack(L, 5, "not enough stack slots");
+ if (op == LUA_OPUNM)
+ lua_pushvalue(L, -1);
+ lua_pushnumber(L, op);
+ lua_insert(L, -3);
+ compat53_call_lua(L, compat53_arith_code,
+ sizeof(compat53_arith_code) - 1, 3, 1);
+}
+
+
+static const char compat53_compare_code[] =
+"local a,b=...\n"
+"return a<=b\n";
+
+COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op) {
+ int result = 0;
+ switch (op) {
+ case LUA_OPEQ:
+ return lua_equal(L, idx1, idx2);
+ case LUA_OPLT:
+ return lua_lessthan(L, idx1, idx2);
+ case LUA_OPLE:
+ luaL_checkstack(L, 5, "not enough stack slots");
+ idx1 = lua_absindex(L, idx1);
+ idx2 = lua_absindex(L, idx2);
+ lua_pushvalue(L, idx1);
+ lua_pushvalue(L, idx2);
+ compat53_call_lua(L, compat53_compare_code,
+ sizeof(compat53_compare_code) - 1, 2, 1);
+ result = lua_toboolean(L, -1);
+ lua_pop(L, 1);
+ return result;
+ default:
+ luaL_error(L, "invalid 'op' argument for lua_compare");
+ }
+ return 0;
+}
+
+
+COMPAT53_API void lua_copy(lua_State *L, int from, int to) {
+ int abs_to = lua_absindex(L, to);
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_pushvalue(L, from);
+ lua_replace(L, abs_to);
+}
+
+
+COMPAT53_API void lua_len(lua_State *L, int i) {
+ switch (lua_type(L, i)) {
+ case LUA_TSTRING:
+ lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
+ break;
+ case LUA_TTABLE:
+ if (!luaL_callmeta(L, i, "__len"))
+ lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
+ break;
+ case LUA_TUSERDATA:
+ if (luaL_callmeta(L, i, "__len"))
+ break;
+ /* FALLTHROUGH */
+ default:
+ luaL_error(L, "attempt to get length of a %s value",
+ lua_typename(L, lua_type(L, i)));
+ }
+}
+
+
+COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p) {
+ int abs_i = lua_absindex(L, i);
+ lua_pushlightuserdata(L, (void*)p);
+ lua_rawget(L, abs_i);
+ return lua_type(L, -1);
+}
+
+COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p) {
+ int abs_i = lua_absindex(L, i);
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_pushlightuserdata(L, (void*)p);
+ lua_insert(L, -2);
+ lua_rawset(L, abs_i);
+}
+
+
+COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum) {
+ lua_Number n = lua_tonumber(L, i);
+ if (isnum != NULL) {
+ *isnum = (n != 0 || lua_isnumber(L, i));
+ }
+ return n;
+}
+
+
+COMPAT53_API void luaL_checkversion(lua_State *L) {
+ (void)L;
+}
+
+
+COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg) {
+ if (!lua_checkstack(L, sp + LUA_MINSTACK)) {
+ if (msg != NULL)
+ luaL_error(L, "stack overflow (%s)", msg);
+ else {
+ lua_pushliteral(L, "stack overflow");
+ lua_error(L);
+ }
+ }
+}
+
+
+COMPAT53_API int luaL_getsubtable(lua_State *L, int i, const char *name) {
+ int abs_i = lua_absindex(L, i);
+ luaL_checkstack(L, 3, "not enough stack slots");
+ lua_pushstring(L, name);
+ lua_gettable(L, abs_i);
+ if (lua_istable(L, -1))
+ return 1;
+ lua_pop(L, 1);
+ lua_newtable(L);
+ lua_pushstring(L, name);
+ lua_pushvalue(L, -2);
+ lua_settable(L, abs_i);
+ return 0;
+}
+
+
+COMPAT53_API lua_Integer luaL_len(lua_State *L, int i) {
+ lua_Integer res = 0;
+ int isnum = 0;
+ luaL_checkstack(L, 1, "not enough stack slots");
+ lua_len(L, i);
+ res = lua_tointegerx(L, -1, &isnum);
+ lua_pop(L, 1);
+ if (!isnum)
+ luaL_error(L, "object length is not an integer");
+ return res;
+}
+
+
+COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) {
+ luaL_checkstack(L, nup + 1, "too many upvalues");
+ for (; l->name != NULL; l++) { /* fill the table with given functions */
+ int i;
+ lua_pushstring(L, l->name);
+ for (i = 0; i < nup; i++) /* copy upvalues to the top */
+ lua_pushvalue(L, -(nup + 1));
+ lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
+ lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */
+ }
+ lua_pop(L, nup); /* remove upvalues */
+}
+
+
+COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname) {
+ luaL_checkstack(L, 1, "not enough stack slots");
+ luaL_getmetatable(L, tname);
+ lua_setmetatable(L, -2);
+}
+
+
+COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname) {
+ void *p = lua_touserdata(L, i);
+ luaL_checkstack(L, 2, "not enough stack slots");
+ if (p == NULL || !lua_getmetatable(L, i))
+ return NULL;
+ else {
+ int res = 0;
+ luaL_getmetatable(L, tname);
+ res = lua_rawequal(L, -1, -2);
+ lua_pop(L, 2);
+ if (!res)
+ p = NULL;
+ }
+ return p;
+}
+
+
+static int compat53_countlevels(lua_State *L) {
+ lua_Debug ar;
+ int li = 1, le = 1;
+ /* find an upper bound */
+ while (lua_getstack(L, le, &ar)) { li = le; le *= 2; }
+ /* do a binary search */
+ while (li < le) {
+ int m = (li + le) / 2;
+ if (lua_getstack(L, m, &ar)) li = m + 1;
+ else le = m;
+ }
+ return le - 1;
+}
+
+static int compat53_findfield(lua_State *L, int objidx, int level) {
+ if (level == 0 || !lua_istable(L, -1))
+ return 0; /* not found */
+ lua_pushnil(L); /* start 'next' loop */
+ while (lua_next(L, -2)) { /* for each pair in table */
+ if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
+ if (lua_rawequal(L, objidx, -1)) { /* found object? */
+ lua_pop(L, 1); /* remove value (but keep name) */
+ return 1;
+ }
+ else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */
+ lua_remove(L, -2); /* remove table (but keep name) */
+ lua_pushliteral(L, ".");
+ lua_insert(L, -2); /* place '.' between the two names */
+ lua_concat(L, 3);
+ return 1;
+ }
+ }
+ lua_pop(L, 1); /* remove value */
+ }
+ return 0; /* not found */
+}
+
+static int compat53_pushglobalfuncname(lua_State *L, lua_Debug *ar) {
+ int top = lua_gettop(L);
+ lua_getinfo(L, "f", ar); /* push function */
+ lua_pushvalue(L, LUA_GLOBALSINDEX);
+ if (compat53_findfield(L, top + 1, 2)) {
+ lua_copy(L, -1, top + 1); /* move name to proper place */
+ lua_pop(L, 2); /* remove pushed values */
+ return 1;
+ }
+ else {
+ lua_settop(L, top); /* remove function and global table */
+ return 0;
+ }
+}
+
+static void compat53_pushfuncname(lua_State *L, lua_Debug *ar) {
+ if (*ar->namewhat != '\0') /* is there a name? */
+ lua_pushfstring(L, "function " LUA_QS, ar->name);
+ else if (*ar->what == 'm') /* main? */
+ lua_pushliteral(L, "main chunk");
+ else if (*ar->what == 'C') {
+ if (compat53_pushglobalfuncname(L, ar)) {
+ lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
+ lua_remove(L, -2); /* remove name */
+ }
+ else
+ lua_pushliteral(L, "?");
+ }
+ else
+ lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
+}
+
+#define COMPAT53_LEVELS1 12 /* size of the first part of the stack */
+#define COMPAT53_LEVELS2 10 /* size of the second part of the stack */
+
+COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1,
+ const char *msg, int level) {
+ lua_Debug ar;
+ int top = lua_gettop(L);
+ int numlevels = compat53_countlevels(L1);
+ int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0;
+ if (msg) lua_pushfstring(L, "%s\n", msg);
+ lua_pushliteral(L, "stack traceback:");
+ while (lua_getstack(L1, level++, &ar)) {
+ if (level == mark) { /* too many levels? */
+ lua_pushliteral(L, "\n\t..."); /* add a '...' */
+ level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */
+ }
+ else {
+ lua_getinfo(L1, "Slnt", &ar);
+ lua_pushfstring(L, "\n\t%s:", ar.short_src);
+ if (ar.currentline > 0)
+ lua_pushfstring(L, "%d:", ar.currentline);
+ lua_pushliteral(L, " in ");
+ compat53_pushfuncname(L, &ar);
+ lua_concat(L, lua_gettop(L) - top);
+ }
+ }
+ lua_concat(L, lua_gettop(L) - top);
+}
+
+
+COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname) {
+ const char *serr = NULL;
+ int en = errno; /* calls to Lua API may change this value */
+ char buf[512] = { 0 };
+ if (stat) {
+ lua_pushboolean(L, 1);
+ return 1;
+ }
+ else {
+ lua_pushnil(L);
+ serr = compat53_strerror(en, buf, sizeof(buf));
+ if (fname)
+ lua_pushfstring(L, "%s: %s", fname, serr);
+ else
+ lua_pushstring(L, serr);
+ lua_pushnumber(L, (lua_Number)en);
+ return 3;
+ }
+}
+
+
+static int compat53_checkmode(lua_State *L, const char *mode, const char *modename, int err) {
+ if (mode && strchr(mode, modename[0]) == NULL) {
+ lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode);
+ return err;
+ }
+ return LUA_OK;
+}
+
+
+typedef struct {
+ lua_Reader reader;
+ void *ud;
+ int has_peeked_data;
+ const char *peeked_data;
+ size_t peeked_data_size;
+} compat53_reader_data;
+
+
+static const char *compat53_reader(lua_State *L, void *ud, size_t *size) {
+ compat53_reader_data *data = (compat53_reader_data *)ud;
+ if (data->has_peeked_data) {
+ data->has_peeked_data = 0;
+ *size = data->peeked_data_size;
+ return data->peeked_data;
+ }
+ else
+ return data->reader(L, data->ud, size);
+}
+
+
+COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char *source, const char *mode) {
+ int status = LUA_OK;
+ compat53_reader_data compat53_data = { reader, data, 1, 0, 0 };
+ compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size));
+ if (compat53_data.peeked_data && compat53_data.peeked_data_size &&
+ compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */
+ status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
+ else
+ status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
+ if (status != LUA_OK)
+ return status;
+ /* we need to call the original 5.1 version of lua_load! */
+#undef lua_load
+ return lua_load(L, compat53_reader, &compat53_data, source);
+#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
+}
+
+
+typedef struct {
+ int n; /* number of pre-read characters */
+ FILE *f; /* file being read */
+ char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */
+} compat53_LoadF;
+
+
+static const char *compat53_getF(lua_State *L, void *ud, size_t *size) {
+ compat53_LoadF *lf = (compat53_LoadF *)ud;
+ (void)L; /* not used */
+ if (lf->n > 0) { /* are there pre-read characters to be read? */
+ *size = lf->n; /* return them (chars already in buffer) */
+ lf->n = 0; /* no more pre-read characters */
+ }
+ else { /* read a block from file */
+ /* 'fread' can return > 0 *and* set the EOF flag. If next call to
+ 'compat53_getF' called 'fread', it might still wait for user input.
+ The next check avoids this problem. */
+ if (feof(lf->f)) return NULL;
+ *size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */
+ }
+ return lf->buff;
+}
+
+
+static int compat53_errfile(lua_State *L, const char *what, int fnameindex) {
+ char buf[512] = { 0 };
+ const char *serr = compat53_strerror(errno, buf, sizeof(buf));
+ const char *filename = lua_tostring(L, fnameindex) + 1;
+ lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr);
+ lua_remove(L, fnameindex);
+ return LUA_ERRFILE;
+}
+
+
+static int compat53_skipBOM(compat53_LoadF *lf) {
+ const char *p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */
+ int c;
+ lf->n = 0;
+ do {
+ c = getc(lf->f);
+ if (c == EOF || c != *(const unsigned char *)p++) return c;
+ lf->buff[lf->n++] = (char)c; /* to be read by the parser */
+ } while (*p != '\0');
+ lf->n = 0; /* prefix matched; discard it */
+ return getc(lf->f); /* return next character */
+}
+
+
+/*
+** reads the first character of file 'f' and skips an optional BOM mark
+** in its beginning plus its first line if it starts with '#'. Returns
+** true if it skipped the first line. In any case, '*cp' has the
+** first "valid" character of the file (after the optional BOM and
+** a first-line comment).
+*/
+static int compat53_skipcomment(compat53_LoadF *lf, int *cp) {
+ int c = *cp = compat53_skipBOM(lf);
+ if (c == '#') { /* first line is a comment (Unix exec. file)? */
+ do { /* skip first line */
+ c = getc(lf->f);
+ } while (c != EOF && c != '\n');
+ *cp = getc(lf->f); /* skip end-of-line, if present */
+ return 1; /* there was a comment */
+ }
+ else return 0; /* no comment */
+}
+
+
+COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode) {
+ compat53_LoadF lf;
+ int status, readstatus;
+ int c;
+ int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
+ if (filename == NULL) {
+ lua_pushliteral(L, "=stdin");
+ lf.f = stdin;
+ }
+ else {
+ lua_pushfstring(L, "@%s", filename);
+#if defined(_MSC_VER)
+ /* This code is here to stop a deprecation error that stops builds
+ * if a certain macro is defined. While normally not caring would
+ * be best, some header-only libraries and builds can't afford to
+ * dictate this to the user. A quick check shows that fopen_s this
+ * goes back to VS 2005, and _fsopen goes back to VS 2003 .NET,
+ * possibly even before that so we don't need to do any version
+ * number checks, since this has been there since forever. */
+
+ /* TO USER: if you want the behavior of typical fopen_s/fopen,
+ * which does lock the file on VC++, define the macro used below to 0 */
+#if COMPAT53_FOPEN_NO_LOCK
+ lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */
+ if (lf.f == NULL)
+ return compat53_errfile(L, "open", fnameindex);
+#else /* use default locking version */
+ if (fopen_s(&lf.f, filename, "r") != 0)
+ return compat53_errfile(L, "open", fnameindex);
+#endif /* Locking vs. No-locking fopen variants */
+#else
+ lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */
+ if (lf.f == NULL) return compat53_errfile(L, "open", fnameindex);
+#endif
+ }
+ if (compat53_skipcomment(&lf, &c)) /* read initial portion */
+ lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */
+ if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */
+#if defined(_MSC_VER)
+ if (freopen_s(&lf.f, filename, "rb", lf.f) != 0)
+ return compat53_errfile(L, "reopen", fnameindex);
+#else
+ lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
+ if (lf.f == NULL) return compat53_errfile(L, "reopen", fnameindex);
+#endif
+ compat53_skipcomment(&lf, &c); /* re-read initial portion */
+ }
+ if (c != EOF)
+ lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */
+ status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode);
+ readstatus = ferror(lf.f);
+ if (filename) fclose(lf.f); /* close file (even in case of errors) */
+ if (readstatus) {
+ lua_settop(L, fnameindex); /* ignore results from 'lua_load' */
+ return compat53_errfile(L, "read", fnameindex);
+ }
+ lua_remove(L, fnameindex);
+ return status;
+}
+
+
+COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode) {
+ int status = LUA_OK;
+ if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) {
+ status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
+ }
+ else {
+ status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
+ }
+ if (status != LUA_OK)
+ return status;
+ return luaL_loadbuffer(L, buff, sz, name);
+}
+
+
+#if !defined(l_inspectstat) && \
+ (defined(unix) || defined(__unix) || defined(__unix__) || \
+ defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || \
+ (defined(__APPLE__) && defined(__MACH__)))
+/* some form of unix; check feature macros in unistd.h for details */
+# include <unistd.h>
+/* check posix version; the relevant include files and macros probably
+* were available before 2001, but I'm not sure */
+# if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L
+# include <sys/wait.h>
+# define l_inspectstat(stat,what) \
+ if (WIFEXITED(stat)) { stat = WEXITSTATUS(stat); } \
+ else if (WIFSIGNALED(stat)) { stat = WTERMSIG(stat); what = "signal"; }
+# endif
+#endif
+
+/* provide default (no-op) version */
+#if !defined(l_inspectstat)
+# define l_inspectstat(stat,what) ((void)0)
+#endif
+
+
+COMPAT53_API int luaL_execresult(lua_State *L, int stat) {
+ const char *what = "exit";
+ if (stat == -1)
+ return luaL_fileresult(L, 0, NULL);
+ else {
+ l_inspectstat(stat, what);
+ if (*what == 'e' && stat == 0)
+ lua_pushboolean(L, 1);
+ else
+ lua_pushnil(L);
+ lua_pushstring(L, what);
+ lua_pushinteger(L, stat);
+ return 3;
+ }
+}
+
+
+COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B) {
+ /* make it crash if used via pointer to a 5.1-style luaL_Buffer */
+ B->b.p = NULL;
+ B->b.L = NULL;
+ B->b.lvl = 0;
+ /* reuse the buffer from the 5.1-style luaL_Buffer though! */
+ B->ptr = B->b.buffer;
+ B->capacity = LUAL_BUFFERSIZE;
+ B->nelems = 0;
+ B->L2 = L;
+}
+
+
+COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s) {
+ if (B->capacity - B->nelems < s) { /* needs to grow */
+ char* newptr = NULL;
+ size_t newcap = B->capacity * 2;
+ if (newcap - B->nelems < s)
+ newcap = B->nelems + s;
+ if (newcap < B->capacity) /* overflow */
+ luaL_error(B->L2, "buffer too large");
+ newptr = (char*)lua_newuserdata(B->L2, newcap);
+ memcpy(newptr, B->ptr, B->nelems);
+ if (B->ptr != B->b.buffer)
+ lua_replace(B->L2, -2); /* remove old buffer */
+ B->ptr = newptr;
+ B->capacity = newcap;
+ }
+ return B->ptr + B->nelems;
+}
+
+
+COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l) {
+ memcpy(luaL_prepbuffsize(B, l), s, l);
+ luaL_addsize(B, l);
+}
+
+
+COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B) {
+ size_t len = 0;
+ const char *s = lua_tolstring(B->L2, -1, &len);
+ if (!s)
+ luaL_error(B->L2, "cannot convert value to string");
+ if (B->ptr != B->b.buffer)
+ lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
+ luaL_addlstring(B, s, len);
+ lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
+}
+
+
+void luaL_pushresult(luaL_Buffer_53 *B) {
+ lua_pushlstring(B->L2, B->ptr, B->nelems);
+ if (B->ptr != B->b.buffer)
+ lua_replace(B->L2, -2); /* remove userdata buffer */
+}
+
+
+#endif /* Lua 5.1 */
+
+
+
+/* definitions for Lua 5.1 and Lua 5.2 */
+#if defined( LUA_VERSION_NUM ) && LUA_VERSION_NUM <= 502
+
+
+COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i) {
+ index = lua_absindex(L, index);
+ lua_pushinteger(L, i);
+ lua_gettable(L, index);
+ return lua_type(L, -1);
+}
+
+
+COMPAT53_API int lua_isinteger(lua_State *L, int index) {
+ if (lua_type(L, index) == LUA_TNUMBER) {
+ lua_Number n = lua_tonumber(L, index);
+ lua_Integer i = lua_tointeger(L, index);
+ if (i == n)
+ return 1;
+ }
+ return 0;
+}
+
+
+COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum) {
+ int ok = 0;
+ lua_Number n = lua_tonumberx(L, i, &ok);
+ if (ok) {
+ if (n == (lua_Integer)n) {
+ if (isnum)
+ *isnum = 1;
+ return (lua_Integer)n;
+ }
+ }
+ if (isnum)
+ *isnum = 0;
+ return 0;
+}
+
+
+static void compat53_reverse(lua_State *L, int a, int b) {
+ for (; a < b; ++a, --b) {
+ lua_pushvalue(L, a);
+ lua_pushvalue(L, b);
+ lua_replace(L, a);
+ lua_replace(L, b);
+ }
+}
+
+
+COMPAT53_API void lua_rotate(lua_State *L, int idx, int n) {
+ int n_elems = 0;
+ idx = lua_absindex(L, idx);
+ n_elems = lua_gettop(L) - idx + 1;
+ if (n < 0)
+ n += n_elems;
+ if (n > 0 && n < n_elems) {
+ luaL_checkstack(L, 2, "not enough stack slots available");
+ n = n_elems - n;
+ compat53_reverse(L, idx, idx + n - 1);
+ compat53_reverse(L, idx + n, idx + n_elems - 1);
+ compat53_reverse(L, idx, idx + n_elems - 1);
+ }
+}
+
+
+COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i) {
+ luaL_checkstack(L, 1, "not enough stack slots available");
+ index = lua_absindex(L, index);
+ lua_pushinteger(L, i);
+ lua_insert(L, -2);
+ lua_settable(L, index);
+}
+
+
+#if !defined(lua_str2number)
+# define lua_str2number(s, p) strtod((s), (p))
+#endif
+
+COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s) {
+ char* endptr;
+ lua_Number n = lua_str2number(s, &endptr);
+ if (endptr != s) {
+ while (*endptr != '\0' && isspace((unsigned char)*endptr))
+ ++endptr;
+ if (*endptr == '\0') {
+ lua_pushnumber(L, n);
+ return endptr - s + 1;
+ }
+ }
+ return 0;
+}
+
+
+COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len) {
+ if (!luaL_callmeta(L, idx, "__tostring")) {
+ int t = lua_type(L, idx), tt = 0;
+ char const* name = NULL;
+ switch (t) {
+ case LUA_TNIL:
+ lua_pushliteral(L, "nil");
+ break;
+ case LUA_TSTRING:
+ case LUA_TNUMBER:
+ lua_pushvalue(L, idx);
+ break;
+ case LUA_TBOOLEAN:
+ if (lua_toboolean(L, idx))
+ lua_pushliteral(L, "true");
+ else
+ lua_pushliteral(L, "false");
+ break;
+ default:
+ tt = luaL_getmetafield(L, idx, "__name");
+ name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t);
+ lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx));
+ if (tt != LUA_TNIL)
+ lua_replace(L, -2);
+ break;
+ }
+ }
+ else {
+ if (!lua_isstring(L, -1))
+ luaL_error(L, "'__tostring' must return a string");
+ }
+ return lua_tolstring(L, -1, len);
+}
+
+
+COMPAT53_API void luaL_requiref(lua_State *L, const char *modname,
+ lua_CFunction openf, int glb) {
+ luaL_checkstack(L, 3, "not enough stack slots available");
+ luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED");
+ if (lua_getfield(L, -1, modname) == LUA_TNIL) {
+ lua_pop(L, 1);
+ lua_pushcfunction(L, openf);
+ lua_pushstring(L, modname);
+ lua_call(L, 1, 1);
+ lua_pushvalue(L, -1);
+ lua_setfield(L, -3, modname);
+ }
+ if (glb) {
+ lua_pushvalue(L, -1);
+ lua_setglobal(L, modname);
+ }
+ lua_replace(L, -2);
+}
+
+
+#endif /* Lua 5.1 and 5.2 */
+
+
+#endif /* KEPLER_PROJECT_COMPAT53_C_ */
+
+
+/*********************************************************************
+* This file contains parts of Lua 5.2's and Lua 5.3's source code:
+*
+* Copyright (C) 1994-2014 Lua.org, PUC-Rio.
+*
+* Permission is hereby granted, free of charge, to any person obtaining
+* a copy of this software and associated documentation files (the
+* "Software"), to deal in the Software without restriction, including
+* without limitation the rights to use, copy, modify, merge, publish,
+* distribute, sublicense, and/or sell copies of the Software, and to
+* permit persons to whom the Software is furnished to do so, subject to
+* the following conditions:
+*
+* The above copyright notice and this permission notice shall be
+* included in all copies or substantial portions of the Software.
+*
+* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*********************************************************************/
+
diff --git a/lib/sol2/include/sol/compatibility/compat-5.3.h b/lib/sol2/include/sol/compatibility/compat-5.3.h new file mode 100644 index 0000000..50a339b --- /dev/null +++ b/lib/sol2/include/sol/compatibility/compat-5.3.h @@ -0,0 +1,421 @@ +#ifndef KEPLER_PROJECT_COMPAT53_H_
+#define KEPLER_PROJECT_COMPAT53_H_
+
+#include <stddef.h>
+#include <limits.h>
+#include <string.h>
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+extern "C" {
+#endif
+#include <lua.h>
+#include <lauxlib.h>
+#include <lualib.h>
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+}
+#endif
+
+#ifndef COMPAT53_PREFIX
+/* we chose this name because many other lua bindings / libs have
+* their own compatibility layer, and that use the compat53 declaration
+* frequently, causing all kinds of linker / compiler issues
+*/
+# define COMPAT53_PREFIX kp_compat53
+#endif // COMPAT53_PREFIX
+
+#ifndef COMPAT53_API
+# if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE
+# if defined(__GNUC__) || defined(__clang__)
+# define COMPAT53_API __attribute__((__unused__)) static inline
+# else
+# define COMPAT53_API static inline
+# endif /* Clang/GCC */
+# else /* COMPAT53_INCLUDE_SOURCE */
+/* we are not including source, so everything is extern */
+# define COMPAT53_API extern
+# endif /* COMPAT53_INCLUDE_SOURCE */
+#endif /* COMPAT53_PREFIX */
+
+
+#define COMPAT53_CONCAT_HELPER(a, b) a##b
+#define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b)
+
+
+
+/* declarations for Lua 5.1 */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
+
+/* XXX not implemented:
+* lua_arith (new operators)
+* lua_upvalueid
+* lua_upvaluejoin
+* lua_version
+* lua_yieldk
+*/
+
+#ifndef LUA_OK
+# define LUA_OK 0
+#endif
+#ifndef LUA_OPADD
+# define LUA_OPADD 0
+#endif
+#ifndef LUA_OPSUB
+# define LUA_OPSUB 1
+#endif
+#ifndef LUA_OPMUL
+# define LUA_OPMUL 2
+#endif
+#ifndef LUA_OPDIV
+# define LUA_OPDIV 3
+#endif
+#ifndef LUA_OPMOD
+# define LUA_OPMOD 4
+#endif
+#ifndef LUA_OPPOW
+# define LUA_OPPOW 5
+#endif
+#ifndef LUA_OPUNM
+# define LUA_OPUNM 6
+#endif
+#ifndef LUA_OPEQ
+# define LUA_OPEQ 0
+#endif
+#ifndef LUA_OPLT
+# define LUA_OPLT 1
+#endif
+#ifndef LUA_OPLE
+# define LUA_OPLE 2
+#endif
+
+/* LuaJIT/Lua 5.1 does not have the updated
+* error codes for thread status/function returns (but some patched versions do)
+* define it only if it's not found
+*/
+#if !defined(LUA_ERRGCMM)
+/* Use + 2 because in some versions of Lua (Lua 5.1)
+* LUA_ERRFILE is defined as (LUA_ERRERR+1)
+* so we need to avoid it (LuaJIT might have something at this
+* integer value too)
+*/
+# define LUA_ERRGCMM (LUA_ERRERR + 2)
+#endif /* LUA_ERRGCMM define */
+
+typedef size_t lua_Unsigned;
+
+typedef struct luaL_Buffer_53 {
+ luaL_Buffer b; /* make incorrect code crash! */
+ char *ptr;
+ size_t nelems;
+ size_t capacity;
+ lua_State *L2;
+} luaL_Buffer_53;
+#define luaL_Buffer luaL_Buffer_53
+
+/* In PUC-Rio 5.1, userdata is a simple FILE*
+* In LuaJIT, it's a struct where the first member is a FILE*
+* We can't support the `closef` member
+*/
+typedef struct luaL_Stream {
+ FILE *f;
+} luaL_Stream;
+
+#define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex)
+COMPAT53_API int lua_absindex(lua_State *L, int i);
+
+#define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith)
+COMPAT53_API void lua_arith(lua_State *L, int op);
+
+#define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare)
+COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op);
+
+#define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy)
+COMPAT53_API void lua_copy(lua_State *L, int from, int to);
+
+#define lua_getuservalue(L, i) \
+ (lua_getfenv((L), (i)), lua_type((L), -1))
+#define lua_setuservalue(L, i) \
+ (luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i)))
+
+#define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len)
+COMPAT53_API void lua_len(lua_State *L, int i);
+
+#define lua_pushstring(L, s) \
+ (lua_pushstring((L), (s)), lua_tostring((L), -1))
+
+#define lua_pushlstring(L, s, len) \
+ ((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1))
+
+#ifndef luaL_newlibtable
+# define luaL_newlibtable(L, l) \
+ (lua_createtable((L), 0, sizeof((l))/sizeof(*(l))-1))
+#endif
+#ifndef luaL_newlib
+# define luaL_newlib(L, l) \
+ (luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l)))
+#endif
+
+#define lua_pushglobaltable(L) \
+ lua_pushvalue((L), LUA_GLOBALSINDEX)
+
+#define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp)
+COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p);
+
+#define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp)
+COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p);
+
+#define lua_rawlen(L, i) lua_objlen((L), (i))
+
+#define lua_tointeger(L, i) lua_tointegerx((L), (i), NULL)
+
+#define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx)
+COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum);
+
+#define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion)
+COMPAT53_API void luaL_checkversion(lua_State *L);
+
+#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
+COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char* source, const char* mode);
+
+#define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex)
+COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode);
+
+#define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx)
+COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode);
+
+#define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53)
+COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg);
+
+#define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable)
+COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char *name);
+
+#define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len)
+COMPAT53_API lua_Integer luaL_len(lua_State *L, int i);
+
+#define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs)
+COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup);
+
+#define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable)
+COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname);
+
+#define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata)
+COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname);
+
+#define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback)
+COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level);
+
+#define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult)
+COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname);
+
+#define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult)
+COMPAT53_API int luaL_execresult(lua_State *L, int stat);
+
+#define lua_callk(L, na, nr, ctx, cont) \
+ ((void)(ctx), (void)(cont), lua_call((L), (na), (nr)))
+#define lua_pcallk(L, na, nr, err, ctx, cont) \
+ ((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err)))
+
+#define lua_resume(L, from, nargs) \
+ ((void)(from), lua_resume((L), (nargs)))
+
+#define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53)
+COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B);
+
+#define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53)
+COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s);
+
+#define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53)
+COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l);
+
+#define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53)
+COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B);
+
+#define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53)
+COMPAT53_API void luaL_pushresult(luaL_Buffer_53 *B);
+
+#undef luaL_buffinitsize
+#define luaL_buffinitsize(L, B, s) \
+ (luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s)))
+
+#undef luaL_prepbuffer
+#define luaL_prepbuffer(B) \
+ luaL_prepbuffsize((B), LUAL_BUFFERSIZE)
+
+#undef luaL_addchar
+#define luaL_addchar(B, c) \
+ ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \
+ ((B)->ptr[(B)->nelems++] = (c)))
+
+#undef luaL_addsize
+#define luaL_addsize(B, s) \
+ ((B)->nelems += (s))
+
+#undef luaL_addstring
+#define luaL_addstring(B, s) \
+ luaL_addlstring((B), (s), strlen((s)))
+
+#undef luaL_pushresultsize
+#define luaL_pushresultsize(B, s) \
+ (luaL_addsize((B), (s)), luaL_pushresult((B)))
+
+#if defined(LUA_COMPAT_APIINTCASTS)
+#define lua_pushunsigned(L, n) \
+ lua_pushinteger((L), (lua_Integer)(n))
+#define lua_tounsignedx(L, i, is) \
+ ((lua_Unsigned)lua_tointegerx((L), (i), (is)))
+#define lua_tounsigned(L, i) \
+ lua_tounsignedx((L), (i), NULL)
+#define luaL_checkunsigned(L, a) \
+ ((lua_Unsigned)luaL_checkinteger((L), (a)))
+#define luaL_optunsigned(L, a, d) \
+ ((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d)))
+#endif
+
+#endif /* Lua 5.1 only */
+
+
+
+/* declarations for Lua 5.1 and 5.2 */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
+
+typedef int lua_KContext;
+
+typedef int(*lua_KFunction)(lua_State *L, int status, lua_KContext ctx);
+
+#define lua_dump(L, w, d, s) \
+ ((void)(s), lua_dump((L), (w), (d)))
+
+#define lua_getfield(L, i, k) \
+ (lua_getfield((L), (i), (k)), lua_type((L), -1))
+
+#define lua_gettable(L, i) \
+ (lua_gettable((L), (i)), lua_type((L), -1))
+
+#define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti)
+COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i);
+
+#define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger)
+COMPAT53_API int lua_isinteger(lua_State *L, int index);
+
+#define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx_53)
+COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum);
+
+#define lua_numbertointeger(n, p) \
+ ((*(p) = (lua_Integer)(n)), 1)
+
+#define lua_rawget(L, i) \
+ (lua_rawget((L), (i)), lua_type((L), -1))
+
+#define lua_rawgeti(L, i, n) \
+ (lua_rawgeti((L), (i), (n)), lua_type((L), -1))
+
+#define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate)
+COMPAT53_API void lua_rotate(lua_State *L, int idx, int n);
+
+#define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti)
+COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i);
+
+#define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber)
+COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s);
+
+#define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring)
+COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len);
+
+#define luaL_getmetafield(L, o, e) \
+ (luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL)
+
+#define luaL_newmetatable(L, tn) \
+ (luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0)
+
+#define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53)
+COMPAT53_API void luaL_requiref(lua_State *L, const char *modname,
+ lua_CFunction openf, int glb);
+
+#endif /* Lua 5.1 and Lua 5.2 */
+
+
+
+/* declarations for Lua 5.2 */
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502
+
+/* XXX not implemented:
+* lua_isyieldable
+* lua_getextraspace
+* lua_arith (new operators)
+* lua_pushfstring (new formats)
+*/
+
+#define lua_getglobal(L, n) \
+ (lua_getglobal((L), (n)), lua_type((L), -1))
+
+#define lua_getuservalue(L, i) \
+ (lua_getuservalue((L), (i)), lua_type((L), -1))
+
+#define lua_pushlstring(L, s, len) \
+ (((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len)))
+
+#define lua_rawgetp(L, i, p) \
+ (lua_rawgetp((L), (i), (p)), lua_type((L), -1))
+
+#define LUA_KFUNCTION(_name) \
+ static int (_name)(lua_State *L, int status, lua_KContext ctx); \
+ static int (_name ## _52)(lua_State *L) { \
+ lua_KContext ctx; \
+ int status = lua_getctx(L, &ctx); \
+ return (_name)(L, status, ctx); \
+ } \
+ static int (_name)(lua_State *L, int status, lua_KContext ctx)
+
+#define lua_pcallk(L, na, nr, err, ctx, cont) \
+ lua_pcallk((L), (na), (nr), (err), (ctx), cont ## _52)
+
+#define lua_callk(L, na, nr, ctx, cont) \
+ lua_callk((L), (na), (nr), (ctx), cont ## _52)
+
+#define lua_yieldk(L, nr, ctx, cont) \
+ lua_yieldk((L), (nr), (ctx), cont ## _52)
+
+#ifdef lua_call
+# undef lua_call
+# define lua_call(L, na, nr) \
+ (lua_callk)((L), (na), (nr), 0, NULL)
+#endif
+
+#ifdef lua_pcall
+# undef lua_pcall
+# define lua_pcall(L, na, nr, err) \
+ (lua_pcallk)((L), (na), (nr), (err), 0, NULL)
+#endif
+
+#ifdef lua_yield
+# undef lua_yield
+# define lua_yield(L, nr) \
+ (lua_yieldk)((L), (nr), 0, NULL)
+#endif
+
+#endif /* Lua 5.2 only */
+
+
+
+/* other Lua versions */
+#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 504
+
+# error "unsupported Lua version (i.e. not Lua 5.1, 5.2, or 5.3)"
+
+#endif /* other Lua versions except 5.1, 5.2, and 5.3 */
+
+
+
+/* helper macro for defining continuation functions (for every version
+* *except* Lua 5.2) */
+#ifndef LUA_KFUNCTION
+#define LUA_KFUNCTION(_name) \
+ static int (_name)(lua_State *L, int status, lua_KContext ctx)
+#endif
+
+
+#if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE == 1
+# include "compat-5.3.c.h"
+#endif
+
+
+#endif /* KEPLER_PROJECT_COMPAT53_H_ */
+
diff --git a/lib/sol2/include/sol/compatibility/compat-5.4.h b/lib/sol2/include/sol/compatibility/compat-5.4.h new file mode 100644 index 0000000..80d65bd --- /dev/null +++ b/lib/sol2/include/sol/compatibility/compat-5.4.h @@ -0,0 +1,25 @@ +#ifndef NOT_KEPLER_PROJECT_COMPAT54_H_
+#define NOT_KEPLER_PROJECT_COMPAT54_H_
+
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+extern "C" {
+#endif
+#include <lua.h>
+#include <lauxlib.h>
+#include <lualib.h>
+#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
+}
+#endif
+
+#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 504
+
+#if !defined(LUA_ERRGCMM)
+/* So Lua 5.4 actually removes this, which breaks sol2...
+ man, this API is quite unstable...!
+*/
+# define LUA_ERRGCMM (LUA_ERRERR + 2)
+#endif /* LUA_ERRGCMM define */
+
+#endif // Lua 5.4 only
+
+#endif // NOT_KEPLER_PROJECT_COMPAT54_H_
\ No newline at end of file diff --git a/lib/sol2/include/sol/compatibility/version.hpp b/lib/sol2/include/sol/compatibility/version.hpp new file mode 100644 index 0000000..718018e --- /dev/null +++ b/lib/sol2/include/sol/compatibility/version.hpp @@ -0,0 +1,98 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_VERSION_HPP +#define SOL_VERSION_HPP + +#include "../feature_test.hpp" + +#if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA + #include <lua.h> + #include <lualib.h> + #include <lauxlib.h> + #if defined(SOL_USING_CXX_LUAJIT) && SOL_USING_CXX_LUAJIT + #include <luajit.h> + #endif // C++ LuaJIT ... whatever that means + #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !(SOL_EXCEPTIONS_SAFE_PROPAGATION)) && (!defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE) || !(SOL_EXCEPTIONS_ALWAYS_UNSAFE)) + #define SOL_EXCEPTIONS_SAFE_PROPAGATION 1 + #endif // Exceptions can be propagated safely using C++-compiled Lua +#else + #if defined(SOL_NO_LUA_HPP) && SOL_NO_LUA_HPP + extern "C" { + #include <lua.h> + #include <lauxlib.h> + #include <lualib.h> + #if defined(LUAJIT_VERSION) && LUAJIT_VERSION + #include <luajit.h> + #endif + } + #else + #if defined(__has_include) + #if __has_include(<lua.hpp>) + #include <lua.hpp> + #else + extern "C" { + #include <lua.h> + #include <lauxlib.h> + #include <lualib.h> + #if defined(LUAJIT_VERSION) && LUAJIT_VERSION + #include <luajit.h> + #endif + } + #endif // lua.hpp exists or does not + #else + #include <lua.hpp> + #endif // check for lua.hpp safely for Lua 5.1 derps + #endif // Manual - have lua.hpp or not +#endif // C++ Mangling for Lua vs. Not + +#ifdef LUAJIT_VERSION + #ifndef SOL_LUAJIT + #define SOL_LUAJIT 1 + #endif // sol luajit + #if defined(SOL_LUAJIT) && SOL_LUAJIT + #ifndef SOL_LUAJIT_VERSION + #define SOL_LUAJIT_VERSION LUAJIT_VERSION_NUM + #endif // SOL_LUAJIT_VERSION definition, if not present + #endif +#endif // luajit + +#if SOL_LUAJIT && SOL_LUAJIT_VERSION >= 20100 + #if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && (!defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE) && !(SOL_EXCEPTIONS_ALWAYS_UNSAFE)) + #define SOL_EXCEPTIONS_SAFE_PROPAGATION 1 + #endif // Do not catch (...) clauses +#endif // LuaJIT beta 02.01.00 have better exception handling on all platforms since beta3 + +#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502 + #define SOL_LUA_VERSION LUA_VERSION_NUM +#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 + #define SOL_LUA_VERSION LUA_VERSION_NUM +#elif !defined(LUA_VERSION_NUM) || !(LUA_VERSION_NUM) + // Definitely 5.0 + #define SOL_LUA_VERSION 500 +#else + // ??? Not sure, assume 503? + #define SOL_LUA_VERSION 503 +#endif // Lua Version 503, 502, 501 || luajit, 500 + +#endif // SOL_VERSION_HPP diff --git a/lib/sol2/include/sol/config.hpp b/lib/sol2/include/sol/config.hpp new file mode 100644 index 0000000..975c50e --- /dev/null +++ b/lib/sol2/include/sol/config.hpp @@ -0,0 +1,249 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_CONFIG_HPP +#define SOL_CONFIG_HPP + +#ifdef _MSC_VER + #if defined(_DEBUG) && !defined(NDEBUG) + #ifndef SOL_IN_DEBUG_DETECTED + #define SOL_IN_DEBUG_DETECTED 1 + #endif + #endif // VC++ Debug macros + + #if !defined(_CPPUNWIND) + #if !defined(SOL_NO_EXCEPTIONS) + #define SOL_NO_EXCEPTIONS 1 + #endif + #endif // Automatic Exceptions + + #if !defined(_CPPRTTI) + #if !defined(SOL_NO_RTTI) + #define SOL_NO_RTTI 1 + #endif + #endif // Automatic RTTI +#elif defined(__GNUC__) || defined(__clang__) + + #if !defined(NDEBUG) && !defined(__OPTIMIZE__) + #if !defined(SOL_IN_DEBUG_DETECTED) + #define SOL_IN_DEBUG_DETECTED 1 + #endif + #endif // Not Debug && g++ optimizer flag + + #if !defined(__EXCEPTIONS) + #if !defined(SOL_NO_EXCEPTIONS) + #define SOL_NO_EXCEPTIONS 1 + #endif + #endif // No Exceptions + + #if !defined(__GXX_RTTI) + #if !defined(SOL_NO_RTTI) + #define SOL_NO_RTTI 1 + #endif + #endif // No RTTI + +#endif // vc++ || clang++/g++ + +// Compatibility Define +#if defined(SOL_CHECK_ARGUMENTS) && SOL_CHECK_ARGUMENTS + #if defined(SOL_ALL_SAFETIES_ON) + #define SOL_ALL_SAFETIES_ON 1 + #endif // turn all the safeties on +#endif // Compatibility define + +// If this is defined, turn on all the safety checks automatically +#if defined(SOL_ALL_SAFETIES_ON) && SOL_ALL_SAFETIES_ON + + // Checks low-level getter function + // (and thusly, affects nearly entire framework) + #if !defined(SOL_SAFE_GETTER) + #define SOL_SAFE_GETTER 1 + #endif + + // Checks access on usertype functions + // local my_obj = my_type.new() + // my_obj.my_member_function() + // -- bad syntax and crash + #if !defined(SOL_SAFE_USERTYPE) + #define SOL_SAFE_USERTYPE 1 + #endif + + // Checks sol::reference derived boundaries + // sol::function ref(L, 1); + // sol::userdata sref(L, 2); + #if !defined(SOL_SAFE_REFERENCES) + #define SOL_SAFE_REFERENCES 1 + #endif + + // Changes all typedefs of sol::function to point to the + // protected_function version, instead of unsafe_function + #if !defined(SOL_SAFE_FUNCTION) + #define SOL_SAFE_FUNCTION 1 + #endif + + // Checks function parameters and + // returns upon call into/from Lua + // local a = 1 + // local b = "woof" + // my_c_function(a, b) + #if !defined(SOL_SAFE_FUNCTION_CALLS) + #define SOL_SAFE_FUNCTION_CALLS 1 + #endif + + // Checks conversions + // int v = lua["bark"]; + // int v2 = my_sol_function(); + #if !defined(SOL_SAFE_PROXIES) + #define SOL_SAFE_PROXIES 1 + #endif + + // Check overflowing number conversions + // for things like 64 bit integers that don't fit in a typical lua_Number + // for Lua 5.1 and 5.2 + #if !defined(SOL_SAFE_NUMERICS) + #define SOL_SAFE_NUMERICS 1 + #endif + + // Turn off Number Precision Checks + // if this is defined, we do not do range + // checks on integers / unsigned integers that might + // be bigger than what Lua can represent + #if !defined(SOL_NO_CHECK_NUMBER_PRECISION) + // off by default + #define SOL_NO_CHECK_NUMBER_PRECISION 0 + #endif + + // Print any exceptions / errors that occur + // in debug mode to the default error stream / console + #if !defined(SOL_SAFE_STACK_CHECK) + #define SOL_SAFE_STACK_CHECK 1 + #endif + +#endif // Turn on Safety for all if top-level macro is defined + +// If we are in debug, turn on certain safety checks +#if defined(SOL_IN_DEBUG_DETECTED) && SOL_IN_DEBUG_DETECTED + + #if !defined(SOL_SAFE_REFERENCES) + // Ensure that references are forcefully type-checked upon construction + #define SOL_SAFE_REFERENCES 1 + #endif + + // Safe usertypes checks for errors such as + // obj = my_type.new() + // obj.f() -- note the '.' instead of ':' + // usertypes should be safe no matter what + #if !defined(SOL_SAFE_USERTYPE) + #define SOL_SAFE_USERTYPE 1 + #endif + + #if !defined(SOL_SAFE_FUNCTION_CALLS) + // Function calls from Lua should be automatically safe in debug mode + #define SOL_SAFE_FUNCTION_CALLS 1 + #endif + + // Print any exceptions / errors that occur + // in debug mode to the default error stream / console + #if !defined(SOL_PRINT_ERRORS) + #define SOL_PRINT_ERRORS 1 + #endif + + // Print any exceptions / errors that occur + // in debug mode to the default error stream / console + #if !defined(SOL_SAFE_STACK_CHECK) + #define SOL_SAFE_STACK_CHECK 1 + #endif + + +#endif // DEBUG: Turn on all debug safety features for VC++ / g++ / clang++ and similar + +// Print any exceptions / errors that occur +// This is normally off due to relying on +// <iostream> to get std::cerr / std::cout +// so it is only defined in debug modes +#if !defined(SOL_PRINT_ERRORS) +// off by default here +#define SOL_PRINT_ERRORS 0 +#endif + +// The default on_error handler should not throw/assert/print/abort, +// but simply pass the value through back to the user +// problematic due to not having a stable [[nodiscard]] attribute in C++11, +// off by default +#if !defined(SOL_DEFAULT_PASS_ON_ERROR) +// off by default here +#define SOL_DEFAULT_PASS_ON_ERROR 0 +#endif + +// Interop allows userdata from external systems +// with external memory layout and metatable names +// to be registered. It costs something to perform +// the interop_checker / differentiation for sol3 usertypes versus +// external ones however, so this is off by default +#if !defined(SOL_ENABLE_INTEROP) +// off by default here +#define SOL_ENABLE_INTEROP 0 +#endif + +// Mac OSX and Objective C define a nil keyword +// we cannot use that for the sol::type::nil define +#if defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil) +#if !defined(SOL_NO_NIL) +#define SOL_NO_NIL 1 +#endif +#endif // avoiding nil defines / keywords + +// If we are using boost, there are a number of optimizations we can perform +// Boost has unordered_map with Compatible Key and CompatibleHash +// Boost also has a decent optional, and we check for this later +// and define our optional to use boost in that scenario +// DEPRECATED +// NOTE: left here for introspection, but NO LONGER USED +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST +#if !defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) +#define SOL_UNORDERED_MAP_COMPATIBLE_HASH 1 +#endif // SOL_UNORDERED_MAP_COMPATIBLE_HASH +#endif + +// For strings being serialized and +// deserialized from and to utf8 +// this controls the size of the buffer we create on the stack, +// in # of utf8 code units +// a buffer of 1KB covers almost all the strings +// we care about: anything larger and the user should know better +#ifndef SOL_STACK_STRING_OPTIMIZATION_SIZE +#define SOL_STACK_STRING_OPTIMIZATION_SIZE 1024 +#endif // Optimized conversion routines using a KB or so off the stack + +// This macro ensures that we check the stack +// on every push of a value. +// This is only for sol3: if you want safety in your customization +// points, you need to build it into each and every customization point you use, +// by using luaL_checkstack or lua_checkstack +// this is off by default, +// but on by default for debug builds +#if !defined(SOL_SAFE_STACK_CHECK) +#define SOL_SAFE_STACK_CHECK 0 +#endif // use luaL_checkstack to check stack overflow / overrun + +#endif // SOL_CONFIG_HPP diff --git a/lib/sol2/include/sol/config_setup.hpp b/lib/sol2/include/sol/config_setup.hpp new file mode 100644 index 0000000..33ea2d2 --- /dev/null +++ b/lib/sol2/include/sol/config_setup.hpp @@ -0,0 +1,29 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_CONFIG_SETUP_HPP +#define SOL_CONFIG_SETUP_HPP + + + +#endif // SOL_CONFIG_SETUP_HPP diff --git a/lib/sol2/include/sol/coroutine.hpp b/lib/sol2/include/sol/coroutine.hpp new file mode 100644 index 0000000..b4c845d --- /dev/null +++ b/lib/sol2/include/sol/coroutine.hpp @@ -0,0 +1,248 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_COROUTINE_HPP +#define SOL_COROUTINE_HPP + +#include "reference.hpp" +#include "object.hpp" +#include "stack.hpp" +#include "function_result.hpp" +#include "thread.hpp" +#include "protected_handler.hpp" + +namespace sol { + template <typename ref_t> + class basic_coroutine : public basic_object<ref_t> { + private: + using base_t = basic_object<ref_t>; + + public: + typedef reference handler_t; + handler_t error_handler; + + private: + call_status stats = call_status::yielded; + + void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) { +#if SOL_LUA_VERSION >= 504 + int nresults; + stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount), &nresults)); +#else + stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount))); +#endif + } + + template <std::size_t... I, typename... Ret> + auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) { + luacall(n, sizeof...(Ret)); + return stack::pop<std::tuple<Ret...>>(lua_state()); + } + + template <std::size_t I, typename Ret> + Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) { + luacall(n, 1); + return stack::pop<Ret>(lua_state()); + } + + template <std::size_t I> + void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) { + luacall(n, 0); + } + + protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) { + int firstreturn = 1; + luacall(n, LUA_MULTRET); + int poststacksize = lua_gettop(this->lua_state()); + int returncount = poststacksize - (firstreturn - 1); + if (error()) { + if (error_handler.valid()) { + string_view err = stack::get<string_view>(this->lua_state(), poststacksize); + error_handler.push(); + stack::push(this->lua_state(), err); + lua_call(lua_state(), 1, 1); + } + return protected_function_result(this->lua_state(), lua_absindex(this->lua_state(), -1), 1, returncount, status()); + } + return protected_function_result(this->lua_state(), firstreturn, returncount, returncount, status()); + } + + public: + using base_t::lua_state; + + basic_coroutine() = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_coroutine(T&& r) noexcept + : base_t(std::forward<T>(r)), error_handler(detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_function<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_coroutine>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_coroutine(const basic_coroutine&) = default; + basic_coroutine& operator=(const basic_coroutine&) = default; + basic_coroutine(basic_coroutine&&) = default; + basic_coroutine& operator=(basic_coroutine&&) = default; + basic_coroutine(const basic_function<base_t>& b) + : basic_coroutine(b, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) { + } + basic_coroutine(basic_function<base_t>&& b) + : basic_coroutine(std::move(b), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) { + } + basic_coroutine(const basic_function<base_t>& b, handler_t eh) + : base_t(b), error_handler(std::move(eh)) { + } + basic_coroutine(basic_function<base_t>&& b, handler_t eh) + : base_t(std::move(b)), error_handler(std::move(eh)) { + } + basic_coroutine(const stack_reference& r) + : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { + } + basic_coroutine(stack_reference&& r) + : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { + } + basic_coroutine(const stack_reference& r, handler_t eh) + : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) { + } + basic_coroutine(stack_reference&& r, handler_t eh) + : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) { + } + + template <typename Super> + basic_coroutine(const proxy_base<Super>& p) + : basic_coroutine(p, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) { + } + template <typename Super> + basic_coroutine(proxy_base<Super>&& p) + : basic_coroutine(std::move(p), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) { + } + template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler> + basic_coroutine(Proxy&& p, Handler&& eh) + : basic_coroutine(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) { + } + + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_coroutine(lua_State* L, T&& r) + : basic_coroutine(L, std::forward<T>(r), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_coroutine(lua_State* L, T&& r, handler_t eh) + : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_coroutine>(lua_state(), -1, handler); +#endif // Safety + } + + basic_coroutine(lua_nil_t n) + : base_t(n), error_handler(n) { + } + + basic_coroutine(lua_State* L, int index = -1) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, int index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#ifdef SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_coroutine>(L, index, handler); +#endif // Safety + } + basic_coroutine(lua_State* L, absolute_index index) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, absolute_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_coroutine>(L, index, handler); +#endif // Safety + } + basic_coroutine(lua_State* L, raw_index index) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, raw_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_coroutine>(L, index, handler); +#endif // Safety + } + basic_coroutine(lua_State* L, ref_index index) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, ref_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_coroutine>(lua_state(), -1, handler); +#endif // Safety + } + + call_status status() const noexcept { + return stats; + } + + bool error() const noexcept { + call_status cs = status(); + return cs != call_status::ok && cs != call_status::yielded; + } + + bool runnable() const noexcept { + return base_t::valid() + && (status() == call_status::yielded); + } + + explicit operator bool() const noexcept { + return runnable(); + } + + template <typename... Args> + protected_function_result operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) operator()(types<Ret...>, Args&&... args) { + return call<Ret...>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) { + // some users screw up coroutine.create + // and try to use it with sol::coroutine without ever calling the first resume in Lua + // this makes the stack incompatible with other kinds of stacks: protect against this + // make sure coroutines don't screw us over + base_t::push(); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount); + } + }; +} // namespace sol + +#endif // SOL_COUROUTINE_HPP diff --git a/lib/sol2/include/sol/debug.hpp b/lib/sol2/include/sol/debug.hpp new file mode 100644 index 0000000..f6bd365 --- /dev/null +++ b/lib/sol2/include/sol/debug.hpp @@ -0,0 +1,56 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_DEBUG_HPP
+#define SOL_DEBUG_HPP
+
+#include "stack.hpp"
+#include <iostream>
+
+namespace sol {
+namespace detail {
+namespace debug {
+ inline std::string dump_types(lua_State* L) {
+ std::string visual;
+ std::size_t size = lua_gettop(L) + 1;
+ for (std::size_t i = 1; i < size; ++i) {
+ if (i != 1) {
+ visual += " | ";
+ }
+ visual += type_name(L, stack::get<type>(L, static_cast<int>(i)));
+ }
+ return visual;
+ }
+
+ inline void print_stack(lua_State* L) {
+ std::cout << dump_types(L) << std::endl;
+ }
+
+ inline void print_section(const std::string& message, lua_State* L) {
+ std::cout << "-- " << message << " -- [ " << dump_types(L) << " ]" << std::endl;
+ }
+}
+}
+} // namespace sol::detail::debug
+
+#endif // SOL_DEBUG_HPP
diff --git a/lib/sol2/include/sol/demangle.hpp b/lib/sol2/include/sol/demangle.hpp new file mode 100644 index 0000000..2161585 --- /dev/null +++ b/lib/sol2/include/sol/demangle.hpp @@ -0,0 +1,182 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_DEMANGLE_HPP +#define SOL_DEMANGLE_HPP + +#include "string_view.hpp" +#include <string> +#include <array> +#include <cctype> +#if defined(__GNUC__) && defined(__MINGW32__) && (__GNUC__ < 6) +extern "C" { +#include <ctype.h> +} +#endif // MinGW is on some stuff +#include <locale> + +namespace sol { +namespace detail { + inline constexpr std::array<string_view, 9> removals{ { "{anonymous}", + "(anonymous namespace)", + "public:", + "private:", + "protected:", + "struct ", + "class ", + "`anonymous-namespace'", + "`anonymous namespace'" } }; + + +#if defined(__GNUC__) || defined(__clang__) + template <typename T, class seperator_mark = int> + inline std::string ctti_get_type_name() { + // cardinal sins from MINGW + using namespace std; + std::string name = __PRETTY_FUNCTION__; + std::size_t start = name.find_first_of('['); + start = name.find_first_of('=', start); + std::size_t end = name.find_last_of(']'); + if (end == std::string::npos) + end = name.size(); + if (start == std::string::npos) + start = 0; + if (start < name.size() - 1) + start += 1; + name = name.substr(start, end - start); + start = name.rfind("seperator_mark"); + if (start != std::string::npos) { + name.erase(start - 2, name.length()); + } + while (!name.empty() && isblank(name.front())) + name.erase(name.begin()); + while (!name.empty() && isblank(name.back())) + name.pop_back(); + + for (std::size_t r = 0; r < removals.size(); ++r) { + auto found = name.find(removals[r]); + while (found != std::string::npos) { + name.erase(found, removals[r].size()); + found = name.find(removals[r]); + } + } + + return name; + } +#elif defined(_MSC_VER) + template <typename T> + std::string ctti_get_type_name() { + std::string name = __FUNCSIG__; + std::size_t start = name.find("get_type_name"); + if (start == std::string::npos) + start = 0; + else + start += 13; + if (start < name.size() - 1) + start += 1; + std::size_t end = name.find_last_of('>'); + if (end == std::string::npos) + end = name.size(); + name = name.substr(start, end - start); + if (name.find("struct", 0) == 0) + name.replace(0, 6, "", 0); + if (name.find("class", 0) == 0) + name.replace(0, 5, "", 0); + while (!name.empty() && isblank(name.front())) + name.erase(name.begin()); + while (!name.empty() && isblank(name.back())) + name.pop_back(); + + for (std::size_t r = 0; r < removals.size(); ++r) { + auto found = name.find(removals[r]); + while (found != std::string::npos) { + name.erase(found, removals[r].size()); + found = name.find(removals[r]); + } + } + + return name; + } +#else +#error Compiler not supported for demangling +#endif // compilers + + template <typename T> + std::string demangle_once() { + std::string realname = ctti_get_type_name<T>(); + return realname; + } + + template <typename T> + std::string short_demangle_once() { + std::string realname = ctti_get_type_name<T>(); + // This isn't the most complete but it'll do for now...? + static const std::array<std::string, 10> ops = {{"operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*"}}; + int level = 0; + std::ptrdiff_t idx = 0; + for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) { + if (level == 0 && realname[idx] == ':') { + break; + } + bool isleft = realname[idx] == '<'; + bool isright = realname[idx] == '>'; + if (!isleft && !isright) + continue; + bool earlybreak = false; + for (const auto& op : ops) { + std::size_t nisop = realname.rfind(op, idx); + if (nisop == std::string::npos) + continue; + std::size_t nisopidx = idx - op.size() + 1; + if (nisop == nisopidx) { + idx = static_cast<std::ptrdiff_t>(nisopidx); + earlybreak = true; + } + break; + } + if (earlybreak) { + continue; + } + level += isleft ? -1 : 1; + } + if (idx > 0) { + realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1); + } + return realname; + } + + template <typename T> + const std::string& demangle() { + static const std::string d = demangle_once<T>(); + return d; + } + + template <typename T> + const std::string& short_demangle() { + static const std::string d = short_demangle_once<T>(); + return d; + } +} +} // namespace sol::detail + +#endif // SOL_DEMANGLE_HPP diff --git a/lib/sol2/include/sol/deprecate.hpp b/lib/sol2/include/sol/deprecate.hpp new file mode 100644 index 0000000..cc564a0 --- /dev/null +++ b/lib/sol2/include/sol/deprecate.hpp @@ -0,0 +1,46 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_DEPRECATE_HPP
+#define SOL_DEPRECATE_HPP
+
+#ifndef SOL_DEPRECATED
+#ifdef _MSC_VER
+#define SOL_DEPRECATED __declspec(deprecated)
+#elif __GNUC__
+#define SOL_DEPRECATED __attribute__((deprecated))
+#else
+#define SOL_DEPRECATED [[deprecated]]
+#endif // compilers
+#endif // SOL_DEPRECATED
+
+namespace sol {
+namespace detail {
+ template <typename T>
+ struct SOL_DEPRECATED deprecate_type {
+ using type = T;
+ };
+}
+} // namespace sol::detail
+
+#endif // SOL_DEPRECATE_HPP
diff --git a/lib/sol2/include/sol/dump_handler.hpp b/lib/sol2/include/sol/dump_handler.hpp new file mode 100644 index 0000000..aa3fd58 --- /dev/null +++ b/lib/sol2/include/sol/dump_handler.hpp @@ -0,0 +1,73 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_DUMP_HANDLER_HPP
+#define SOL_DUMP_HANDLER_HPP
+
+#include "compatibility.hpp"
+
+#include <cstdint>
+#include <exception>
+
+namespace sol {
+
+ class dump_error : public error {
+ private:
+ int ec_;
+
+ public:
+ dump_error(int error_code_) : error("dump returned non-zero error of " + std::to_string(error_code_)), ec_(error_code_) {
+ }
+
+ int error_code () const {
+ return ec_;
+ }
+ };
+
+ inline int dump_pass_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
+ (void)L;
+ (void)writer_function;
+ (void)userdata;
+ (void)strip;
+ return result_code;
+ }
+
+ inline int dump_throw_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
+ (void)L;
+ (void)writer_function;
+ (void)userdata;
+ (void)strip;
+ throw dump_error(result_code);
+ }
+
+ inline int dump_panic_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
+ (void)L;
+ (void)writer_function;
+ (void)userdata;
+ (void)strip;
+ return luaL_error(L, "a non-zero error code (%d) was returned by the lua_Writer for the dump function", result_code);
+ }
+
+} // namespace sol
+
+#endif // SOL_DUMP_HANDLER_HPP
diff --git a/lib/sol2/include/sol/ebco.hpp b/lib/sol2/include/sol/ebco.hpp new file mode 100644 index 0000000..cc8e544 --- /dev/null +++ b/lib/sol2/include/sol/ebco.hpp @@ -0,0 +1,158 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_EBCO_HPP
+#define SOL_EBCO_HPP
+
+#include <type_traits>
+#include <utility>
+
+namespace sol { namespace detail {
+
+ template <typename T, std::size_t tag = 0, typename = void>
+ struct ebco {
+ T value_;
+
+ ebco() = default;
+ ebco(const ebco&) = default;
+ ebco(ebco&&) = default;
+ ebco& operator=(const ebco&) = default;
+ ebco& operator=(ebco&&) = default;
+ ebco(const T& v) : value_(v){};
+ ebco(T&& v) : value_(std::move(v)){};
+ ebco& operator=(const T& v) {
+ value_ = v;
+ return *this;
+ }
+ ebco& operator=(T&& v) {
+ value_ = std::move(v);
+ return *this;
+ };
+ template <typename Arg, typename... Args,
+ typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
+ ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>>
+ ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...){}
+
+ T& value() & {
+ return value_;
+ }
+
+ T const& value() const & {
+ return value_;
+ }
+
+ T&& value() && {
+ return std::move(value_);
+ }
+ };
+
+ template <typename T, std::size_t tag>
+ struct ebco<T, tag, std::enable_if_t<!std::is_reference_v<T> && std::is_class_v<T> && !std::is_final_v<T>>> : T {
+ ebco() = default;
+ ebco(const ebco&) = default;
+ ebco(ebco&&) = default;
+ ebco(const T& v) : T(v){};
+ ebco(T&& v) : T(std::move(v)){};
+ template <typename Arg, typename... Args,
+ typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
+ ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>>
+ ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...) {
+ }
+
+ ebco& operator=(const ebco&) = default;
+ ebco& operator=(ebco&&) = default;
+ ebco& operator=(const T& v) {
+ static_cast<T&>(*this) = v;
+ return *this;
+ }
+ ebco& operator=(T&& v) {
+ static_cast<T&>(*this) = std::move(v);
+ return *this;
+ };
+
+ T& value() & {
+ return static_cast<T&>(*this);
+ }
+
+ T const& value() const & {
+ return static_cast<T const&>(*this);
+ }
+
+ T&& value() && {
+ return std::move(static_cast<T&>(*this));
+ }
+ };
+
+ template <typename T, std::size_t tag>
+ struct ebco<T&, tag> {
+ T& ref;
+
+ ebco() = default;
+ ebco(const ebco&) = default;
+ ebco(ebco&&) = default;
+ ebco(T& v) : ref(v){};
+
+ ebco& operator=(const ebco&) = default;
+ ebco& operator=(ebco&&) = default;
+ ebco& operator=(T& v) {
+ ref = v;
+ return *this;
+ }
+
+ T& value() const {
+ return const_cast<ebco<T&, tag>&>(*this).ref;
+ }
+ };
+
+ template <typename T, std::size_t tag>
+ struct ebco<T&&, tag> {
+ T&& ref;
+
+ ebco() = default;
+ ebco(const ebco&) = default;
+ ebco(ebco&&) = default;
+ ebco(T&& v) : ref(v){};
+
+ ebco& operator=(const ebco&) = default;
+ ebco& operator=(ebco&&) = default;
+ ebco& operator=(T&& v) {
+ ref = std::move(v);
+ return *this;
+ }
+
+ T& value() & {
+ return ref;
+ }
+
+ const T& value() const & {
+ return ref;
+ }
+
+ T&& value() && {
+ return std::move(ref);
+ }
+ };
+
+}} // namespace sol::detail
+
+#endif // SOL_EBCO_HPP
diff --git a/lib/sol2/include/sol/environment.hpp b/lib/sol2/include/sol/environment.hpp new file mode 100644 index 0000000..3670e42 --- /dev/null +++ b/lib/sol2/include/sol/environment.hpp @@ -0,0 +1,228 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_ENVIRONMENT_HPP +#define SOL_ENVIRONMENT_HPP + +#include "table.hpp" + +namespace sol { + + template <typename base_type> + struct basic_environment : basic_table<base_type> { + private: + typedef basic_table<base_type> base_t; + + public: + using base_t::lua_state; + + basic_environment() noexcept = default; + basic_environment(const basic_environment&) = default; + basic_environment(basic_environment&&) = default; + basic_environment& operator=(const basic_environment&) = default; + basic_environment& operator=(basic_environment&&) = default; + basic_environment(const stack_reference& r) + : basic_environment(r.lua_state(), r.stack_index()) { + } + basic_environment(stack_reference&& r) + : basic_environment(r.lua_state(), r.stack_index()) { + } + + basic_environment(lua_State* L, new_table nt) + : base_t(L, std::move(nt)) { + } + template <bool b> + basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback) + : basic_environment(L, std::move(t)) { + stack_table mt(L, new_table(0, 1)); + mt.set(meta_function::index, fallback); + this->set(metatable_key, mt); + mt.pop(); + } + + basic_environment(env_key_t, const stack_reference& extraction_target) + : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<env_key_t>(this->lua_state(), -1, handler); +#endif // Safety + lua_pop(this->lua_state(), 2); + } + template <bool b> + basic_environment(env_key_t, const basic_reference<b>& extraction_target) + : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<env_key_t>(this->lua_state(), -1, handler); +#endif // Safety + lua_pop(this->lua_state(), 2); + } + basic_environment(lua_State* L, int index = -1) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_environment>(L, index, handler); +#endif // Safety + } + basic_environment(lua_State* L, ref_index index) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_environment>(L, -1, handler); +#endif // Safety + } + template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_environment(T&& r) noexcept + : base_t(detail::no_safety, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_environment<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_environment>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_environment(lua_nil_t r) noexcept + : base_t(detail::no_safety, r) { + } + + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_environment(lua_State* L, T&& r) noexcept + : base_t(detail::no_safety, L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_environment<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_environment>(lua_state(), -1, handler); + } +#endif // Safety + } + + template <typename T> + void set_on(const T& target) const { + lua_State* L = target.lua_state(); + auto pp = stack::push_pop(target); +#if SOL_LUA_VERSION < 502 + // Use lua_setfenv + this->push(); + lua_setfenv(L, -2); +#else + // Use upvalues as explained in Lua 5.2 and beyond's manual + this->push(); + const char* name = lua_setupvalue(L, -2, 1); + if (name == nullptr) { + this->pop(); + } +#endif + } + }; + + template <typename T, typename E> + void set_environment(const basic_environment<E>& env, const T& target) { + env.set_on(target); + } + + template <typename E = reference, typename T> + basic_environment<E> get_environment(const T& target) { + lua_State* L = target.lua_state(); + auto pp = stack::pop_n(L, stack::push_environment_of(target)); + return basic_environment<E>(L, -1); + } + + struct this_environment { + optional<environment> env; + + this_environment() + : env(nullopt) { + } + this_environment(environment e) + : env(std::move(e)) { + } + this_environment(const this_environment&) = default; + this_environment(this_environment&&) = default; + this_environment& operator=(const this_environment&) = default; + this_environment& operator=(this_environment&&) = default; + + explicit operator bool() const { + return static_cast<bool>(env); + } + + operator optional<environment>&() { + return env; + } + + operator const optional<environment>&() const { + return env; + } + + operator environment&() { + return env.value(); + } + + operator const environment&() const { + return env.value(); + } + }; + + namespace stack { + template <> + struct unqualified_getter<env_key_t> { + static environment get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return get_environment(stack_reference(L, raw_index(index))); + } + }; + + template <> + struct unqualified_getter<this_environment> { + static this_environment get(lua_State* L, int, record& tracking) { + tracking.use(0); + lua_Debug info; + // Level 0 means current function (this C function, which may or may not be useful for us?) + // Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call) + int pre_stack_size = lua_gettop(L); + if (lua_getstack(L, 1, &info) != 1) { + if (lua_getstack(L, 0, &info) != 1) { + lua_settop(L, pre_stack_size); + return this_environment(); + } + } + if (lua_getinfo(L, "f", &info) == 0) { + lua_settop(L, pre_stack_size); + return this_environment(); + } + + stack_reference f(L, -1); + environment env(env_key, f); + if (!env.valid()) { + lua_settop(L, pre_stack_size); + return this_environment(); + } + return this_environment(std::move(env)); + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_ENVIRONMENT_HPP diff --git a/lib/sol2/include/sol/error.hpp b/lib/sol2/include/sol/error.hpp new file mode 100644 index 0000000..5f2c750 --- /dev/null +++ b/lib/sol2/include/sol/error.hpp @@ -0,0 +1,89 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_ERROR_HPP
+#define SOL_ERROR_HPP
+
+#include "compatibility.hpp"
+
+#include <stdexcept>
+#include <string>
+#include <array>
+
+namespace sol {
+ namespace detail {
+ struct direct_error_tag {};
+ const auto direct_error = direct_error_tag{};
+
+ struct error_result {
+ int results;
+ const char* format_string;
+ std::array<const char*, 4> args_strings;
+
+ error_result() : results(0), format_string(nullptr) {
+ }
+
+ error_result(int results) : results(results), format_string(nullptr) {
+ }
+
+ error_result(const char* fmt, const char* msg) : results(0), format_string(fmt) {
+ args_strings[0] = msg;
+ }
+ };
+
+ inline int handle_errors(lua_State* L, const error_result& er) {
+ if (er.format_string == nullptr) {
+ return er.results;
+ }
+ return luaL_error(L, er.format_string, er.args_strings[0], er.args_strings[1], er.args_strings[2], er.args_strings[3]);
+ }
+ } // namespace detail
+
+ class error : public std::runtime_error {
+ private:
+ // Because VC++ is upsetting, most of the time!
+ std::string what_reason;
+
+ public:
+ error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) {
+ }
+ error(std::string&& str) : error(detail::direct_error, "lua: error: " + std::move(str)) {
+ }
+ error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), what_reason(str) {
+ }
+ error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), what_reason(std::move(str)) {
+ }
+
+ error(const error& e) = default;
+ error(error&& e) = default;
+ error& operator=(const error& e) = default;
+ error& operator=(error&& e) = default;
+
+ virtual const char* what() const noexcept override {
+ return what_reason.c_str();
+ }
+ };
+
+} // namespace sol
+
+#endif // SOL_ERROR_HPP
diff --git a/lib/sol2/include/sol/error_handler.hpp b/lib/sol2/include/sol/error_handler.hpp new file mode 100644 index 0000000..66eb6b1 --- /dev/null +++ b/lib/sol2/include/sol/error_handler.hpp @@ -0,0 +1,170 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_ERROR_HANDLER_HPP +#define SOL_ERROR_HANDLER_HPP + +#include "types.hpp" +#include "demangle.hpp" + +namespace sol { + + namespace detail { + constexpr const char* not_a_number = "not a numeric type"; + constexpr const char* not_a_number_or_number_string = "not a numeric type or numeric string"; + constexpr const char* not_a_number_integral = "not a numeric type that fits exactly an integer (has significant decimals)"; + constexpr const char* not_a_number_or_number_string_integral + = "not a numeric type or a numeric string that fits exactly an integer (has significant decimals)"; + + constexpr const char* not_enough_stack_space = "not enough space left on Lua stack"; + constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number"; + constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number"; + constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string"; + constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function"; + constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata"; + constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees"; + constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment"; + constexpr const char* protected_function_error = "caught (...) unknown error during protected_function call"; + + inline void accumulate_and_mark(const std::string& n, std::string& addendum, int& marker) { + if (marker > 0) { + addendum += ", "; + } + addendum += n; + ++marker; + } + } + + inline std::string associated_type_name(lua_State* L, int index, type t) { + switch (t) { + case type::poly: + return "anything"; + case type::userdata: + { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 2, "not enough space to push get the type name"); +#endif // make sure stack doesn't overflow + if (lua_getmetatable(L, index) == 0) { + break; + } + lua_pushlstring(L, "__name", 6); + lua_rawget(L, -2); + size_t sz; + const char* name = lua_tolstring(L, -1, &sz); + std::string tn(name, static_cast<std::string::size_type>(sz)); + lua_pop(L, 2); + return tn; + } + default: + break; + } + return lua_typename(L, static_cast<int>(t)); + } + + inline int type_panic_string(lua_State* L, int index, type expected, type actual, const std::string& message = "") noexcept(false) { + const char* err = message.empty() ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s"; + std::string actualname = associated_type_name(L, index, actual); + return luaL_error(L, err, index, + expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)), + actualname.c_str(), + message.c_str()); + } + + inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false) { + const char* err = message == nullptr || (std::char_traits<char>::length(message) == 0) ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s"; + std::string actualname = associated_type_name(L, index, actual); + return luaL_error(L, err, index, + expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)), + actualname.c_str(), + message); + } + + struct type_panic_t { + int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false) { + return type_panic_c_str(L, index, expected, actual, nullptr); + } + int operator()(lua_State* L, int index, type expected, type actual, const char* message) const noexcept(false) { + return type_panic_c_str(L, index, expected, actual, message); + } + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + return type_panic_string(L, index, expected, actual, message); + } + }; + + const type_panic_t type_panic = {}; + + struct constructor_handler { + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + std::string str = "(type check failed in constructor)"; + return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str); + } + }; + + template <typename F = void> + struct argument_handler { + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + std::string str = "(bad argument to variable or function call)"; + return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str ); + } + }; + + template <typename R, typename... Args> + struct argument_handler<types<R, Args...>> { + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + std::string addendum = "(bad argument into '"; + addendum += detail::demangle<R>(); + addendum += "("; + int marker = 0; + (void)detail::swallow{int(), (detail::accumulate_and_mark(detail::demangle<Args>(), addendum, marker), int())...}; + addendum += ")')"; + return type_panic_string(L, index, expected, actual, message.empty() ? addendum : message + " " + addendum); + } + }; + + // Specify this function as the handler for lua::check if you know there's nothing wrong + inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept { + return 0; + } + + inline void type_error(lua_State* L, int expected, int actual) noexcept(false) { + luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual)); + } + + inline void type_error(lua_State* L, type expected, type actual) noexcept(false) { + type_error(L, static_cast<int>(expected), static_cast<int>(actual)); + } + + inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false) { + if (expected != type::poly && expected != actual) { + type_panic_c_str(L, index, expected, actual, nullptr); + } + } + + inline void type_assert(lua_State* L, int index, type expected) { + type actual = type_of(L, index); + type_assert(L, index, expected, actual); + } + +} // namespace sol + +#endif // SOL_ERROR_HANDLER_HPP diff --git a/lib/sol2/include/sol/feature_test.hpp b/lib/sol2/include/sol/feature_test.hpp new file mode 100644 index 0000000..dd3b707 --- /dev/null +++ b/lib/sol2/include/sol/feature_test.hpp @@ -0,0 +1,57 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FEATURE_TEST_HPP +#define SOL_FEATURE_TEST_HPP + +#if (defined(__cplusplus) && __cplusplus == 201703L) || (defined(_MSC_VER) && _MSC_VER > 1900 && ((defined(_HAS_CXX17) && _HAS_CXX17 == 1) || (defined(_MSVC_LANG) && (_MSVC_LANG > 201402L)))) +#ifndef SOL_CXX17_FEATURES +#define SOL_CXX17_FEATURES 1 +#endif // C++17 features macro +#endif // C++17 features check + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +// TODO: there is a bug in the VC++ compiler?? +// on /std:c++latest under x86 conditions (VS 15.5.2), +// compiler errors are tossed for noexcept markings being on function types +// that are identical in every other way to their non-noexcept marked types function types... +#if defined(__cpp_noexcept_function_type) || ((defined(_MSC_VER) && _MSC_VER > 1911) && (defined(_MSVC_LANG) && ((_MSVC_LANG >= 201403L)))) +#ifndef SOL_NOEXCEPT_FUNCTION_TYPE +#define SOL_NOEXCEPT_FUNCTION_TYPE 1 +#endif // noexcept is part of a function's type +#endif // compiler-specific checks +#if defined(__clang__) && defined(__APPLE__) +#if defined(__has_include) +#if __has_include(<variant>) +#define SOL_STD_VARIANT 1 +#endif // has include nonsense +#endif // __has_include +#else +#define SOL_STD_VARIANT 1 +#endif // Clang screws up variant +#endif // C++17 only + +#include <sol/config.hpp> +#include "config_setup.hpp" + +#endif // SOL_FEATURE_TEST_HPP diff --git a/lib/sol2/include/sol/forward.hpp b/lib/sol2/include/sol/forward.hpp new file mode 100644 index 0000000..d838989 --- /dev/null +++ b/lib/sol2/include/sol/forward.hpp @@ -0,0 +1,257 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FORWARD_HPP +#define SOL_FORWARD_HPP + +#include "feature_test.hpp" + +#include <utility> +#include <type_traits> + +#if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA +struct lua_State; +#else +extern "C" { + struct lua_State; +} +#endif // C++ Mangling for Lua vs. Not + +namespace sol { + + class stateless_reference; + template <bool b> + class basic_reference; + using reference = basic_reference<false>; + using main_reference = basic_reference<true>; + class stateless_stack_reference; + class stack_reference; + + template <typename A> + class basic_bytecode; + + struct lua_value; + + struct proxy_base_tag; + template <typename> + struct proxy_base; + template <typename, typename> + struct proxy; + + template <bool, typename> + class basic_table_core; + template <bool b> + using table_core = basic_table_core<b, reference>; + template <bool b> + using main_table_core = basic_table_core<b, main_reference>; + template <bool b> + using stack_table_core = basic_table_core<b, stack_reference>; + template <typename base_type> + using basic_table = basic_table_core<false, base_type>; + using table = table_core<false>; + using global_table = table_core<true>; + using main_table = main_table_core<false>; + using main_global_table = main_table_core<true>; + using stack_table = stack_table_core<false>; + using stack_global_table = stack_table_core<true>; + + template <typename> + struct basic_lua_table; + using lua_table = basic_lua_table<reference>; + using stack_lua_table = basic_lua_table<stack_reference>; + + template <typename T, typename base_type> + class basic_usertype; + template <typename T> + using usertype = basic_usertype<T, reference>; + template <typename T> + using stack_usertype = basic_usertype<T, stack_reference>; + + template <typename base_type> + class basic_metatable; + using metatable = basic_metatable<reference>; + using stack_metatable = basic_metatable<stack_reference>; + + template <typename base_t> + struct basic_environment; + using environment = basic_environment<reference>; + using main_environment = basic_environment<main_reference>; + using stack_environment = basic_environment<stack_reference>; + + template <typename T, bool> + class basic_function; + template <typename T, bool, typename H> + class basic_protected_function; + using unsafe_function = basic_function<reference, false>; + using safe_function = basic_protected_function<reference, false, reference>; + using main_unsafe_function = basic_function<main_reference, false>; + using main_safe_function = basic_protected_function<main_reference, false, reference>; + using stack_unsafe_function = basic_function<stack_reference, false>; + using stack_safe_function = basic_protected_function<stack_reference, false, reference>; + using stack_aligned_unsafe_function = basic_function<stack_reference, true>; + using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>; + using protected_function = safe_function; + using main_protected_function = main_safe_function; + using stack_protected_function = stack_safe_function; + using stack_aligned_protected_function = stack_aligned_safe_function; +#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION + using function = protected_function; + using main_function = main_protected_function; + using stack_function = stack_protected_function; +#else + using function = unsafe_function; + using main_function = main_unsafe_function; + using stack_function = stack_unsafe_function; +#endif + using stack_aligned_function = stack_aligned_unsafe_function; + using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>; + + struct unsafe_function_result; + struct protected_function_result; + using safe_function_result = protected_function_result; +#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION + using function_result = safe_function_result; +#else + using function_result = unsafe_function_result; +#endif + + template <typename base_t> + class basic_object_base; + template <typename base_t> + class basic_object; + template <typename base_t> + class basic_userdata; + template <typename base_t> + class basic_lightuserdata; + template <typename base_t> + class basic_coroutine; + template <typename base_t> + class basic_thread; + + using object = basic_object<reference>; + using userdata = basic_userdata<reference>; + using lightuserdata = basic_lightuserdata<reference>; + using thread = basic_thread<reference>; + using coroutine = basic_coroutine<reference>; + using main_object = basic_object<main_reference>; + using main_userdata = basic_userdata<main_reference>; + using main_lightuserdata = basic_lightuserdata<main_reference>; + using main_coroutine = basic_coroutine<main_reference>; + using stack_object = basic_object<stack_reference>; + using stack_userdata = basic_userdata<stack_reference>; + using stack_lightuserdata = basic_lightuserdata<stack_reference>; + using stack_thread = basic_thread<stack_reference>; + using stack_coroutine = basic_coroutine<stack_reference>; + + struct stack_proxy_base; + struct stack_proxy; + struct variadic_args; + struct variadic_results; + struct stack_count; + struct this_state; + struct this_main_state; + struct this_environment; + + class state_view; + class state; + + template <typename T> + struct as_table_t; + template <typename T> + struct as_container_t; + template <typename T> + struct nested; + template <typename T> + struct light; + template <typename T> + struct user; + template <typename T> + struct as_args_t; + template <typename T> + struct protect_t; + template <typename F, typename... Policies> + struct policy_wrapper; + + template <typename T> + struct usertype_traits; + template <typename T> + struct unique_usertype_traits; + + template <typename... Args> + struct types { + typedef std::make_index_sequence<sizeof...(Args)> indices; + static constexpr std::size_t size() { + return sizeof...(Args); + } + }; + + template <typename T> + struct derive : std::false_type { + typedef types<> type; + }; + + template <typename T> + struct base : std::false_type { + typedef types<> type; + }; + + template <typename T> + struct weak_derive { + static bool value; + }; + + template <typename T> + bool weak_derive<T>::value = false; + + namespace stack { + struct record; + } + +#if !defined(SOL_USE_BOOST) || (SOL_USE_BOOST == 0) + template <class T> + class optional; + + template <class T> + class optional<T&>; +#endif + +} // namespace sol + +#define SOL_BASE_CLASSES(T, ...) \ + namespace sol { \ + template <> \ + struct base<T> : std::true_type { \ + typedef ::sol::types<__VA_ARGS__> type; \ + }; \ + } \ + void a_sol3_detail_function_decl_please_no_collide() +#define SOL_DERIVED_CLASSES(T, ...) \ + namespace sol { \ + template <> \ + struct derive<T> : std::true_type { \ + typedef ::sol::types<__VA_ARGS__> type; \ + }; \ + } \ + void a_sol3_detail_function_decl_please_no_collide() + +#endif // SOL_FORWARD_HPP diff --git a/lib/sol2/include/sol/forward_detail.hpp b/lib/sol2/include/sol/forward_detail.hpp new file mode 100644 index 0000000..9d5099e --- /dev/null +++ b/lib/sol2/include/sol/forward_detail.hpp @@ -0,0 +1,59 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FORWARD_DETAIL_HPP +#define SOL_FORWARD_DETAIL_HPP + +#include "feature_test.hpp" +#include "forward.hpp" +#include "traits.hpp" + +namespace sol { + namespace detail { + const bool default_safe_function_calls = +#if defined(SOL_SAFE_FUNCTION_CALLS) && SOL_SAFE_FUNCTION_CALLS + true; +#else + false; +#endif + } // namespace detail + + + namespace meta { + namespace meta_detail { + } + } // namespace meta::meta_detail + + namespace stack { + namespace stack_detail { + using undefined_method_func = void (*)(stack_reference); + + template <typename T> + void set_undefined_methods_on(stack_reference); + + struct undefined_metatable; + } + } // namespace stack::stack_detail +} // namespace sol + +#endif // SOL_FORWARD_DETAIL_HPP diff --git a/lib/sol2/include/sol/function.hpp b/lib/sol2/include/sol/function.hpp new file mode 100644 index 0000000..84dcaf6 --- /dev/null +++ b/lib/sol2/include/sol/function.hpp @@ -0,0 +1,142 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_FUNCTION_HPP
+#define SOL_FUNCTION_HPP
+
+#include "stack.hpp"
+#include "unsafe_function.hpp"
+#include "protected_function.hpp"
+#include "bytecode.hpp"
+#include <functional>
+
+namespace sol {
+ template <typename... Ret, typename... Args>
+ decltype(auto) stack_proxy::call(Args&&... args) {
+ stack_function sf(this->lua_state(), this->stack_index());
+ return sf.template call<Ret...>(std::forward<Args>(args)...);
+ }
+
+ inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept
+ : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()), popcount(o.return_count()), err(o.status()) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ }
+
+ inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept {
+ L = o.lua_state();
+ index = o.stack_index();
+ returncount = o.return_count();
+ popcount = o.return_count();
+ err = o.status();
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ return *this;
+ }
+
+ inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept
+ : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()) {
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ }
+ inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept {
+ L = o.lua_state();
+ index = o.stack_index();
+ returncount = o.return_count();
+ // Must be manual, otherwise destructor will screw us
+ // return count being 0 is enough to keep things clean
+ // but we will be thorough
+ o.abandon();
+ return *this;
+ }
+
+ namespace detail {
+ template <typename... R>
+ struct std_shim {
+ unsafe_function lua_func_;
+
+ std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
+ }
+
+ template <typename... Args>
+ meta::return_type_t<R...> operator()(Args&&... args) {
+ return lua_func_.call<R...>(std::forward<Args>(args)...);
+ }
+ };
+
+ template <>
+ struct std_shim<void> {
+ unsafe_function lua_func_;
+
+ std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
+ }
+
+ template <typename... Args>
+ void operator()(Args&&... args) {
+ lua_func_.call<void>(std::forward<Args>(args)...);
+ }
+ };
+ } // namespace detail
+
+ namespace stack {
+ template <typename Signature>
+ struct unqualified_getter<std::function<Signature>> {
+ typedef meta::bind_traits<Signature> fx_t;
+ typedef typename fx_t::args_list args_lists;
+ typedef meta::tuple_types<typename fx_t::return_type> return_types;
+
+ template <typename... R>
+ static std::function<Signature> get_std_func(types<R...>, lua_State* L, int index) {
+ detail::std_shim<R...> fx(unsafe_function(L, index));
+ return std::move(fx);
+ }
+
+ static std::function<Signature> get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ type t = type_of(L, index);
+ if (t == type::none || t == type::lua_nil) {
+ return nullptr;
+ }
+ return get_std_func(return_types(), L, index);
+ }
+ };
+
+ template <typename Allocator>
+ struct unqualified_getter<basic_bytecode<Allocator>> {
+ static basic_bytecode<Allocator> get(lua_State* L, int index, record& tracking) {
+ tracking.use(1);
+ stack_function sf(L, index);
+ return sf.dump(&dump_panic_on_error);
+ }
+ };
+ } // namespace stack
+
+} // namespace sol
+
+#endif // SOL_FUNCTION_HPP
diff --git a/lib/sol2/include/sol/function_result.hpp b/lib/sol2/include/sol/function_result.hpp new file mode 100644 index 0000000..6e70d5d --- /dev/null +++ b/lib/sol2/include/sol/function_result.hpp @@ -0,0 +1,78 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FUNCTION_RESULT_HPP +#define SOL_FUNCTION_RESULT_HPP + +#include "protected_function_result.hpp" +#include "unsafe_function_result.hpp" + +#include <cstdint> + +namespace sol { + + namespace detail { + template <> + struct is_speshul<unsafe_function_result> : std::true_type {}; + template <> + struct is_speshul<protected_function_result> : std::true_type {}; + + template <std::size_t I, typename... Args, typename T> + stack_proxy get(types<Args...>, meta::index_value<0>, meta::index_value<I>, const T& fr) { + return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); + } + + template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler> + stack_proxy get(types<Arg, Args...>, meta::index_value<N>, meta::index_value<I>, const T& fr) { + return get(types<Args...>(), meta::index_value<N - 1>(), meta::index_value<I + lua_size<Arg>::value>(), fr); + } + } // namespace detail + + template <> + struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {}; + + template <> + struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {}; + + template <std::size_t I> + stack_proxy get(const unsafe_function_result& fr) { + return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); + } + + template <std::size_t I, typename... Args> + stack_proxy get(types<Args...> t, const unsafe_function_result& fr) { + return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr); + } + + template <std::size_t I> + stack_proxy get(const protected_function_result& fr) { + return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); + } + + template <std::size_t I, typename... Args> + stack_proxy get(types<Args...> t, const protected_function_result& fr) { + return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr); + } +} // namespace sol + +#endif // SOL_FUNCTION_RESULT_HPP diff --git a/lib/sol2/include/sol/function_types.hpp b/lib/sol2/include/sol/function_types.hpp new file mode 100644 index 0000000..e17c4a4 --- /dev/null +++ b/lib/sol2/include/sol/function_types.hpp @@ -0,0 +1,681 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FUNCTION_TYPES_HPP +#define SOL_FUNCTION_TYPES_HPP + +#include "function_types_core.hpp" +#include "function_types_templated.hpp" +#include "function_types_stateless.hpp" +#include "function_types_stateful.hpp" +#include "function_types_overloaded.hpp" +#include "resolve.hpp" +#include "call.hpp" + +namespace sol { + namespace function_detail { + template <typename T> + struct class_indicator { + using type = T; + }; + + struct call_indicator {}; + + template <bool yielding> + int lua_c_wrapper(lua_State* L) { + lua_CFunction cf = lua_tocfunction(L, lua_upvalueindex(2)); + int nr = cf(L); + if constexpr (yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + template <bool yielding> + int lua_c_noexcept_wrapper(lua_State* L) noexcept { + detail::lua_CFunction_noexcept cf = reinterpret_cast<detail::lua_CFunction_noexcept>(lua_tocfunction(L, lua_upvalueindex(2))); + int nr = cf(L); + if constexpr (yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + struct c_function_invocation {}; + + template <bool is_yielding, typename Fx, typename... Args> + void select(lua_State* L, Fx&& fx, Args&&... args); + + template <bool is_yielding, typename Fx, typename... Args> + void select_set_fx(lua_State* L, Args&&... args) { + lua_CFunction freefunc = detail::static_trampoline<function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>>; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args> + void select_convertible(types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) { + using dFx = std::decay_t<meta::unwrap_unqualified_t<Fx>>; + using fx_ptr_t = R (*)(A...); + constexpr bool is_convertible = std::is_convertible_v<dFx, fx_ptr_t>; + if constexpr (is_convertible) { + fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx)); + select<is_yielding>(L, std::move(fxptr), std::forward<Args>(args)...); + } + else { + using F = function_detail::functor_function<dFx, is_yielding, true>; + select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + + template <bool is_yielding, typename Fx, typename... Args> + void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) { + typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig; + select_convertible<is_yielding>(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename... Args> + void select_member_variable(lua_State* L, Fx&& fx, Args&&... args) { + using uFx = meta::unqualified_t<Fx>; + if constexpr (sizeof...(Args) < 1) { + using C = typename meta::bind_traits<uFx>::object_type; + lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, fx); + stack::push(L, c_closure(freefunc, upvalues)); + } + else if constexpr (sizeof...(Args) < 2) { + using Tu = typename meta::meta_detail::unqualified_non_alias<Args...>::type; + constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>; + if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) { + lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<typename Tu::type, Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, fx); + stack::push(L, c_closure(freefunc, upvalues)); + } + else if constexpr (is_reference) { + typedef std::decay_t<Fx> dFx; + dFx memfxptr(std::forward<Fx>(fx)); + auto userptr = detail::ptr(std::forward<Args>(args)...); + lua_CFunction freefunc + = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr); + upvalues += stack::push(L, static_cast<void const*>(userptr)); + stack::push(L, c_closure(freefunc, upvalues)); + } + else { + using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>; + using F = function_detail::member_variable<Tu, clean_fx, is_yielding>; + select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + else { + using C = typename meta::bind_traits<uFx>::object_type; + using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>; + using F = function_detail::member_variable<C, clean_fx, is_yielding>; + select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + + template <bool is_yielding, typename Fx, typename T, typename... Args> + void select_member_function_with(lua_State* L, Fx&& fx, T&& obj, Args&&... args) { + using dFx = std::decay_t<Fx>; + using Tu = meta::unqualified_t<T>; + if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) { + (void)obj; + using C = typename Tu::type; + lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + stack::push(L, c_closure(freefunc, upvalues)); + } + else { + constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>; + if constexpr (is_reference) { + auto userptr = detail::ptr(std::forward<T>(obj)); + lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, dFx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr))); + stack::push(L, c_closure(freefunc, upvalues)); + } + else { + using F = function_detail::member_function<Tu, dFx, is_yielding>; + select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...); + } + } + } + + template <bool is_yielding, typename Fx, typename... Args> + void select_member_function(lua_State* L, Fx&& fx, Args&&... args) { + using dFx = std::decay_t<Fx>; + if constexpr (sizeof...(Args) < 1) { + using C = typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type; + lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx)); + stack::push(L, c_closure(freefunc, upvalues)); + } + else { + select_member_function_with<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + + template <bool is_yielding, typename Fx, typename... Args> + void select(lua_State* L, Fx&& fx, Args&&... args) { + using uFx = meta::unqualified_t<Fx>; + if constexpr (is_lua_reference_v<uFx>) { + // TODO: hoist into lambda in this case for yielding??? + stack::push(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + else if constexpr (is_lua_c_function_v<uFx>) { + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push(L, std::forward<Fx>(fx)); +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + if constexpr (std::is_nothrow_invocable_r_v<int, uFx, lua_State*>) { + detail::lua_CFunction_noexcept cf = &lua_c_noexcept_wrapper<is_yielding>; + lua_pushcclosure(L, reinterpret_cast<lua_CFunction>(cf), 2); + } + else { + lua_CFunction cf = &lua_c_wrapper<is_yielding>; + lua_pushcclosure(L, cf, 2); + } +#else + lua_CFunction cf = &function_detail::lua_c_wrapper<is_yielding>; + lua_pushcclosure(L, cf, 2); +#endif + } + else if constexpr (std::is_function_v<std::remove_pointer_t<uFx>>) { + std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...); + lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, target); + stack::push(L, c_closure(freefunc, upvalues)); + } + else if constexpr (std::is_member_function_pointer_v<uFx>) { + select_member_function<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + else if constexpr (meta::is_member_object_v<uFx>) { + select_member_variable<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + else { + select_convertible<is_yielding>(types<>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + } + } // namespace function_detail + + namespace stack { + template <typename... Sigs> + struct unqualified_pusher<function_sig<Sigs...>> { + template <bool is_yielding, typename Arg0, typename... Args> + static int push(lua_State* L, Arg0&& arg0, Args&&... args) { + if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, std::function>) { + if constexpr (is_yielding) { + return stack::push<meta::unqualified_t<Arg0>>(L, detail::yield_tag, std::forward<Arg0>(arg0), std::forward<Args>(args)...); + } + else { + return stack::push(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...); + } + } + else { + function_detail::select<is_yielding>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...); + return 1; + } + } + + template <typename Arg0, typename... Args> + static int push(lua_State* L, Arg0&& arg0, Args&&... args) { + if constexpr (std::is_same_v<meta::unqualified_t<Arg0>, detail::yield_tag_t>) { + push<true>(L, std::forward<Args>(args)...); + } + else { + push<false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...); + } + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<yielding_t<T>> { + template <typename... Args> + static int push(lua_State* L, const yielding_t<T>& f, Args&&... args) { + if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) { + return stack::push<T>(L, detail::yield_tag, f.func, std::forward<Args>(args)...); + } + else { + function_detail::select<true>(L, f.func, std::forward<Args>(args)...); + return 1; + } + } + + template <typename... Args> + static int push(lua_State* L, yielding_t<T>&& f, Args&&... args) { + if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) { + return stack::push<T>(L, detail::yield_tag, std::move(f.func), std::forward<Args>(args)...); + } + else { + function_detail::select<true>(L, std::move(f.func), std::forward<Args>(args)...); + return 1; + } + } + }; + + template <typename T, typename... Args> + struct unqualified_pusher<function_arguments<T, Args...>> { + template <std::size_t... I, typename FP> + static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) { + return stack::push<T>(L, std::get<I>(std::forward<FP>(fp).arguments)...); + } + + static int push(lua_State* L, const function_arguments<T, Args...>& fp) { + return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp); + } + + static int push(lua_State* L, function_arguments<T, Args...>&& fp) { + return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp)); + } + }; + + template <typename Signature> + struct unqualified_pusher<std::function<Signature>> { + static int push(lua_State* L, detail::yield_tag_t, const std::function<Signature>& fx) { + if (fx) { + function_detail::select<true>(L, fx); + return 1; + } + return stack::push(L, lua_nil); + } + + static int push(lua_State* L, detail::yield_tag_t, std::function<Signature>&& fx) { + if (fx) { + function_detail::select<true>(L, std::move(fx)); + return 1; + } + return stack::push(L, lua_nil); + } + + static int push(lua_State* L, const std::function<Signature>& fx) { + if (fx) { + function_detail::select<false>(L, fx); + return 1; + } + return stack::push(L, lua_nil); + } + + static int push(lua_State* L, std::function<Signature>&& fx) { + if (fx) { + function_detail::select<false>(L, std::move(fx)); + return 1; + } + return stack::push(L, lua_nil); + } + }; + + template <typename Signature> + struct unqualified_pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> { + template <typename... Args> + static int push(lua_State* L, Args&&... args) { + function_detail::select<false>(L, std::forward<Args>(args)...); + return 1; + } + }; + + template <typename Signature> + struct unqualified_pusher<Signature, + std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>, + meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>> +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + , + meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>, + meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>> +#endif // noexcept function types + >::value>> { + template <typename F> + static int push(lua_State* L, F&& f) { + function_detail::select<false>(L, std::forward<F>(f)); + return 1; + } + }; + + template <typename... Functions> + struct unqualified_pusher<overload_set<Functions...>> { + static int push(lua_State* L, overload_set<Functions...>&& set) { + using F = function_detail::overloaded_function<0, Functions...>; + function_detail::select_set_fx<false, F>(L, std::move(set.functions)); + return 1; + } + + static int push(lua_State* L, const overload_set<Functions...>& set) { + using F = function_detail::overloaded_function<0, Functions...>; + function_detail::select_set_fx<false, F>(L, set.functions); + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<protect_t<T>> { + static int push(lua_State* L, protect_t<T>&& pw) { + lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value)); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, const protect_t<T>& pw) { + lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<protect_t<T>>>(L, pw.value); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename F, typename G> + struct unqualified_pusher<property_wrapper<F, G>> { + static int push(lua_State* L, property_wrapper<F, G>&& pw) { + if constexpr (std::is_void_v<F>) { + return stack::push(L, std::move(pw.write())); + } + else if constexpr (std::is_void_v<G>) { + return stack::push(L, std::move(pw.read())); + } + else { + return stack::push(L, overload(std::move(pw.read()), std::move(pw.write()))); + } + } + + static int push(lua_State* L, const property_wrapper<F, G>& pw) { + if constexpr (std::is_void_v<F>) { + return stack::push(L, pw.write); + } + else if constexpr (std::is_void_v<G>) { + return stack::push(L, pw.read); + } + else { + return stack::push(L, overload(pw.read, pw.write)); + } + } + }; + + template <typename T> + struct unqualified_pusher<var_wrapper<T>> { + static int push(lua_State* L, var_wrapper<T>&& vw) { + return stack::push(L, std::move(vw.value())); + } + static int push(lua_State* L, const var_wrapper<T>& vw) { + return stack::push(L, vw.value()); + } + }; + + template <typename... Functions> + struct unqualified_pusher<factory_wrapper<Functions...>> { + static int push(lua_State* L, const factory_wrapper<Functions...>& fw) { + using F = function_detail::overloaded_function<0, Functions...>; + function_detail::select_set_fx<false, F>(L, fw.functions); + return 1; + } + + static int push(lua_State* L, factory_wrapper<Functions...>&& fw) { + using F = function_detail::overloaded_function<0, Functions...>; + function_detail::select_set_fx<false, F>(L, std::move(fw.functions)); + return 1; + } + + static int push(lua_State* L, const factory_wrapper<Functions...>& fw, function_detail::call_indicator) { + using F = function_detail::overloaded_function<1, Functions...>; + function_detail::select_set_fx<false, F>(L, fw.functions); + return 1; + } + + static int push(lua_State* L, factory_wrapper<Functions...>&& fw, function_detail::call_indicator) { + using F = function_detail::overloaded_function<1, Functions...>; + function_detail::select_set_fx<false, F>(L, std::move(fw.functions)); + return 1; + } + }; + + template <> + struct unqualified_pusher<no_construction> { + static int push(lua_State* L, no_construction) { + lua_CFunction cf = &function_detail::no_construction_error; + return stack::push(L, cf); + } + + static int push(lua_State* L, no_construction c, function_detail::call_indicator) { + return push(L, c); + } + }; + + template <typename T> + struct unqualified_pusher<detail::tagged<T, no_construction>> { + static int push(lua_State* L, no_construction) { + lua_CFunction cf = &function_detail::no_construction_error; + return stack::push(L, cf); + } + + static int push(lua_State* L, no_construction c, function_detail::call_indicator) { + return push(L, c); + } + }; + + template <typename T, typename... Lists> + struct unqualified_pusher<detail::tagged<T, constructor_list<Lists...>>> { + static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) { + lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>; + return stack::push(L, cf); + } + + static int push(lua_State* L, constructor_list<Lists...>) { + lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>; + return stack::push(L, cf); + } + }; + + template <typename L0, typename... Lists> + struct unqualified_pusher<constructor_list<L0, Lists...>> { + typedef constructor_list<L0, Lists...> cl_t; + static int push(lua_State* L, cl_t cl) { + typedef typename meta::bind_traits<L0>::return_type T; + return stack::push<detail::tagged<T, cl_t>>(L, cl); + } + }; + + template <typename T, typename... Fxs> + struct unqualified_pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> { + static int push(lua_State* L, detail::tagged<T, constructor_wrapper<Fxs...>>&& c) { + return push(L, std::move(c.value())); + } + + static int push(lua_State* L, const detail::tagged<T, const constructor_wrapper<Fxs...>>& c) { + return push(L, c.value()); + } + + static int push(lua_State* L, constructor_wrapper<Fxs...>&& c) { + lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::move(c)); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, const constructor_wrapper<Fxs...>& c) { + lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, c); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename F, typename... Fxs> + struct unqualified_pusher<constructor_wrapper<F, Fxs...>> { + static int push(lua_State* L, const constructor_wrapper<F, Fxs...>& c) { + typedef typename meta::bind_traits<F>::template arg_at<0> arg0; + typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T; + return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, c); + } + + static int push(lua_State* L, constructor_wrapper<F, Fxs...>&& c) { + typedef typename meta::bind_traits<F>::template arg_at<0> arg0; + typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T; + return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, std::move(c)); + } + }; + + template <typename T> + struct unqualified_pusher<detail::tagged<T, destructor_wrapper<void>>> { + static int push(lua_State* L, destructor_wrapper<void>) { + lua_CFunction cf = detail::usertype_alloc_destruct<T>; + return stack::push(L, cf); + } + }; + + template <typename T, typename Fx> + struct unqualified_pusher<detail::tagged<T, destructor_wrapper<Fx>>> { + static int push(lua_State* L, destructor_wrapper<Fx>&& c) { + lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c)); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, const destructor_wrapper<Fx>& c) { + lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename Fx> + struct unqualified_pusher<destructor_wrapper<Fx>> { + static int push(lua_State* L, destructor_wrapper<Fx>&& c) { + lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c)); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, const destructor_wrapper<Fx>& c) { + lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename F, typename... Policies> + struct unqualified_pusher<policy_wrapper<F, Policies...>> { + using P = policy_wrapper<F, Policies...>; + + static int push(lua_State* L, const P& p) { + lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<P>>(L, p); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, P&& p) { + lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<P>>(L, std::move(p)); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename T, typename F, typename... Policies> + struct unqualified_pusher<detail::tagged<T, policy_wrapper<F, Policies...>>> { + using P = policy_wrapper<F, Policies...>; + using Tagged = detail::tagged<T, P>; + + static int push(lua_State* L, const Tagged& p) { + lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<P>>(L, p.value()); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, Tagged&& p) { + lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<P>>(L, std::move(p.value())); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename T> + struct unqualified_pusher<push_invoke_t<T>> { + static int push(lua_State* L, push_invoke_t<T>&& pi) { + if constexpr (std::is_invocable_v<std::add_rvalue_reference_t<T>, lua_State*>) { + return stack::push(L, std::move(pi.value())(L)); + } + else { + return stack::push(L, std::move(pi.value())()); + } + } + + static int push(lua_State* L, const push_invoke_t<T>& pi) { + if constexpr (std::is_invocable_v<const T, lua_State*>) { + return stack::push(L, pi.value()(L)); + } + else { + return stack::push(L, pi.value()()); + } + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_FUNCTION_TYPES_HPP diff --git a/lib/sol2/include/sol/function_types_core.hpp b/lib/sol2/include/sol/function_types_core.hpp new file mode 100644 index 0000000..cc080cd --- /dev/null +++ b/lib/sol2/include/sol/function_types_core.hpp @@ -0,0 +1,48 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FUNCTION_TYPES_CORE_HPP +#define SOL_FUNCTION_TYPES_CORE_HPP + +#include "stack.hpp" +#include "wrapper.hpp" + +#include <memory> + +namespace sol { +namespace function_detail { + template <typename Fx, int start = 1, bool is_yielding = false> + int call(lua_State* L) { + Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start)); + int nr = fx(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } +} +} // namespace sol::function_detail + +#endif // SOL_FUNCTION_TYPES_CORE_HPP diff --git a/lib/sol2/include/sol/function_types_overloaded.hpp b/lib/sol2/include/sol/function_types_overloaded.hpp new file mode 100644 index 0000000..896ac36 --- /dev/null +++ b/lib/sol2/include/sol/function_types_overloaded.hpp @@ -0,0 +1,62 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FUNCTION_TYPES_OVERLOAD_HPP +#define SOL_FUNCTION_TYPES_OVERLOAD_HPP + +#include "overload.hpp" +#include "call.hpp" +#include "function_types_core.hpp" + +namespace sol { +namespace function_detail { + template <int start_skew, typename... Functions> + struct overloaded_function { + typedef std::tuple<Functions...> overload_list; + typedef std::make_index_sequence<sizeof...(Functions)> indices; + overload_list overloads; + + overloaded_function(overload_list set) + : overloads(std::move(set)) { + } + + overloaded_function(Functions... fxs) + : overloads(fxs...) { + } + + template <typename Fx, std::size_t I, typename... R, typename... Args> + static int call(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, overload_list& ol) { + auto& func = std::get<I>(ol); + int nr = call_detail::call_wrapped<void, true, false, start_skew>(L, func); + return nr; + } + + int operator()(lua_State* L) { + auto mfx = [](auto&&... args) { return call(std::forward<decltype(args)>(args)...); }; + return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew, overloads); + } + }; +} +} // namespace sol::function_detail + +#endif // SOL_FUNCTION_TYPES_OVERLOAD_HPP
\ No newline at end of file diff --git a/lib/sol2/include/sol/function_types_stateful.hpp b/lib/sol2/include/sol/function_types_stateful.hpp new file mode 100644 index 0000000..92e9597 --- /dev/null +++ b/lib/sol2/include/sol/function_types_stateful.hpp @@ -0,0 +1,138 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FUNCTION_TYPES_STATEFUL_HPP +#define SOL_FUNCTION_TYPES_STATEFUL_HPP + +#include "function_types_core.hpp" +#include "call.hpp" + +namespace sol { +namespace function_detail { + template <typename Func, bool is_yielding, bool no_trampoline> + struct functor_function { + typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type; + function_type fx; + + template <typename... Args> + functor_function(function_type f, Args&&... args) + : fx(std::move(f), std::forward<Args>(args)...) { + } + + int call(lua_State* L) { + int nr = call_detail::call_wrapped<void, true, false>(L, fx); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + if (!no_trampoline) { + auto f = [&](lua_State*) -> int { return this->call(L); }; + return detail::trampoline(L, f); + } + else { + return call(L); + } + } + }; + + template <typename T, typename Function, bool is_yielding> + struct member_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef meta::function_return_t<function_type> return_type; + typedef meta::function_args_t<function_type> args_lists; + function_type invocation; + T member; + + template <typename... Args> + member_function(function_type f, Args&&... args) + : invocation(std::move(f)), member(std::forward<Args>(args)...) { + } + + int call(lua_State* L) { + int nr = call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member))); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + auto f = [&](lua_State*) -> int { return this->call(L); }; + return detail::trampoline(L, f); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct member_variable { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef typename meta::bind_traits<function_type>::return_type return_type; + typedef typename meta::bind_traits<function_type>::args_list args_lists; + function_type var; + T member; + typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M; + + template <typename... Args> + member_variable(function_type v, Args&&... args) + : var(std::move(v)), member(std::forward<Args>(args)...) { + } + + int call(lua_State* L) { + int nr; + { + M mem = detail::unwrap(detail::deref(member)); + switch (lua_gettop(L)) { + case 0: + nr = call_detail::call_wrapped<T, true, false, -1>(L, var, mem); + break; + case 1: + nr = call_detail::call_wrapped<T, false, false, -1>(L, var, mem); + break; + default: + nr = luaL_error(L, "sol: incorrect number of arguments to member variable function"); + break; + } + } + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + auto f = [&](lua_State*) -> int { return this->call(L); }; + return detail::trampoline(L, f); + } + }; +} +} // namespace sol::function_detail + +#endif // SOL_FUNCTION_TYPES_STATEFUL_HPP diff --git a/lib/sol2/include/sol/function_types_stateless.hpp b/lib/sol2/include/sol/function_types_stateless.hpp new file mode 100644 index 0000000..c29fd28 --- /dev/null +++ b/lib/sol2/include/sol/function_types_stateless.hpp @@ -0,0 +1,263 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FUNCTION_TYPES_STATELESS_HPP +#define SOL_FUNCTION_TYPES_STATELESS_HPP + +#include "stack.hpp" +#include "call.hpp" + +namespace sol { +namespace function_detail { + template <typename Function, bool is_yielding> + struct upvalue_free_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef meta::bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L); + function_type* fx = udata.first; + return call_detail::call_wrapped<void, true, false>(L, fx); + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_member_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member function pointer + // idx n + 1: is the object's void pointer + // We don't need to store the size, because the other side is templated + // with the same member function pointer type + function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2)); + auto& item = *static_cast<T*>(stack::get<void*>(L, upvalue_index(3))); + return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item); + } + + static int call(lua_State* L) noexcept(traits_type::is_noexcept) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_member_variable { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + // idx n + 1: is the object's void pointer + // We don't need to store the size, because the other side is templated + // with the same member function pointer type + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second); + auto& mem = *objdata.first; + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 0: + return call_detail::call_wrapped<T, true, false, -1>(L, var, mem); + case 1: + return call_detail::call_wrapped<T, false, false, -1>(L, var, mem); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) noexcept(traits_type::is_noexcept) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_member_variable<T, readonly_wrapper<Function>, is_yielding> { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + // idx n + 1: is the object's void pointer + // We don't need to store the size, because the other side is templated + // with the same member function pointer type + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second); + auto& mem = *objdata.first; + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 0: + return call_detail::call_wrapped<T, true, false, -1>(L, var, mem); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_this_member_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2)); + return call_detail::call_wrapped<T, false, false>(L, memfx); + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_this_member_variable { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + + static int real_call(lua_State* L) noexcept(false) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 1: + return call_detail::call_wrapped<T, true, false>(L, var); + case 2: + return call_detail::call_wrapped<T, false, false>(L, var); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_this_member_variable<T, readonly_wrapper<Function>, is_yielding> { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(false) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 1: + return call_detail::call_wrapped<T, true, false>(L, var); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; +} +} // namespace sol::function_detail + +#endif // SOL_FUNCTION_TYPES_STATELESS_HPP diff --git a/lib/sol2/include/sol/function_types_templated.hpp b/lib/sol2/include/sol/function_types_templated.hpp new file mode 100644 index 0000000..779b481 --- /dev/null +++ b/lib/sol2/include/sol/function_types_templated.hpp @@ -0,0 +1,154 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FUNCTION_TYPES_TEMPLATED_HPP +#define SOL_FUNCTION_TYPES_TEMPLATED_HPP + +#include "call.hpp" + +namespace sol { + namespace function_detail { + template <typename F, F fx> + inline int call_wrapper_variable(std::false_type, lua_State* L) { + typedef meta::bind_traits<meta::unqualified_t<F>> traits_type; + typedef typename traits_type::args_list args_list; + typedef meta::tuple_types<typename traits_type::return_type> return_type; + return stack::call_into_lua(return_type(), args_list(), L, 1, fx); + } + + template <typename R, typename V, V, typename T> + inline int call_set_assignable(std::false_type, T&&, lua_State* L) { + return luaL_error(L, "cannot write to this type: copy assignment/constructor not available"); + } + + template <typename R, typename V, V variable, typename T> + inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) { + (mem.*variable) = stack::get<R>(L, 2); + return 0; + } + + template <typename R, typename V, V, typename T> + inline int call_set_variable(std::false_type, lua_State* L, T&&) { + return luaL_error(L, "cannot write to a const variable"); + } + + template <typename R, typename V, V variable, typename T> + inline int call_set_variable(std::true_type, lua_State* L, T&& mem) { + return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem)); + } + + template <typename V, V variable> + inline int call_wrapper_variable(std::true_type, lua_State* L) { + typedef meta::bind_traits<meta::unqualified_t<V>> traits_type; + typedef typename traits_type::object_type T; + typedef typename traits_type::return_type R; + auto& mem = stack::get<T>(L, 1); + switch (lua_gettop(L)) { + case 1: { + decltype(auto) r = (mem.*variable); + stack::push_reference(L, std::forward<decltype(r)>(r)); + return 1; + } + case 2: + return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem); + default: + return luaL_error(L, "incorrect number of arguments to member variable function call"); + } + } + + template <typename F, F fx> + inline int call_wrapper_function(std::false_type, lua_State* L) { + return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L); + } + + template <typename F, F fx> + inline int call_wrapper_function(std::true_type, lua_State* L) { + return call_detail::call_wrapped<void, false, false>(L, fx); + } + + template <typename F, F fx> + int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept) { + return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L); + } + + template <typename... Fxs> + struct c_call_matcher { + template <typename Fx, std::size_t I, typename R, typename... Args> + int operator()(types<Fx>, meta::index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const { + typedef meta::at_in_pack_t<I, Fxs...> target; + return target::call(L); + } + }; + + template <typename F, F fx> + inline int c_call_raw(std::true_type, lua_State* L) { + return fx(L); + } + + template <typename F, F fx> + inline int c_call_raw(std::false_type, lua_State* L) { +#ifdef __clang__ + return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>); +#else + return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L); +#endif // fuck you clang :c + } + + } // namespace function_detail + + template <typename F, F fx> + inline int c_call(lua_State* L) { + typedef meta::unqualified_t<F> Fu; + typedef std::integral_constant<bool, + std::is_same<Fu, lua_CFunction>::value +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + || std::is_same<Fu, detail::lua_CFunction_noexcept>::value +#endif + > + is_raw; + return function_detail::c_call_raw<F, fx>(is_raw(), L); + } + + template <typename F, F f> + struct wrap { + typedef F type; + + static int call(lua_State* L) { + return c_call<type, f>(L); + } + }; + + template <typename... Fxs> + inline int c_call(lua_State* L) { + if constexpr (sizeof...(Fxs) < 2) { + using target = meta::at_in_pack_t<0, Fxs...>; + return target::call(L); + } + else { + return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1); + } + } + +} // namespace sol + +#endif // SOL_FUNCTION_TYPES_TEMPLATED_HPP diff --git a/lib/sol2/include/sol/in_place.hpp b/lib/sol2/include/sol/in_place.hpp new file mode 100644 index 0000000..cc371c6 --- /dev/null +++ b/lib/sol2/include/sol/in_place.hpp @@ -0,0 +1,92 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_IN_PLACE_HPP +#define SOL_IN_PLACE_HPP + +#include <cstddef> +#include <utility> + +namespace sol { + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + using in_place_t = std::in_place_t; + constexpr std::in_place_t in_place{}; + constexpr std::in_place_t in_place_of{}; + + template <typename T> + using in_place_type_t = std::in_place_type_t<T>; + template <typename T> + constexpr std::in_place_type_t<T> in_place_type{}; + + template <size_t I> + using in_place_index_t = std::in_place_index_t<I>; + template <size_t I> + constexpr in_place_index_t<I> in_place_index{}; +#else + namespace detail { + struct in_place_of_tag {}; + template <std::size_t I> + struct in_place_of_i {}; + template <typename T> + struct in_place_of_t {}; + } // namespace detail + + struct in_place_tag { + constexpr in_place_tag() = default; + }; + + constexpr inline in_place_tag in_place(detail::in_place_of_tag) { + return in_place_tag(); + } + template <typename T> + constexpr inline in_place_tag in_place(detail::in_place_of_t<T>) { + return in_place_tag(); + } + template <std::size_t I> + constexpr inline in_place_tag in_place(detail::in_place_of_i<I>) { + return in_place_tag(); + } + + constexpr inline in_place_tag in_place_of(detail::in_place_of_tag) { + return in_place_tag(); + } + template <typename T> + constexpr inline in_place_tag in_place_type(detail::in_place_of_t<T>) { + return in_place_tag(); + } + template <std::size_t I> + constexpr inline in_place_tag in_place_index(detail::in_place_of_i<I>) { + return in_place_tag(); + } + + using in_place_t = in_place_tag (&)(detail::in_place_of_tag); + template <typename T> + using in_place_type_t = in_place_tag (&)(detail::in_place_of_t<T>); + template <std::size_t I> + using in_place_index_t = in_place_tag (&)(detail::in_place_of_i<I>); +#endif + +} // namespace sol + +#endif // SOL_IN_PLACE_HPP diff --git a/lib/sol2/include/sol/inheritance.hpp b/lib/sol2/include/sol/inheritance.hpp new file mode 100644 index 0000000..6abe6ad --- /dev/null +++ b/lib/sol2/include/sol/inheritance.hpp @@ -0,0 +1,196 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_INHERITANCE_HPP
+#define SOL_INHERITANCE_HPP
+
+#include "types.hpp"
+#include "usertype_traits.hpp"
+#include "unique_usertype_traits.hpp"
+
+namespace sol {
+ template <typename... Args>
+ struct base_list {};
+ template <typename... Args>
+ using bases = base_list<Args...>;
+
+ typedef bases<> base_classes_tag;
+ const auto base_classes = base_classes_tag();
+
+ template <typename... Args>
+ struct is_to_stringable<base_list<Args...>> : std::false_type {};
+
+ namespace detail {
+
+ inline decltype(auto) base_class_check_key() {
+ static const auto& key = "class_check";
+ return key;
+ }
+
+ inline decltype(auto) base_class_cast_key() {
+ static const auto& key = "class_cast";
+ return key;
+ }
+
+ inline decltype(auto) base_class_index_propogation_key() {
+ static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
+ return key;
+ }
+
+ inline decltype(auto) base_class_new_index_propogation_key() {
+ static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
+ return key;
+ }
+
+ template <typename T>
+ struct inheritance {
+ typedef typename base<T>::type bases_t;
+
+ static bool type_check_bases(types<>, const string_view&) {
+ return false;
+ }
+
+ template <typename Base, typename... Args>
+ static bool type_check_bases(types<Base, Args...>, const string_view& ti) {
+ return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti);
+ }
+
+ static bool type_check(const string_view& ti) {
+ return ti == usertype_traits<T>::qualified_name() || type_check_bases(bases_t(), ti);
+ }
+
+ template <typename ...Bases>
+ static bool type_check_with(const string_view& ti) {
+ return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti);
+ }
+
+ static void* type_cast_bases(types<>, T*, const string_view&) {
+ return nullptr;
+ }
+
+ template <typename Base, typename... Args>
+ static void* type_cast_bases(types<Base, Args...>, T* data, const string_view& ti) {
+ // Make sure to convert to T first, and then dynamic cast to the proper type
+ return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data));
+ }
+
+ static void* type_cast(void* voiddata, const string_view& ti) {
+ T* data = static_cast<T*>(voiddata);
+ return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(bases_t(), data, ti) : data);
+ }
+
+ template <typename... Bases>
+ static void* type_cast_with(void* voiddata, const string_view& ti) {
+ T* data = static_cast<T*>(voiddata);
+ return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data);
+ }
+
+ template <typename U>
+ static bool type_unique_cast_bases(types<>, void*, void*, const string_view&) {
+ return 0;
+ }
+
+ template <typename U, typename Base, typename... Args>
+ static int type_unique_cast_bases(types<Base, Args...>, void* source_data, void* target_data, const string_view& ti) {
+ using uu_traits = unique_usertype_traits<U>;
+ using base_ptr = typename uu_traits::template rebind_base<Base>;
+ string_view base_ti = usertype_traits<Base>::qualified_name();
+ if (base_ti == ti) {
+ if (target_data != nullptr) {
+ U* source = static_cast<U*>(source_data);
+ base_ptr* target = static_cast<base_ptr*>(target_data);
+ // perform proper derived -> base conversion
+ *target = *source;
+ }
+ return 2;
+ }
+ return type_unique_cast_bases<U>(types<Args...>(), source_data, target_data, ti);
+ }
+
+ template <typename U>
+ static int type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
+ typedef unique_usertype_traits<U> uu_traits;
+ if constexpr (is_base_rebindable_v<uu_traits>) {
+ typedef typename uu_traits::template rebind_base<void> rebind_t;
+ typedef meta::conditional_t<std::is_void<rebind_t>::value, types<>, bases_t> cond_bases_t;
+ string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name();
+ if (rebind_ti != this_rebind_ti) {
+ // this is not even of the same unique type
+ return 0;
+ }
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti);
+ }
+ else {
+ (void)rebind_ti;
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
+ }
+ }
+
+ template <typename U, typename... Bases>
+ static int type_unique_cast_with(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
+ using uc_bases_t = types<Bases...>;
+ typedef unique_usertype_traits<U> uu_traits;
+ if constexpr (is_base_rebindable_v<uu_traits>) {
+ using rebind_t = typename uu_traits::template rebind_base<void>;
+ using cond_bases_t = meta::conditional_t<std::is_void<rebind_t>::value, types<>, uc_bases_t>;
+ string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name();
+ if (rebind_ti != this_rebind_ti) {
+ // this is not even of the same unique type
+ return 0;
+ }
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti);
+ }
+ else {
+ (void)rebind_ti;
+ string_view this_ti = usertype_traits<T>::qualified_name();
+ if (ti == this_ti) {
+ // direct match, return 1
+ return 1;
+ }
+ return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
+ }
+ }
+ };
+
+ using inheritance_check_function = decltype(&inheritance<void>::type_check);
+ using inheritance_cast_function = decltype(&inheritance<void>::type_cast);
+ using inheritance_unique_cast_function = decltype(&inheritance<void>::type_unique_cast<void>);
+ } // namespace detail
+} // namespace sol
+
+#endif // SOL_INHERITANCE_HPP
diff --git a/lib/sol2/include/sol/load_result.hpp b/lib/sol2/include/sol/load_result.hpp new file mode 100644 index 0000000..027551b --- /dev/null +++ b/lib/sol2/include/sol/load_result.hpp @@ -0,0 +1,151 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_LOAD_RESULT_HPP +#define SOL_LOAD_RESULT_HPP + +#include "stack.hpp" +#include "function.hpp" +#include "proxy_base.hpp" +#include <cstdint> + +namespace sol { + struct load_result : public proxy_base<load_result> { + private: + lua_State* L; + int index; + int returncount; + int popcount; + load_status err; + + template <typename T> + decltype(auto) tagged_get(types<optional<T>>) const { + if (!valid()) { + return optional<T>(nullopt); + } + return stack::get<optional<T>>(L, index); + } + + template <typename T> + decltype(auto) tagged_get(types<T>) const { +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0 + if (!valid()) { + type_panic_c_str(L, index, type_of(L, index), type::none); + } +#endif // Check Argument Safety + return stack::get<T>(L, index); + } + + optional<error> tagged_get(types<optional<error>>) const { + if (valid()) { + return nullopt; + } + return error(detail::direct_error, stack::get<std::string>(L, index)); + } + + error tagged_get(types<error>) const { +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0 + if (valid()) { + type_panic_c_str(L, index, type_of(L, index), type::none, "expecting an error type (a string, from Lua)"); + } +#endif // Check Argument Safety + return error(detail::direct_error, stack::get<std::string>(L, index)); + } + + public: + load_result() = default; + load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept + : L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) { + } + load_result(const load_result&) = default; + load_result& operator=(const load_result&) = default; + load_result(load_result&& o) noexcept + : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.L = nullptr; + o.index = 0; + o.returncount = 0; + o.popcount = 0; + o.err = load_status::syntax; + } + load_result& operator=(load_result&& o) noexcept { + L = o.L; + index = o.index; + returncount = o.returncount; + popcount = o.popcount; + err = o.err; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.L = nullptr; + o.index = 0; + o.returncount = 0; + o.popcount = 0; + o.err = load_status::syntax; + return *this; + } + + load_status status() const noexcept { + return err; + } + + bool valid() const noexcept { + return status() == load_status::ok; + } + + template <typename T> + T get() const { + return tagged_get(types<meta::unqualified_t<T>>()); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) { +#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 + // MSVC is ass sometimes + return get<protected_function>().call<Ret...>(std::forward<Args>(args)...); +#else + return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...); +#endif + } + + template <typename... Args> + decltype(auto) operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + + lua_State* lua_state() const noexcept { + return L; + }; + int stack_index() const noexcept { + return index; + }; + + ~load_result() { + stack::remove(L, index, popcount); + } + }; +} // namespace sol + +#endif // SOL_LOAD_RESULT_HPP diff --git a/lib/sol2/include/sol/lua_table.hpp b/lib/sol2/include/sol/lua_table.hpp new file mode 100644 index 0000000..30b7f2a --- /dev/null +++ b/lib/sol2/include/sol/lua_table.hpp @@ -0,0 +1,95 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_LUA_TABLE_HPP
+#define SOL_LUA_TABLE_HPP
+
+#include "table_core.hpp"
+
+namespace sol {
+
+ template <typename ref_t>
+ struct basic_lua_table : basic_table_core<false, ref_t> {
+ private:
+ using base_t = basic_table_core<false, ref_t>;
+
+ friend class state;
+ friend class state_view;
+
+ public:
+ using base_t::lua_state;
+
+ basic_lua_table() noexcept = default;
+ basic_lua_table(const basic_lua_table&) = default;
+ basic_lua_table(basic_lua_table&&) = default;
+ basic_lua_table& operator=(const basic_lua_table&) = default;
+ basic_lua_table& operator=(basic_lua_table&&) = default;
+ basic_lua_table(const stack_reference& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
+ }
+ basic_lua_table(stack_reference&& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
+ }
+ template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_lua_table(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
+#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler{};
+ stack::check<basic_lua_table>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ basic_lua_table(lua_State* L, const new_table& nt) : base_t(L, nt) {
+ if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
+ lua_pop(L, 1);
+ }
+ }
+ basic_lua_table(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
+#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
+ constructor_handler handler{};
+ stack::check<basic_lua_table>(L, index, handler);
+#endif // Safety
+ }
+ basic_lua_table(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
+#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler{};
+ stack::check<basic_lua_table>(lua_state(), -1, handler);
+#endif // Safety
+ }
+ template <typename T,
+ meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_lua_table>>, meta::neg<std::is_same<ref_t, stack_reference>>,
+ meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
+ basic_lua_table(T&& r) noexcept : basic_lua_table(detail::no_safety, std::forward<T>(r)) {
+#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES
+ if (!is_table<meta::unqualified_t<T>>::value) {
+ auto pp = stack::push_pop(*this);
+ constructor_handler handler{};
+ stack::check<basic_lua_table>(lua_state(), -1, handler);
+ }
+#endif // Safety
+ }
+ basic_lua_table(lua_nil_t r) noexcept : basic_lua_table(detail::no_safety, r) {
+ }
+ };
+
+}
+
+#endif // SOL_LUA_TABLE_HPP
diff --git a/lib/sol2/include/sol/lua_value.hpp b/lib/sol2/include/sol/lua_value.hpp new file mode 100644 index 0000000..1739730 --- /dev/null +++ b/lib/sol2/include/sol/lua_value.hpp @@ -0,0 +1,157 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_LUA_VALUE_HPP
+#define SOL_LUA_VALUE_HPP
+
+#include "stack.hpp"
+#include "reference.hpp"
+#include "make_reference.hpp"
+
+namespace sol {
+ struct lua_value {
+ public:
+ struct arr : detail::ebco<std::initializer_list<lua_value>> {
+ private:
+ using base_t = detail::ebco<std::initializer_list<lua_value>>;
+ public:
+ using base_t::base_t;
+ };
+
+ private:
+ template <typename T>
+ using is_reference_or_lua_value_init_list
+ = meta::any<meta::is_specialization_of<T, std::initializer_list>, std::is_same<T, reference>, std::is_same<T, arr>>;
+
+ template <typename T>
+ using is_lua_value_single_constructible = meta::any<std::is_same<T, lua_value>, is_reference_or_lua_value_init_list<T>>;
+
+ static lua_State*& thread_local_lua_state() {
+ static thread_local lua_State* L = nullptr;
+ return L;
+ }
+
+ reference ref_value;
+
+ public:
+ static void set_lua_state(lua_State* L) {
+ thread_local_lua_state() = L;
+ }
+
+ template <typename T, meta::disable<is_reference_or_lua_value_init_list<meta::unqualified_t<T>>> = meta::enabler>
+ lua_value(lua_State* L_, T&& value) : lua_value(((set_lua_state(L_)), std::forward<T>(value))) {
+ }
+
+ template <typename T, meta::disable<is_lua_value_single_constructible<meta::unqualified_t<T>>> = meta::enabler>
+ lua_value(T&& value) : ref_value(make_reference(thread_local_lua_state(), std::forward<T>(value))) {
+ }
+
+ lua_value(lua_State* L_, std::initializer_list<std::pair<lua_value, lua_value>> il)
+ : lua_value([&L_, &il]() {
+ set_lua_state(L_);
+ return std::move(il);
+ }()) {
+ }
+
+ lua_value(std::initializer_list<std::pair<lua_value, lua_value>> il) : ref_value(make_reference(thread_local_lua_state(), std::move(il))) {
+ }
+
+ lua_value(lua_State* L_, arr il)
+ : lua_value([&L_, &il]() {
+ set_lua_state(L_);
+ return std::move(il);
+ }()) {
+ }
+
+ lua_value(arr il) : ref_value(make_reference(thread_local_lua_state(), std::move(il.value()))) {
+ }
+
+ lua_value(lua_State* L_, reference r)
+ : lua_value([&L_, &r]() {
+ set_lua_state(L_);
+ return std::move(r);
+ }()) {
+ }
+
+ lua_value(reference r) : ref_value(std::move(r)) {
+ }
+
+ lua_value(const lua_value&) noexcept = default;
+ lua_value(lua_value&&) = default;
+ lua_value& operator=(const lua_value&) = default;
+ lua_value& operator=(lua_value&&) = default;
+
+ const reference& value() const& {
+ return ref_value;
+ }
+
+ reference& value() & {
+ return ref_value;
+ }
+
+ reference&& value() && {
+ return std::move(ref_value);
+ }
+
+ template <typename T>
+ decltype(auto) as() const {
+ ref_value.push();
+ return stack::pop<T>(ref_value.lua_state());
+ }
+
+ template <typename T>
+ bool is() const {
+ int r = ref_value.registry_index();
+ if (r == LUA_REFNIL)
+ return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
+ if (r == LUA_NOREF)
+ return false;
+ auto pp = stack::push_pop(ref_value);
+ return stack::check<T>(ref_value.lua_state(), -1, no_panic);
+ }
+ };
+
+ using array_value = typename lua_value::arr;
+
+ namespace stack {
+ template <>
+ struct unqualified_pusher<lua_value> {
+ static int push(lua_State* L, const lua_value& lv) {
+ return stack::push(L, lv.value());
+ }
+
+ static int push(lua_State* L, lua_value&& lv) {
+ return stack::push(L, std::move(lv).value());
+ }
+ };
+
+ template <>
+ struct unqualified_getter<lua_value> {
+ static lua_value get(lua_State* L, int index, record& tracking) {
+ return lua_value(L, stack::get<reference>(L, index, tracking));
+ }
+ };
+ }
+} // namespace sol
+
+#endif // SOL_LUA_VALUE_HPP
diff --git a/lib/sol2/include/sol/make_reference.hpp b/lib/sol2/include/sol/make_reference.hpp new file mode 100644 index 0000000..ed4fa39 --- /dev/null +++ b/lib/sol2/include/sol/make_reference.hpp @@ -0,0 +1,54 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_MAKE_REFERENCE_HPP +#define SOL_MAKE_REFERENCE_HPP + +#include "reference.hpp" +#include "stack.hpp" + +namespace sol { + + template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T> + R make_reference(lua_State* L, T&& value) { + int backpedal = stack::push(L, std::forward<T>(value)); + R r = stack::get<R>(L, -backpedal); + if (should_pop) { + lua_pop(L, backpedal); + } + return r; + } + + template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args> + R make_reference(lua_State* L, Args&&... args) { + int backpedal = stack::push<T>(L, std::forward<Args>(args)...); + R r = stack::get<R>(L, -backpedal); + if (should_pop) { + lua_pop(L, backpedal); + } + return r; + } + +} // namespace sol + +#endif // SOL_MAKE_REFERENCE_HPP diff --git a/lib/sol2/include/sol/map.hpp b/lib/sol2/include/sol/map.hpp new file mode 100644 index 0000000..5356523 --- /dev/null +++ b/lib/sol2/include/sol/map.hpp @@ -0,0 +1,50 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_MAP_HPP
+#define SOL_MAP_HPP
+
+#include <unordered_map>
+#if defined(SOL_USE_BOOST)
+#include <boost/unordered_map.hpp>
+#endif // SOL_USE_BOOST
+
+namespace sol {
+namespace detail {
+#if defined(SOL_USE_BOOST)
+#if defined(SOL_CXX17_FEATURES)
+ template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>>
+ using unordered_map = boost::unordered_map<K, V, H, E>;
+#else
+ template <typename K, typename V, typename H = boost::hash<K>, typename E = std::equal_to<>>
+ using unordered_map = boost::unordered_map<K, V, H, E>;
+#endif // C++17 or not, WITH boost
+#else
+ template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>>
+ using unordered_map = std::unordered_map<K, V, H, E>;
+#endif // Boost map target
+}
+
+} // namespace sol::detail
+
+#endif // SOL_MAP_HPP
diff --git a/lib/sol2/include/sol/metatable.hpp b/lib/sol2/include/sol/metatable.hpp new file mode 100644 index 0000000..6f0c7dc --- /dev/null +++ b/lib/sol2/include/sol/metatable.hpp @@ -0,0 +1,168 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_METATABLE_HPP +#define SOL_METATABLE_HPP + +#include "table_core.hpp" +#include "usertype.hpp" + +namespace sol { + + template <typename base_type> + class basic_metatable : public basic_table<base_type> { + typedef basic_table<base_type> base_t; + friend class state; + friend class state_view; + + protected: + basic_metatable(detail::no_safety_tag, lua_nil_t n) : base_t(n) { + } + basic_metatable(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) { + } + basic_metatable(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) { + } + template <typename T, + meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>, + meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_metatable(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_metatable(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) { + } + + public: + using base_t::lua_state; + + basic_metatable() noexcept = default; + basic_metatable(const basic_metatable&) = default; + basic_metatable(basic_metatable&&) = default; + basic_metatable& operator=(const basic_metatable&) = default; + basic_metatable& operator=(basic_metatable&&) = default; + basic_metatable(const stack_reference& r) : basic_metatable(r.lua_state(), r.stack_index()) { + } + basic_metatable(stack_reference&& r) : basic_metatable(r.lua_state(), r.stack_index()) { + } + template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_metatable(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_metatable>(lua_state(), -1, handler); +#endif // Safety + } + basic_metatable(lua_State* L, int index = -1) : basic_metatable(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_metatable>(L, index, handler); +#endif // Safety + } + basic_metatable(lua_State* L, ref_index index) : basic_metatable(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_metatable>(lua_state(), -1, handler); +#endif // Safety + } + template <typename T, + meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>, + meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_metatable(T&& r) noexcept : basic_metatable(detail::no_safety, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_table<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_metatable>(base_t::lua_state(), -1, handler); + } +#endif // Safety + } + basic_metatable(lua_nil_t r) noexcept : basic_metatable(detail::no_safety, r) { + } + + template <typename Key, typename Value> + void set(Key&& key, Value&& value); + + void unregister() { + using ustorage_base = u_detail::usertype_storage_base; + + lua_State* L = this->lua_state(); + + auto pp = stack::push_pop(*this); + int top = lua_gettop(L); + + stack_reference mt(L, -1); + stack::get_field(L, meta_function::gc_names, mt.stack_index()); + if (type_of(L, -1) != type::table) { + return; + } + stack_reference gc_names_table(L, -1); + stack::get_field(L, meta_function::storage, mt.stack_index()); + if (type_of(L, -1) != type::lightuserdata) { + return; + } + ustorage_base& base_storage = *static_cast<ustorage_base*>(stack::get<void*>(L, -1)); + std::array<string_view, 6> registry_traits; + for (std::size_t i = 0; i < registry_traits.size(); ++i) { + u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i); + stack::get_field<false, true>(L, smt, gc_names_table.stack_index()); + registry_traits[i] = stack::get<string_view>(L, -1); + } + + // get the registry + stack_reference registry(L, raw_index(LUA_REGISTRYINDEX)); + registry.push(); + // eliminate all named entries for this usertype + // in the registry (luaL_newmetatable does + // [name] = new table + // in registry upon creation) + for (std::size_t i = 0; i < registry_traits.size(); ++i) { + u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i); + const string_view& gcmetakey = registry_traits[i]; + if (smt == u_detail::submetatable_type::named) { + // use .data() to make it treat it like a c string, + // which it is... + stack::set_field<true>(L, gcmetakey.data(), lua_nil); + } + else { + // do not change the values in the registry: they need to be present + // no matter what, for safety's sake + //stack::set_field(L, gcmetakey, lua_nil, registry.stack_index()); + } + } + + // destroy all storage and tables + base_storage.clear(); + + // 6 strings from gc_names table, + // + 1 registry, + // + 1 gc_names table + // + 1 light userdata of storage + // + 1 registry + // 10 total, 4 left since popping off 6 gc_names tables + lua_settop(L, top); + } + }; + +} // namespace sol + +#endif // SOL_METATABLE_HPP diff --git a/lib/sol2/include/sol/object.hpp b/lib/sol2/include/sol/object.hpp new file mode 100644 index 0000000..de987e9 --- /dev/null +++ b/lib/sol2/include/sol/object.hpp @@ -0,0 +1,151 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_OBJECT_HPP +#define SOL_OBJECT_HPP + +#include "make_reference.hpp" +#include "reference.hpp" +#include "stack.hpp" +#include "object_base.hpp" + +namespace sol { + + template <typename base_type> + class basic_object : public basic_object_base<base_type> { + private: + typedef basic_object_base<base_type> base_t; + + template <bool invert_and_pop = false> + basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept + : base_t(L, index) { + if (invert_and_pop) { + lua_pop(L, -index); + } + } + + protected: + basic_object(detail::no_safety_tag, lua_nil_t n) : base_t(n) { + } + basic_object(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) { + } + basic_object(lua_State* L, detail::global_tag t) : base_t(L, t) { + } + basic_object(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) { + } + template <typename T, + meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, + meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_object(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) { + } + + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_object(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) { + } + + public: + basic_object() noexcept = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_object(T&& r) + : base_t(std::forward<T>(r)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_object(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { + } + basic_object(lua_nil_t r) + : base_t(r) { + } + basic_object(const basic_object&) = default; + basic_object(basic_object&&) = default; + basic_object(const stack_reference& r) noexcept + : basic_object(r.lua_state(), r.stack_index()) { + } + basic_object(stack_reference&& r) noexcept + : basic_object(r.lua_state(), r.stack_index()) { + } + template <typename Super> + basic_object(const proxy_base<Super>& r) noexcept + : basic_object(r.operator basic_object()) { + } + template <typename Super> + basic_object(proxy_base<Super>&& r) noexcept + : basic_object(r.operator basic_object()) { + } + basic_object(lua_State* L, lua_nil_t r) noexcept + : base_t(L, r) { + } + basic_object(lua_State* L, int index = -1) noexcept + : base_t(L, index) { + } + basic_object(lua_State* L, absolute_index index) noexcept + : base_t(L, index) { + } + basic_object(lua_State* L, raw_index index) noexcept + : base_t(L, index) { + } + basic_object(lua_State* L, ref_index index) noexcept + : base_t(L, index) { + } + template <typename T, typename... Args> + basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept + : basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) { + } + template <typename T, typename... Args> + basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept + : basic_object(L, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...) { + } + basic_object& operator=(const basic_object&) = default; + basic_object& operator=(basic_object&&) = default; + basic_object& operator=(const base_type& b) { + base_t::operator=(b); + return *this; + } + basic_object& operator=(base_type&& b) { + base_t::operator=(std::move(b)); + return *this; + } + template <typename Super> + basic_object& operator=(const proxy_base<Super>& r) { + this->operator=(r.operator basic_object()); + return *this; + } + template <typename Super> + basic_object& operator=(proxy_base<Super>&& r) { + this->operator=(r.operator basic_object()); + return *this; + } + }; + + template <typename T> + object make_object(lua_State* L, T&& value) { + return make_reference<object, true>(L, std::forward<T>(value)); + } + + template <typename T, typename... Args> + object make_object(lua_State* L, Args&&... args) { + return make_reference<T, object, true>(L, std::forward<Args>(args)...); + } +} // namespace sol + +#endif // SOL_OBJECT_HPP diff --git a/lib/sol2/include/sol/object_base.hpp b/lib/sol2/include/sol/object_base.hpp new file mode 100644 index 0000000..b05e67c --- /dev/null +++ b/lib/sol2/include/sol/object_base.hpp @@ -0,0 +1,87 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_OBJECT_BASE_HPP +#define SOL_OBJECT_BASE_HPP + +#include "reference.hpp" +#include "stack.hpp" + +namespace sol { + + template <typename ref_t> + class basic_object_base : public ref_t { + private: + using base_t = ref_t; + + template <typename T> + decltype(auto) as_stack(std::true_type) const { + return stack::get<T>(base_t::lua_state(), base_t::stack_index()); + } + + template <typename T> + decltype(auto) as_stack(std::false_type) const { + base_t::push(); + return stack::pop<T>(base_t::lua_state()); + } + + template <typename T> + bool is_stack(std::true_type) const { + return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic); + } + + template <typename T> + bool is_stack(std::false_type) const { + int r = base_t::registry_index(); + if (r == LUA_REFNIL) + return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false; + if (r == LUA_NOREF) + return false; + auto pp = stack::push_pop(*this); + return stack::check<T>(base_t::lua_state(), -1, no_panic); + } + + public: + basic_object_base() noexcept = default; + basic_object_base(const basic_object_base&) = default; + basic_object_base(basic_object_base&&) = default; + basic_object_base& operator=(const basic_object_base&) = default; + basic_object_base& operator=(basic_object_base&&) = default; + template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler> + basic_object_base(T&& arg, Args&&... args) + : base_t(std::forward<T>(arg), std::forward<Args>(args)...) { + } + + template <typename T> + decltype(auto) as() const { + return as_stack<T>(is_stack_based<base_t>()); + } + + template <typename T> + bool is() const { + return is_stack<T>(is_stack_based<base_t>()); + } + }; +} // namespace sol + +#endif // SOL_OBJECT_BASE_HPP diff --git a/lib/sol2/include/sol/optional.hpp b/lib/sol2/include/sol/optional.hpp new file mode 100644 index 0000000..d447c8e --- /dev/null +++ b/lib/sol2/include/sol/optional.hpp @@ -0,0 +1,63 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_OPTIONAL_HPP +#define SOL_OPTIONAL_HPP + +#include "forward.hpp" +#include "in_place.hpp" +#include "traits.hpp" +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST +#include <boost/optional.hpp> +#else +#include "optional_implementation.hpp" +#endif // Boost vs. Better optional + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <optional> +#endif + +namespace sol { + +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST + template <typename T> + using optional = boost::optional<T>; + using nullopt_t = boost::none_t; + const nullopt_t nullopt = boost::none; +#endif // Boost vs. Better optional + + namespace meta { + template <typename T> + using is_optional = any< + is_specialization_of<T, optional> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + , is_specialization_of<T, std::optional> +#endif + >; + + template <typename T> + constexpr inline bool is_optional_v = is_optional<T>::value; + } // namespace meta +} // namespace sol + +#endif // SOL_OPTIONAL_HPP diff --git a/lib/sol2/include/sol/optional_implementation.hpp b/lib/sol2/include/sol/optional_implementation.hpp new file mode 100644 index 0000000..0d9abc0 --- /dev/null +++ b/lib/sol2/include/sol/optional_implementation.hpp @@ -0,0 +1,2272 @@ +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +// Taken from: TartanLlama/optional on Github, because +// holy shit am I done dealing with C++11 constexpr + +/// +// optional - An implementation of std::optional with extensions +// Written in 2017 by Simon Brand (@TartanLlama) +// +// To the extent possible under law, the author(s) have dedicated all +// copyright and related and neighboring rights to this software to the +// public domain worldwide. This software is distributed without any warranty. +// +// You should have received a copy of the CC0 Public Domain Dedication +// along with this software. If not, see +// <http://creativecommons.org/publicdomain/zero/1.0/>. +/// + +#ifndef SOL_TL_OPTIONAL_HPP +#define SOL_TL_OPTIONAL_HPP + +#include "in_place.hpp" + +#define SOL_TL_OPTIONAL_VERSION_MAJOR 0 +#define SOL_TL_OPTIONAL_VERSION_MINOR 5 + +#include <exception> +#include <functional> +#include <new> +#include <type_traits> +#include <utility> + +#if (defined(_MSC_VER) && _MSC_VER == 1900) +#define SOL_TL_OPTIONAL_MSVC2015 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__)) +#define SOL_TL_OPTIONAL_GCC49 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && !defined(__clang__)) +#define SOL_TL_OPTIONAL_GCC54 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && !defined(__clang__)) +#define SOL_TL_OPTIONAL_GCC55 +#endif + +#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__)) +// GCC < 5 doesn't support overloading on const&& for member functions +#define SOL_TL_OPTIONAL_NO_CONSTRR + +// GCC < 5 doesn't support some standard C++11 type traits +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::has_trivial_copy_constructor<T>::value +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::has_trivial_copy_assign<T>::value + +// This one will be different for GCC 5.7 if it's ever supported +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value + +// GCC 5 < v < 8 has a bug in is_trivially_copy_constructible which breaks std::vector +// for non-copyable types +#elif (defined(__GNUC__) && __GNUC__ < 8 && !defined(__clang__)) +#ifndef SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX +#define SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX +namespace sol { namespace detail { + template <class T> + struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T> {}; +#ifdef _GLIBCXX_VECTOR + template <class T, class A> + struct is_trivially_copy_constructible<std::vector<T, A>> : std::is_trivially_copy_constructible<T> {}; +#endif +}} // namespace sol::detail +#endif + +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) sol::detail::is_trivially_copy_constructible<T>::value +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value +#else +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::is_trivially_copy_constructible<T>::value +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value +#define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value +#endif + +#if __cplusplus > 201103L +#define SOL_TL_OPTIONAL_CXX14 +#endif + +// constexpr implies const in C++11, not C++14 +#if (__cplusplus == 201103L || defined(SOL_TL_OPTIONAL_MSVC2015) || defined(SOL_TL_OPTIONAL_GCC49)) +/// \exclude +#define SOL_TL_OPTIONAL_11_CONSTEXPR +#else +/// \exclude +#define SOL_TL_OPTIONAL_11_CONSTEXPR constexpr +#endif + +namespace sol { +#ifndef SOL_TL_MONOSTATE_INPLACE_MUTEX +#define SOL_TL_MONOSTATE_INPLACE_MUTEX + /// \brief Used to represent an optional with no data; essentially a bool + class monostate {}; +#endif + + template <class T> + class optional; + + /// \exclude + namespace detail { +#ifndef SOL_TL_TRAITS_MUTEX +#define SOL_TL_TRAITS_MUTEX + // C++14-style aliases for brevity + template <class T> + using remove_const_t = typename std::remove_const<T>::type; + template <class T> + using remove_reference_t = typename std::remove_reference<T>::type; + template <class T> + using decay_t = typename std::decay<T>::type; + template <bool E, class T = void> + using enable_if_t = typename std::enable_if<E, T>::type; + template <bool B, class T, class F> + using conditional_t = typename std::conditional<B, T, F>::type; + + // std::conjunction from C++17 + template <class...> + struct conjunction : std::true_type {}; + template <class B> + struct conjunction<B> : B {}; + template <class B, class... Bs> + struct conjunction<B, Bs...> : std::conditional<bool(B::value), conjunction<Bs...>, B>::type {}; + +#if defined(_LIBCPP_VERSION) && __cplusplus == 201103L +#define SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND +#endif + +// In C++11 mode, there's an issue in libc++'s std::mem_fn +// which results in a hard-error when using it in a noexcept expression +// in some cases. This is a check to workaround the common failing case. +#ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND + template <class T> + struct is_pointer_to_non_const_member_func : std::false_type {}; + template <class T, class Ret, class... Args> + struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)> : std::true_type {}; + template <class T, class Ret, class... Args> + struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)&> : std::true_type {}; + template <class T, class Ret, class... Args> + struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &&> : std::true_type {}; + template <class T, class Ret, class... Args> + struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile> : std::true_type {}; + template <class T, class Ret, class... Args> + struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&> : std::true_type {}; + template <class T, class Ret, class... Args> + struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&&> : std::true_type {}; + + template <class T> + struct is_const_or_const_ref : std::false_type {}; + template <class T> + struct is_const_or_const_ref<T const&> : std::true_type {}; + template <class T> + struct is_const_or_const_ref<T const> : std::true_type {}; +#endif + + // std::invoke from C++17 + // https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround + template <typename Fn, typename... Args, +#ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND + typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value && is_const_or_const_ref<Args...>::value)>, +#endif + typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>, int = 0> + constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::mem_fn(f)(std::forward<Args>(args)...))) + -> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) { + return std::mem_fn(f)(std::forward<Args>(args)...); + } + + template <typename Fn, typename... Args, typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>> + constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...))) + -> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) { + return std::forward<Fn>(f)(std::forward<Args>(args)...); + } + + // std::invoke_result from C++17 + template <class F, class, class... Us> + struct invoke_result_impl; + + template <class F, class... Us> + struct invoke_result_impl<F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()), Us...> { + using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...)); + }; + + template <class F, class... Us> + using invoke_result = invoke_result_impl<F, void, Us...>; + + template <class F, class... Us> + using invoke_result_t = typename invoke_result<F, Us...>::type; +#endif + + // std::void_t from C++17 + template <class...> + struct voider { + using type = void; + }; + template <class... Ts> + using void_t = typename voider<Ts...>::type; + + // Trait for checking if a type is a sol::optional + template <class T> + struct is_optional_impl : std::false_type {}; + template <class T> + struct is_optional_impl<optional<T>> : std::true_type {}; + template <class T> + using is_optional = is_optional_impl<decay_t<T>>; + + // Change void to sol::monostate + template <class U> + using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>; + + template <class F, class U, class = invoke_result_t<F, U>> + using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>; + + // Check if invoking F for some Us returns void + template <class F, class = void, class... U> + struct returns_void_impl; + template <class F, class... U> + struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...> : std::is_void<invoke_result_t<F, U...>> {}; + template <class F, class... U> + using returns_void = returns_void_impl<F, void, U...>; + + template <class T, class... U> + using enable_if_ret_void = enable_if_t<returns_void<T&&, U...>::value>; + + template <class T, class... U> + using disable_if_ret_void = enable_if_t<!returns_void<T&&, U...>::value>; + + template <class T, class U> + using enable_forward_value = detail::enable_if_t<std::is_constructible<T, U&&>::value && !std::is_same<detail::decay_t<U>, in_place_t>::value + && !std::is_same<optional<T>, detail::decay_t<U>>::value>; + + template <class T, class U, class Other> + using enable_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && !std::is_constructible<T, optional<U>&>::value + && !std::is_constructible<T, optional<U>&&>::value && !std::is_constructible<T, const optional<U>&>::value + && !std::is_constructible<T, const optional<U>&&>::value && !std::is_convertible<optional<U>&, T>::value + && !std::is_convertible<optional<U>&&, T>::value && !std::is_convertible<const optional<U>&, T>::value + && !std::is_convertible<const optional<U>&&, T>::value>; + + template <class T, class U> + using enable_assign_forward = detail::enable_if_t<!std::is_same<optional<T>, detail::decay_t<U>>::value + && !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value && std::is_constructible<T, U>::value + && std::is_assignable<T&, U>::value>; + + template <class T, class U, class Other> + using enable_assign_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && std::is_assignable<T&, Other>::value + && !std::is_constructible<T, optional<U>&>::value && !std::is_constructible<T, optional<U>&&>::value + && !std::is_constructible<T, const optional<U>&>::value && !std::is_constructible<T, const optional<U>&&>::value + && !std::is_convertible<optional<U>&, T>::value && !std::is_convertible<optional<U>&&, T>::value + && !std::is_convertible<const optional<U>&, T>::value && !std::is_convertible<const optional<U>&&, T>::value + && !std::is_assignable<T&, optional<U>&>::value && !std::is_assignable<T&, optional<U>&&>::value + && !std::is_assignable<T&, const optional<U>&>::value && !std::is_assignable<T&, const optional<U>&&>::value>; + +#ifdef _MSC_VER + // TODO make a version which works with MSVC + template <class T, class U = T> + struct is_swappable : std::true_type {}; + + template <class T, class U = T> + struct is_nothrow_swappable : std::true_type {}; +#else + // https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept + namespace swap_adl_tests { + // if swap ADL finds this then it would call std::swap otherwise (same + // signature) + struct tag {}; + + template <class T> + tag swap(T&, T&); + template <class T, std::size_t N> + tag swap(T (&a)[N], T (&b)[N]); + + // helper functions to test if an unqualified swap is possible, and if it + // becomes std::swap + template <class, class> + std::false_type can_swap(...) noexcept(false); + template <class T, class U, class = decltype(swap(std::declval<T&>(), std::declval<U&>()))> + std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T&>(), std::declval<U&>()))); + + template <class, class> + std::false_type uses_std(...); + template <class T, class U> + std::is_same<decltype(swap(std::declval<T&>(), std::declval<U&>())), tag> uses_std(int); + + template <class T> + struct is_std_swap_noexcept + : std::integral_constant<bool, std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value> {}; + + template <class T, std::size_t N> + struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> {}; + + template <class T, class U> + struct is_adl_swap_noexcept : std::integral_constant<bool, noexcept(can_swap<T, U>(0))> {}; + } // namespace swap_adl_tests + + template <class T, class U = T> + struct is_swappable : std::integral_constant<bool, + decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value + && (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value + || (std::is_move_assignable<T>::value && std::is_move_constructible<T>::value))> {}; + + template <class T, std::size_t N> + struct is_swappable<T[N], T[N]> : std::integral_constant<bool, + decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value + && (!decltype(detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value || is_swappable<T, T>::value)> {}; + + template <class T, class U = T> + struct is_nothrow_swappable + : std::integral_constant<bool, + is_swappable<T, U>::value + && ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_std_swap_noexcept<T>::value) + || (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_adl_swap_noexcept<T, U>::value))> {}; +#endif + + // The storage base manages the actual storage, and correctly propagates + // trivial destruction from T. This case is for when T is not trivially + // destructible. + template <class T, bool = ::std::is_trivially_destructible<T>::value> + struct optional_storage_base { + SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) { + } + + template <class... U> + SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) { + } + + ~optional_storage_base() { + if (m_has_value) { + m_value.~T(); + m_has_value = false; + } + } + + struct dummy {}; + union { + dummy m_dummy; + T m_value; + }; + + bool m_has_value; + }; + + // This case is for when T is trivially destructible. + template <class T> + struct optional_storage_base<T, true> { + SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) { + } + + template <class... U> + SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) { + } + + // No destructor, so this class is trivially destructible + + struct dummy {}; + union { + dummy m_dummy; + T m_value; + }; + + bool m_has_value = false; + }; + + // This base class provides some handy member functions which can be used in + // further derived classes + template <class T> + struct optional_operations_base : optional_storage_base<T> { + using optional_storage_base<T>::optional_storage_base; + + void hard_reset() noexcept { + get().~T(); + this->m_has_value = false; + } + + template <class... Args> + void construct(Args&&... args) noexcept { + new (std::addressof(this->m_value)) T(std::forward<Args>(args)...); + this->m_has_value = true; + } + + template <class Opt> + void assign(Opt&& rhs) { + if (this->has_value()) { + if (rhs.has_value()) { + this->m_value = std::forward<Opt>(rhs).get(); + } + else { + this->m_value.~T(); + this->m_has_value = false; + } + } + + else if (rhs.has_value()) { + construct(std::forward<Opt>(rhs).get()); + } + } + + bool has_value() const { + return this->m_has_value; + } + + SOL_TL_OPTIONAL_11_CONSTEXPR T& get() & { + return this->m_value; + } + SOL_TL_OPTIONAL_11_CONSTEXPR const T& get() const& { + return this->m_value; + } + SOL_TL_OPTIONAL_11_CONSTEXPR T&& get() && { + return std::move(this->m_value); + } +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + constexpr const T&& get() const&& { + return std::move(this->m_value); + } +#endif + }; + + // This class manages conditionally having a trivial copy constructor + // This specialization is for when T is trivially copy constructible + template <class T, bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)> + struct optional_copy_base : optional_operations_base<T> { + using optional_operations_base<T>::optional_operations_base; + }; + + // This specialization is for when T is not trivially copy constructible + template <class T> + struct optional_copy_base<T, false> : optional_operations_base<T> { + using optional_operations_base<T>::optional_operations_base; + + optional_copy_base() = default; + optional_copy_base(const optional_copy_base& rhs) { + if (rhs.has_value()) { + this->construct(rhs.get()); + } + else { + this->m_has_value = false; + } + } + + optional_copy_base(optional_copy_base&& rhs) = default; + optional_copy_base& operator=(const optional_copy_base& rhs) = default; + optional_copy_base& operator=(optional_copy_base&& rhs) = default; + }; + +// This class manages conditionally having a trivial move constructor +// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it +// doesn't implement an analogue to std::is_trivially_move_constructible. We +// have to make do with a non-trivial move constructor even if T is trivially +// move constructible +#ifndef SOL_TL_OPTIONAL_GCC49 + template <class T, bool = std::is_trivially_move_constructible<T>::value> + struct optional_move_base : optional_copy_base<T> { + using optional_copy_base<T>::optional_copy_base; + }; +#else + template <class T, bool = false> + struct optional_move_base; +#endif + template <class T> + struct optional_move_base<T, false> : optional_copy_base<T> { + using optional_copy_base<T>::optional_copy_base; + + optional_move_base() = default; + optional_move_base(const optional_move_base& rhs) = default; + + optional_move_base(optional_move_base&& rhs) noexcept(std::is_nothrow_move_constructible<T>::value) { + if (rhs.has_value()) { + this->construct(std::move(rhs.get())); + } + else { + this->m_has_value = false; + } + } + optional_move_base& operator=(const optional_move_base& rhs) = default; + optional_move_base& operator=(optional_move_base&& rhs) = default; + }; + + // This class manages conditionally having a trivial copy assignment operator + template <class T, + bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) && SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) && SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T)> + struct optional_copy_assign_base : optional_move_base<T> { + using optional_move_base<T>::optional_move_base; + }; + + template <class T> + struct optional_copy_assign_base<T, false> : optional_move_base<T> { + using optional_move_base<T>::optional_move_base; + + optional_copy_assign_base() = default; + optional_copy_assign_base(const optional_copy_assign_base& rhs) = default; + + optional_copy_assign_base(optional_copy_assign_base&& rhs) = default; + optional_copy_assign_base& operator=(const optional_copy_assign_base& rhs) { + this->assign(rhs); + return *this; + } + optional_copy_assign_base& operator=(optional_copy_assign_base&& rhs) = default; + }; + +// This class manages conditionally having a trivial move assignment operator +// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it +// doesn't implement an analogue to std::is_trivially_move_assignable. We have +// to make do with a non-trivial move assignment operator even if T is trivially +// move assignable +#ifndef SOL_TL_OPTIONAL_GCC49 + template <class T, + bool = std::is_trivially_destructible<T>::value&& std::is_trivially_move_constructible<T>::value&& std::is_trivially_move_assignable<T>::value> + struct optional_move_assign_base : optional_copy_assign_base<T> { + using optional_copy_assign_base<T>::optional_copy_assign_base; + }; +#else + template <class T, bool = false> + struct optional_move_assign_base; +#endif + + template <class T> + struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> { + using optional_copy_assign_base<T>::optional_copy_assign_base; + + optional_move_assign_base() = default; + optional_move_assign_base(const optional_move_assign_base& rhs) = default; + + optional_move_assign_base(optional_move_assign_base&& rhs) = default; + + optional_move_assign_base& operator=(const optional_move_assign_base& rhs) = default; + + optional_move_assign_base& operator=(optional_move_assign_base&& rhs) noexcept( + std::is_nothrow_move_constructible<T>::value&& std::is_nothrow_move_assignable<T>::value) { + this->assign(std::move(rhs)); + return *this; + } + }; + + // optional_delete_ctor_base will conditionally delete copy and move + // constructors depending on whether T is copy/move constructible + template <class T, bool EnableCopy = std::is_copy_constructible<T>::value, bool EnableMove = std::is_move_constructible<T>::value> + struct optional_delete_ctor_base { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base&) = default; + optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default; + optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; + optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; + }; + + template <class T> + struct optional_delete_ctor_base<T, true, false> { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base&) = default; + optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete; + optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; + optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; + }; + + template <class T> + struct optional_delete_ctor_base<T, false, true> { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base&) = delete; + optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default; + optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; + optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; + }; + + template <class T> + struct optional_delete_ctor_base<T, false, false> { + optional_delete_ctor_base() = default; + optional_delete_ctor_base(const optional_delete_ctor_base&) = delete; + optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete; + optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; + optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; + }; + + // optional_delete_assign_base will conditionally delete copy and move + // constructors depending on whether T is copy/move constructible + assignable + template <class T, bool EnableCopy = (std::is_copy_constructible<T>::value && std::is_copy_assignable<T>::value), + bool EnableMove = (std::is_move_constructible<T>::value && std::is_move_assignable<T>::value)> + struct optional_delete_assign_base { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base&) = default; + optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; + optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default; + optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default; + }; + + template <class T> + struct optional_delete_assign_base<T, true, false> { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base&) = default; + optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; + optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default; + optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete; + }; + + template <class T> + struct optional_delete_assign_base<T, false, true> { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base&) = default; + optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; + optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete; + optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default; + }; + + template <class T> + struct optional_delete_assign_base<T, false, false> { + optional_delete_assign_base() = default; + optional_delete_assign_base(const optional_delete_assign_base&) = default; + optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; + optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete; + optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete; + }; + + } // namespace detail + + /// \brief A tag type to represent an empty optional + struct nullopt_t { + struct do_not_use {}; + constexpr explicit nullopt_t(do_not_use, do_not_use) noexcept { + } + }; + /// \brief Represents an empty optional + /// \synopsis static constexpr nullopt_t nullopt; + /// + /// *Examples*: + /// ``` + /// sol::optional<int> a = sol::nullopt; + /// void foo (sol::optional<int>); + /// foo(sol::nullopt); //pass an empty optional + /// ``` + static constexpr nullopt_t nullopt{ nullopt_t::do_not_use{}, nullopt_t::do_not_use{} }; + + class bad_optional_access : public std::exception { + public: + bad_optional_access() = default; + const char* what() const noexcept { + return "Optional has no value"; + } + }; + + /// An optional object is an object that contains the storage for another + /// object and manages the lifetime of this contained object, if any. The + /// contained object may be initialized after the optional object has been + /// initialized, and may be destroyed before the optional object has been + /// destroyed. The initialization state of the contained object is tracked by + /// the optional object. + template <class T> + class optional : private detail::optional_move_assign_base<T>, + private detail::optional_delete_ctor_base<T>, + private detail::optional_delete_assign_base<T> { + using base = detail::optional_move_assign_base<T>; + + static_assert(!std::is_same<T, in_place_t>::value, "instantiation of optional with in_place_t is ill-formed"); + static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value, "instantiation of optional with nullopt_t is ill-formed"); + + public: +// The different versions for C++14 and 11 are needed because deduced return +// types are not SFINAE-safe. This provides better support for things like +// generic lambdas. C.f. +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0.html +#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) + /// \group and_then + /// Carries out some operation which returns an optional on the stored + /// object if there is one. \requires `std::invoke(std::forward<F>(f), + /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be + /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a + /// `std::optional<U>`. The return value is empty if `*this` is empty, + /// otherwise the return value of `std::invoke(std::forward<F>(f), value())` + /// is returned. + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & { + using result = detail::invoke_result_t<F, T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && { + using result = detail::invoke_result_t<F, T&&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; + template <class F> + constexpr auto and_then(F&& f) const& { + using result = detail::invoke_result_t<F, const T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; + template <class F> + constexpr auto and_then(F&& f) const&& { + using result = detail::invoke_result_t<F, const T&&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); + } +#endif +#else + /// \group and_then + /// Carries out some operation which returns an optional on the stored + /// object if there is one. \requires `std::invoke(std::forward<F>(f), + /// value())` returns a `std::optional<U>` for some `U`. + /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), + /// value())`. Returns a `std::optional<U>`. The return value is empty if + /// `*this` is empty, otherwise the return value of + /// `std::invoke(std::forward<F>(f), value())` is returned. + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & { + using result = detail::invoke_result_t<F, T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&&> and_then(F&& f) && { + using result = detail::invoke_result_t<F, T&&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; + template <class F> + constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& { + using result = detail::invoke_result_t<F, const T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; + template <class F> + constexpr detail::invoke_result_t<F, const T&&> and_then(F&& f) const&& { + using result = detail::invoke_result_t<F, const T&&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); + } +#endif +#endif + +#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) + /// \brief Carries out some operation on the stored object if there is one. + /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), + /// value())`. Returns a `std::optional<U>`. The return value is empty if + /// `*this` is empty, otherwise an `optional<U>` is constructed from the + /// return value of `std::invoke(std::forward<F>(f), value())` and is + /// returned. + /// + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) const&; + template <class F> + constexpr auto map(F&& f) const& { + return optional_map_impl(*this, std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) const&&; + template <class F> + constexpr auto map(F&& f) const&& { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#else + /// \brief Carries out some operation on the stored object if there is one. + /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), + /// value())`. Returns a `std::optional<U>`. The return value is empty if + /// `*this` is empty, otherwise an `optional<U>` is constructed from the + /// return value of `std::invoke(std::forward<F>(f), value())` and is + /// returned. + /// + /// \group map + /// \synopsis template <class F> auto map(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & { + return optional_map_impl(*this, std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> auto map(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> auto map(F &&f) const&; + template <class F> + constexpr decltype(optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& { + return optional_map_impl(*this, std::forward<F>(f)); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group map + /// \synopsis template <class F> auto map(F &&f) const&&; + template <class F> + constexpr decltype(optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& { + return optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#endif +#endif + + /// \brief Calls `f` if the optional is empty + /// \requires `std::invoke_result_t<F>` must be void or convertible to + /// `optional<T>`. + /// \effects If `*this` has a value, returns `*this`. + /// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns + /// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`. + /// + /// \group or_else + /// \synopsis template <class F> optional<T> or_else (F &&f) &; + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { + return has_value() ? *this : std::forward<F>(f)(); + } + + /// \group or_else + /// \synopsis template <class F> optional<T> or_else (F &&f) &&; + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) && { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } + + /// \group or_else + /// \synopsis template <class F> optional<T> or_else (F &&f) const &; + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) const& { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& { + return has_value() ? *this : std::forward<F>(f)(); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \exclude + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) const&& { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) const&& { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } +#endif + + /// \brief Maps the stored value with `f` if there is one, otherwise returns + /// `u`. + /// + /// \details If there is a value stored, then `f` is called with `**this` + /// and the value is returned. Otherwise `u` is returned. + /// + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); + } + + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); + } + + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) const& { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) const&& { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); + } +#endif + + /// \brief Maps the stored value with `f` if there is one, otherwise calls + /// `u` and returns the result. + /// + /// \details If there is a value stored, then `f` is + /// called with `**this` and the value is returned. Otherwise + /// `std::forward<U>(u)()` is returned. + /// + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); + } + + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) + /// &&; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); + } + + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) + /// const &; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) + /// const &&; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); + } +#endif + + /// \returns `u` if `*this` has a value, otherwise an empty optional. + template <class U> + constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const { + using result = optional<detail::decay_t<U>>; + return has_value() ? result{ u } : result{ nullopt }; + } + + /// \returns `rhs` if `*this` is empty, otherwise the current value. + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & { + return has_value() ? *this : rhs; + } + + /// \group disjunction + constexpr optional disjunction(const optional& rhs) const& { + return has_value() ? *this : rhs; + } + + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && { + return has_value() ? std::move(*this) : rhs; + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group disjunction + constexpr optional disjunction(const optional& rhs) const&& { + return has_value() ? std::move(*this) : rhs; + } +#endif + + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & { + return has_value() ? *this : std::move(rhs); + } + + /// \group disjunction + constexpr optional disjunction(optional&& rhs) const& { + return has_value() ? *this : std::move(rhs); + } + + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && { + return has_value() ? std::move(*this) : std::move(rhs); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group disjunction + constexpr optional disjunction(optional&& rhs) const&& { + return has_value() ? std::move(*this) : std::move(rhs); + } +#endif + + /// Takes the value out of the optional, leaving it empty + /// \group take + optional take() & { + optional ret = *this; + reset(); + return ret; + } + + /// \group take + optional take() const& { + optional ret = *this; + reset(); + return ret; + } + + /// \group take + optional take() && { + optional ret = std::move(*this); + reset(); + return ret; + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group take + optional take() const&& { + optional ret = std::move(*this); + reset(); + return ret; + } +#endif + + using value_type = T; + + /// Constructs an optional that does not contain a value. + /// \group ctor_empty + constexpr optional() noexcept = default; + + /// \group ctor_empty + constexpr optional(nullopt_t) noexcept { + } + + /// Copy constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) = default; + + /// Move constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default; + + /// Constructs the stored value in-place using the given arguments. + /// \group in_place + /// \synopsis template <class... Args> constexpr explicit optional(in_place_t, Args&&... args); + template <class... Args> + constexpr explicit optional(detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>, Args&&... args) + : base(in_place, std::forward<Args>(args)...) { + } + + /// \group in_place + /// \synopsis template <class U, class... Args>\nconstexpr explicit optional(in_place_t, std::initializer_list<U>&, Args&&... args); + template <class U, class... Args> + SOL_TL_OPTIONAL_11_CONSTEXPR explicit optional(detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, in_place_t>, + std::initializer_list<U> il, Args&&... args) { + this->construct(il, std::forward<Args>(args)...); + } + +#if 0 // SOL_MODIFICATION + /// Constructs the stored value with `u`. + /// \synopsis template <class U=T> constexpr optional(U &&u); + template <class U = T, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr> + constexpr optional(U&& u) : base(in_place, std::forward<U>(u)) { + } + + /// \exclude + template <class U = T, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr> + constexpr explicit optional(U&& u) : base(in_place, std::forward<U>(u)) { + } +#else + /// Constructs the stored value with `u`. + /// \synopsis template <class U=T> constexpr optional(U &&u); + constexpr optional(T&& u) : base(in_place, std::move(u)) { + } + + /// \exclude + constexpr optional(const T& u) : base(in_place, u) { + } +#endif // sol3 modification + + /// Converting copy constructor. + /// \synopsis template <class U> optional(const optional<U> &rhs); + template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<std::is_convertible<const U&, T>::value>* = nullptr> + optional(const optional<U>& rhs) { + if (rhs.has_value()) { + this->construct(*rhs); + } + } + + /// \exclude + template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<!std::is_convertible<const U&, T>::value>* = nullptr> + explicit optional(const optional<U>& rhs) { + if (rhs.has_value()) { + this->construct(*rhs); + } + } + + /// Converting move constructor. + /// \synopsis template <class U> optional(optional<U> &&rhs); + template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr> + optional(optional<U>&& rhs) { + if (rhs.has_value()) { + this->construct(std::move(*rhs)); + } + } + + /// \exclude + template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr> + explicit optional(optional<U>&& rhs) { + this->construct(std::move(*rhs)); + } + + /// Destroys the stored value if there is one. + ~optional() = default; + + /// Assignment to empty. + /// + /// Destroys the current value if there is one. + optional& operator=(nullopt_t) noexcept { + if (has_value()) { + this->m_value.~T(); + this->m_has_value = false; + } + + return *this; + } + + /// Copy assignment. + /// + /// Copies the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + optional& operator=(const optional& rhs) = default; + + /// Move assignment. + /// + /// Moves the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + optional& operator=(optional&& rhs) = default; + + /// Assigns the stored value from `u`, destroying the old value if there was + /// one. + /// \synopsis optional &operator=(U &&u); + template <class U = T, detail::enable_assign_forward<T, U>* = nullptr> + optional& operator=(U&& u) { + if (has_value()) { + this->m_value = std::forward<U>(u); + } + else { + this->construct(std::forward<U>(u)); + } + + return *this; + } + + /// Converting copy assignment operator. + /// + /// Copies the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + /// \synopsis optional &operator=(const optional<U> & rhs); + template <class U, detail::enable_assign_from_other<T, U, const U&>* = nullptr> + optional& operator=(const optional<U>& rhs) { + if (has_value()) { + if (rhs.has_value()) { + this->m_value = *rhs; + } + else { + this->hard_reset(); + } + } + + if (rhs.has_value()) { + this->construct(*rhs); + } + + return *this; + } + + // TODO check exception guarantee + /// Converting move assignment operator. + /// + /// Moves the value from `rhs` if there is one. Otherwise resets the stored + /// value in `*this`. + /// \synopsis optional &operator=(optional<U> && rhs); + template <class U, detail::enable_assign_from_other<T, U, U>* = nullptr> + optional& operator=(optional<U>&& rhs) { + if (has_value()) { + if (rhs.has_value()) { + this->m_value = std::move(*rhs); + } + else { + this->hard_reset(); + } + } + + if (rhs.has_value()) { + this->construct(std::move(*rhs)); + } + + return *this; + } + + /// Constructs the value in-place, destroying the current one if there is + /// one. + /// \group emplace + template <class... Args> + T& emplace(Args&&... args) { + static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args"); + + *this = nullopt; + this->construct(std::forward<Args>(args)...); + return value(); + } + + /// \group emplace + /// \synopsis template <class U, class... Args>\nT& emplace(std::initializer_list<U> il, Args &&... args); + template <class U, class... Args> + detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, T&> emplace(std::initializer_list<U> il, Args&&... args) { + *this = nullopt; + this->construct(il, std::forward<Args>(args)...); + return value(); + } + + /// Swaps this optional with the other. + /// + /// If neither optionals have a value, nothing happens. + /// If both have a value, the values are swapped. + /// If one has a value, it is moved to the other and the movee is left + /// valueless. + void swap(optional& rhs) noexcept(std::is_nothrow_move_constructible<T>::value&& detail::is_nothrow_swappable<T>::value) { + if (has_value()) { + if (rhs.has_value()) { + using std::swap; + swap(**this, *rhs); + } + else { + new (std::addressof(rhs.m_value)) T(std::move(this->m_value)); + this->m_value.T::~T(); + } + } + else if (rhs.has_value()) { + new (std::addressof(this->m_value)) T(std::move(rhs.m_value)); + rhs.m_value.T::~T(); + } + } + + /// \returns a pointer to the stored value + /// \requires a value is stored + /// \group pointer + /// \synopsis constexpr const T *operator->() const; + constexpr const T* operator->() const { + return std::addressof(this->m_value); + } + + /// \group pointer + /// \synopsis constexpr T *operator->(); + SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() { + return std::addressof(this->m_value); + } + + /// \returns the stored value + /// \requires a value is stored + /// \group deref + /// \synopsis constexpr T &operator*(); + SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() & { + return this->m_value; + } + + /// \group deref + /// \synopsis constexpr const T &operator*() const; + constexpr const T& operator*() const& { + return this->m_value; + } + + /// \exclude + SOL_TL_OPTIONAL_11_CONSTEXPR T&& operator*() && { + return std::move(this->m_value); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \exclude + constexpr const T&& operator*() const&& { + return std::move(this->m_value); + } +#endif + + /// \returns whether or not the optional has a value + /// \group has_value + constexpr bool has_value() const noexcept { + return this->m_has_value; + } + + /// \group has_value + constexpr explicit operator bool() const noexcept { + return this->m_has_value; + } + + /// \returns the contained value if there is one, otherwise throws + /// [bad_optional_access] + /// \group value + /// \synopsis constexpr T &value(); + SOL_TL_OPTIONAL_11_CONSTEXPR T& value() & { + if (has_value()) + return this->m_value; + throw bad_optional_access(); + } + /// \group value + /// \synopsis constexpr const T &value() const; + SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const& { + if (has_value()) + return this->m_value; + throw bad_optional_access(); + } + /// \exclude + SOL_TL_OPTIONAL_11_CONSTEXPR T&& value() && { + if (has_value()) + return std::move(this->m_value); + throw bad_optional_access(); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \exclude + SOL_TL_OPTIONAL_11_CONSTEXPR const T&& value() const&& { + if (has_value()) + return std::move(this->m_value); + throw bad_optional_access(); + } +#endif + + /// \returns the stored value if there is one, otherwise returns `u` + /// \group value_or + template <class U> + constexpr T value_or(U&& u) const& { + static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be copy constructible and convertible from U"); + return has_value() ? **this : static_cast<T>(std::forward<U>(u)); + } + + /// \group value_or + template <class U> + SOL_TL_OPTIONAL_11_CONSTEXPR T value_or(U&& u) && { + static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be move constructible and convertible from U"); + return has_value() ? **this : static_cast<T>(std::forward<U>(u)); + } + + /// Destroys the stored value if one exists, making the optional empty + void reset() noexcept { + if (has_value()) { + this->m_value.~T(); + this->m_has_value = false; + } + } + }; // namespace sol + + /// \group relop + /// \brief Compares two optional objects + /// \details If both optionals contain a value, they are compared with `T`s + /// relational operators. Otherwise `lhs` and `rhs` are equal only if they are + /// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs` + /// is not. + template <class T, class U> + inline constexpr bool operator==(const optional<T>& lhs, const optional<U>& rhs) { + return lhs.has_value() == rhs.has_value() && (!lhs.has_value() || *lhs == *rhs); + } + /// \group relop + template <class T, class U> + inline constexpr bool operator!=(const optional<T>& lhs, const optional<U>& rhs) { + return lhs.has_value() != rhs.has_value() || (lhs.has_value() && *lhs != *rhs); + } + /// \group relop + template <class T, class U> + inline constexpr bool operator<(const optional<T>& lhs, const optional<U>& rhs) { + return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs); + } + /// \group relop + template <class T, class U> + inline constexpr bool operator>(const optional<T>& lhs, const optional<U>& rhs) { + return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs); + } + /// \group relop + template <class T, class U> + inline constexpr bool operator<=(const optional<T>& lhs, const optional<U>& rhs) { + return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs); + } + /// \group relop + template <class T, class U> + inline constexpr bool operator>=(const optional<T>& lhs, const optional<U>& rhs) { + return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs); + } + + /// \group relop_nullopt + /// \brief Compares an optional to a `nullopt` + /// \details Equivalent to comparing the optional to an empty optional + template <class T> + inline constexpr bool operator==(const optional<T>& lhs, nullopt_t) noexcept { + return !lhs.has_value(); + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator==(nullopt_t, const optional<T>& rhs) noexcept { + return !rhs.has_value(); + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator!=(const optional<T>& lhs, nullopt_t) noexcept { + return lhs.has_value(); + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator!=(nullopt_t, const optional<T>& rhs) noexcept { + return rhs.has_value(); + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator<(const optional<T>&, nullopt_t) noexcept { + return false; + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator<(nullopt_t, const optional<T>& rhs) noexcept { + return rhs.has_value(); + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator<=(const optional<T>& lhs, nullopt_t) noexcept { + return !lhs.has_value(); + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept { + return true; + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator>(const optional<T>& lhs, nullopt_t) noexcept { + return lhs.has_value(); + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator>(nullopt_t, const optional<T>&) noexcept { + return false; + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept { + return true; + } + /// \group relop_nullopt + template <class T> + inline constexpr bool operator>=(nullopt_t, const optional<T>& rhs) noexcept { + return !rhs.has_value(); + } + + /// \group relop_t + /// \brief Compares the optional with a value. + /// \details If the optional has a value, it is compared with the other value + /// using `T`s relational operators. Otherwise, the optional is considered + /// less than the value. + template <class T, class U> + inline constexpr bool operator==(const optional<T>& lhs, const U& rhs) { + return lhs.has_value() ? *lhs == rhs : false; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator==(const U& lhs, const optional<T>& rhs) { + return rhs.has_value() ? lhs == *rhs : false; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator!=(const optional<T>& lhs, const U& rhs) { + return lhs.has_value() ? *lhs != rhs : true; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator!=(const U& lhs, const optional<T>& rhs) { + return rhs.has_value() ? lhs != *rhs : true; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator<(const optional<T>& lhs, const U& rhs) { + return lhs.has_value() ? *lhs < rhs : true; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator<(const U& lhs, const optional<T>& rhs) { + return rhs.has_value() ? lhs < *rhs : false; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator<=(const optional<T>& lhs, const U& rhs) { + return lhs.has_value() ? *lhs <= rhs : true; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator<=(const U& lhs, const optional<T>& rhs) { + return rhs.has_value() ? lhs <= *rhs : false; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator>(const optional<T>& lhs, const U& rhs) { + return lhs.has_value() ? *lhs > rhs : false; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator>(const U& lhs, const optional<T>& rhs) { + return rhs.has_value() ? lhs > *rhs : true; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator>=(const optional<T>& lhs, const U& rhs) { + return lhs.has_value() ? *lhs >= rhs : false; + } + /// \group relop_t + template <class T, class U> + inline constexpr bool operator>=(const U& lhs, const optional<T>& rhs) { + return rhs.has_value() ? lhs >= *rhs : true; + } + + /// \synopsis template <class T>\nvoid swap(optional<T> &lhs, optional<T> &rhs); + template <class T, detail::enable_if_t<std::is_move_constructible<T>::value>* = nullptr, detail::enable_if_t<detail::is_swappable<T>::value>* = nullptr> + void swap(optional<T>& lhs, optional<T>& rhs) noexcept(noexcept(lhs.swap(rhs))) { + return lhs.swap(rhs); + } + + namespace detail { + struct i_am_secret {}; + } // namespace detail + + template <class T = detail::i_am_secret, class U, class Ret = detail::conditional_t<std::is_same<T, detail::i_am_secret>::value, detail::decay_t<U>, T>> + inline constexpr optional<Ret> make_optional(U&& v) { + return optional<Ret>(std::forward<U>(v)); + } + + template <class T, class... Args> + inline constexpr optional<T> make_optional(Args&&... args) { + return optional<T>(in_place, std::forward<Args>(args)...); + } + template <class T, class U, class... Args> + inline constexpr optional<T> make_optional(std::initializer_list<U> il, Args&&... args) { + return optional<T>(in_place, il, std::forward<Args>(args)...); + } + +#if __cplusplus >= 201703L + template <class T> + optional(T)->optional<T>; +#endif + + /// \exclude + namespace detail { +#ifdef SOL_TL_OPTIONAL_CXX14 + template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), + detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr> + constexpr auto optional_map_impl(Opt&& opt, F&& f) { + return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt); + } + + template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), + detail::enable_if_t<std::is_void<Ret>::value>* = nullptr> + auto optional_map_impl(Opt&& opt, F&& f) { + if (opt.has_value()) { + detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)); + return make_optional(monostate{}); + } + + return optional<monostate>(nullopt); + } +#else + template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), + detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr> + + constexpr auto optional_map_impl(Opt&& opt, F&& f) -> optional<Ret> { + return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt); + } + + template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), + detail::enable_if_t<std::is_void<Ret>::value>* = nullptr> + + auto optional_map_impl(Opt&& opt, F&& f) -> optional<monostate> { + if (opt.has_value()) { + detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)); + return monostate{}; + } + + return nullopt; + } +#endif + } // namespace detail + + /// Specialization for when `T` is a reference. `optional<T&>` acts similarly + /// to a `T*`, but provides more operations and shows intent more clearly. + /// + /// *Examples*: + /// + /// ``` + /// int i = 42; + /// sol::optional<int&> o = i; + /// *o == 42; //true + /// i = 12; + /// *o = 12; //true + /// &*o == &i; //true + /// ``` + /// + /// Assignment has rebind semantics rather than assign-through semantics: + /// + /// ``` + /// int j = 8; + /// o = j; + /// + /// &*o == &j; //true + /// ``` + template <class T> + class optional<T&> { + public: +// The different versions for C++14 and 11 are needed because deduced return +// types are not SFINAE-safe. This provides better support for things like +// generic lambdas. C.f. +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0.html +#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) + /// \group and_then + /// Carries out some operation which returns an optional on the stored + /// object if there is one. \requires `std::invoke(std::forward<F>(f), + /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be + /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a + /// `std::optional<U>`. The return value is empty if `*this` is empty, + /// otherwise the return value of `std::invoke(std::forward<F>(f), value())` + /// is returned. + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & { + using result = detail::invoke_result_t<F, T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && { + using result = detail::invoke_result_t<F, T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; + template <class F> + constexpr auto and_then(F&& f) const& { + using result = detail::invoke_result_t<F, const T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; + template <class F> + constexpr auto and_then(F&& f) const&& { + using result = detail::invoke_result_t<F, const T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } +#endif +#else + /// \group and_then + /// Carries out some operation which returns an optional on the stored + /// object if there is one. \requires `std::invoke(std::forward<F>(f), + /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be + /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a + /// `std::optional<U>`. The return value is empty if `*this` is empty, + /// otherwise the return value of `std::invoke(std::forward<F>(f), value())` + /// is returned. + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & { + using result = detail::invoke_result_t<F, T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) && { + using result = detail::invoke_result_t<F, T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; + template <class F> + constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& { + using result = detail::invoke_result_t<F, const T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group and_then + /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; + template <class F> + constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&& { + using result = detail::invoke_result_t<F, const T&>; + static_assert(detail::is_optional<result>::value, "F must return an optional"); + + return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); + } +#endif +#endif + +#if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) + /// \brief Carries out some operation on the stored object if there is one. + /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), + /// value())`. Returns a `std::optional<U>`. The return value is empty if + /// `*this` is empty, otherwise an `optional<U>` is constructed from the + /// return value of `std::invoke(std::forward<F>(f), value())` and is + /// returned. + /// + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) const&; + template <class F> + constexpr auto map(F&& f) const& { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> constexpr auto map(F &&f) const&&; + template <class F> + constexpr auto map(F&& f) const&& { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#else + /// \brief Carries out some operation on the stored object if there is one. + /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), + /// value())`. Returns a `std::optional<U>`. The return value is empty if + /// `*this` is empty, otherwise an `optional<U>` is constructed from the + /// return value of `std::invoke(std::forward<F>(f), value())` and is + /// returned. + /// + /// \group map + /// \synopsis template <class F> auto map(F &&f) &; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> auto map(F &&f) &&; + template <class F> + SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } + + /// \group map + /// \synopsis template <class F> auto map(F &&f) const&; + template <class F> + constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& { + return detail::optional_map_impl(*this, std::forward<F>(f)); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group map + /// \synopsis template <class F> auto map(F &&f) const&&; + template <class F> + constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& { + return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); + } +#endif +#endif + + /// \brief Calls `f` if the optional is empty + /// \requires `std::invoke_result_t<F>` must be void or convertible to + /// `optional<T>`. \effects If `*this` has a value, returns `*this`. + /// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns + /// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`. + /// + /// \group or_else + /// \synopsis template <class F> optional<T> or_else (F &&f) &; + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { + return has_value() ? *this : std::forward<F>(f)(); + } + + /// \group or_else + /// \synopsis template <class F> optional<T> or_else (F &&f) &&; + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) && { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } + + /// \group or_else + /// \synopsis template <class F> optional<T> or_else (F &&f) const &; + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) const& { + if (has_value()) + return *this; + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& { + return has_value() ? *this : std::forward<F>(f)(); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \exclude + template <class F, detail::enable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) const&& { + if (has_value()) + return std::move(*this); + + std::forward<F>(f)(); + return nullopt; + } + + /// \exclude + template <class F, detail::disable_if_ret_void<F>* = nullptr> + optional<T> or_else(F&& f) const&& { + return has_value() ? std::move(*this) : std::forward<F>(f)(); + } +#endif + + /// \brief Maps the stored value with `f` if there is one, otherwise returns + /// `u`. + /// + /// \details If there is a value stored, then `f` is called with `**this` + /// and the value is returned. Otherwise `u` is returned. + /// + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); + } + + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); + } + + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) const& { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group map_or + template <class F, class U> + U map_or(F&& f, U&& u) const&& { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); + } +#endif + + /// \brief Maps the stored value with `f` if there is one, otherwise calls + /// `u` and returns the result. + /// + /// \details If there is a value stored, then `f` is + /// called with `**this` and the value is returned. Otherwise + /// `std::forward<U>(u)()` is returned. + /// + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); + } + + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) + /// &&; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); + } + + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) + /// const &; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& { + return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group map_or_else + /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) + /// const &&; + template <class F, class U> + detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& { + return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); + } +#endif + + /// \returns `u` if `*this` has a value, otherwise an empty optional. + template <class U> + constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const { + using result = optional<detail::decay_t<U>>; + return has_value() ? result{ u } : result{ nullopt }; + } + + /// \returns `rhs` if `*this` is empty, otherwise the current value. + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & { + return has_value() ? *this : rhs; + } + + /// \group disjunction + constexpr optional disjunction(const optional& rhs) const& { + return has_value() ? *this : rhs; + } + + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && { + return has_value() ? std::move(*this) : rhs; + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group disjunction + constexpr optional disjunction(const optional& rhs) const&& { + return has_value() ? std::move(*this) : rhs; + } +#endif + + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & { + return has_value() ? *this : std::move(rhs); + } + + /// \group disjunction + constexpr optional disjunction(optional&& rhs) const& { + return has_value() ? *this : std::move(rhs); + } + + /// \group disjunction + SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && { + return has_value() ? std::move(*this) : std::move(rhs); + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group disjunction + constexpr optional disjunction(optional&& rhs) const&& { + return has_value() ? std::move(*this) : std::move(rhs); + } +#endif + + /// Takes the value out of the optional, leaving it empty + /// \group take + optional take() & { + optional ret = *this; + reset(); + return ret; + } + + /// \group take + optional take() const& { + optional ret = *this; + reset(); + return ret; + } + + /// \group take + optional take() && { + optional ret = std::move(*this); + reset(); + return ret; + } + +#ifndef SOL_TL_OPTIONAL_NO_CONSTRR + /// \group take + optional take() const&& { + optional ret = std::move(*this); + reset(); + return ret; + } +#endif + + using value_type = T&; + + /// Constructs an optional that does not contain a value. + /// \group ctor_empty + constexpr optional() noexcept : m_value(nullptr) { + } + + /// \group ctor_empty + constexpr optional(nullopt_t) noexcept : m_value(nullptr) { + } + + /// Copy constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) noexcept = default; + + /// Move constructor + /// + /// If `rhs` contains a value, the stored value is direct-initialized with + /// it. Otherwise, the constructed optional is empty. + SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default; + + /// Constructs the stored value with `u`. + /// \synopsis template <class U=T> constexpr optional(U &&u); + template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr> + constexpr optional(U&& u) : m_value(std::addressof(u)) { + static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue"); + } + + /// \exclude + template <class U> + constexpr explicit optional(const optional<U>& rhs) : optional(*rhs) { + } + + /// No-op + ~optional() = default; + + /// Assignment to empty. + /// + /// Destroys the current value if there is one. + optional& operator=(nullopt_t) noexcept { + m_value = nullptr; + return *this; + } + + /// Copy assignment. + /// + /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise + /// resets the stored value in `*this`. + optional& operator=(const optional& rhs) = default; + + /// Rebinds this optional to `u`. + /// + /// \requires `U` must be an lvalue reference. + /// \synopsis optional &operator=(U &&u); + template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr> + optional& operator=(U&& u) { + static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue"); + m_value = std::addressof(u); + return *this; + } + + /// Converting copy assignment operator. + /// + /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise + /// resets the stored value in `*this`. + template <class U> + optional& operator=(const optional<U>& rhs) { + m_value = std::addressof(rhs.value()); + return *this; + } + + /// Constructs the value in-place, destroying the current one if there is + /// one. + /// + /// \group emplace + template <class... Args> + T& emplace(Args&&... args) noexcept { + static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args"); + + *this = nullopt; + this->construct(std::forward<Args>(args)...); + } + + /// Swaps this optional with the other. + /// + /// If neither optionals have a value, nothing happens. + /// If both have a value, the values are swapped. + /// If one has a value, it is moved to the other and the movee is left + /// valueless. + void swap(optional& rhs) noexcept { + std::swap(m_value, rhs.m_value); + } + + /// \returns a pointer to the stored value + /// \requires a value is stored + /// \group pointer + /// \synopsis constexpr const T *operator->() const; + constexpr const T* operator->() const { + return m_value; + } + + /// \group pointer + /// \synopsis constexpr T *operator->(); + SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() { + return m_value; + } + + /// \returns the stored value + /// \requires a value is stored + /// \group deref + /// \synopsis constexpr T &operator*(); + SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() { + return *m_value; + } + + /// \group deref + /// \synopsis constexpr const T &operator*() const; + constexpr const T& operator*() const { + return *m_value; + } + + /// \returns whether or not the optional has a value + /// \group has_value + constexpr bool has_value() const noexcept { + return m_value != nullptr; + } + + /// \group has_value + constexpr explicit operator bool() const noexcept { + return m_value != nullptr; + } + + /// \returns the contained value if there is one, otherwise throws + /// [bad_optional_access] + /// \group value + /// synopsis constexpr T &value(); + SOL_TL_OPTIONAL_11_CONSTEXPR T& value() { + if (has_value()) + return *m_value; + throw bad_optional_access(); + } + /// \group value + /// \synopsis constexpr const T &value() const; + SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const { + if (has_value()) + return *m_value; + throw bad_optional_access(); + } + + /// \returns the stored value if there is one, otherwise returns `u` + /// \group value_or + template <class U> + constexpr T& value_or(U&& u) const { + static_assert(std::is_convertible<U&&, T&>::value, "T must be convertible from U"); + return has_value() ? const_cast<T&>(**this) : static_cast<T&>(std::forward<U>(u)); + } + + /// Destroys the stored value if one exists, making the optional empty + void reset() noexcept { + m_value = nullptr; + } + + private: + T* m_value; + }; + +} // namespace sol + +namespace std { + // TODO SFINAE + template <class T> + struct hash< ::sol::optional<T> > { + ::std::size_t operator()(const ::sol::optional<T>& o) const { + if (!o.has_value()) + return 0; + + return ::std::hash< ::sol::detail::remove_const_t<T>>()(*o); + } + }; +} // namespace std + +#endif // SOL_TL_OPTIONAL_HPP diff --git a/lib/sol2/include/sol/overload.hpp b/lib/sol2/include/sol/overload.hpp new file mode 100644 index 0000000..2b2f020 --- /dev/null +++ b/lib/sol2/include/sol/overload.hpp @@ -0,0 +1,50 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_OVERLOAD_HPP +#define SOL_OVERLOAD_HPP + +#include "traits.hpp" +#include <utility> + +namespace sol { + template <typename... Functions> + struct overload_set { + std::tuple<Functions...> functions; + template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler> + overload_set(Arg&& arg, Args&&... args) + : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + overload_set(const overload_set&) = default; + overload_set(overload_set&&) = default; + overload_set& operator=(const overload_set&) = default; + overload_set& operator=(overload_set&&) = default; + }; + + template <typename... Args> + decltype(auto) overload(Args&&... args) { + return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...); + } +} // namespace sol + +#endif // SOL_OVERLOAD_HPP
\ No newline at end of file diff --git a/lib/sol2/include/sol/pointer_like.hpp b/lib/sol2/include/sol/pointer_like.hpp new file mode 100644 index 0000000..054aee5 --- /dev/null +++ b/lib/sol2/include/sol/pointer_like.hpp @@ -0,0 +1,101 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_POINTER_LIKE_HPP
+#define SOL_POINTER_LIKE_HPP
+
+#include "base_traits.hpp"
+
+#include <utility>
+#include <type_traits>
+
+namespace sol {
+
+ namespace meta {
+ namespace meta_detail {
+ template <typename T>
+ using is_dereferenceable_test = decltype(*std::declval<T>());
+
+ template <typename T>
+ using is_explicitly_dereferenceable_test = decltype(std::declval<T>().operator*());
+ }
+
+ template <typename T>
+ using is_pointer_like = std::integral_constant<bool, !std::is_array_v<T> && (std::is_pointer_v<T> || is_detected_v<meta_detail::is_explicitly_dereferenceable_test, T>)>;
+
+ template <typename T>
+ constexpr inline bool is_pointer_like_v = is_pointer_like<T>::value;
+ } // namespace meta
+
+ namespace detail {
+
+ template <typename T>
+ auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
+ return std::forward<T>(item);
+ }
+
+ template <typename T>
+ T& unwrap(std::reference_wrapper<T> arg) {
+ return arg.get();
+ }
+
+ template <typename T>
+ inline decltype(auto) deref(T&& item) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::is_pointer_like_v<Tu>) {
+ return *std::forward<T>(item);
+ }
+ else {
+ return std::forward<T>(item);
+ }
+ }
+
+ template <typename T>
+ inline decltype(auto) deref_non_pointer(T&& item) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::is_pointer_like_v<Tu> && !std::is_pointer_v<Tu>) {
+ return *std::forward<T>(item);
+ }
+ else {
+ return std::forward<T>(item);
+ }
+ }
+
+ template <typename T>
+ inline T* ptr(T& val) {
+ return std::addressof(val);
+ }
+
+ template <typename T>
+ inline T* ptr(std::reference_wrapper<T> val) {
+ return std::addressof(val.get());
+ }
+
+ template <typename T>
+ inline T* ptr(T* val) {
+ return val;
+ }
+ } // namespace detail
+} // namespace sol
+
+#endif // SOL_POINTER_LIKE_HPP
diff --git a/lib/sol2/include/sol/policies.hpp b/lib/sol2/include/sol/policies.hpp new file mode 100644 index 0000000..7b8d738 --- /dev/null +++ b/lib/sol2/include/sol/policies.hpp @@ -0,0 +1,100 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_FILTERS_HPP +#define SOL_FILTERS_HPP + +#include "traits.hpp" + +#include <array> + +namespace sol { + namespace detail { + struct policy_base_tag {}; + } // namespace detail + + template <int Target, int... In> + struct static_stack_dependencies : detail::policy_base_tag {}; + typedef static_stack_dependencies<-1, 1> self_dependency; + template <int... In> + struct returns_self_with : detail::policy_base_tag {}; + typedef returns_self_with<> returns_self; + + struct stack_dependencies : detail::policy_base_tag { + int target; + std::array<int, 64> stack_indices; + std::size_t len; + + template <typename... Args> + stack_dependencies(int stack_target, Args&&... args) + : target(stack_target), stack_indices(), len(sizeof...(Args)) { + std::size_t i = 0; + (void)detail::swallow{int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())...}; + } + + int& operator[](std::size_t i) { + return stack_indices[i]; + } + + const int& operator[](std::size_t i) const { + return stack_indices[i]; + } + + std::size_t size() const { + return len; + } + }; + + template <typename F, typename... Policies> + struct policy_wrapper { + typedef std::index_sequence_for<Policies...> indices; + + F value; + std::tuple<Policies...> policies; + + template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, policy_wrapper>>> = meta::enabler> + policy_wrapper(Fx&& fx, Args&&... args) + : value(std::forward<Fx>(fx)), policies(std::forward<Args>(args)...) { + } + + policy_wrapper(const policy_wrapper&) = default; + policy_wrapper& operator=(const policy_wrapper&) = default; + policy_wrapper(policy_wrapper&&) = default; + policy_wrapper& operator=(policy_wrapper&&) = default; + }; + + template <typename F, typename... Args> + auto policies(F&& f, Args&&... args) { + return policy_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...); + } + + namespace detail { + template <typename T> + using is_policy = meta::is_specialization_of<T, policy_wrapper>; + + template <typename T> + inline constexpr bool is_policy_v = is_policy<T>::value; + } +} // namespace sol + +#endif // SOL_FILTERS_HPP diff --git a/lib/sol2/include/sol/property.hpp b/lib/sol2/include/sol/property.hpp new file mode 100644 index 0000000..cc7b77f --- /dev/null +++ b/lib/sol2/include/sol/property.hpp @@ -0,0 +1,149 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_PROPERTY_HPP +#define SOL_PROPERTY_HPP + +#include "types.hpp" +#include "ebco.hpp" +#include <type_traits> +#include <utility> + +namespace sol { + namespace detail { + struct no_prop {}; + } + + template <typename R, typename W> + struct property_wrapper : detail::ebco<R, 0>, detail::ebco<W, 1> { + private: + using read_base_t = detail::ebco<R, 0>; + using write_base_t = detail::ebco<W, 1>; + + public: + template <typename Rx, typename Wx> + property_wrapper(Rx&& r, Wx&& w) + : read_base_t(std::forward<Rx>(r)), write_base_t(std::forward<Wx>(w)) { + } + + W& write() { + return write_base_t::value(); + } + + const W& write() const { + return write_base_t::value(); + } + + R& read() { + return read_base_t::value(); + } + + const R& read() const { + return read_base_t::value(); + } + }; + + template <typename F, typename G> + inline decltype(auto) property(F&& f, G&& g) { + typedef lua_bind_traits<meta::unqualified_t<F>> left_traits; + typedef lua_bind_traits<meta::unqualified_t<G>> right_traits; + if constexpr (left_traits::free_arity < right_traits::free_arity) { + return property_wrapper<std::decay_t<F>, std::decay_t<G>>(std::forward<F>(f), std::forward<G>(g)); + } + else { + return property_wrapper<std::decay_t<G>, std::decay_t<F>>(std::forward<G>(g), std::forward<F>(f)); + } + } + + template <typename F> + inline decltype(auto) property(F&& f) { + typedef lua_bind_traits<meta::unqualified_t<F>> left_traits; + if constexpr (left_traits::free_arity < 2) { + return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop()); + } + else { + return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f)); + } + } + + template <typename F> + inline decltype(auto) readonly_property(F&& f) { + return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop()); + } + + template <typename F> + inline decltype(auto) writeonly_property(F&& f) { + return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f)); + } + + template <typename T> + struct readonly_wrapper : detail::ebco<T> { + private: + using base_t = detail::ebco<T>; + + public: + using base_t::base_t; + + operator T&() { + return base_t::value(); + } + operator const T&() const { + return base_t::value(); + } + }; + + // Allow someone to make a member variable readonly (const) + template <typename R, typename T> + inline auto readonly(R T::*v) { + return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v); + } + + template <typename T> + struct var_wrapper : detail::ebco<T> { + private: + using base_t = detail::ebco<T>; + + public: + using base_t::base_t; + }; + + template <typename V> + inline auto var(V&& v) { + typedef std::decay_t<V> T; + return var_wrapper<T>(std::forward<V>(v)); + } + + namespace meta { + template <typename T> + struct is_member_object : std::is_member_object_pointer<T> {}; + + template <typename T> + struct is_member_object<readonly_wrapper<T>> : std::true_type {}; + + template <typename T> + inline constexpr bool is_member_object_v = is_member_object<T>::value; + } // namespace meta + +} // namespace sol + +#endif // SOL_PROPERTY_HPP diff --git a/lib/sol2/include/sol/protect.hpp b/lib/sol2/include/sol/protect.hpp new file mode 100644 index 0000000..984952b --- /dev/null +++ b/lib/sol2/include/sol/protect.hpp @@ -0,0 +1,54 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_PROTECT_HPP +#define SOL_PROTECT_HPP + +#include "traits.hpp" +#include <utility> + +namespace sol { + + template <typename T> + struct protect_t { + T value; + + template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler> + protect_t(Arg&& arg, Args&&... args) + : value(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + + protect_t(const protect_t&) = default; + protect_t(protect_t&&) = default; + protect_t& operator=(const protect_t&) = default; + protect_t& operator=(protect_t&&) = default; + }; + + template <typename T> + auto protect(T&& value) { + return protect_t<std::decay_t<T>>(std::forward<T>(value)); + } + +} // namespace sol + +#endif // SOL_PROTECT_HPP diff --git a/lib/sol2/include/sol/protected_function.hpp b/lib/sol2/include/sol/protected_function.hpp new file mode 100644 index 0000000..bdb766b --- /dev/null +++ b/lib/sol2/include/sol/protected_function.hpp @@ -0,0 +1,351 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_PROTECTED_FUNCTION_HPP +#define SOL_PROTECTED_FUNCTION_HPP + +#include "reference.hpp" +#include "object.hpp" +#include "stack.hpp" +#include "protected_function_result.hpp" +#include "unsafe_function.hpp" +#include "protected_handler.hpp" +#include "bytecode.hpp" +#include "dump_handler.hpp" + +#include <cstdint> +#include <algorithm> + +namespace sol { + + namespace detail { + template <bool b, typename handler_t> + inline void handle_protected_exception(lua_State* L, optional<const std::exception&> maybe_ex, const char* error, detail::protected_handler<b, handler_t>& h) { + h.stackindex = 0; + if (b) { + h.target.push(); + detail::call_exception_handler(L, maybe_ex, error); + lua_call(L, 1, 1); + } + else { + detail::call_exception_handler(L, maybe_ex, error); + } + } + } + + template <typename ref_t, bool aligned = false, typename handler_t = reference> + class basic_protected_function : public basic_object<ref_t> { + private: + using base_t = basic_object<ref_t>; + + public: + using is_stack_handler = is_stack_based<handler_t>; + + static handler_t get_default_handler(lua_State* L) { + return detail::get_default_handler<handler_t, is_main_threaded<base_t>::value>(L); + } + + template <typename T> + static void set_default_handler(const T& ref) { + detail::set_default_handler(ref.lua_state(), ref); + } + + private: + template <bool b> + call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::protected_handler<b, handler_t>& h) const { + return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex)); + } + + template <std::size_t... I, bool b, typename... Ret> + auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + luacall(n, sizeof...(Ret), h); + return stack::pop<std::tuple<Ret...>>(lua_state()); + } + + template <std::size_t I, bool b, typename Ret> + Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + luacall(n, 1, h); + return stack::pop<Ret>(lua_state()); + } + + template <std::size_t I, bool b> + void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + luacall(n, 0, h); + } + + template <bool b> + protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + int stacksize = lua_gettop(lua_state()); + int poststacksize = stacksize; + int firstreturn = 1; + int returncount = 0; + call_status code = call_status::ok; +#if !defined(SOL_NO_EXCEPTIONS) || !SOL_NO_EXCEPTIONS +#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT) + try { +#endif // Safe Exception Propagation +#endif // No Exceptions + firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid() && !is_stack_handler::value))); + code = luacall(n, LUA_MULTRET, h); + poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid() && !is_stack_handler::value); + returncount = poststacksize - (firstreturn - 1); +#ifndef SOL_NO_EXCEPTIONS +#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT) + } + // Handle C++ errors thrown from C++ functions bound inside of lua + catch (const char* error) { + detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error, h); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } + catch (const std::string& error) { + detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error.c_str(), h); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } + catch (const std::exception& error) { + detail::handle_protected_exception(lua_state(), optional<const std::exception&>(error), error.what(), h); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } +#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) + // LuaJIT cannot have the catchall when the safe propagation is on + // but LuaJIT will swallow all C++ errors + // if we don't at least catch std::exception ones + catch (...) { + detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), detail::protected_function_error, h); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } +#endif // LuaJIT +#else + // do not handle exceptions: they can be propogated into C++ and keep all type information / rich information +#endif // Safe Exception Propagation +#endif // Exceptions vs. No Exceptions + return protected_function_result(lua_state(), firstreturn, returncount, returncount, code); + } + + public: + using base_t::lua_state; + + handler_t error_handler; + + basic_protected_function() = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_protected_function(T&& r) noexcept + : base_t(std::forward<T>(r)), error_handler(get_default_handler(r.lua_state())) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_function<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_protected_function>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_protected_function(const basic_protected_function&) = default; + basic_protected_function& operator=(const basic_protected_function&) = default; + basic_protected_function(basic_protected_function&&) = default; + basic_protected_function& operator=(basic_protected_function&&) = default; + basic_protected_function(const basic_function<base_t>& b) + : basic_protected_function(b, get_default_handler(b.lua_state())) { + } + basic_protected_function(basic_function<base_t>&& b) + : basic_protected_function(std::move(b), get_default_handler(b.lua_state())) { + } + basic_protected_function(const basic_function<base_t>& b, handler_t eh) + : base_t(b), error_handler(std::move(eh)) { + } + basic_protected_function(basic_function<base_t>&& b, handler_t eh) + : base_t(std::move(b)), error_handler(std::move(eh)) { + } + basic_protected_function(const stack_reference& r) + : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) { + } + basic_protected_function(stack_reference&& r) + : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) { + } + basic_protected_function(const stack_reference& r, handler_t eh) + : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) { + } + basic_protected_function(stack_reference&& r, handler_t eh) + : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) { + } + + template <typename Super> + basic_protected_function(const proxy_base<Super>& p) + : basic_protected_function(p, get_default_handler(p.lua_state())) { + } + template <typename Super> + basic_protected_function(proxy_base<Super>&& p) + : basic_protected_function(std::move(p), get_default_handler(p.lua_state())) { + } + template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler> + basic_protected_function(Proxy&& p, Handler&& eh) + : basic_protected_function(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) { + } + + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_protected_function(lua_State* L, T&& r) + : basic_protected_function(L, std::forward<T>(r), get_default_handler(L)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_protected_function(lua_State* L, T&& r, handler_t eh) + : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_protected_function>(lua_state(), -1, handler); +#endif // Safety + } + + basic_protected_function(lua_nil_t n) + : base_t(n), error_handler(n) { + } + + basic_protected_function(lua_State* L, int index = -1) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, int index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_protected_function>(L, index, handler); +#endif // Safety + } + basic_protected_function(lua_State* L, absolute_index index) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, absolute_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_protected_function>(L, index, handler); +#endif // Safety + } + basic_protected_function(lua_State* L, raw_index index) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, raw_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_protected_function>(L, index, handler); +#endif // Safety + } + basic_protected_function(lua_State* L, ref_index index) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, ref_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_protected_function>(lua_state(), -1, handler); +#endif // Safety + } + + template <typename Fx> + int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const { + this->push(); + auto ppn = stack::push_popper_n<false>(this->lua_state(), 1); + int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0); + if (r != 0) { + return on_error(this->lua_state(), r, writer, userdata, strip); + } + return r; + } + + int dump(lua_Writer writer, void* userdata, bool strip = false) const { + return dump(writer, userdata, strip, &dump_pass_on_error); + } + + template <typename Container = bytecode> + Container dump() const { + Container bc; + (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_throw_on_error); + return bc; + } + + template <typename Container = bytecode, typename Fx> + Container dump(Fx&& on_error) const { + Container bc; + (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error)); + return bc; + } + + template <typename... Args> + protected_function_result operator()(Args&&... args) const { + return call<>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) operator()(types<Ret...>, Args&&... args) const { + return call<Ret...>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) const { + if constexpr (!aligned) { + // we do not expect the function to already be on the stack: push it + if (error_handler.valid()) { + detail::protected_handler<true, handler_t> h(error_handler); + base_t::push(); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + else { + detail::protected_handler<false, handler_t> h(error_handler); + base_t::push(); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + } + else { + // the function is already on the stack at the right location + if (error_handler.valid()) { + // the handler will be pushed onto the stack manually, + // since it's not already on the stack this means we need to push our own + // function on the stack too and swap things to be in-place + if constexpr (!is_stack_handler::value) { + // so, we need to remove the function at the top and then dump the handler out ourselves + base_t::push(); + } + detail::protected_handler<true, handler_t> h(error_handler); + if constexpr (!is_stack_handler::value) { + lua_replace(lua_state(), -3); + h.stackindex = lua_absindex(lua_state(), -2); + } + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + else { + detail::protected_handler<false, handler_t> h(error_handler); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + } + } + }; +} // namespace sol + +#endif // SOL_FUNCTION_HPP diff --git a/lib/sol2/include/sol/protected_function_result.hpp b/lib/sol2/include/sol/protected_function_result.hpp new file mode 100644 index 0000000..19e523e --- /dev/null +++ b/lib/sol2/include/sol/protected_function_result.hpp @@ -0,0 +1,230 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_PROTECTED_FUNCTION_RESULT_HPP +#define SOL_PROTECTED_FUNCTION_RESULT_HPP + +#include "reference.hpp" +#include "tuple.hpp" +#include "stack.hpp" +#include "proxy_base.hpp" +#include "stack_iterator.hpp" +#include "stack_proxy.hpp" +#include "error.hpp" +#include "stack.hpp" +#include <cstdint> + +namespace sol { + struct protected_function_result : public proxy_base<protected_function_result> { + private: + lua_State* L; + int index; + int returncount; + int popcount; + call_status err; + + template <typename T> + decltype(auto) tagged_get(types<optional<T>>, int index_offset) const { + typedef decltype(stack::get<optional<T>>(L, index)) ret_t; + int target = index + index_offset; + if (!valid()) { + return ret_t(nullopt); + } + return stack::get<optional<T>>(L, target); + } + + template <typename T> + decltype(auto) tagged_get(types<T>, int index_offset) const { + int target = index + index_offset; +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES + if (!valid()) { + type t = type_of(L, target); + type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)"); + } +#endif // Check Argument Safety + return stack::get<T>(L, target); + } + + optional<error> tagged_get(types<optional<error>>, int index_offset) const { + int target = index + index_offset; + if (valid()) { + return nullopt; + } + return error(detail::direct_error, stack::get<std::string>(L, target)); + } + + error tagged_get(types<error>, int index_offset) const { + int target = index + index_offset; +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES + if (valid()) { + type t = type_of(L, target); + type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)"); + } +#endif // Check Argument Safety + return error(detail::direct_error, stack::get<std::string>(L, target)); + } + + public: + typedef stack_proxy reference_type; + typedef stack_proxy value_type; + typedef stack_proxy* pointer; + typedef std::ptrdiff_t difference_type; + typedef std::size_t size_type; + typedef stack_iterator<stack_proxy, false> iterator; + typedef stack_iterator<stack_proxy, true> const_iterator; + typedef std::reverse_iterator<iterator> reverse_iterator; + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; + + protected_function_result() = default; + protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept + : L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) { + } + protected_function_result(const protected_function_result&) = default; + protected_function_result& operator=(const protected_function_result&) = default; + protected_function_result(protected_function_result&& o) noexcept + : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + } + protected_function_result& operator=(protected_function_result&& o) noexcept { + L = o.L; + index = o.index; + returncount = o.returncount; + popcount = o.popcount; + err = o.err; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + return *this; + } + + protected_function_result(const unsafe_function_result& o) = delete; + protected_function_result& operator=(const unsafe_function_result& o) = delete; + protected_function_result(unsafe_function_result&& o) noexcept; + protected_function_result& operator=(unsafe_function_result&& o) noexcept; + + call_status status() const noexcept { + return err; + } + + bool valid() const noexcept { + return status() == call_status::ok || status() == call_status::yielded; + } + + template <typename T> + decltype(auto) get(int index_offset = 0) const { + return tagged_get(types<meta::unqualified_t<T>>(), index_offset); + } + + type get_type(difference_type index_offset = 0) const noexcept { + return type_of(L, index + static_cast<int>(index_offset)); + } + + stack_proxy operator[](difference_type index_offset) const { + return stack_proxy(L, index + static_cast<int>(index_offset)); + } + + iterator begin() { + return iterator(L, index, stack_index() + return_count()); + } + iterator end() { + return iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator begin() const { + return const_iterator(L, index, stack_index() + return_count()); + } + const_iterator end() const { + return const_iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator cbegin() const { + return begin(); + } + const_iterator cend() const { + return end(); + } + + reverse_iterator rbegin() { + return std::reverse_iterator<iterator>(begin()); + } + reverse_iterator rend() { + return std::reverse_iterator<iterator>(end()); + } + const_reverse_iterator rbegin() const { + return std::reverse_iterator<const_iterator>(begin()); + } + const_reverse_iterator rend() const { + return std::reverse_iterator<const_iterator>(end()); + } + const_reverse_iterator crbegin() const { + return std::reverse_iterator<const_iterator>(cbegin()); + } + const_reverse_iterator crend() const { + return std::reverse_iterator<const_iterator>(cend()); + } + + lua_State* lua_state() const noexcept { + return L; + }; + int stack_index() const noexcept { + return index; + }; + int return_count() const noexcept { + return returncount; + }; + int pop_count() const noexcept { + return popcount; + }; + void abandon() noexcept { + //L = nullptr; + index = 0; + returncount = 0; + popcount = 0; + err = call_status::runtime; + } + ~protected_function_result() { + stack::remove(L, index, popcount); + } + }; + + namespace stack { + template <> + struct unqualified_pusher<protected_function_result> { + static int push(lua_State* L, const protected_function_result& pfr) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, static_cast<int>(pfr.pop_count()), detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + int p = 0; + for (int i = 0; i < pfr.pop_count(); ++i) { + lua_pushvalue(L, i + pfr.stack_index()); + ++p; + } + return p; + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_PROTECTED_FUNCTION_RESULT_HPP diff --git a/lib/sol2/include/sol/protected_handler.hpp b/lib/sol2/include/sol/protected_handler.hpp new file mode 100644 index 0000000..e7eb2de --- /dev/null +++ b/lib/sol2/include/sol/protected_handler.hpp @@ -0,0 +1,113 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_PROTECTED_HANDLER_HPP +#define SOL_PROTECTED_HANDLER_HPP + +#include "reference.hpp" +#include "stack.hpp" +#include "protected_function_result.hpp" +#include "unsafe_function.hpp" +#include <cstdint> + +namespace sol { + namespace detail { + inline const char(&default_handler_name())[9]{ + static const char name[9] = "sol.\xF0\x9F\x94\xA9"; + return name; + } + + template <bool b, typename target_t = reference> + struct protected_handler { + typedef is_stack_based<target_t> is_stack; + const target_t& target; + int stackindex; + + protected_handler(std::false_type, const target_t& target) + : target(target), stackindex(0) { + if (b) { + stackindex = lua_gettop(target.lua_state()) + 1; + target.push(); + } + } + + protected_handler(std::true_type, const target_t& target) + : target(target), stackindex(0) { + if (b) { + stackindex = target.stack_index(); + } + } + + protected_handler(const target_t& target) + : protected_handler(is_stack(), target) { + } + + bool valid() const noexcept { + return b; + } + + ~protected_handler() { + if constexpr (!is_stack::value) { + if (stackindex != 0) { + lua_remove(target.lua_state(), stackindex); + } + } + } + }; + + template <typename base_t, typename T> + basic_function<base_t> force_cast(T& p) { + return p; + } + + template <typename Reference, bool is_main_ref = false> + static Reference get_default_handler(lua_State* L) { + if (is_stack_based<Reference>::value || L == nullptr) + return Reference(L, lua_nil); + L = is_main_ref ? main_thread(L, L) : L; + lua_getglobal(L, default_handler_name()); + auto pp = stack::pop_n(L, 1); + return Reference(L, -1); + } + + template <typename T> + static void set_default_handler(lua_State* L, const T& ref) { + if (L == nullptr) { + return; + } + if (!ref.valid()) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushnil(L); + lua_setglobal(L, default_handler_name()); + } + else { + ref.push(L); + lua_setglobal(L, default_handler_name()); + } + } + } // namespace detail +} // namespace sol + +#endif // SOL_PROTECTED_HANDLER_HPP diff --git a/lib/sol2/include/sol/proxy.hpp b/lib/sol2/include/sol/proxy.hpp new file mode 100644 index 0000000..9993ca2 --- /dev/null +++ b/lib/sol2/include/sol/proxy.hpp @@ -0,0 +1,324 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_PROXY_HPP +#define SOL_PROXY_HPP + +#include "traits.hpp" +#include "function.hpp" +#include "protected_function.hpp" +#include "proxy_base.hpp" + +namespace sol { + + template <typename Table, typename Key> + struct proxy : public proxy_base<proxy<Table, Key>> { + private: + using key_type = detail::proxy_key_t<Key>; + + template <typename T, std::size_t... I> + decltype(auto) tuple_get(std::index_sequence<I...>) const & { + return tbl.template traverse_get<T>(std::get<I>(key)...); + } + + template <typename T, std::size_t... I> + decltype(auto) tuple_get(std::index_sequence<I...>) && { + return tbl.template traverse_get<T>(std::get<I>(std::move(key))...); + } + + template <std::size_t... I, typename T> + void tuple_set(std::index_sequence<I...>, T&& value) & { + tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value)); + } + + template <std::size_t... I, typename T> + void tuple_set(std::index_sequence<I...>, T&& value) && { + tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value)); + } + + auto setup_table(std::true_type) { + auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, tbl.stack_index()); + lua_pop(lua_state(), p.levels); + return p; + } + + bool is_valid(std::false_type) { + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, lua_gettop(lua_state())); + lua_pop(lua_state(), p.levels); + return p; + } + + public: + Table tbl; + key_type key; + + template <typename T> + proxy(Table table, T&& k) + : tbl(table), key(std::forward<T>(k)) { + } + + template <typename T> + proxy& set(T&& item) & { + tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item)); + return *this; + } + + template <typename T> + proxy&& set(T&& item) && { + tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item)); + return std::move(*this); + } + + template <typename... Args> + proxy& set_function(Args&&... args) & { + tbl.set_function(key, std::forward<Args>(args)...); + return *this; + } + + template <typename... Args> + proxy&& set_function(Args&&... args) && { + tbl.set_function(std::move(key), std::forward<Args>(args)...); + return std::move(*this); + } + + template <typename T> + proxy& operator=(T&& other) & { + using Tu = meta::unwrap_unqualified_t<T>; + if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) { + return set_function(std::forward<T>(other)); + } + else { + return set(std::forward<T>(other)); + } + } + + template <typename T> + proxy&& operator=(T&& other) && { + using Tu = meta::unwrap_unqualified_t<T>; + if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) { + return std::move(*this).set_function(std::forward<T>(other)); + } + else { + return std::move(*this).set(std::forward<T>(other)); + } + } + + template <typename T> + proxy& operator=(std::initializer_list<T> other) & { + return set(std::move(other)); + } + + template <typename T> + proxy&& operator=(std::initializer_list<T> other) && { + return std::move(*this).set(std::move(other)); + } + + template <typename T> + decltype(auto) get() const & { + using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; + return tuple_get<T>(idx_seq()); + } + + template <typename T> + decltype(auto) get() && { + using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; + return std::move(*this).template tuple_get<T>(idx_seq()); + } + + template <typename T> + decltype(auto) get_or(T&& otherwise) const { + typedef decltype(get<T>()) U; + optional<U> option = get<optional<U>>(); + if (option) { + return static_cast<U>(option.value()); + } + return static_cast<U>(std::forward<T>(otherwise)); + } + + template <typename T, typename D> + decltype(auto) get_or(D&& otherwise) const { + optional<T> option = get<optional<T>>(); + if (option) { + return static_cast<T>(option.value()); + } + return static_cast<T>(std::forward<D>(otherwise)); + } + + + template <typename T> + decltype(auto) get_or_create() { + return get_or_create<T>(new_table()); + } + + template <typename T, typename Otherwise> + decltype(auto) get_or_create(Otherwise&& other) { + if (!this->valid()) { + this->set(std::forward<Otherwise>(other)); + } + return get<T>(); + } + + template <typename K> + decltype(auto) operator[](K&& k) const& { + auto keys = meta::tuplefy(key, std::forward<K>(k)); + return proxy<Table, decltype(keys)>(tbl, std::move(keys)); + } + + template <typename K> + decltype(auto) operator[](K&& k) & { + auto keys = meta::tuplefy(key, std::forward<K>(k)); + return proxy<Table, decltype(keys)>(tbl, std::move(keys)); + } + + template <typename K> + decltype(auto) operator[](K&& k) && { + auto keys = meta::tuplefy(std::move(key), std::forward<K>(k)); + return proxy<Table, decltype(keys)>(tbl, std::move(keys)); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) { +#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 + // MSVC is ass sometimes + return get<function>().call<Ret...>(std::forward<Args>(args)...); +#else + return get<function>().template call<Ret...>(std::forward<Args>(args)...); +#endif + } + + template <typename... Args> + decltype(auto) operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + + bool valid() const { + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); + lua_pop(lua_state(), p.levels); + return p; + } + + int push() const noexcept { + return push(this->lua_state()); + } + + int push(lua_State* L) const noexcept { + return get<reference>().push(L); + } + + type get_type() const { + type t = type::none; + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); + if (p) { + t = type_of(lua_state(), -1); + } + lua_pop(lua_state(), p.levels); + return t; + } + + lua_State* lua_state() const { + return tbl.lua_state(); + } + + proxy& force() { + if (!this->valid()) { + this->set(new_table()); + } + return *this; + } + }; + + template <typename Table, typename Key, typename T> + inline bool operator==(T&& left, const proxy<Table, Key>& right) { + using G = decltype(stack::get<T>(nullptr, 0)); + return right.template get<optional<G>>() == left; + } + + template <typename Table, typename Key, typename T> + inline bool operator==(const proxy<Table, Key>& right, T&& left) { + using G = decltype(stack::get<T>(nullptr, 0)); + return right.template get<optional<G>>() == left; + } + + template <typename Table, typename Key, typename T> + inline bool operator!=(T&& left, const proxy<Table, Key>& right) { + using G = decltype(stack::get<T>(nullptr, 0)); + return right.template get<optional<G>>() != left; + } + + template <typename Table, typename Key, typename T> + inline bool operator!=(const proxy<Table, Key>& right, T&& left) { + using G = decltype(stack::get<T>(nullptr, 0)); + return right.template get<optional<G>>() != left; + } + + template <typename Table, typename Key> + inline bool operator==(lua_nil_t, const proxy<Table, Key>& right) { + return !right.valid(); + } + + template <typename Table, typename Key> + inline bool operator==(const proxy<Table, Key>& right, lua_nil_t) { + return !right.valid(); + } + + template <typename Table, typename Key> + inline bool operator!=(lua_nil_t, const proxy<Table, Key>& right) { + return right.valid(); + } + + template <typename Table, typename Key> + inline bool operator!=(const proxy<Table, Key>& right, lua_nil_t) { + return right.valid(); + } + + template <bool b> + template <typename Super> + basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) { + basic_reference<b> v = r; + this->operator=(std::move(v)); + return *this; + } + + template <bool b> + template <typename Super> + basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) { + basic_reference<b> v = r; + this->operator=(std::move(v)); + return *this; + } + + namespace stack { + template <typename Table, typename Key> + struct unqualified_pusher<proxy<Table, Key>> { + static int push(lua_State* L, const proxy<Table, Key>& p) { + reference r = p; + return r.push(L); + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_PROXY_HPP diff --git a/lib/sol2/include/sol/proxy_base.hpp b/lib/sol2/include/sol/proxy_base.hpp new file mode 100644 index 0000000..9f7bd4e --- /dev/null +++ b/lib/sol2/include/sol/proxy_base.hpp @@ -0,0 +1,66 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_PROXY_BASE_HPP +#define SOL_PROXY_BASE_HPP + +#include "reference.hpp" +#include "tuple.hpp" +#include "stack.hpp" + +namespace sol { + struct proxy_base_tag {}; + + namespace detail { + template <typename T> + using proxy_key_t = meta::conditional_t<meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>, T, + std::tuple<meta::conditional_t<std::is_array_v<meta::unqualified_t<T>>, std::remove_reference_t<T>&, meta::unqualified_t<T>>>>; + } + + template <typename Super> + struct proxy_base : proxy_base_tag { + operator std::string() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.template get<std::string>(); + } + + template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler> + operator T() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.template get<T>(); + } + + template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler> + operator T&() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.template get<T&>(); + } + + lua_State* lua_state() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.lua_state(); + } + }; +} // namespace sol + +#endif // SOL_PROXY_BASE_HPP diff --git a/lib/sol2/include/sol/raii.hpp b/lib/sol2/include/sol/raii.hpp new file mode 100644 index 0000000..c927bd6 --- /dev/null +++ b/lib/sol2/include/sol/raii.hpp @@ -0,0 +1,166 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_RAII_HPP +#define SOL_RAII_HPP + +#include "traits.hpp" +#include "compatibility.hpp" + +#include <memory> + +namespace sol { + namespace detail { + struct default_construct { + template <typename T, typename... Args> + static void construct(T&& obj, Args&&... args) { + typedef meta::unqualified_t<T> Tu; + std::allocator<Tu> alloc{}; + std::allocator_traits<std::allocator<Tu>>::construct(alloc, std::forward<T>(obj), std::forward<Args>(args)...); + } + + template <typename T, typename... Args> + void operator()(T&& obj, Args&&... args) const { + construct(std::forward<T>(obj), std::forward<Args>(args)...); + } + }; + + struct default_destruct { + template <typename T> + static void destroy(T&& obj) { + std::allocator<meta::unqualified_t<T>> alloc{}; + alloc.destroy(obj); + } + + template <typename T> + void operator()(T&& obj) const { + destroy(std::forward<T>(obj)); + } + }; + + struct deleter { + template <typename T> + void operator()(T* p) const { + delete p; + } + }; + + struct state_deleter { + void operator()(lua_State* L) const { + lua_close(L); + } + }; + + template <typename T, typename Dx, typename... Args> + inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) { + return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...)); + } + + template <typename Tag, typename T> + struct tagged { + private: + T value_; + + public: + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler> + tagged(Arg&& arg, Args&&... args) + : value_(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + + T& value() & { + return value_; + } + + T const& value() const& { + return value_; + } + + T&& value() && { + return std::move(value_); + } + }; + } // namespace detail + + template <typename... Args> + struct constructor_list {}; + + template <typename... Args> + using constructors = constructor_list<Args...>; + + const auto default_constructor = constructors<types<>>{}; + + struct no_construction {}; + const auto no_constructor = no_construction{}; + + struct call_construction {}; + const auto call_constructor = call_construction{}; + + template <typename... Functions> + struct constructor_wrapper { + std::tuple<Functions...> functions; + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler> + constructor_wrapper(Arg&& arg, Args&&... args) + : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + }; + + template <typename... Functions> + inline auto initializers(Functions&&... functions) { + return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...); + } + + template <typename... Functions> + struct factory_wrapper { + std::tuple<Functions...> functions; + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler> + factory_wrapper(Arg&& arg, Args&&... args) + : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + }; + + template <typename... Functions> + inline auto factories(Functions&&... functions) { + return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...); + } + + template <typename Function> + struct destructor_wrapper { + Function fx; + destructor_wrapper(Function f) + : fx(std::move(f)) { + } + }; + + template <> + struct destructor_wrapper<void> {}; + + const destructor_wrapper<void> default_destructor{}; + + template <typename Fx> + inline auto destructor(Fx&& fx) { + return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx)); + } + +} // namespace sol + +#endif // SOL_RAII_HPP diff --git a/lib/sol2/include/sol/reference.hpp b/lib/sol2/include/sol/reference.hpp new file mode 100644 index 0000000..3859bea --- /dev/null +++ b/lib/sol2/include/sol/reference.hpp @@ -0,0 +1,749 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_REFERENCE_HPP +#define SOL_REFERENCE_HPP + +#include "types.hpp" +#include "stack_reference.hpp" + +#include <functional> + +namespace sol { + namespace detail { + inline const char (&default_main_thread_name())[9] { + static const char name[9] = "sol.\xF0\x9F\x93\x8C"; + return name; + } + } // namespace detail + + namespace stack { + inline void remove(lua_State* L, int rawindex, int count) { + if (count < 1) + return; + int top = lua_gettop(L); + if (top < 1) { + return; + } + if (rawindex == -count || top == rawindex) { + // Slice them right off the top + lua_pop(L, static_cast<int>(count)); + return; + } + + // Remove each item one at a time using stack operations + // Probably slower, maybe, haven't benchmarked, + // but necessary + int index = lua_absindex(L, rawindex); + if (index < 0) { + index = lua_gettop(L) + (index + 1); + } + int last = index + count; + for (int i = index; i < last; ++i) { + lua_remove(L, index); + } + } + + struct push_popper_at { + lua_State* L; + int index; + int count; + push_popper_at(lua_State* luastate, int index = -1, int count = 1) + : L(luastate), index(index), count(count) { + } + ~push_popper_at() { + remove(L, index, count); + } + }; + + template <bool top_level> + struct push_popper_n { + lua_State* L; + int t; + push_popper_n(lua_State* luastate, int x) + : L(luastate), t(x) { + } + push_popper_n(const push_popper_n&) = delete; + push_popper_n(push_popper_n&&) = default; + push_popper_n& operator=(const push_popper_n&) = delete; + push_popper_n& operator=(push_popper_n&&) = default; + ~push_popper_n() { + lua_pop(L, t); + } + }; + + template <> + struct push_popper_n<true> { + push_popper_n(lua_State*, int) { + } + }; + + template <bool, typename T, typename = void> + struct push_popper { + using Tu = meta::unqualified_t<T>; + T t; + int idx; + + push_popper(T x) + : t(x), idx(lua_absindex(t.lua_state(), -t.push())) { + + } + + int index_of(const Tu&) { + return idx; + } + + ~push_popper() { + t.pop(); + } + }; + + template <typename T, typename C> + struct push_popper<true, T, C> { + using Tu = meta::unqualified_t<T>; + + push_popper(T) { + } + + int index_of(const Tu&) { + return -1; + } + + ~push_popper() { + } + }; + + template <typename T> + struct push_popper<false, T, std::enable_if_t<is_stack_based_v<meta::unqualified_t<T>>>> { + using Tu = meta::unqualified_t<T>; + + push_popper(T) { + } + + int index_of(const Tu& r) { + return r.stack_index(); + } + + ~push_popper() { + } + }; + + template <bool top_level = false, typename T> + push_popper<top_level, T> push_pop(T&& x) { + return push_popper<top_level, T>(std::forward<T>(x)); + } + + template <typename T> + push_popper_at push_pop_at(T&& x) { + int c = x.push(); + lua_State* L = x.lua_state(); + return push_popper_at(L, lua_absindex(L, -c), c); + } + + template <bool top_level = false> + push_popper_n<top_level> pop_n(lua_State* L, int x) { + return push_popper_n<top_level>(L, x); + } + } // namespace stack + + inline lua_State* main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) { +#if SOL_LUA_VERSION < 502 + if (L == nullptr) + return backup_if_unsupported; + lua_getglobal(L, detail::default_main_thread_name()); + auto pp = stack::pop_n(L, 1); + if (type_of(L, -1) == type::thread) { + return lua_tothread(L, -1); + } + return backup_if_unsupported; +#else + if (L == nullptr) + return backup_if_unsupported; + lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD); + lua_State* Lmain = lua_tothread(L, -1); + lua_pop(L, 1); + return Lmain; +#endif // Lua 5.2+ has the main thread unqualified_getter + } + + namespace detail { + struct global_tag { + } const global_ {}; + struct no_safety_tag { + } const no_safety {}; + + template <bool b> + inline lua_State* pick_main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) { + (void)L; + (void)backup_if_unsupported; + if (b) { + return main_thread(L, backup_if_unsupported); + } + return L; + } + } // namespace detail + + class stateless_reference { + private: + template <bool o_main_only> + friend class basic_reference; + + int ref = LUA_NOREF; + + int copy(lua_State* L) const noexcept { + if (ref == LUA_NOREF) + return LUA_NOREF; + push(L); + return luaL_ref(L, LUA_REGISTRYINDEX); + } + + lua_State* copy_assign(lua_State* L, lua_State* rL, const stateless_reference& r) { + if (valid(L)) { + deref(L); + } + ref = r.copy(L); + return rL; + } + + lua_State* move_assign(lua_State* L, lua_State* rL, stateless_reference&& r) { + if (valid(L)) { + deref(L); + } + ref = r.ref; + r.ref = LUA_NOREF; + return rL; + } + + protected: + int stack_index () const noexcept { + return -1; + } + + stateless_reference(lua_State* L, detail::global_tag) noexcept { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); +#endif // make sure stack doesn't overflow + lua_pushglobaltable(L); + ref = luaL_ref(L, LUA_REGISTRYINDEX); + } + + stateless_reference(int raw_ref_index) noexcept : ref(raw_ref_index) { + } + + public: + stateless_reference() noexcept = default; + stateless_reference(lua_nil_t) noexcept : stateless_reference() { + } + stateless_reference(const stack_reference& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) { + } + stateless_reference(stack_reference&& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) { + } + stateless_reference(lua_State* L, const stateless_reference& r) noexcept { + if (r.ref == LUA_REFNIL) { + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF || L == nullptr) { + ref = LUA_NOREF; + return; + } + ref = r.copy(L); + } + + stateless_reference(lua_State* L, stateless_reference&& r) noexcept { + if (r.ref == LUA_REFNIL) { + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF || L == nullptr) { + ref = LUA_NOREF; + return; + } + ref = r.ref; + r.ref = LUA_NOREF; + } + + stateless_reference(lua_State* L, const stack_reference& r) noexcept { + if (L == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) { + ref = LUA_NOREF; + return; + } + if (r.get_type() == type::lua_nil) { + ref = LUA_REFNIL; + return; + } + if (L != r.lua_state() && !detail::xmovable(L, r.lua_state())) { + return; + } + r.push(L); + ref = luaL_ref(L, LUA_REGISTRYINDEX); + } + + stateless_reference(lua_State* L, int index = -1) noexcept { + // use L to stick with that state's execution stack +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, index); + ref = luaL_ref(L, LUA_REGISTRYINDEX); + } + stateless_reference(lua_State* L, ref_index index) noexcept { + lua_rawgeti(L, LUA_REGISTRYINDEX, index.index); + ref = luaL_ref(L, LUA_REGISTRYINDEX); + } + stateless_reference(lua_State*, lua_nil_t) noexcept { + } + + ~stateless_reference() noexcept = default; + + stateless_reference(const stateless_reference& o) noexcept = delete; + stateless_reference& operator=(const stateless_reference& r) noexcept = delete; + + stateless_reference(stateless_reference&& o) noexcept + : ref(o.ref) { + o.ref = LUA_NOREF; + } + + stateless_reference& operator=(stateless_reference&& o) noexcept { + ref = o.ref; + o.ref = LUA_NOREF; + return *this; + } + + + int push(lua_State* L) const noexcept { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); +#endif // make sure stack doesn't overflow + lua_rawgeti(L, LUA_REGISTRYINDEX, ref); + return 1; + } + + void pop(lua_State* L, int n = 1) const noexcept { + lua_pop(L, n); + } + + int registry_index() const noexcept { + return ref; + } + + bool valid(lua_State*) const noexcept { + return !(ref == LUA_NOREF || ref == LUA_REFNIL); + } + + const void* pointer(lua_State* L) const noexcept { + int si = push(L); + const void* vp = lua_topointer(L, -si); + lua_pop(L, si); + return vp; + } + + type get_type(lua_State* L) const noexcept { + int p = push(L); + int result = lua_type(L, -1); + pop(L, p); + return static_cast<type>(result); + } + + void abandon(lua_State* = nullptr) { + ref = LUA_NOREF; + } + + void deref(lua_State* L) const noexcept { + luaL_unref(L, LUA_REGISTRYINDEX, ref); + } + }; + + template <bool main_only = false> + class basic_reference : public stateless_reference { + private: + template <bool o_main_only> + friend class basic_reference; + lua_State* luastate = nullptr; // non-owning + + template <bool r_main_only> + void copy_assign(const basic_reference<r_main_only>& r) { + if (valid()) { + deref(); + } + if (r.ref == LUA_REFNIL) { + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF) { + luastate = r.luastate; + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = r.copy(); + } + + template <bool r_main_only> + void move_assign(basic_reference<r_main_only>&& r) { + if (valid()) { + deref(); + } + if (r.ref == LUA_REFNIL) { + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF) { + luastate = r.luastate; + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = r.ref; + r.ref = LUA_NOREF; + r.luastate = nullptr; + } + + protected: + basic_reference(lua_State* L, detail::global_tag) noexcept + : basic_reference(detail::pick_main_thread<main_only>(L, L), detail::global_, detail::global_) { + } + + basic_reference(lua_State* L, detail::global_tag, detail::global_tag) noexcept + : stateless_reference(L, detail::global_), luastate(L) { + } + + basic_reference(lua_State* oL, const basic_reference<!main_only>& o) noexcept : stateless_reference(oL, o), luastate(oL) { + } + + void deref() const noexcept { + return stateless_reference::deref(lua_state()); + } + + int copy() const noexcept { + return copy(lua_state()); + } + + int copy(lua_State* L) const noexcept { + return stateless_reference::copy(L); + } + + public: + basic_reference() noexcept = default; + basic_reference(lua_nil_t) noexcept + : basic_reference() { + } + basic_reference(const stack_reference& r) noexcept + : basic_reference(r.lua_state(), r.stack_index()) { + } + basic_reference(stack_reference&& r) noexcept + : basic_reference(r.lua_state(), r.stack_index()) { + } + template <bool r_main_only> + basic_reference(lua_State* L, const basic_reference<r_main_only>& r) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + if (r.ref == LUA_REFNIL) { + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF || lua_state() == nullptr) { + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + ref = r.copy(); + } + + template <bool r_main_only> + basic_reference(lua_State* L, basic_reference<r_main_only>&& r) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + if (r.ref == LUA_REFNIL) { + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF || lua_state() == nullptr) { + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + ref = r.ref; + r.ref = LUA_NOREF; + r.luastate = nullptr; + } + + basic_reference(lua_State* L, const stack_reference& r) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) { + ref = LUA_NOREF; + return; + } + if (r.get_type() == type::lua_nil) { + ref = LUA_REFNIL; + return; + } + if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) { + return; + } + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + } + basic_reference(lua_State* L, int index = -1) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + // use L to stick with that state's execution stack +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, index); + ref = luaL_ref(L, LUA_REGISTRYINDEX); + } + basic_reference(lua_State* L, ref_index index) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + } + basic_reference(lua_State* L, lua_nil_t) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + } + + ~basic_reference() noexcept { + if (lua_state() == nullptr || ref == LUA_NOREF) + return; + deref(); + } + + basic_reference(const basic_reference& o) noexcept + : stateless_reference(o.copy()), luastate(o.lua_state()) { + } + + basic_reference(basic_reference&& o) noexcept + : stateless_reference(std::move(o)), luastate(o.lua_state()) { + o.luastate = nullptr; + } + + basic_reference(const basic_reference<!main_only>& o) noexcept + : basic_reference(detail::pick_main_thread < main_only && !main_only > (o.lua_state(), o.lua_state()), o) { + } + + basic_reference(basic_reference<!main_only>&& o) noexcept + : stateless_reference(std::move(o)), luastate(detail::pick_main_thread<main_only && !main_only>(o.lua_state(), o.lua_state())) { + o.luastate = nullptr; + o.ref = LUA_NOREF; + } + + basic_reference& operator=(basic_reference&& r) noexcept { + move_assign(std::move(r)); + return *this; + } + + basic_reference& operator=(const basic_reference& r) noexcept { + copy_assign(r); + return *this; + } + + basic_reference& operator=(basic_reference<!main_only>&& r) noexcept { + move_assign(std::move(r)); + return *this; + } + + basic_reference& operator=(const basic_reference<!main_only>& r) noexcept { + copy_assign(r); + return *this; + } + + basic_reference& operator=(const lua_nil_t&) noexcept { + if (valid()) { + deref(); + } + luastate = nullptr; + ref = LUA_NOREF; + return *this; + } + + template <typename Super> + basic_reference& operator=(proxy_base<Super>&& r); + + template <typename Super> + basic_reference& operator=(const proxy_base<Super>& r); + + int push() const noexcept { + return push(lua_state()); + } + + int push(lua_State* L) const noexcept { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); +#endif // make sure stack doesn't overflow + if (lua_state() == nullptr) { + lua_pushnil(L); + return 1; + } + lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref); + if (L != lua_state()) { + lua_xmove(lua_state(), L, 1); + } + return 1; + } + + void pop() const noexcept { + pop(lua_state()); + } + + void pop(lua_State* L, int n = 1) const noexcept { + stateless_reference::pop(L, n); + } + + int registry_index() const noexcept { + return stateless_reference::registry_index(); + } + + bool valid() const noexcept { + return stateless_reference::valid(lua_state()); + } + + const void* pointer() const noexcept { + return stateless_reference::pointer(lua_state()); + } + + explicit operator bool() const noexcept { + return valid(); + } + + type get_type() const noexcept { + return stateless_reference::get_type(lua_state()); + } + + lua_State* lua_state() const noexcept { + return luastate; + } + }; + + template <bool lb, bool rb> + inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r) { + auto ppl = stack::push_pop(l); + auto ppr = stack::push_pop(r); + return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1; + } + + template <bool lb, bool rb> + inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r) { + return !operator==(l, r); + } + + template <bool lb> + inline bool operator==(const basic_reference<lb>& l, const stack_reference& r) { + auto ppl = stack::push_pop(l); + return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1; + } + + template <bool lb> + inline bool operator!=(const basic_reference<lb>& l, const stack_reference& r) { + return !operator==(l, r); + } + + template <bool rb> + inline bool operator==(const stack_reference& l, const basic_reference<rb>& r) { + auto ppr = stack::push_pop(r); + return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1; + } + + template <bool rb> + inline bool operator!=(const stack_reference& l, const basic_reference<rb>& r) { + return !operator==(l, r); + } + + template <bool lb> + inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&) { + return !lhs.valid(); + } + + template <bool rb> + inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs) { + return !rhs.valid(); + } + + template <bool lb> + inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&) { + return lhs.valid(); + } + + template <bool rb> + inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs) { + return rhs.valid(); + } + + struct reference_equals : public stack_reference_equals { + template <bool rb> + bool operator()(const lua_nil_t& lhs, const basic_reference<rb>& rhs) const { + return lhs == rhs; + } + + template <bool lb> + bool operator()(const basic_reference<lb>& lhs, const lua_nil_t& rhs) const { + return lhs == rhs; + } + + template <bool lb, bool rb> + bool operator()(const basic_reference<lb>& lhs, const basic_reference<rb>& rhs) const { + return lhs == rhs; + } + + template <bool lb> + bool operator()(const basic_reference<lb>& lhs, const stack_reference& rhs) const { + return lhs == rhs; + } + + template <bool rb> + bool operator()(const stack_reference& lhs, const basic_reference<rb>& rhs) const { + return lhs == rhs; + } + }; + + struct reference_hash : public stack_reference_hash { + typedef reference argument_type; + typedef std::size_t result_type; + + template <bool lb> + result_type operator()(const basic_reference<lb>& lhs) const { + std::hash<const void*> h; + return h(lhs.pointer()); + } + }; +} // namespace sol + +#endif // SOL_REFERENCE_HPP diff --git a/lib/sol2/include/sol/resolve.hpp b/lib/sol2/include/sol/resolve.hpp new file mode 100644 index 0000000..036f00c --- /dev/null +++ b/lib/sol2/include/sol/resolve.hpp @@ -0,0 +1,175 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_RESOLVE_HPP +#define SOL_RESOLVE_HPP + +#include "traits.hpp" +#include "tuple.hpp" + +namespace sol { + +#ifndef __clang__ + // constexpr is fine for not-clang + + namespace detail { + template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>> + inline constexpr auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) { + using Sig = R(Args...); + typedef meta::unqualified_t<F> Fu; + return static_cast<Sig Fu::*>(&Fu::operator()); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline constexpr auto resolve_f(std::true_type, F&& f) + -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) { + return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)); + } + + template <typename F> + inline constexpr void resolve_f(std::false_type, F&&) { + static_assert(meta::has_deducible_signature<F>::value, + "Cannot use no-template-parameter call with an overloaded functor: specify the signature"); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) { + return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f)); + } + + template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>> + inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) { + return resolve_i(types<R(Args...)>(), std::forward<F>(f)); + } + + template <typename Sig, typename C> + inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) { + return mem_func_ptr; + } + + template <typename Sig, typename C> + inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) { + return mem_variable_ptr; + } + } // namespace detail + + template <typename... Args, typename R> + inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) { + return fun_ptr; + } + + template <typename Sig> + inline constexpr Sig* resolve(Sig* fun_ptr) { + return fun_ptr; + } + + template <typename... Args, typename R, typename C> + inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) { + return mem_ptr; + } + + template <typename Sig, typename C> + inline constexpr Sig C::*resolve(Sig C::*mem_ptr) { + return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr); + } + + template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler> + inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) { + return detail::resolve_i(types<Sig...>(), std::forward<F>(f)); + } +#else + + // Clang has distinct problems with constexpr arguments, + // so don't use the constexpr versions inside of clang. + + namespace detail { + template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>> + inline auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) { + using Sig = R(Args...); + typedef meta::unqualified_t<F> Fu; + return static_cast<Sig Fu::*>(&Fu::operator()); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline auto resolve_f(std::true_type, F&& f) + -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) { + return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)); + } + + template <typename F> + inline void resolve_f(std::false_type, F&&) { + static_assert(meta::has_deducible_signature<F>::value, + "Cannot use no-template-parameter call with an overloaded functor: specify the signature"); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) { + return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f)); + } + + template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>> + inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) { + return resolve_i(types<R(Args...)>(), std::forward<F>(f)); + } + + template <typename Sig, typename C> + inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) { + return mem_func_ptr; + } + + template <typename Sig, typename C> + inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) { + return mem_variable_ptr; + } + } // namespace detail + + template <typename... Args, typename R> + inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) { + return fun_ptr; + } + + template <typename Sig> + inline Sig* resolve(Sig* fun_ptr) { + return fun_ptr; + } + + template <typename... Args, typename R, typename C> + inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) { + return mem_ptr; + } + + template <typename Sig, typename C> + inline Sig C::*resolve(Sig C::*mem_ptr) { + return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr); + } + + template <typename... Sig, typename F> + inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) { + return detail::resolve_i(types<Sig...>(), std::forward<F>(f)); + } + +#endif + +} // namespace sol + +#endif // SOL_RESOLVE_HPP diff --git a/lib/sol2/include/sol/sol.hpp b/lib/sol2/include/sol/sol.hpp new file mode 100644 index 0000000..9dfe941 --- /dev/null +++ b/lib/sol2/include/sol/sol.hpp @@ -0,0 +1,77 @@ +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_HPP +#define SOL_HPP + +#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER) +#define SOL_INSIDE_UNREAL +#ifdef check +#pragma push_macro("check") +#undef check +#endif +#endif // Unreal Engine 4 Bullshit + +#if defined(__GNUC__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wshadow" +#pragma GCC diagnostic ignored "-Wconversion" +#if __GNUC__ > 6 +#pragma GCC diagnostic ignored "-Wnoexcept-type" +#endif +#elif defined(__clang__) +// we'll just let this alone for now +#elif defined _MSC_VER +#pragma warning(push) +#pragma warning(disable : 4505) // unreferenced local function has been removed GEE THANKS +#endif // clang++ vs. g++ vs. VC++ + +#include "forward.hpp" +#include "forward_detail.hpp" +#include "bytecode.hpp" +#include "stack.hpp" +#include "object.hpp" +#include "function.hpp" +#include "protected_function.hpp" +#include "usertype.hpp" +#include "table.hpp" +#include "state.hpp" +#include "coroutine.hpp" +#include "thread.hpp" +#include "userdata.hpp" +#include "metatable.hpp" +#include "as_args.hpp" +#include "variadic_args.hpp" +#include "variadic_results.hpp" +#include "lua_value.hpp" + +#if defined(__GNUC__) +#pragma GCC diagnostic pop +#elif defined _MSC_VER +#pragma warning(pop) +#endif // g++ + +#if defined(SOL_INSIDE_UNREAL) +#undef check +#pragma pop_macro("check") +#endif // Unreal Engine 4 Bullshit + +#endif // SOL_HPP diff --git a/lib/sol2/include/sol/stack.hpp b/lib/sol2/include/sol/stack.hpp new file mode 100644 index 0000000..0306905 --- /dev/null +++ b/lib/sol2/include/sol/stack.hpp @@ -0,0 +1,288 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_STACK_HPP
+#define SOL_STACK_HPP
+
+#include "trampoline.hpp"
+#include "stack_core.hpp"
+#include "stack_reference.hpp"
+#include "stack_check.hpp"
+#include "stack_get.hpp"
+#include "stack_check_get.hpp"
+#include "stack_push.hpp"
+#include "stack_pop.hpp"
+#include "stack_field.hpp"
+#include "stack_probe.hpp"
+
+#include <cstring>
+#include <array>
+
+namespace sol {
+ namespace detail {
+ using typical_chunk_name_t = char[32];
+
+ inline const std::string& default_chunk_name() {
+ static const std::string name = "";
+ return name;
+ }
+
+ template <std::size_t N>
+ const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) {
+ if (chunkname.empty()) {
+ auto it = code.cbegin();
+ auto e = code.cend();
+ std::size_t i = 0;
+ static const std::size_t n = N - 4;
+ for (i = 0; i < n && it != e; ++i, ++it) {
+ basechunkname[i] = *it;
+ }
+ if (it != e) {
+ for (std::size_t c = 0; c < 3; ++i, ++c) {
+ basechunkname[i] = '.';
+ }
+ }
+ basechunkname[i] = '\0';
+ return &basechunkname[0];
+ }
+ else {
+ return chunkname.c_str();
+ }
+ }
+
+ inline void clear_entries(stack_reference r) {
+ stack::push(r.lua_state(), lua_nil);
+ while (lua_next(r.lua_state(), -2)) {
+ absolute_index key(r.lua_state(), -2);
+ auto pn = stack::pop_n(r.lua_state(), 1);
+ stack::set_field<false, true>(r.lua_state(), key, lua_nil, r.stack_index());
+ }
+ }
+
+ inline void clear_entries(const reference& registry_reference) {
+ auto pp = stack::push_pop(registry_reference);
+ stack_reference ref(registry_reference.lua_state(), -1);
+ clear_entries(ref);
+ }
+ } // namespace detail
+
+ namespace stack {
+ namespace stack_detail {
+ template <typename T>
+ inline int push_as_upvalues(lua_State* L, T& item) {
+ typedef std::decay_t<T> TValue;
+ static const std::size_t itemsize = sizeof(TValue);
+ static const std::size_t voidsize = sizeof(void*);
+ static const std::size_t voidsizem1 = voidsize - 1;
+ static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
+ typedef std::array<void*, data_t_count> data_t;
+
+ data_t data{ {} };
+ std::memcpy(&data[0], std::addressof(item), itemsize);
+ int pushcount = 0;
+ for (auto&& v : data) {
+ pushcount += push(L, lightuserdata_value(v));
+ }
+ return pushcount;
+ }
+
+ template <typename T>
+ inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) {
+ static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
+ typedef std::array<void*, data_t_count> data_t;
+ data_t voiddata{ {} };
+ for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
+ voiddata[i] = get<lightuserdata_value>(L, upvalue_index(index++));
+ }
+ return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
+ }
+
+ template <typename Fx, typename... Args>
+ static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) {
+ return std::forward<Fx>(fx)(std::forward<Args>(args)...);
+ }
+
+ template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs>
+ static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) {
+ return eval(types<Args...>(), std::index_sequence<Is...>(), L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)..., stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking));
+ }
+
+ template <bool checkargs = detail::default_safe_function_calls , std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
+ static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
+ if constexpr (checkargs) {
+ argument_handler<types<R, Args...>> handler{};
+ multi_check<Args...>(L, start, handler);
+ }
+ record tracking{};
+ if constexpr (std::is_void_v<R>) {
+ eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ else {
+ return eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ }
+ } // namespace stack_detail
+
+ template <typename T>
+ int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
+ push(L, std::forward<T>(arg));
+ return luaL_ref(L, tableindex);
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
+ using args_indices = std::make_index_sequence<sizeof...(Args)>;
+ if constexpr (std::is_void_v<R>) {
+ stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ else {
+ return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ if constexpr(std::is_void_v<R>) {
+ call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ else {
+ return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
+ inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
+ using expected_count_t = meta::count_for_pack<lua_size, Args...>;
+ if constexpr (std::is_void_v<R>) {
+ call<check_args>(tr,
+ ta,
+ L,
+ (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
+ std::forward<Fx>(fx),
+ std::forward<FxArgs>(args)...);
+ }
+ else {
+ return call<check_args>(tr,
+ ta,
+ L,
+ (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
+ std::forward<Fx>(fx),
+ std::forward<FxArgs>(args)...);
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs>
+ inline int call_into_lua(types<Ret0, Ret...> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
+ if constexpr (std::is_void_v<Ret0>) {
+ call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ if constexpr (clean_stack) {
+ lua_settop(L, 0);
+ }
+ return 0;
+ }
+ else {
+ (void)tr;
+ decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ using R = meta::unqualified_t<decltype(r)>;
+ using is_stack = meta::any<is_stack_based<R>, std::is_same<R, absolute_index>, std::is_same<R, ref_index>, std::is_same<R, raw_index>>;
+ if constexpr (clean_stack && !is_stack::value) {
+ lua_settop(L, 0);
+ }
+ return push_reference(L, std::forward<decltype(r)>(r));
+ }
+ }
+
+ template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs>
+ inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
+ using traits_type = lua_bind_traits<meta::unqualified_t<Fx>>;
+ using args_list = typename traits_type::args_list;
+ using returns_list = typename traits_type::returns_list;
+ return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
+ }
+
+ inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) {
+ if (lua_gettop(L) < 1) {
+ return call_syntax::dot;
+ }
+ luaL_getmetatable(L, key.data());
+ auto pn = pop_n(L, 1);
+ if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
+ return call_syntax::dot;
+ }
+ return call_syntax::colon;
+ }
+
+ inline void script(lua_State* L, lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
+ if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ }
+
+ inline void script(lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
+ detail::typical_chunk_name_t basechunkname = {};
+ const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
+ if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ }
+
+ inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) {
+ if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
+ lua_error(L);
+ }
+ }
+
+ inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
+#if defined(SOL_LUAJIT) && (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !(SOL_EXCEPTIONS_SAFE_PROPAGATION))
+ if (L == nullptr) {
+ return;
+ }
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, (void*)handler);
+ auto pn = pop_n(L, 1);
+ luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
+#else
+ (void)L;
+ (void)handler;
+#endif
+ }
+
+ inline void luajit_exception_off(lua_State* L) {
+#if defined(SOL_LUAJIT)
+ if (L == nullptr) {
+ return;
+ }
+ luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
+#else
+ (void)L;
+#endif
+ }
+ } // namespace stack
+} // namespace sol
+
+#endif // SOL_STACK_HPP
diff --git a/lib/sol2/include/sol/stack_check.hpp b/lib/sol2/include/sol/stack_check.hpp new file mode 100644 index 0000000..11914ce --- /dev/null +++ b/lib/sol2/include/sol/stack_check.hpp @@ -0,0 +1,30 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_CHECK_HPP +#define SOL_STACK_CHECK_HPP + +#include "stack_check_unqualified.hpp" +#include "stack_check_qualified.hpp" + +#endif // SOL_STACK_CHECK_HPP diff --git a/lib/sol2/include/sol/stack_check_get.hpp b/lib/sol2/include/sol/stack_check_get.hpp new file mode 100644 index 0000000..96862e4 --- /dev/null +++ b/lib/sol2/include/sol/stack_check_get.hpp @@ -0,0 +1,30 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_CHECK_GET_HPP +#define SOL_STACK_CHECK_GET_HPP + +#include "stack_check_get_unqualified.hpp" +#include "stack_check_get_qualified.hpp" + +#endif // SOL_STACK_CHECK_GET_HPP diff --git a/lib/sol2/include/sol/stack_check_get_qualified.hpp b/lib/sol2/include/sol/stack_check_get_qualified.hpp new file mode 100644 index 0000000..89e9238 --- /dev/null +++ b/lib/sol2/include/sol/stack_check_get_qualified.hpp @@ -0,0 +1,82 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_CHECK_QUALIFIED_GET_HPP +#define SOL_STACK_CHECK_QUALIFIED_GET_HPP + +#include "stack_core.hpp" +#include "stack_check_get_unqualified.hpp" +#include "optional.hpp" + +namespace sol { namespace stack { + template <typename T, typename C> + struct qualified_check_getter { + typedef decltype(stack_detail::unchecked_get<T>(nullptr, -1, std::declval<record&>())) R; + + template <typename Handler> + static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) { + if constexpr (is_lua_reference_v<T>) { + // actually check if it's none here, otherwise + // we'll have a none object inside an optional! + bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic); + if (!success) { + // expected type, actual type + tracking.use(static_cast<int>(success)); + handler(L, index, type::poly, type_of(L, index), ""); + return nullopt; + } + return stack_detail::unchecked_get<T>(L, index, tracking); + } + else { + if (!check<T>(L, index, std::forward<Handler>(handler))) { + tracking.use(static_cast<int>(!lua_isnone(L, index))); + return nullopt; + } + return stack_detail::unchecked_get<T>(L, index, tracking); + } + } + }; + + template <typename T> + struct qualified_getter<optional<T>> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return check_get<T>(L, index, no_panic, tracking); + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + struct qualified_getter<std::optional<T>> { + static std::optional<T> get(lua_State* L, int index, record& tracking) { + if (!check<T>(L, index, no_panic)) { + tracking.use(static_cast<int>(!lua_isnone(L, index))); + return std::nullopt; + } + return stack_detail::unchecked_get<T>(L, index, tracking); + } + }; +#endif // C++17 features + +}} // namespace sol::stack + +#endif // SOL_STACK_CHECK_QUALIFIED_GET_HPP diff --git a/lib/sol2/include/sol/stack_check_get_unqualified.hpp b/lib/sol2/include/sol/stack_check_get_unqualified.hpp new file mode 100644 index 0000000..d552c08 --- /dev/null +++ b/lib/sol2/include/sol/stack_check_get_unqualified.hpp @@ -0,0 +1,196 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_CHECK_UNQUALIFIED_GET_HPP +#define SOL_STACK_CHECK_UNQUALIFIED_GET_HPP + +#include "stack_core.hpp" +#include "stack_get.hpp" +#include "stack_check.hpp" +#include "optional.hpp" + +#include <cstdlib> +#include <cmath> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <optional> +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#include <variant> +#endif // variant +#endif // C++17 + + + +namespace sol { +namespace stack { + template <typename T, typename> + struct unqualified_check_getter { + typedef decltype(stack_detail::unchecked_unqualified_get<T>(nullptr, -1, std::declval<record&>())) R; + + template <typename Handler> + static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) { + if constexpr (!meta::meta_detail::is_adl_sol_lua_check_v<T> && !meta::meta_detail::is_adl_sol_lua_get_v<T>) { + if constexpr (is_lua_reference_v<T>) { + // actually check if it's none here, otherwise + // we'll have a none object inside an optional! + bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic); + if (!success) { + // expected type, actual type + tracking.use(static_cast<int>(success)); + handler(L, index, type::poly, type_of(L, index), ""); + return nullopt; + } + return stack_detail::unchecked_get<T>(L, index, tracking); + } + else if constexpr ((std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) && !std::is_same_v<T, bool>) { +#if SOL_LUA_VERSION >= 503 + if (lua_isinteger(L, index) != 0) { + tracking.use(1); + return static_cast<T>(lua_tointeger(L, index)); + } +#endif + int isnum = 0; + const lua_Number value = lua_tonumberx(L, index, &isnum); + if (isnum != 0) { +#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + const auto integer_value = llround(value); + if (static_cast<lua_Number>(integer_value) == value) { + tracking.use(1); + return static_cast<T>(integer_value); + } +#else + tracking.use(1); + return static_cast<T>(value); +#endif + } + const type t = type_of(L, index); + tracking.use(static_cast<int>(t != type::none)); + handler(L, index, type::number, t, "not an integer"); + return nullopt; + } + else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) { + int isnum = 0; + lua_Number value = lua_tonumberx(L, index, &isnum); + if (isnum == 0) { + type t = type_of(L, index); + tracking.use(static_cast<int>(t != type::none)); + handler(L, index, type::number, t, "not a valid floating point number"); + return nullopt; + } + tracking.use(1); + return static_cast<T>(value); + } + else if constexpr (std::is_enum_v<T> && !meta::any_same_v<T, meta_function, type>) { + int isnum = 0; + lua_Integer value = lua_tointegerx(L, index, &isnum); + if (isnum == 0) { + type t = type_of(L, index); + tracking.use(static_cast<int>(t != type::none)); + handler(L, index, type::number, t, "not a valid enumeration value"); + return nullopt; + } + tracking.use(1); + return static_cast<T>(value); + } + else { + if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) { + tracking.use(static_cast<int>(!lua_isnone(L, index))); + return nullopt; + } + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + } + else { + if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) { + tracking.use(static_cast<int>(!lua_isnone(L, index))); + return nullopt; + } + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + } + }; + + template <typename T> + struct unqualified_getter<optional<T>> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return stack::unqualified_check_get<T>(L, index, no_panic, tracking); + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + struct unqualified_getter<std::optional<T>> { + static std::optional<T> get(lua_State* L, int index, record& tracking) { + if (!unqualified_check<T>(L, index, no_panic)) { + tracking.use(static_cast<int>(!lua_isnone(L, index))); + return std::nullopt; + } + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + }; + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + template <typename... Tn, typename C> + struct unqualified_check_getter<std::variant<Tn...>, C> { + typedef std::variant<Tn...> V; + typedef std::variant_size<V> V_size; + typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; + + template <typename Handler> + static optional<V> get_empty(std::true_type, lua_State*, int, Handler&&, record&) { + return nullopt; + } + + template <typename Handler> + static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record&) { + // This should never be reached... + // please check your code and understand what you did to bring yourself here + // maybe file a bug report, or 5 + handler(L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong"); + return nullopt; + } + + template <typename Handler> + static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) { + return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking); + } + + template <std::size_t I, typename Handler> + static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) { + typedef std::variant_alternative_t<I - 1, V> T; + if (stack::check<T>(L, index, no_panic, tracking)) { + return V(std::in_place_index<I - 1>, stack::get<T>(L, index)); + } + return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking) { + return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking); + } + }; +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES +} +} // namespace sol::stack + +#endif // SOL_STACK_CHECK_UNQUALIFIED_GET_HPP diff --git a/lib/sol2/include/sol/stack_check_qualified.hpp b/lib/sol2/include/sol/stack_check_qualified.hpp new file mode 100644 index 0000000..0e16153 --- /dev/null +++ b/lib/sol2/include/sol/stack_check_qualified.hpp @@ -0,0 +1,87 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_CHECK_QUALIFIED_HPP +#define SOL_STACK_CHECK_QUALIFIED_HPP + +#include "stack_check_unqualified.hpp" + +namespace sol { +namespace stack { + + template <typename X, type expected, typename> + struct qualified_checker { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<X>) { + using u_traits = unique_usertype_traits<meta::unqualified_t<X>>; + using T = typename u_traits::type; + if constexpr (is_base_rebindable_non_void_v<u_traits>) { + using rebind_t = typename u_traits::template rebind_base<void>; + // we have a unique pointer type that can be + // rebound to a base/derived type + const type indextype = type_of(L, index); + tracking.use(1); + if (indextype != type::userdata) { + handler(L, index, type::userdata, indextype, "value is not a userdata"); + return false; + } + void* memory = lua_touserdata(L, index); + memory = detail::align_usertype_unique_destructor(memory); + detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); + if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) { + return true; + } + if constexpr (derive<T>::value) { + memory = detail::align_usertype_unique_tag<true, false>(memory); + detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory); + string_view ti = usertype_traits<T>::qualified_name(); + string_view rebind_ti = usertype_traits<rebind_t>::qualified_name(); + if (ic(nullptr, nullptr, ti, rebind_ti) != 0) { + return true; + } + } + handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype"); + return false; + } + else { + return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); + } + } + else if constexpr (!std::is_reference_v<X> && is_container_v<X>) { + if (type_of(L, index) == type::userdata) { + return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); + } + else { + return stack::unqualified_check<nested<X>>(L, index, std::forward<Handler>(handler), tracking); + } + } + else { + return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); + } + } + }; +} +} // namespace sol::stack + +#endif // SOL_STACK_CHECK_HPP diff --git a/lib/sol2/include/sol/stack_check_unqualified.hpp b/lib/sol2/include/sol/stack_check_unqualified.hpp new file mode 100644 index 0000000..025961c --- /dev/null +++ b/lib/sol2/include/sol/stack_check_unqualified.hpp @@ -0,0 +1,606 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_CHECK_UNQUALIFIED_HPP +#define SOL_STACK_CHECK_UNQUALIFIED_HPP + +#include "stack_core.hpp" +#include "usertype_traits.hpp" +#include "inheritance.hpp" +#include <memory> +#include <functional> +#include <utility> +#include <cmath> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <optional> +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#include <variant> +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES + +namespace sol { namespace stack { + namespace stack_detail { + template <typename T, bool poptable = true> + inline bool check_metatable(lua_State* L, int index = -2) { + const auto& metakey = usertype_traits<T>::metatable(); + luaL_getmetatable(L, &metakey[0]); + const type expectedmetatabletype = static_cast<type>(lua_type(L, -1)); + if (expectedmetatabletype != type::lua_nil) { + if (lua_rawequal(L, -1, index) == 1) { + lua_pop(L, 1 + static_cast<int>(poptable)); + return true; + } + } + lua_pop(L, 1); + return false; + } + + template <type expected, int (*check_func)(lua_State*, int)> + struct basic_check { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + bool success = check_func(L, index) == 1; + if (!success) { + // expected type, actual type + handler(L, index, expected, type_of(L, index), ""); + } + return success; + } + }; + } // namespace stack_detail + + template <typename T, typename> + struct unqualified_interop_checker { + template <typename Handler> + static bool check(lua_State*, int, type, Handler&&, record&) { + return false; + } + }; + + template <typename T, typename> + struct qualified_interop_checker { + template <typename Handler> + static bool check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) { + return stack_detail::unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking); + } + }; + + template <typename T, type expected, typename> + struct unqualified_checker { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + if constexpr (std::is_same_v<T, bool>) { + tracking.use(1); + bool success = lua_isboolean(L, index) == 1; + if (!success) { + // expected type, actual type + handler(L, index, expected, type_of(L, index), ""); + } + return success; + } + else if constexpr (meta::any_same_v<T, char /* , char8_t*/, char16_t, char32_t>) { + return stack::check<std::basic_string<T>>(L, index, std::forward<Handler>(handler), tracking); + } + else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) { + tracking.use(1); +#if SOL_LUA_VERSION >= 503 +#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS + int isnum = 0; + lua_tointegerx(L, index, &isnum); + const bool success = isnum != 0; + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string_integral); + } +#elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + // this check is precise, does not convert + if (lua_isinteger(L, index) == 1) { + return true; + } + const bool success = false; + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), detail::not_a_number_integral); + } +#else + type t = type_of(L, index); + const bool success = t == type::number; +#endif // If numbers are enabled, use the imprecise check + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), detail::not_a_number); + } + return success; +#else +#if !defined(SOL_STRINGS_ARE_NUMBERS) || !SOL_STRINGS_ARE_NUMBERS + // must pre-check, because it will convert + type t = type_of(L, index); + if (t != type::number) { + // expected type, actual type + handler(L, index, type::number, t, detail::not_a_number); + return false; + } +#endif // Do not allow strings to be numbers +#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + int isnum = 0; + const lua_Number v = lua_tonumberx(L, index, &isnum); + const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v; +#else + const bool success = true; +#endif // Safe numerics and number precision checking + if (!success) { + // expected type, actual type +#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS + handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string); +#elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) + handler(L, index, type::number, t, detail::not_a_number_or_number_string); +#else + handler(L, index, type::number, t, detail::not_a_number); +#endif + } + return success; +#endif // Lua Version 5.3 versus others + } + else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) { + tracking.use(1); +#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS + bool success = lua_isnumber(L, index) == 1; + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string); + } + return success; +#else + type t = type_of(L, index); + bool success = t == type::number; + if (!success) { + // expected type, actual type + handler(L, index, type::number, t, detail::not_a_number); + } + return success; +#endif // Strings are Numbers + } + else if constexpr(meta::any_same_v<T, type, this_state, this_main_state, this_environment, variadic_args>) { + (void)L; + (void)index; + (void)handler; + tracking.use(0); + return true; + } + else if constexpr (is_unique_usertype_v<T>) { + using proper_T = typename unique_usertype_traits<T>::type; + const type indextype = type_of(L, index); + tracking.use(1); + if (indextype != type::userdata) { + handler(L, index, type::userdata, indextype, "value is not a userdata"); + return false; + } + if (lua_getmetatable(L, index) == 0) { + return true; + } + int metatableindex = lua_gettop(L); + if (stack_detail::check_metatable<detail::unique_usertype<proper_T>>(L, metatableindex)) { + void* memory = lua_touserdata(L, index); + memory = detail::align_usertype_unique_destructor(memory); + detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); + bool success = &detail::usertype_unique_alloc_destroy<proper_T, T> == pdx; + if (!success) { + memory = detail::align_usertype_unique_tag<true>(memory); +#if 0 + // New version +#else + const char*& name_tag = *static_cast<const char**>(memory); + success = usertype_traits<T>::qualified_name() == name_tag; +#endif + if (!success) { + handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype"); + } + } + return success; + } + lua_pop(L, 1); + handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)"); + return false; + } + else if constexpr (meta::any_same_v<T, lua_nil_t, +#if defined(SOL_CXX_17_FEATURES) && SOL_CXX_17_FEATURES + std::nullopt_t, +#endif + nullopt_t>) { + bool success = lua_isnil(L, index); + if (success) { + tracking.use(1); + return success; + } + tracking.use(0); + success = lua_isnone(L, index); + if (!success) { + // expected type, actual type + handler(L, index, expected, type_of(L, index), ""); + } + return success; + } + else if constexpr (std::is_same_v<T, env_key_t>) { + tracking.use(1); + type t = type_of(L, index); + if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) { + return true; + } + handler(L, index, type::table, t, "value cannot not have a valid environment"); + return true; + } + else if constexpr (std::is_same_v<T, detail::non_lua_nil_t>) { + return !stack::unqualified_check<lua_nil_t>(L, index, std::forward<Handler>(handler), tracking); + } + else if constexpr (meta::is_specialization_of_v<T, basic_lua_table>) { + tracking.use(1); + type t = type_of(L, index); + if (t != type::table) { + handler(L, index, type::table, t, "value is not a table"); + return false; + } + return true; + } + else if constexpr (meta::is_specialization_of_v<T, basic_bytecode>) { + tracking.use(1); + type t = type_of(L, index); + if (t != type::function) { + handler(L, index, type::function, t, "value is not a function that can be dumped"); + return false; + } + return true; + } + else if constexpr(meta::is_specialization_of_v<T, basic_environment>) { + tracking.use(1); + if (lua_getmetatable(L, index) == 0) { + return true; + } + type t = type_of(L, -1); + if (t == type::table || t == type::none || t == type::lua_nil) { + lua_pop(L, 1); + return true; + } + if (t != type::userdata) { + lua_pop(L, 1); + handler(L, index, type::table, t, "value does not have a valid metatable"); + return false; + } + return true; + } + else if constexpr (std::is_same_v<T, metatable_key_t>) { + tracking.use(1); + if (lua_getmetatable(L, index) == 0) { + return true; + } + type t = type_of(L, -1); + if (t == type::table || t == type::none || t == type::lua_nil) { + lua_pop(L, 1); + return true; + } + if (t != type::userdata) { + lua_pop(L, 1); + handler(L, index, expected, t, "value does not have a valid metatable"); + return false; + } + return true; + } + else if constexpr (expected == type::userdata) { + if constexpr (meta::any_same_v<T, userdata_value> || meta::is_specialization_of_v<T, basic_userdata>) { + tracking.use(1); + type t = type_of(L, index); + bool success = t == type::userdata; + if (!success) { + // expected type, actual type + handler(L, index, type::userdata, t, ""); + } + return success; + } + else if constexpr (meta::is_specialization_of_v<T, user>) { + unqualified_checker<lightuserdata_value, type::userdata> c; + (void)c; + return c.check(L, index, std::forward<Handler>(handler), tracking); + } + else { + if constexpr (std::is_pointer_v<T>) { + return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); + } + else if constexpr (meta::is_specialization_of_v<T, std::reference_wrapper>) { + using T_internal = typename T::type; + return stack::check<T_internal>(L, index, std::forward<Handler>(handler), tracking); + } + else { + return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); + } + } + } + else if constexpr (expected == type::poly) { + tracking.use(1); + bool success = is_lua_reference_v<T> || !lua_isnone(L, index); + if (!success) { + // expected type, actual type + handler(L, index, type::poly, type_of(L, index), ""); + } + return success; + } + else if constexpr (expected == type::lightuserdata) { + tracking.use(1); + type t = type_of(L, index); + bool success = t == type::userdata || t == type::lightuserdata; + if (!success) { + // expected type, actual type + handler(L, index, type::lightuserdata, t, ""); + } + return success; + } + else if constexpr (expected == type::function) { + if constexpr (meta::any_same_v<T, lua_CFunction, std::remove_pointer_t<lua_CFunction>, c_closure>) { + tracking.use(1); + bool success = lua_iscfunction(L, index) == 1; + if (!success) { + // expected type, actual type + handler(L, index, expected, type_of(L, index), ""); + } + return success; + } + else { + tracking.use(1); + type t = type_of(L, index); + if (t == type::lua_nil || t == type::none || t == type::function) { + // allow for lua_nil to be returned + return true; + } + if (t != type::userdata && t != type::table) { + handler(L, index, type::function, t, "must be a function or table or a userdata"); + return false; + } + // Do advanced check for call-style userdata? + static const auto& callkey = to_string(meta_function::call); + if (lua_getmetatable(L, index) == 0) { + // No metatable, no __call key possible + handler(L, index, type::function, t, "value is not a function and does not have overriden metatable"); + return false; + } + if (lua_isnoneornil(L, -1)) { + lua_pop(L, 1); + handler(L, index, type::function, t, "value is not a function and does not have valid metatable"); + return false; + } + lua_getfield(L, -1, &callkey[0]); + if (lua_isnoneornil(L, -1)) { + lua_pop(L, 2); + handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type"); + return false; + } + // has call, is definitely a function + lua_pop(L, 2); + return true; + } + } + else if constexpr (expected == type::table) { + tracking.use(1); + type t = type_of(L, index); + if (t == type::table) { + return true; + } + if (t != type::userdata) { + handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one"); + return false; + } + return true; + } + else { + tracking.use(1); + const type indextype = type_of(L, index); + bool success = expected == indextype; + if (!success) { + // expected type, actual type, message + handler(L, index, expected, indextype, ""); + } + return success; + } + } + }; + + template <typename T> + struct unqualified_checker<non_null<T>, type::userdata> : unqualified_checker<T, lua_type_of_v<T>> {}; + + template <typename T> + struct unqualified_checker<detail::as_value_tag<T>, type::userdata> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + const type indextype = type_of(L, index); + return check(types<T>(), L, index, indextype, std::forward<Handler>(handler), tracking); + } + + template <typename U, typename Handler> + static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { + if constexpr (std::is_same_v<T, lightuserdata_value> || std::is_same_v<T, userdata_value> || std::is_same_v<T, userdata> || std::is_same_v<T, lightuserdata>) { + tracking.use(1); + if (indextype != type::userdata) { + handler(L, index, type::userdata, indextype, "value is not a valid userdata"); + return false; + } + return true; + } + else { +#if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP + if (stack_detail::interop_check<U>(L, index, indextype, handler, tracking)) { + return true; + } +#endif // interop extensibility + tracking.use(1); + if (indextype != type::userdata) { + handler(L, index, type::userdata, indextype, "value is not a valid userdata"); + return false; + } + if (lua_getmetatable(L, index) == 0) { + return true; + } + int metatableindex = lua_gettop(L); + if (stack_detail::check_metatable<U>(L, metatableindex)) + return true; + if (stack_detail::check_metatable<U*>(L, metatableindex)) + return true; + if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex)) + return true; + if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex)) + return true; + bool success = false; + bool has_derived = derive<T>::value || weak_derive<T>::value; + if (has_derived) { + #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); + #endif // make sure stack doesn't overflow + auto pn = stack::pop_n(L, 1); + lua_pushstring(L, &detail::base_class_check_key()[0]); + lua_rawget(L, metatableindex); + if (type_of(L, -1) != type::lua_nil) { + void* basecastdata = lua_touserdata(L, -1); + detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata); + success = ic(usertype_traits<T>::qualified_name()); + } + } + lua_pop(L, 1); + if (!success) { + handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type"); + return false; + } + return true; + } + } + }; + + template <typename T> + struct unqualified_checker<detail::as_pointer_tag<T>, type::userdata> { + template <typename Handler> + static bool check(lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { + if (indextype == type::lua_nil) { + tracking.use(1); + return true; + } + return check_usertype<std::remove_pointer_t<T>>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + const type indextype = type_of(L, index); + return check(L, index, indextype, std::forward<Handler>(handler), tracking); + } + }; + + template <typename... Args> + struct unqualified_checker<std::tuple<Args...>, type::poly> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename A, typename B> + struct unqualified_checker<std::pair<A, B>, type::poly> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename T> + struct unqualified_checker<optional<T>, type::poly> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&&, record& tracking) { + type t = type_of(L, index); + if (t == type::none) { + tracking.use(0); + return true; + } + if (t == type::lua_nil) { + tracking.use(1); + return true; + } + return stack::unqualified_check<T>(L, index, no_panic, tracking); + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + + template <typename T> + struct unqualified_checker<std::optional<T>, type::poly> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&&, record& tracking) { + type t = type_of(L, index); + if (t == type::none) { + tracking.use(0); + return true; + } + if (t == type::lua_nil) { + tracking.use(1); + return true; + } + return stack::check<T>(L, index, no_panic, tracking); + } + }; + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + + template <typename... Tn> + struct unqualified_checker<std::variant<Tn...>, type::poly> { + typedef std::variant<Tn...> V; + typedef std::variant_size<V> V_size; + typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; + + template <typename Handler> + static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) { + if constexpr (V_is_empty::value) { + if (lua_isnone(L, index)) { + return true; + } + } + tracking.use(1); + handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant"); + return false; + } + + template <std::size_t I, typename Handler> + static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) { + typedef std::variant_alternative_t<I - 1, V> T; + record temp_tracking = tracking; + if (stack::check<T>(L, index, no_panic, temp_tracking)) { + tracking = temp_tracking; + return true; + } + return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking); + } + }; + +#endif // SOL_STD_VARIANT + +#endif // SOL_CXX17_FEATURES +}} // namespace sol::stack + +#endif // SOL_STACK_CHECK_UNQUALIFIED_HPP diff --git a/lib/sol2/include/sol/stack_core.hpp b/lib/sol2/include/sol/stack_core.hpp new file mode 100644 index 0000000..3b37210 --- /dev/null +++ b/lib/sol2/include/sol/stack_core.hpp @@ -0,0 +1,1436 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_CORE_HPP +#define SOL_STACK_CORE_HPP + +#include "types.hpp" +#include "inheritance.hpp" +#include "error_handler.hpp" +#include "reference.hpp" +#include "stack_reference.hpp" +#include "tuple.hpp" +#include "traits.hpp" +#include "tie.hpp" +#include "stack_guard.hpp" +#include "demangle.hpp" +#include "forward_detail.hpp" + +#include <vector> +#include <bitset> +#include <forward_list> +#include <string> +#include <algorithm> +#include <sstream> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <optional> +#endif // C++17 + +namespace sol { + namespace detail { + struct with_function_tag {}; + struct as_reference_tag {}; + template <typename T> + struct as_pointer_tag {}; + template <typename T> + struct as_value_tag {}; + template <typename T> + struct as_table_tag {}; + + using lua_reg_table = luaL_Reg[64]; + + using unique_destructor = void (*)(void*); + using unique_tag = detail::inheritance_unique_cast_function; + + inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) { + // this handels arbitrary alignments... + // make this into a power-of-2-only? + // actually can't: this is a C++14-compatible framework, + // power of 2 alignment is C++17 + std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr); + std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment); + std::uintptr_t padding = (alignment - offby) % alignment; + required_space += size + padding; + if (space < required_space) { + return nullptr; + } + ptr = static_cast<void*>(static_cast<char*>(ptr) + padding); + space -= padding; + return ptr; + } + + inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) { + std::size_t required_space = 0; + return align(alignment, size, ptr, space, required_space); + } + + inline void align_one(std::size_t a, std::size_t s, void*& target_alignment) { + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + target_alignment = align(a, s, target_alignment, space); + target_alignment = static_cast<void*>(static_cast<char*>(target_alignment) + s); + } + + template <typename... Args> + std::size_t aligned_space_for(void* alignment = nullptr) { + char* start = static_cast<char*>(alignment); + (void)detail::swallow{ int{}, (align_one(std::alignment_of_v<Args>, sizeof(Args), alignment), int{})... }; + return static_cast<char*>(alignment) - start; + } + + inline void* align_usertype_pointer(void* ptr) { + using use_align = std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<void*>::value > 1) +#endif + >; + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space); + } + + template <bool pre_aligned = false, bool pre_shifted = false> + void* align_usertype_unique_destructor(void* ptr) { + using use_align = std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<unique_destructor>::value > 1) +#endif + >; + if (!pre_aligned) { + ptr = align_usertype_pointer(ptr); + } + if (!pre_shifted) { + ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*)); + } + if (!use_align::value) { + return static_cast<void*>(static_cast<void**>(ptr) + 1); + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space); + } + + template <bool pre_aligned = false, bool pre_shifted = false> + void* align_usertype_unique_tag(void* ptr) { + using use_align = std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<unique_tag>::value > 1) +#endif + >; + if (!pre_aligned) { + ptr = align_usertype_unique_destructor(ptr); + } + if (!pre_shifted) { + ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor)); + } + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space); + } + + template <typename T, bool pre_aligned = false, bool pre_shifted = false> + void* align_usertype_unique(void* ptr) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!pre_aligned) { + ptr = align_usertype_unique_tag(ptr); + } + if (!pre_shifted) { + ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag)); + } + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<T>::value, sizeof(T), ptr, space); + } + + template <typename T> + void* align_user(void* ptr) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<T>::value, sizeof(T), ptr, space); + } + + template <typename T> + T** usertype_allocate_pointer(lua_State* L) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T*>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*))); + return pointerpointer; + } + static const std::size_t initial_size = aligned_space_for<T*>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1)); + + std::size_t allocated_size = initial_size; + void* unadjusted = lua_newuserdata(L, initial_size); + void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size); + if (adjusted == nullptr) { + lua_pop(L, 1); + // what kind of absolute garbage trash allocator are we dealing with? + // whatever, add some padding in the case of MAXIMAL alignment waste... + allocated_size = misaligned_size; + unadjusted = lua_newuserdata(L, allocated_size); + adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size); + if (adjusted == nullptr) { + // trash allocator can burn in hell + lua_pop(L, 1); + // luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a + // worse job than malloc/realloc and should go read some books, yeah?"); + luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data()); + } + } + return static_cast<T**>(adjusted); + } + + inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align, std::size_t value_size, + std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) { + void* adjusted = lua_newuserdata(L, allocated_size); + pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size); + if (pointer_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + // subtract size of what we're going to allocate there + allocated_size -= ptr_size; + adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size); + data_adjusted = align(value_align, value_size, adjusted, allocated_size); + if (data_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + return true; + } + + inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align, std::size_t real_size, + std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) { + void* adjusted = lua_newuserdata(L, allocated_size); + pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size); + if (pointer_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + allocated_size -= ptr_size; + + adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size); + dx_adjusted = align(std::alignment_of_v<unique_destructor>, sizeof(unique_destructor), adjusted, allocated_size); + if (dx_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + allocated_size -= sizeof(unique_destructor); + + adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor)); + + id_adjusted = align(std::alignment_of_v<unique_tag>, sizeof(unique_tag), adjusted, allocated_size); + if (id_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + allocated_size -= sizeof(unique_tag); + + adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag)); + data_adjusted = align(real_align, real_size, adjusted, allocated_size); + if (data_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + return true; + } + + template <typename T> + T* usertype_allocate(lua_State* L) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T))); + T*& pointerreference = *pointerpointer; + T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1); + pointerreference = allocationtarget; + return allocationtarget; + } + + /* the assumption is that `lua_newuserdata` -- unless someone + passes a specific lua_Alloc that gives us bogus, un-aligned pointers + -- uses malloc, which tends to hand out more or less aligned pointers to memory + (most of the time, anyhow) + + but it's not guaranteed, so we have to do a post-adjustment check and increase padding + + we do this preliminarily with compile-time stuff, to see + if we strike lucky with the allocator and alignment values + + otherwise, we have to re-allocate the userdata and + over-allocate some space for additional padding because + compilers are optimized for aligned reads/writes + (and clang will barf UBsan errors on us for not being aligned) + */ + static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1)); + + void* pointer_adjusted; + void* data_adjusted; + bool result + = attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), initial_size, pointer_adjusted, data_adjusted); + if (!result) { + // we're likely to get something that fails to perform the proper allocation a second time, + // so we use the suggested_new_size bump to help us out here + pointer_adjusted = nullptr; + data_adjusted = nullptr; + result = attempt_alloc( + L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), misaligned_size, pointer_adjusted, data_adjusted); + if (!result) { + if (pointer_adjusted == nullptr) { + luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str()); + } + else { + luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str()); + } + return nullptr; + } + } + + T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted); + T*& pointerreference = *pointerpointer; + T* allocationtarget = reinterpret_cast<T*>(data_adjusted); + pointerreference = allocationtarget; + return allocationtarget; + } + + template <typename T, typename Real> + Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1 + || std::alignment_of<Real>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real))); + dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1)); + id = static_cast<unique_tag*>(static_cast<void*>(dx + 1)); + Real* mem = static_cast<Real*>(static_cast<void*>(id + 1)); + return mem; + } + + static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1)); + + void* pointer_adjusted; + void* dx_adjusted; + void* id_adjusted; + void* data_adjusted; + bool result = attempt_alloc_unique(L, + std::alignment_of_v<T*>, + sizeof(T*), + std::alignment_of_v<Real>, + sizeof(Real), + initial_size, + pointer_adjusted, + dx_adjusted, + id_adjusted, + data_adjusted); + if (!result) { + // we're likely to get something that fails to perform the proper allocation a second time, + // so we use the suggested_new_size bump to help us out here + pointer_adjusted = nullptr; + dx_adjusted = nullptr; + id_adjusted = nullptr; + data_adjusted = nullptr; + result = attempt_alloc_unique(L, + std::alignment_of_v<T*>, + sizeof(T*), + std::alignment_of_v<Real>, + sizeof(Real), + misaligned_size, + pointer_adjusted, + dx_adjusted, + id_adjusted, + data_adjusted); + if (!result) { + if (pointer_adjusted == nullptr) { + luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str()); + } + else if (dx_adjusted == nullptr) { + luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str()); + } + else { + luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str()); + } + return nullptr; + } + } + + pref = static_cast<T**>(pointer_adjusted); + dx = static_cast<detail::unique_destructor*>(dx_adjusted); + id = static_cast<unique_tag*>(id_adjusted); + Real* mem = static_cast<Real*>(data_adjusted); + return mem; + } + + template <typename T> + T* user_allocate(lua_State* L) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T))); + return pointer; + } + + static const std::size_t initial_size = aligned_space_for<T>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1)); + + std::size_t allocated_size = initial_size; + void* unadjusted = lua_newuserdata(L, allocated_size); + void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size); + if (adjusted == nullptr) { + lua_pop(L, 1); + // try again, add extra space for alignment padding + allocated_size = misaligned_size; + unadjusted = lua_newuserdata(L, allocated_size); + adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size); + if (adjusted == nullptr) { + lua_pop(L, 1); + luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data()); + } + } + return static_cast<T*>(adjusted); + } + + template <typename T> + int usertype_alloc_destruct(lua_State* L) { + void* memory = lua_touserdata(L, 1); + memory = align_usertype_pointer(memory); + T** pdata = static_cast<T**>(memory); + T* data = *pdata; + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::destroy(alloc, data); + return 0; + } + + template <typename T> + int unique_destruct(lua_State* L) { + void* memory = lua_touserdata(L, 1); + memory = align_usertype_unique_destructor(memory); + unique_destructor& dx = *static_cast<unique_destructor*>(memory); + memory = align_usertype_unique_tag<true>(memory); + (dx)(memory); + return 0; + } + + template <typename T> + int user_alloc_destruct(lua_State* L) { + void* memory = lua_touserdata(L, 1); + memory = align_user<T>(memory); + T* data = static_cast<T*>(memory); + std::allocator<T> alloc; + std::allocator_traits<std::allocator<T>>::destroy(alloc, data); + return 0; + } + + template <typename T, typename Real> + void usertype_unique_alloc_destroy(void* memory) { + memory = align_usertype_unique<Real, true>(memory); + Real* target = static_cast<Real*>(memory); + std::allocator<Real> alloc; + std::allocator_traits<std::allocator<Real>>::destroy(alloc, target); + } + + template <typename T> + int cannot_destruct(lua_State* L) { + return luaL_error(L, + "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= " + "delete' and thusly this type is being destroyed without properly destructing, invoking undefined " + "behavior: please bind a usertype and specify a custom destructor to define the behavior properly", + detail::demangle<T>().data()); + } + + template <typename T> + void reserve(T&, std::size_t) { + } + + template <typename T, typename Al> + void reserve(std::vector<T, Al>& vec, std::size_t hint) { + vec.reserve(hint); + } + + template <typename T, typename Tr, typename Al> + void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) { + str.reserve(hint); + } + + inline bool property_always_true(meta_function) { + return true; + } + + struct properties_enrollment_allowed { + int& times_through; + std::bitset<64>& properties; + automagic_enrollments& enrollments; + + properties_enrollment_allowed(int& times, std::bitset<64>& props, automagic_enrollments& enroll) : times_through(times), properties(props), enrollments(enroll) { + } + + bool operator()(meta_function mf) const { + bool p = properties[static_cast<int>(mf)]; + if (times_through > 0) { + return p; + } + switch (mf) { + case meta_function::length: + return enrollments.length_operator && !p; + case meta_function::pairs: + return enrollments.pairs_operator && !p; + case meta_function::call: + return enrollments.call_operator && !p; + case meta_function::less_than: + return enrollments.less_than_operator && !p; + case meta_function::less_than_or_equal_to: + return enrollments.less_than_or_equal_to_operator && !p; + case meta_function::equal_to: + return enrollments.equal_to_operator && !p; + default: + break; + } + return !p; + } + }; + + struct indexed_insert { + lua_reg_table& l; + int& index; + + indexed_insert(lua_reg_table& cont, int& idx) : l(cont), index(idx) { + } + void operator()(meta_function mf, lua_CFunction f) { + l[index] = luaL_Reg{ to_string(mf).c_str(), f }; + ++index; + } + }; + } // namespace detail + + namespace stack { + + template <typename T, bool global = false, bool raw = false, typename = void> + struct field_getter; + template <typename T, typename P, bool global = false, bool raw = false, typename = void> + struct probe_field_getter; + + template <typename T, bool global = false, bool raw = false, typename = void> + struct field_setter; + + template <typename T, typename = void> + struct unqualified_getter; + template <typename T, typename = void> + struct qualified_getter; + + template <typename T, typename = void> + struct qualified_interop_getter; + template <typename T, typename = void> + struct unqualified_interop_getter; + + template <typename T, typename = void> + struct popper; + + template <typename T, typename = void> + struct unqualified_pusher; + + template <typename T, type t, typename = void> + struct unqualified_checker; + template <typename T, type t, typename = void> + struct qualified_checker; + + template <typename T, typename = void> + struct unqualified_check_getter; + template <typename T, typename = void> + struct qualified_check_getter; + + struct probe { + bool success; + int levels; + + probe(bool s, int l) : success(s), levels(l) { + } + + operator bool() const { + return success; + }; + }; + + struct record { + int last; + int used; + + record() : last(), used() { + } + void use(int count) { + last = count; + used += count; + } + }; + + } // namespace stack + + namespace meta { namespace meta_detail { + + template <typename T> + using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>())); + + template <typename T> + using adl_sol_lua_interop_get_test_t + = decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>())); + + template <typename T> + using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>())); + + template <typename T> + using adl_sol_lua_interop_check_test_t + = decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, no_panic, std::declval<stack::record&>())); + + template <typename T> + using adl_sol_lua_check_get_test_t + = decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>())); + + template <typename... Args> + using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...)); + + template <typename T, typename... Args> + using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...)); + + template <typename T> + inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>; + + template <typename T> + inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>; + + template <typename T> + inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>; + + template <typename T> + inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>; + + template <typename T> + inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>; + + template <typename... Args> + inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>; + + template <typename T, typename... Args> + inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>; + }} // namespace meta::meta_detail + + + namespace stack { + namespace stack_detail { + constexpr const char* not_enough_stack_space = "not enough space left on Lua stack"; + constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number"; + constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number"; + constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string"; + constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function"; + constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata"; + constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees"; + constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment"; + + template <typename T> + struct strip { + typedef T type; + }; + template <typename T> + struct strip<std::reference_wrapper<T>> { + typedef T& type; + }; + template <typename T> + struct strip<user<T>> { + typedef T& type; + }; + template <typename T> + struct strip<non_null<T>> { + typedef T type; + }; + template <typename T> + using strip_t = typename strip<T>::type; + + template <typename C> + static int get_size_hint(C& c) { + return static_cast<int>(c.size()); + } + + template <typename V, typename Al> + static int get_size_hint(const std::forward_list<V, Al>&) { + // forward_list makes me sad + return static_cast<int>(32); + } + + template <typename T> + decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) { + using Tu = meta::unqualified_t<T>; + if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) { + return sol_lua_get(types<Tu>(), L, index, tracking); + } + else { + unqualified_getter<Tu> g{}; + (void)g; + return g.get(L, index, tracking); + } + } + + template <typename T> + decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) { + if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) { + return sol_lua_get(types<T>(), L, index, tracking); + } + else { + qualified_getter<T> g{}; + (void)g; + return g.get(L, index, tracking); + } + } + + template <typename T> + decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) { + using Tu = meta::unqualified_t<T>; + if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) { + return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking); + } + else { + (void)L; + (void)index; + (void)unadjusted_pointer; + (void)tracking; + using Ti = stack_detail::strip_t<Tu>; + return std::pair<bool, Ti*>{ false, nullptr }; + } + } + + template <typename T> + decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) { + if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) { + return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking); + } + else { + return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking); + } + } + + template <typename T, typename Handler> + bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) { + using Tu = meta::unqualified_t<T>; + if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) { + return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking); + } + else { + (void)L; + (void)index; + (void)index_type; + (void)handler; + (void)tracking; + return false; + } + } + + template <typename T, typename Handler> + bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) { + if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) { + return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking); + } + else { + return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking); + } + } + + using undefined_method_func = void (*)(stack_reference); + + struct undefined_metatable { + lua_State* L; + const char* key; + undefined_method_func on_new_table; + + undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) { + } + + void operator()() const { + if (luaL_newmetatable(L, key) == 1) { + on_new_table(stack_reference(L, -1)); + } + lua_setmetatable(L, -2); + } + }; + } // namespace stack_detail + + inline bool maybe_indexable(lua_State* L, int index = -1) { + type t = type_of(L, index); + return t == type::userdata || t == type::table; + } + + inline int top(lua_State* L) { + return lua_gettop(L); + } + + inline bool is_main_thread(lua_State* L) { + int ismainthread = lua_pushthread(L); + lua_pop(L, 1); + return ismainthread == 1; + } + + inline void coroutine_create_guard(lua_State* L) { + if (is_main_thread(L)) { + return; + } + int stacksize = lua_gettop(L); + if (stacksize < 1) { + return; + } + if (type_of(L, 1) != type::function) { + return; + } + // well now we're screwed... + // we can clean the stack and pray it doesn't destroy anything? + lua_pop(L, stacksize); + } + + inline void clear(lua_State* L, int table_index) { + lua_pushnil(L); + while (lua_next(L, table_index) != 0) { + // remove value + lua_pop(L, 1); + // duplicate key to protect form rawset + lua_pushvalue(L, -1); + // push new value + lua_pushnil(L); + // table_index%[key] = nil + lua_rawset(L, table_index); + } + } + + inline void clear(reference& r) { + auto pp = push_pop<false>(r); + int stack_index = pp.index_of(r); + clear(r.lua_state(), stack_index); + } + + inline void clear(stack_reference& r) { + clear(r.lua_state(), r.stack_index()); + } + + template <typename T, typename... Args> + int push(lua_State* L, T&& t, Args&&... args) { + using Tu = meta::unqualified_t<T>; + if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) { + return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...); + } + else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) { + return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...); + } + else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) { + return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...); + } + else { + unqualified_pusher<Tu> p{}; + (void)p; + return p.push(L, std::forward<T>(t), std::forward<Args>(args)...); + } + } + + // overload allows to use a pusher of a specific type, but pass in any kind of args + template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>> + int push(lua_State* L, Arg&& arg, Args&&... args) { + using Tu = meta::unqualified_t<T>; + if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) { + return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) { + return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...>) { + return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + else { + unqualified_pusher<Tu> p{}; + (void)p; + return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + + namespace stack_detail { + + template <typename T, typename Arg, typename... Args> + int push_reference(lua_State* L, Arg&& arg, Args&&... args) { + using use_reference_tag = meta::all<std::is_lvalue_reference<T>, + meta::neg<std::is_const<T>>, + meta::neg<is_lua_primitive<meta::unqualified_t<T>>>, + meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>; + using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>; + return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + + } // namespace stack_detail + + template <typename T, typename... Args> + int push_reference(lua_State* L, T&& t, Args&&... args) { + return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...); + } + + template <typename T, typename Arg, typename... Args> + int push_reference(lua_State* L, Arg&& arg, Args&&... args) { + return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + + inline int multi_push(lua_State*) { + // do nothing + return 0; + } + + template <typename T, typename... Args> + int multi_push(lua_State* L, T&& t, Args&&... args) { + int pushcount = push(L, std::forward<T>(t)); + void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... }); + return pushcount; + } + + inline int multi_push_reference(lua_State*) { + // do nothing + return 0; + } + + template <typename T, typename... Args> + int multi_push_reference(lua_State* L, T&& t, Args&&... args) { + int pushcount = push_reference(L, std::forward<T>(t)); + void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... }); + return pushcount; + } + + template <typename T, typename Handler> + bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) { + using Tu = meta::unqualified_t<T>; + if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) { + return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking); + } + else { + unqualified_checker<Tu, lua_type_of_v<Tu>> c; + // VC++ has a bad warning here: shut it up + (void)c; + return c.check(L, index, std::forward<Handler>(handler), tracking); + } + } + + template <typename T, typename Handler> + bool unqualified_check(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T> + bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return unqualified_check<T>(L, index, handler); + } + + template <typename T, typename Handler> + bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) { + return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking); + } + else { + using Tu = meta::unqualified_t<T>; + qualified_checker<T, lua_type_of_v<Tu>> c; + // VC++ has a bad warning here: shut it up + (void)c; + return c.check(L, index, std::forward<Handler>(handler), tracking); + } + } + + template <typename T, typename Handler> + bool check(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return check<T>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T> + bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return check<T>(L, index, handler); + } + + template <typename T, typename Handler> + bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) { + using Tu = meta::unqualified_t<T>; + using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>; + return check<detail_t>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) { + using Tu = meta::unqualified_t<T>; + using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>; + return check<detail_t>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + bool check_usertype(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T> + bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return check_usertype<T>(L, index, handler); + } + + template <typename T, typename Handler> + decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) { + using Tu = meta::unqualified_t<T>; + if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) { + return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking); + } + else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) { + return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking); + } + else { + unqualified_check_getter<Tu> cg{}; + (void)cg; + return cg.get(L, index, std::forward<Handler>(handler), tracking); + } + } + + template <typename T, typename Handler> + decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return unqualified_check_get<T>(L, index, handler, tracking); + } + + template <typename T> + decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return unqualified_check_get<T>(L, index, handler); + } + + template <typename T, typename Handler> + decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) { + if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) { + return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking); + } + else { + qualified_check_getter<T> cg{}; + (void)cg; + return cg.get(L, index, std::forward<Handler>(handler), tracking); + } + } + + template <typename T, typename Handler> + decltype(auto) check_get(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return check_get<T>(L, index, handler, tracking); + } + + template <typename T> + decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return check_get<T>(L, index, handler); + } + + namespace stack_detail { + + template <typename Handler> + bool check_types(lua_State*, int, Handler&&, record&) { + return true; + } + + template <typename T, typename... Args, typename Handler> + bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) { + if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking)) + return false; + return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking); + } + + template <typename... Args, typename Handler> + bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) { + return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking); + } + + } // namespace stack_detail + + template <typename... Args, typename Handler> + bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename... Args, typename Handler> + bool multi_check(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename... Args> + bool multi_check(lua_State* L, int index) { + return multi_check<Args...>(L, index); + } + + template <typename T> + auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) { +#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER + static constexpr bool is_op = meta::is_specialization_of_v<T, optional> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + || meta::is_specialization_of_v<T, std::optional> +#endif + ; + if constexpr (is_op) { + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + else { + if (is_lua_reference<T>::value) { + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking); + return *std::move(op); + } +#else + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); +#endif + } + + template <typename T> + decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + record tracking{}; + return unqualified_get<T>(L, index, tracking); + } + + template <typename T> + auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) { +#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER + static constexpr bool is_op = meta::is_specialization_of_v<T, optional> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + || meta::is_specialization_of_v<T, std::optional> +#endif + ; + if constexpr (is_op) { + return stack_detail::unchecked_get<T>(L, index, tracking); + } + else { + if (is_lua_reference<T>::value) { + return stack_detail::unchecked_get<T>(L, index, tracking); + } + auto op = check_get<T>(L, index, type_panic_c_str, tracking); + return *std::move(op); + } +#else + return stack_detail::unchecked_get<T>(L, index, tracking); +#endif + } + + template <typename T> + decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + record tracking{}; + return get<T>(L, index, tracking); + } + + template <typename T> + decltype(auto) get_usertype(lua_State* L, int index, record& tracking) { + using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>; + return get<UT>(L, index, tracking); + } + + template <typename T> + decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + record tracking{}; + return get_usertype<T>(L, index, tracking); + } + + template <typename T> + decltype(auto) pop(lua_State* L) { + return popper<meta::unqualified_t<T>>{}.pop(L); + } + + template <bool global = false, bool raw = false, typename Key> + void get_field(lua_State* L, Key&& key) { + field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key)); + } + + template <bool global = false, bool raw = false, typename Key> + void get_field(lua_State* L, Key&& key, int tableindex) { + field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, typename Key> + void raw_get_field(lua_State* L, Key&& key) { + get_field<global, true>(L, std::forward<Key>(key)); + } + + template <bool global = false, typename Key> + void raw_get_field(lua_State* L, Key&& key, int tableindex) { + get_field<global, true>(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_get_field(lua_State* L, Key&& key) { + return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key)); + } + + template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_get_field(lua_State* L, Key&& key, int tableindex) { + return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_raw_get_field(lua_State* L, Key&& key) { + return probe_get_field<global, true, C>(L, std::forward<Key>(key)); + } + + template <bool global = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) { + return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, bool raw = false, typename Key, typename Value> + void set_field(lua_State* L, Key&& key, Value&& value) { + field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value)); + } + + template <bool global = false, bool raw = false, typename Key, typename Value> + void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { + field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex); + } + + template <bool global = false, typename Key, typename Value> + void raw_set_field(lua_State* L, Key&& key, Value&& value) { + set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value)); + } + + template <bool global = false, typename Key, typename Value> + void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { + set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex); + } + + template <typename T, typename F> + void modify_unique_usertype_as(const stack_reference& obj, F&& f) { + using u_traits = unique_usertype_traits<T>; + void* raw = lua_touserdata(obj.lua_state(), obj.stack_index()); + void* ptr_memory = detail::align_usertype_pointer(raw); + void* uu_memory = detail::align_usertype_unique<T>(raw); + T& uu = *static_cast<T*>(uu_memory); + f(uu); + *static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu)); + } + + template <typename F> + void modify_unique_usertype(const stack_reference& obj, F&& f) { + using bt = meta::bind_traits<meta::unqualified_t<F>>; + using T = typename bt::template arg_at<0>; + using Tu = meta::unqualified_t<T>; + modify_unique_usertype_as<Tu>(obj, std::forward<F>(f)); + } + + } // namespace stack + + namespace detail { + + template <typename T> + lua_CFunction make_destructor(std::true_type) { + if constexpr (is_unique_usertype_v<T>) { + return &unique_destruct<T>; + } + else if constexpr (!std::is_pointer_v<T>) { + return &usertype_alloc_destruct<T>; + } + else { + return &cannot_destruct<T>; + } + } + + template <typename T> + lua_CFunction make_destructor(std::false_type) { + return &cannot_destruct<T>; + } + + template <typename T> + lua_CFunction make_destructor() { + return make_destructor<T>(std::is_destructible<T>()); + } + + struct no_comp { + template <typename A, typename B> + bool operator()(A&&, B&&) const { + return false; + } + }; + + template <typename T> + int is_check(lua_State* L) { + return stack::push(L, stack::check<T>(L, 1, &no_panic)); + } + + template <typename T> + int member_default_to_string(std::true_type, lua_State* L) { + decltype(auto) ts = stack::get<T>(L, 1).to_string(); + return stack::push(L, std::forward<decltype(ts)>(ts)); + } + + template <typename T> + int member_default_to_string(std::false_type, lua_State* L) { + return luaL_error(L, + "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member " + "function, or operator<<(ostream&, ...) present", + detail::demangle<T>().data()); + } + + template <typename T> + int adl_default_to_string(std::true_type, lua_State* L) { + using namespace std; + decltype(auto) ts = to_string(stack::get<T>(L, 1)); + return stack::push(L, std::forward<decltype(ts)>(ts)); + } + + template <typename T> + int adl_default_to_string(std::false_type, lua_State* L) { + return member_default_to_string<T>(meta::supports_to_string_member<T>(), L); + } + + template <typename T> + int oss_default_to_string(std::true_type, lua_State* L) { + std::ostringstream oss; + oss << stack::unqualified_get<T>(L, 1); + return stack::push(L, oss.str()); + } + + template <typename T> + int oss_default_to_string(std::false_type, lua_State* L) { + return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L); + } + + template <typename T> + int default_to_string(lua_State* L) { + return oss_default_to_string<T>(meta::supports_ostream_op<T>(), L); + } + + template <typename T> + int default_size(lua_State* L) { + decltype(auto) self = stack::unqualified_get<T>(L, 1); + return stack::push(L, self.size()); + } + + template <typename T, typename Op> + int comparsion_operator_wrap(lua_State* L) { + if constexpr (std::is_void_v<T>) { + return stack::push(L, false); + } + else { + auto maybel = stack::unqualified_check_get<T>(L, 1); + if (!maybel) { + return stack::push(L, false); + } + auto mayber = stack::unqualified_check_get<T>(L, 2); + if (!mayber) { + return stack::push(L, false); + } + decltype(auto) l = *maybel; + decltype(auto) r = *mayber; + if constexpr (std::is_same_v<no_comp, Op>) { + std::equal_to<> op; + return stack::push(L, op(detail::ptr(l), detail::ptr(r))); + } + else { + if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack + || std::is_same_v<std::less_equal<>, Op> // + || std::is_same_v<std::less_equal<>, Op>) { // + if (detail::ptr(l) == detail::ptr(r)) { + return stack::push(L, true); + } + } + Op op; + return stack::push(L, op(detail::deref(l), detail::deref(r))); + } + } + } + + template <typename T, typename IFx, typename Fx> + void insert_default_registrations(IFx&& ifx, Fx&& fx); + + template <typename T, bool, bool> + struct get_is_primitive : is_lua_primitive<T> {}; + + template <typename T> + struct get_is_primitive<T, true, false> + : meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> {}; + + template <typename T> + struct get_is_primitive<T, false, true> + : meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> {}; + + template <typename T> + struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> {}; + + } // namespace detail + + template <typename T> + struct is_proxy_primitive + : detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> {}; + +} // namespace sol + +#endif // SOL_STACK_CORE_HPP diff --git a/lib/sol2/include/sol/stack_field.hpp b/lib/sol2/include/sol/stack_field.hpp new file mode 100644 index 0000000..9061587 --- /dev/null +++ b/lib/sol2/include/sol/stack_field.hpp @@ -0,0 +1,246 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_FIELD_HPP +#define SOL_STACK_FIELD_HPP + +#include "stack_core.hpp" +#include "stack_push.hpp" +#include "stack_get.hpp" +#include "stack_check_get.hpp" + +namespace sol { +namespace stack { + template <typename T, bool global, bool raw, typename> + struct field_getter { + static constexpr int default_table_index = meta::conditional_t<meta::is_c_str_v<T> || (std::is_integral_v<T> && !std::is_same_v<T, bool>) + || (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (raw && std::is_void_v<std::remove_pointer_t<T>>), + std::integral_constant<int, -1>, std::integral_constant<int, -2>> ::value; + + template <typename Key> + void get(lua_State* L, Key&& key, int tableindex = default_table_index) { + if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t> || std::is_same_v<T, create_if_nil_t>) { + (void)L; + (void)key; + (void)tableindex; + } + else if constexpr (std::is_same_v<T, env_key_t>) { + (void)key; +#if SOL_LUA_VERSION < 502 + // Use lua_setfenv + lua_getfenv(L, tableindex); +#else + // Use upvalues as explained in Lua 5.2 and beyond's manual + if (lua_getupvalue(L, tableindex, 1) == nullptr) { + push(L, lua_nil); + } +#endif + } + else if constexpr (std::is_same_v<T, metatable_key_t>) { + (void)key; + if (lua_getmetatable(L, tableindex) == 0) + push(L, lua_nil); + } + else if constexpr(raw) { + if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) { + lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key)); + } +#if SOL_LUA_VERSION >= 502 + else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) { + lua_rawgetp(L, tableindex, key); + } +#endif // Lua 5.3.x + else { + push(L, std::forward<Key>(key)); + lua_rawget(L, tableindex); + } + } + else { + if constexpr (meta::is_c_str_v<T>) { + if constexpr (global) { + (void)tableindex; + lua_getglobal(L, &key[0]); + } + else { + lua_getfield(L, tableindex, &key[0]); + } + } +#if SOL_LUA_VERSION >= 503 + else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) { + lua_geti(L, tableindex, static_cast<lua_Integer>(key)); + } +#endif // Lua 5.3.x + else { + push(L, std::forward<Key>(key)); + lua_gettable(L, tableindex); + } + } + } + }; + + template <typename... Args, bool b, bool raw, typename C> + struct field_getter<std::tuple<Args...>, b, raw, C> { + template <std::size_t... I, typename Keys> + void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) { + get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex); + void(detail::swallow { (get_field<false, raw>(L, std::get<I>(std::forward<Keys>(keys))), 0)... }); + reference saved(L, -1); + lua_pop(L, static_cast<int>(sizeof...(I))); + saved.push(); + } + + template <typename Keys> + void get(lua_State* L, Keys&& keys) { + apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1)); + } + + template <typename Keys> + void get(lua_State* L, Keys&& keys, int tableindex) { + apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex); + } + }; + + template <typename A, typename B, bool b, bool raw, typename C> + struct field_getter<std::pair<A, B>, b, raw, C> { + template <typename Keys> + void get(lua_State* L, Keys&& keys, int tableindex) { + get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex); + get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys))); + reference saved(L, -1); + lua_pop(L, static_cast<int>(2)); + saved.push(); + } + + template <typename Keys> + void get(lua_State* L, Keys&& keys) { + get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys))); + get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys))); + reference saved(L, -1); + lua_pop(L, static_cast<int>(2)); + saved.push(); + } + }; + + template <typename T, bool global, bool raw, typename> + struct field_setter { + static constexpr int default_table_index = meta::conditional_t<(meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) || (std::is_integral_v<T> && !std::is_same_v<T, bool>) + || (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (raw && std::is_void_v<std::remove_pointer_t<T>>), + std::integral_constant<int, -2>, std::integral_constant<int, -3>> ::value; + + template <typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value, int tableindex = default_table_index) { + if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t>) { + (void)L; + (void)key; + (void)value; + (void)tableindex; + } + else if constexpr (std::is_same_v<T, metatable_key_t>) { + (void)key; + push(L, std::forward<Value>(value)); + lua_setmetatable(L, tableindex); + } + else if constexpr (raw) { + if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) { + push(L, std::forward<Value>(value)); + lua_rawseti(L, tableindex, static_cast<lua_Integer>(key)); + } +#if SOL_LUA_VERSION >= 502 + else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) { + push(L, std::forward<Value>(value)); + lua_rawsetp(L, tableindex, std::forward<Key>(key)); + } +#endif // Lua 5.2.x + else { + push(L, std::forward<Key>(key)); + push(L, std::forward<Value>(value)); + lua_rawset(L, tableindex); + } + } + else { + if constexpr (meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) { + if constexpr (global) { + push(L, std::forward<Value>(value)); + lua_setglobal(L, &key[0]); + (void)tableindex; + } + else { + push(L, std::forward<Value>(value)); + lua_setfield(L, tableindex, &key[0]); + } + } +#if SOL_LUA_VERSION >= 503 + else if constexpr(std::is_integral_v<T> && !std::is_same_v<bool, T>) { + push(L, std::forward<Value>(value)); + lua_seti(L, tableindex, static_cast<lua_Integer>(key)); + } +#endif // Lua 5.3.x + else { + push(L, std::forward<Key>(key)); + push(L, std::forward<Value>(value)); + lua_settable(L, tableindex); + } + } + } + }; + + template <typename... Args, bool b, bool raw, typename C> + struct field_setter<std::tuple<Args...>, b, raw, C> { + template <bool g, std::size_t I, typename Keys, typename Value> + void apply(std::index_sequence<I>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { + I < 1 ? set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value), tableindex) + : set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value)); + } + + template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value> + void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { + I0 < 1 ? get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), tableindex) + : get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), -1); + apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1); + } + + template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value> + void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { + apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex); + lua_pop(L, static_cast<int>(sizeof...(I))); + } + + template <typename Keys, typename Value> + void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) { + top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex); + } + }; + + template <typename A, typename B, bool b, bool raw, typename C> + struct field_setter<std::pair<A, B>, b, raw, C> { + template <typename Keys, typename Value> + void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) { + get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex); + set_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)), std::forward<Value>(value), lua_gettop(L)); + lua_pop(L, 1); + } + }; +} +} // namespace sol::stack + +#endif // SOL_STACK_FIELD_HPP diff --git a/lib/sol2/include/sol/stack_get.hpp b/lib/sol2/include/sol/stack_get.hpp new file mode 100644 index 0000000..fc8c7e2 --- /dev/null +++ b/lib/sol2/include/sol/stack_get.hpp @@ -0,0 +1,30 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_GET_HPP +#define SOL_STACK_GET_HPP + +#include "stack_get_unqualified.hpp" +#include "stack_get_qualified.hpp" + +#endif // SOL_STACK_GET_HPP diff --git a/lib/sol2/include/sol/stack_get_qualified.hpp b/lib/sol2/include/sol/stack_get_qualified.hpp new file mode 100644 index 0000000..4631a0f --- /dev/null +++ b/lib/sol2/include/sol/stack_get_qualified.hpp @@ -0,0 +1,40 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_QUALIFIED_GET_HPP +#define SOL_STACK_QUALIFIED_GET_HPP + +#include "stack_get_unqualified.hpp" + +namespace sol { +namespace stack { + + // There are no more enable_ifs that can be used here, + // so this is just for posterity, I guess? + // maybe I'll fill this file in later. + +} +} // namespace sol::stack + +#endif // SOL_STACK_QUALIFIED_GET_HPP + diff --git a/lib/sol2/include/sol/stack_get_unqualified.hpp b/lib/sol2/include/sol/stack_get_unqualified.hpp new file mode 100644 index 0000000..375cc36 --- /dev/null +++ b/lib/sol2/include/sol/stack_get_unqualified.hpp @@ -0,0 +1,1021 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_UNQUALIFIED_GET_HPP +#define SOL_STACK_UNQUALIFIED_GET_HPP + +#include "stack_core.hpp" +#include "usertype_traits.hpp" +#include "inheritance.hpp" +#include "overload.hpp" +#include "error.hpp" +#include "unicode.hpp" + +#include <memory> +#include <functional> +#include <utility> +#include <cstdlib> +#include <cmath> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <string_view> +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#include <variant> +#endif // Apple clang screwed up +#endif // C++17 + +namespace sol { namespace stack { + + namespace stack_detail { + template <typename Ch> + struct count_code_units_utf { + std::size_t needed_size; + + count_code_units_utf() : needed_size(0) { + } + + void operator()(const unicode::encoded_result<Ch> er) { + needed_size += er.code_units_size; + } + }; + + template <typename Ch, typename ErCh> + struct copy_code_units_utf { + Ch* target_; + + copy_code_units_utf(Ch* target) : target_(target) { + } + + void operator()(const unicode::encoded_result<ErCh> er) { + std::memcpy(target_, er.code_units.data(), er.code_units_size * sizeof(ErCh)); + target_ += er.code_units_size; + } + }; + + template <typename Ch, typename F> + inline void convert(const char* strb, const char* stre, F&& f) { + char32_t cp = 0; + for (const char* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf8_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + ++strtarget; + } + else { + cp = dr.codepoint; + strtarget = dr.next; + } + if constexpr(std::is_same_v<Ch, char32_t>) { + auto er = unicode::code_point_to_utf32(cp); + f(er); + } + else { + auto er = unicode::code_point_to_utf16(cp); + f(er); + } + } + } + + template <typename BaseCh, typename S> + inline S get_into(lua_State* L, int index, record& tracking) { + using Ch = typename S::value_type; + tracking.use(1); + size_t len; + auto utf8p = lua_tolstring(L, index, &len); + if (len < 1) + return S(); + const char* strb = utf8p; + const char* stre = utf8p + len; + stack_detail::count_code_units_utf<BaseCh> count_units; + convert<BaseCh>(strb, stre, count_units); + S r(count_units.needed_size, static_cast<Ch>(0)); + r.resize(count_units.needed_size); + Ch* target = &r[0]; + stack_detail::copy_code_units_utf<Ch, BaseCh> copy_units(target); + convert<BaseCh>(strb, stre, copy_units); + return r; + } + } // namespace stack_detail + + template <typename T, typename> + struct unqualified_getter { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + if constexpr (std::is_same_v<T, bool>) { + tracking.use(1); + return lua_toboolean(L, index) != 0; + } + else if constexpr (std::is_enum_v<T>) { + tracking.use(1); + return static_cast<T>(lua_tointegerx(L, index, nullptr)); + } + else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) { + tracking.use(1); +#if SOL_LUA_VERSION >= 503 + if (lua_isinteger(L, index) != 0) { + return static_cast<T>(lua_tointeger(L, index)); + } +#endif + return static_cast<T>(llround(lua_tonumber(L, index))); + } + else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) { + tracking.use(1); + return static_cast<T>(lua_tonumber(L, index)); + } + else if constexpr (is_lua_reference_v<T>) { + tracking.use(1); + return T(L, index); + } + else if constexpr (is_unique_usertype_v<T>) { + using Real = typename unique_usertype_traits<T>::actual_type; + + tracking.use(1); + void* memory = lua_touserdata(L, index); + memory = detail::align_usertype_unique<Real>(memory); + Real* mem = static_cast<Real*>(memory); + return *mem; + } + else { + return stack_detail::unchecked_unqualified_get<detail::as_value_tag<T>>(L, index, tracking); + } + } + }; + + template <typename X, typename> + struct qualified_getter { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + using Tu = meta::unqualified_t<X>; + static constexpr bool is_userdata_of_some_kind + = !std::is_reference_v<X> && is_container_v<Tu> && std::is_default_constructible_v<Tu> && !is_lua_primitive_v<Tu> && !is_transparent_argument_v<Tu>; + if constexpr (is_userdata_of_some_kind) { + if (type_of(L, index) == type::userdata) { + return static_cast<Tu>(stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking)); + } + else { + return stack_detail::unchecked_unqualified_get<sol::nested<Tu>>(L, index, tracking); + } + } + else if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<Tu> && !is_base_rebindable_non_void_v<unique_usertype_traits<Tu>>) { + using u_traits = unique_usertype_traits<Tu>; + using T = typename u_traits::type; + using Real = typename u_traits::actual_type; + tracking.use(1); + void* memory = lua_touserdata(L, index); + memory = detail::align_usertype_unique_destructor(memory); + detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); + if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) { + memory = detail::align_usertype_unique_tag<true, false>(memory); + memory = detail::align_usertype_unique<Real, true, false>(memory); + Real* mem = static_cast<Real*>(memory); + return static_cast<Real>(*mem); + } + Real r(nullptr); + if constexpr (!derive<T>::value) { + // TODO: abort / terminate, maybe only in debug modes? + return static_cast<Real>(std::move(r)); + } + else { + memory = detail::align_usertype_unique_tag<true, false>(memory); + detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory); + memory = detail::align_usertype_unique<Real, true, false>(memory); + string_view ti = usertype_traits<T>::qualified_name(); + int cast_operation; + if constexpr (is_base_rebindable_v<u_traits>) { + using rebind_t = typename u_traits::template rebind_base<void>; + string_view rebind_ti = usertype_traits<rebind_t>::qualified_name(); + cast_operation = ic(memory, &r, ti, rebind_ti); + } + else { + string_view rebind_ti(""); + cast_operation = ic(memory, &r, ti, rebind_ti); + } + switch (cast_operation) { + case 1: { + // it's a perfect match, + // alias memory directly + Real* mem = static_cast<Real*>(memory); + return static_cast<Real>(*mem); + } + case 2: + // it's a base match, return the + // aliased creation + return static_cast<Real>(std::move(r)); + default: + // uh oh.. + break; + } + // TODO: abort / terminate, maybe only in debug modes? + return static_cast<Real>(r); + } + } + else { + return stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking); + } + } + }; + + template <typename T> + struct unqualified_getter<as_table_t<T>> { + using Tu = meta::unqualified_t<T>; + + template <typename V> + static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) { + cont.push_back(stack::get<V>(L, -lua_size<V>::value)); + } + + template <typename V> + static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& cont, std::size_t idx) { + insert_at_end(meta::has_insert<Tu>(), t, L, cont, idx); + } + + template <typename V> + static void insert_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) { + using std::cend; + cont.insert(cend(cont), stack::get<V>(L, -lua_size<V>::value)); + } + + template <typename V> + static void insert_at_end(std::false_type, types<V>, lua_State* L, T& cont, std::size_t idx) { + cont[idx] = stack::get<V>(L, -lua_size<V>::value); + } + + static bool max_size_check(std::false_type, T&, std::size_t) { + return false; + } + + static bool max_size_check(std::true_type, T& cont, std::size_t idx) { + return idx >= cont.max_size(); + } + + static T get(lua_State* L, int relindex, record& tracking) { + return get(meta::is_associative<Tu>(), L, relindex, tracking); + } + + static T get(std::false_type, lua_State* L, int relindex, record& tracking) { + typedef typename Tu::value_type V; + return get(types<V>(), L, relindex, tracking); + } + + template <typename V> + static T get(types<V> t, lua_State* L, int relindex, record& tracking) { + tracking.use(1); + + // the W4 flag is really great, + // so great that it can tell my for loops (twice nested) + // below never actually terminate + // without hitting where the gotos have infested + + // so now I would get the error W4XXX unreachable + // me that the return cont at the end of this function + // which is fair until other compilers complain + // that there isn't a return and that based on + // SOME MAGICAL FORCE + // control flow falls off the end of a non-void function + // so it needs to be there for the compilers that are + // too flimsy to analyze the basic blocks... + // (I'm sure I should file a bug but those compilers are already + // in the wild; it doesn't matter if I fix them, + // someone else is still going to get some old-ass compiler + // and then bother me about the unclean build for the 30th + // time) + + // "Why not an IIFE?" + // Because additional lambdas / functions which serve as + // capture-all-and-then-invoke bloat binary sizes + // by an actually detectable amount + // (one user uses sol2 pretty heavily and 22 MB of binary size + // was saved by reducing reliance on lambdas in templates) + + // This would really be solved by having break N; + // be a real, proper thing... + // but instead, we have to use labels and gotos + // and earn the universal vitriol of the dogmatic + // programming community + + // all in all: W4 is great!~ + + int index = lua_absindex(L, relindex); + T cont; + std::size_t idx = 0; +#if SOL_LUA_VERSION >= 503 + // This method is HIGHLY performant over regular table iteration + // thanks to the Lua API changes in 5.3 + // Questionable in 5.4 + for (lua_Integer i = 0;; i += lua_size<V>::value) { + if (max_size_check(meta::has_max_size<Tu>(), cont, idx)) { + // see above comment + goto done; + } + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { +#if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VERSION >= 600 +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushinteger(L, static_cast<lua_Integer>(i + vi)); + if (lua_keyin(L, index) == 0) { + // it's time to stop + isnil = true; + } + else { + // we have a key, have to get the value + lua_geti(L, index, i + vi); + } +#else + type vt = static_cast<type>(lua_geti(L, index, i + vi)); + isnil = vt == type::none || vt == type::lua_nil; +#endif + if (isnil) { + if (i == 0) { + break; + } +#if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VERSION >= 600 + lua_pop(L, vi); +#else + lua_pop(L, (vi + 1)); +#endif + // see above comment + goto done; + } + } + if (isnil) { +#if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VERSION >= 600 +#else + lua_pop(L, lua_size<V>::value); +#endif + continue; + } + + push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx); + ++idx; + lua_pop(L, lua_size<V>::value); + } +#else + // Zzzz slower but necessary thanks to the lower version API and missing functions qq + for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { + if (idx >= cont.max_size()) { + // see above comment + goto done; + } +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 2, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { + lua_pushinteger(L, i); + lua_gettable(L, index); + type vt = type_of(L, -1); + isnil = vt == type::lua_nil; + if (isnil) { + if (i == 0) { + break; + } + lua_pop(L, (vi + 1)); + // see above comment + goto done; + } + } + if (isnil) + continue; + push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx); + ++idx; + } +#endif + done: + return cont; + } + + static T get(std::true_type, lua_State* L, int index, record& tracking) { + typedef typename Tu::value_type P; + typedef typename P::first_type K; + typedef typename P::second_type V; + return get(types<K, V>(), L, index, tracking); + } + + template <typename K, typename V> + static T get(types<K, V>, lua_State* L, int relindex, record& tracking) { + tracking.use(1); + +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 3, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + + T associative; + int index = lua_absindex(L, relindex); + lua_pushnil(L); + while (lua_next(L, index) != 0) { + decltype(auto) key = stack::check_get<K>(L, -2); + if (!key) { + lua_pop(L, 1); + continue; + } + associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1)); + lua_pop(L, 1); + } + return associative; + } + }; + + template <typename T, typename Al> + struct unqualified_getter<as_table_t<std::forward_list<T, Al>>> { + typedef std::forward_list<T, Al> C; + + static C get(lua_State* L, int relindex, record& tracking) { + return get(meta::has_key_value_pair<C>(), L, relindex, tracking); + } + + static C get(std::true_type, lua_State* L, int index, record& tracking) { + typedef typename T::value_type P; + typedef typename P::first_type K; + typedef typename P::second_type V; + return get(types<K, V>(), L, index, tracking); + } + + static C get(std::false_type, lua_State* L, int relindex, record& tracking) { + typedef typename C::value_type V; + return get(types<V>(), L, relindex, tracking); + } + + template <typename V> + static C get(types<V>, lua_State* L, int relindex, record& tracking) { + tracking.use(1); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 3, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + + int index = lua_absindex(L, relindex); + C cont; + auto at = cont.cbefore_begin(); + std::size_t idx = 0; +#if SOL_LUA_VERSION >= 503 + // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3 + for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { + if (idx >= cont.max_size()) { + goto done; + } + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { + type t = static_cast<type>(lua_geti(L, index, i + vi)); + isnil = t == type::lua_nil; + if (isnil) { + if (i == 0) { + break; + } + lua_pop(L, (vi + 1)); + goto done; + } + } + if (isnil) + continue; + at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value)); + ++idx; + } +#else + // Zzzz slower but necessary thanks to the lower version API and missing functions qq + for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { + if (idx >= cont.max_size()) { + goto done; + } + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { + lua_pushinteger(L, i); + lua_gettable(L, index); + type t = type_of(L, -1); + isnil = t == type::lua_nil; + if (isnil) { + if (i == 0) { + break; + } + lua_pop(L, (vi + 1)); + goto done; + } + } + if (isnil) + continue; + at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value)); + ++idx; + } +#endif + done: + return cont; + } + + template <typename K, typename V> + static C get(types<K, V>, lua_State* L, int relindex, record& tracking) { + tracking.use(1); + +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 3, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + + C associative; + auto at = associative.cbefore_begin(); + int index = lua_absindex(L, relindex); + lua_pushnil(L); + while (lua_next(L, index) != 0) { + decltype(auto) key = stack::check_get<K>(L, -2); + if (!key) { + lua_pop(L, 1); + continue; + } + at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1)); + lua_pop(L, 1); + } + return associative; + } + }; + + template <typename T> + struct unqualified_getter<nested<T>> { + static T get(lua_State* L, int index, record& tracking) { + using Tu = meta::unqualified_t<T>; + if constexpr (is_container_v<Tu>) { + if constexpr (meta::is_associative<Tu>::value) { + typedef typename T::value_type P; + typedef typename P::first_type K; + typedef typename P::second_type V; + unqualified_getter<as_table_t<T>> g; + // VC++ has a bad warning here: shut it up + (void)g; + return g.get(types<K, nested<V>>(), L, index, tracking); + } + else { + typedef typename T::value_type V; + unqualified_getter<as_table_t<T>> g; + // VC++ has a bad warning here: shut it up + (void)g; + return g.get(types<nested<V>>(), L, index, tracking); + } + } + else { + unqualified_getter<Tu> g; + // VC++ has a bad warning here: shut it up + (void)g; + return g.get(L, index, tracking); + } + } + }; + + template <typename T> + struct unqualified_getter<as_container_t<T>> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return stack::unqualified_get<T>(L, index, tracking); + } + }; + + template <typename T> + struct unqualified_getter<as_container_t<T>*> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return stack::unqualified_get<T*>(L, index, tracking); + } + }; + + template <> + struct unqualified_getter<userdata_value> { + static userdata_value get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return userdata_value(lua_touserdata(L, index)); + } + }; + + template <> + struct unqualified_getter<lightuserdata_value> { + static lightuserdata_value get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lightuserdata_value(lua_touserdata(L, index)); + } + }; + + template <typename T> + struct unqualified_getter<light<T>> { + static light<T> get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + return light<T>(static_cast<T*>(memory)); + } + }; + + template <typename T> + struct unqualified_getter<user<T>> { + static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + memory = detail::align_user<T>(memory); + return *static_cast<std::remove_reference_t<T>*>(memory); + } + }; + + template <typename T> + struct unqualified_getter<user<T*>> { + static T* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + memory = detail::align_user<T*>(memory); + return static_cast<T*>(memory); + } + }; + + template <> + struct unqualified_getter<type> { + static type get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return static_cast<type>(lua_type(L, index)); + } + }; + + template <> + struct unqualified_getter<std::string> { + static std::string get(lua_State* L, int index, record& tracking) { + tracking.use(1); + std::size_t len; + auto str = lua_tolstring(L, index, &len); + return std::string(str, len); + } + }; + + template <> + struct unqualified_getter<const char*> { + static const char* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t sz; + return lua_tolstring(L, index, &sz); + } + }; + + template <> + struct unqualified_getter<char> { + static char get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t len; + auto str = lua_tolstring(L, index, &len); + return len > 0 ? str[0] : '\0'; + } + }; + + template <typename Traits> + struct unqualified_getter<basic_string_view<char, Traits>> { + static string_view get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t sz; + const char* str = lua_tolstring(L, index, &sz); + return basic_string_view<char, Traits>(str, sz); + } + }; + + template <typename Traits, typename Al> + struct unqualified_getter<std::basic_string<wchar_t, Traits, Al>> { + using S = std::basic_string<wchar_t, Traits, Al>; + static S get(lua_State* L, int index, record& tracking) { + using Ch = meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t>; + return stack_detail::get_into<Ch, S>(L, index, tracking); + } + }; + + template <typename Traits, typename Al> + struct unqualified_getter<std::basic_string<char16_t, Traits, Al>> { + static std::basic_string<char16_t, Traits, Al> get(lua_State* L, int index, record& tracking) { + return stack_detail::get_into<char16_t, std::basic_string<char16_t, Traits, Al>>(L, index, tracking); + } + }; + + template <typename Traits, typename Al> + struct unqualified_getter<std::basic_string<char32_t, Traits, Al>> { + static std::basic_string<char32_t, Traits, Al> get(lua_State* L, int index, record& tracking) { + return stack_detail::get_into<char32_t, std::basic_string<char32_t, Traits, Al>>(L, index, tracking); + } + }; + + template <> + struct unqualified_getter<char16_t> { + static char16_t get(lua_State* L, int index, record& tracking) { + string_view utf8 = stack::get<string_view>(L, index, tracking); + const char* strb = utf8.data(); + const char* stre = utf8.data() + utf8.size(); + char32_t cp = 0; + auto dr = unicode::utf8_to_code_point(strb, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf16(cp); + return er.code_units[0]; + } + }; + + template <> + struct unqualified_getter<char32_t> { + static char32_t get(lua_State* L, int index, record& tracking) { + string_view utf8 = stack::get<string_view>(L, index, tracking); + const char* strb = utf8.data(); + const char* stre = utf8.data() + utf8.size(); + char32_t cp = 0; + auto dr = unicode::utf8_to_code_point(strb, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf32(cp); + return er.code_units[0]; + } + }; + + template <> + struct unqualified_getter<wchar_t> { + static wchar_t get(lua_State* L, int index, record& tracking) { + typedef meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch; + unqualified_getter<Ch> g; + (void)g; + auto c = g.get(L, index, tracking); + return static_cast<wchar_t>(c); + } + }; + + template <> + struct unqualified_getter<meta_function> { + static meta_function get(lua_State* L, int index, record& tracking) { + tracking.use(1); + const char* name = unqualified_getter<const char*>{}.get(L, index, tracking); + const auto& mfnames = meta_function_names(); + for (std::size_t i = 0; i < mfnames.size(); ++i) + if (mfnames[i] == name) + return static_cast<meta_function>(i); + return meta_function::construct; + } + }; + + template <> + struct unqualified_getter<lua_nil_t> { + static lua_nil_t get(lua_State*, int, record& tracking) { + tracking.use(1); + return lua_nil; + } + }; + + template <> + struct unqualified_getter<std::nullptr_t> { + static std::nullptr_t get(lua_State*, int, record& tracking) { + tracking.use(1); + return nullptr; + } + }; + + template <> + struct unqualified_getter<nullopt_t> { + static nullopt_t get(lua_State*, int, record& tracking) { + tracking.use(1); + return nullopt; + } + }; + + template <> + struct unqualified_getter<this_state> { + static this_state get(lua_State* L, int, record& tracking) { + tracking.use(0); + return this_state(L); + } + }; + + template <> + struct unqualified_getter<this_main_state> { + static this_main_state get(lua_State* L, int, record& tracking) { + tracking.use(0); + return this_main_state(main_thread(L, L)); + } + }; + + template <> + struct unqualified_getter<lua_CFunction> { + static lua_CFunction get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lua_tocfunction(L, index); + } + }; + + template <> + struct unqualified_getter<c_closure> { + static c_closure get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return c_closure(lua_tocfunction(L, index), -1); + } + }; + + template <> + struct unqualified_getter<error> { + static error get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t sz = 0; + const char* err = lua_tolstring(L, index, &sz); + if (err == nullptr) { + return error(detail::direct_error, ""); + } + return error(detail::direct_error, std::string(err, sz)); + } + }; + + template <> + struct unqualified_getter<void*> { + static void* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lua_touserdata(L, index); + } + }; + + template <> + struct unqualified_getter<const void*> { + static const void* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lua_touserdata(L, index); + } + }; + + template <typename T> + struct unqualified_getter<detail::as_value_tag<T>> { + static T* get_no_lua_nil(lua_State* L, int index, record& tracking) { + void* memory = lua_touserdata(L, index); +#if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP + auto ugr = stack_detail::interop_get<T>(L, index, memory, tracking); + if (ugr.first) { + return ugr.second; + } +#endif // interop extensibility + tracking.use(1); + void* rawdata = detail::align_usertype_pointer(memory); + void** pudata = static_cast<void**>(rawdata); + void* udata = *pudata; + return get_no_lua_nil_from(L, udata, index, tracking); + } + + static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) { + bool has_derived = derive<T>::value || weak_derive<T>::value; + if (has_derived) { + if (lua_getmetatable(L, index) == 1) { + lua_getfield(L, -1, &detail::base_class_cast_key()[0]); + if (type_of(L, -1) != type::lua_nil) { + void* basecastdata = lua_touserdata(L, -1); + detail::inheritance_cast_function ic + = reinterpret_cast<detail::inheritance_cast_function>(basecastdata); + // use the casting function to properly adjust the pointer for the desired T + udata = ic(udata, usertype_traits<T>::qualified_name()); + } + lua_pop(L, 2); + } + } + T* obj = static_cast<T*>(udata); + return obj; + } + + static T& get(lua_State* L, int index, record& tracking) { + return *get_no_lua_nil(L, index, tracking); + } + }; + + template <typename T> + struct unqualified_getter<detail::as_pointer_tag<T>> { + static T* get(lua_State* L, int index, record& tracking) { + type t = type_of(L, index); + if (t == type::lua_nil) { + tracking.use(1); + return nullptr; + } + unqualified_getter<detail::as_value_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get_no_lua_nil(L, index, tracking); + } + }; + + template <typename T> + struct unqualified_getter<non_null<T*>> { + static T* get(lua_State* L, int index, record& tracking) { + unqualified_getter<detail::as_value_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get_no_lua_nil(L, index, tracking); + } + }; + + template <typename T> + struct unqualified_getter<T&> { + static T& get(lua_State* L, int index, record& tracking) { + unqualified_getter<detail::as_value_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get(L, index, tracking); + } + }; + + template <typename T> + struct unqualified_getter<std::reference_wrapper<T>> { + static T& get(lua_State* L, int index, record& tracking) { + unqualified_getter<T&> g; + // Avoid VC++ warning + (void)g; + return g.get(L, index, tracking); + } + }; + + template <typename T> + struct unqualified_getter<T*> { + static T* get(lua_State* L, int index, record& tracking) { + unqualified_getter<detail::as_pointer_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get(L, index, tracking); + } + }; + + template <typename... Tn> + struct unqualified_getter<std::tuple<Tn...>> { + typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R; + + template <typename... Args> + static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args) { + // Fuck you too, VC++ + return R{ std::forward<Args>(args)... }; + } + + template <std::size_t I, std::size_t... Ix, typename... Args> + static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args) { + // Fuck you too, VC++ + typedef std::tuple_element_t<I, std::tuple<Tn...>> T; + return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., + stack::get<T>(L, index + tracking.used, tracking)); + } + + static R get(lua_State* L, int index, record& tracking) { + return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking); + } + }; + + template <typename A, typename B> + struct unqualified_getter<std::pair<A, B>> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))>{ + stack::get<A>(L, index, tracking), stack::get<B>(L, index + tracking.used, tracking) + }; + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + template <typename... Tn> + struct unqualified_getter<std::variant<Tn...>> { + using V = std::variant<Tn...>; + + static V get_one(std::integral_constant<std::size_t, std::variant_size_v<V>>, lua_State* L, int index, record& tracking) { + (void)L; + (void)index; + (void)tracking; + if constexpr (std::variant_size_v<V> == 0) { + return V(); + } + else { + //using T = std::variant_alternative_t<0, V>; + std::abort(); + //return V(std::in_place_index<0>, stack::get<T>(L, index, tracking)); + } + } + + template <std::size_t I> + static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking) { + typedef std::variant_alternative_t<I, V> T; + record temp_tracking = tracking; + if (stack::check<T>(L, index, no_panic, temp_tracking)) { + tracking = temp_tracking; + return V(std::in_place_index<I>, stack::get<T>(L, index)); + } + return get_one(std::integral_constant<std::size_t, I + 1>(), L, index, tracking); + } + + static V get(lua_State* L, int index, record& tracking) { + return get_one(std::integral_constant<std::size_t, 0>(), L, index, tracking); + } + }; +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES + +}} // namespace sol::stack + +#endif // SOL_STACK_UNQUALIFIED_GET_HPP diff --git a/lib/sol2/include/sol/stack_guard.hpp b/lib/sol2/include/sol/stack_guard.hpp new file mode 100644 index 0000000..dca3930 --- /dev/null +++ b/lib/sol2/include/sol/stack_guard.hpp @@ -0,0 +1,69 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_GUARD_HPP +#define SOL_STACK_GUARD_HPP + +#include "compatibility/version.hpp" +#include "error.hpp" +#include <functional> + +namespace sol { + namespace detail { + inline void stack_fail(int, int) { +#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) + throw error(detail::direct_error, "imbalanced stack after operation finish"); +#else + // Lol, what do you want, an error printout? :3c + // There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so + // hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard. +#endif // No Exceptions + } + } // namespace detail + + struct stack_guard { + lua_State* L; + int top; + std::function<void(int, int)> on_mismatch; + + stack_guard(lua_State* L) + : stack_guard(L, lua_gettop(L)) { + } + stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) + : L(L), top(top), on_mismatch(std::move(fx)) { + } + bool check_stack(int modification = 0) const { + int bottom = lua_gettop(L) + modification; + if (top == bottom) { + return true; + } + on_mismatch(top, bottom); + return false; + } + ~stack_guard() { + check_stack(); + } + }; +} // namespace sol + +#endif // SOL_STACK_GUARD_HPP diff --git a/lib/sol2/include/sol/stack_iterator.hpp b/lib/sol2/include/sol/stack_iterator.hpp new file mode 100644 index 0000000..69f0443 --- /dev/null +++ b/lib/sol2/include/sol/stack_iterator.hpp @@ -0,0 +1,155 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_ITERATOR_HPP +#define SOL_STACK_ITERATOR_HPP + +#include "stack.hpp" +#include <limits> +#include <iterator> + +namespace sol { + template <typename proxy_t, bool is_const> + struct stack_iterator { + typedef meta::conditional_t<is_const, const proxy_t, proxy_t> reference; + typedef meta::conditional_t<is_const, const proxy_t*, proxy_t*> pointer; + typedef proxy_t value_type; + typedef std::ptrdiff_t difference_type; + typedef std::random_access_iterator_tag iterator_category; + lua_State* L; + int index; + int stacktop; + proxy_t sp; + + stack_iterator() + : L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()), sp() { + } + stack_iterator(const stack_iterator<proxy_t, true>& r) + : L(r.L), index(r.index), stacktop(r.stacktop), sp(r.sp) { + } + stack_iterator(lua_State* luastate, int idx, int topidx) + : L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) { + } + + reference operator*() { + return proxy_t(L, index); + } + + reference operator*() const { + return proxy_t(L, index); + } + + pointer operator->() { + sp = proxy_t(L, index); + return &sp; + } + + pointer operator->() const { + const_cast<proxy_t&>(sp) = proxy_t(L, index); + return &sp; + } + + stack_iterator& operator++() { + ++index; + return *this; + } + + stack_iterator operator++(int) { + auto r = *this; + this->operator++(); + return r; + } + + stack_iterator& operator--() { + --index; + return *this; + } + + stack_iterator operator--(int) { + auto r = *this; + this->operator--(); + return r; + } + + stack_iterator& operator+=(difference_type idx) { + index += static_cast<int>(idx); + return *this; + } + + stack_iterator& operator-=(difference_type idx) { + index -= static_cast<int>(idx); + return *this; + } + + difference_type operator-(const stack_iterator& r) const { + return index - r.index; + } + + stack_iterator operator+(difference_type idx) const { + stack_iterator r = *this; + r += idx; + return r; + } + + reference operator[](difference_type idx) const { + return proxy_t(L, index + static_cast<int>(idx)); + } + + bool operator==(const stack_iterator& r) const { + if (stacktop == (std::numeric_limits<int>::max)()) { + return r.index == r.stacktop; + } + else if (r.stacktop == (std::numeric_limits<int>::max)()) { + return index == stacktop; + } + return index == r.index; + } + + bool operator!=(const stack_iterator& r) const { + return !(this->operator==(r)); + } + + bool operator<(const stack_iterator& r) const { + return index < r.index; + } + + bool operator>(const stack_iterator& r) const { + return index > r.index; + } + + bool operator<=(const stack_iterator& r) const { + return index <= r.index; + } + + bool operator>=(const stack_iterator& r) const { + return index >= r.index; + } + }; + + template <typename proxy_t, bool is_const> + inline stack_iterator<proxy_t, is_const> operator+(typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r) { + return r + n; + } +} // namespace sol + +#endif // SOL_STACK_ITERATOR_HPP diff --git a/lib/sol2/include/sol/stack_pop.hpp b/lib/sol2/include/sol/stack_pop.hpp new file mode 100644 index 0000000..a890c79 --- /dev/null +++ b/lib/sol2/include/sol/stack_pop.hpp @@ -0,0 +1,53 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_POP_HPP +#define SOL_STACK_POP_HPP + +#include "stack_core.hpp" +#include "stack_get.hpp" +#include <utility> +#include <tuple> + +namespace sol { +namespace stack { + template <typename T, typename> + struct popper { + inline static decltype(auto) pop(lua_State* L) { + if constexpr (is_stack_based_v<meta::unqualified_t<T>>) { + static_assert(!is_stack_based_v<meta::unqualified_t<T>>, + "You cannot pop something that lives solely on the stack: it will not remain on the stack when popped and thusly will go out of " + "scope!"); + } + else { + record tracking{}; + decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking); + lua_pop(L, tracking.used); + return r; + } + } + }; +} +} // namespace sol::stack + +#endif // SOL_STACK_POP_HPP diff --git a/lib/sol2/include/sol/stack_probe.hpp b/lib/sol2/include/sol/stack_probe.hpp new file mode 100644 index 0000000..02a059a --- /dev/null +++ b/lib/sol2/include/sol/stack_probe.hpp @@ -0,0 +1,96 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_PROBE_HPP +#define SOL_STACK_PROBE_HPP + +#include "stack_core.hpp" +#include "stack_field.hpp" +#include "stack_check.hpp" + +namespace sol { +namespace stack { + template <typename T, typename P, bool b, bool raw, typename> + struct probe_field_getter { + template <typename Key> + probe get(lua_State* L, Key&& key, int tableindex = -2) { + if constexpr(!b) { + if (!maybe_indexable(L, tableindex)) { + return probe(false, 0); + } + } + get_field<b, raw>(L, std::forward<Key>(key), tableindex); + return probe(check<P>(L), 1); + } + }; + + template <typename A, typename B, typename P, bool b, bool raw, typename C> + struct probe_field_getter<std::pair<A, B>, P, b, raw, C> { + template <typename Keys> + probe get(lua_State* L, Keys&& keys, int tableindex = -2) { + if (!b && !maybe_indexable(L, tableindex)) { + return probe(false, 0); + } + get_field<b, raw>(L, std::get<0>(keys), tableindex); + if (!maybe_indexable(L)) { + return probe(false, 1); + } + get_field<false, raw>(L, std::get<1>(keys), tableindex); + return probe(check<P>(L), 2); + } + }; + + template <typename... Args, typename P, bool b, bool raw, typename C> + struct probe_field_getter<std::tuple<Args...>, P, b, raw, C> { + template <std::size_t I, typename Keys> + probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) { + get_field<(I<1) && b, raw>(L, std::get<I>(keys), tableindex); + return probe(check<P>(L), sofar); + } + + template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys> + probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) { + get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex); + if (!maybe_indexable(L)) { + return probe(false, sofar); + } + return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1); + } + + template <typename Keys> + probe get(lua_State* L, Keys&& keys, int tableindex = -2) { + if constexpr (!b) { + if (!maybe_indexable(L, tableindex)) { + return probe(false, 0); + } + return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex); + } + else { + return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex); + } + } + }; +} +} // namespace sol::stack + +#endif // SOL_STACK_PROBE_HPP
\ No newline at end of file diff --git a/lib/sol2/include/sol/stack_proxy.hpp b/lib/sol2/include/sol/stack_proxy.hpp new file mode 100644 index 0000000..64f6fb0 --- /dev/null +++ b/lib/sol2/include/sol/stack_proxy.hpp @@ -0,0 +1,65 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_PROXY_HPP +#define SOL_STACK_PROXY_HPP + +#include "stack_proxy_base.hpp" + +namespace sol { + struct stack_proxy : public stack_proxy_base { + public: + stack_proxy() + : stack_proxy_base() { + } + stack_proxy(lua_State* L, int index) + : stack_proxy_base(L, index) { + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args); + + template <typename... Args> + decltype(auto) operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + }; + + namespace stack { + template <> + struct unqualified_getter<stack_proxy> { + static stack_proxy get(lua_State* L, int index = -1) { + return stack_proxy(L, index); + } + }; + + template <> + struct unqualified_pusher<stack_proxy> { + static int push(lua_State*, const stack_proxy& ref) { + return ref.push(); + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_STACK_PROXY_HPP diff --git a/lib/sol2/include/sol/stack_proxy_base.hpp b/lib/sol2/include/sol/stack_proxy_base.hpp new file mode 100644 index 0000000..5195db8 --- /dev/null +++ b/lib/sol2/include/sol/stack_proxy_base.hpp @@ -0,0 +1,98 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_PROXY_BASE_HPP +#define SOL_STACK_PROXY_BASE_HPP + +#include "stack.hpp" +#include "proxy_base.hpp" + +namespace sol { + struct stack_proxy_base : public proxy_base<stack_proxy_base> { + private: + lua_State* L; + int index; + + public: + stack_proxy_base() + : L(nullptr), index(0) { + } + stack_proxy_base(lua_State* L, int index) + : L(L), index(index) { + } + + template <typename T> + decltype(auto) get() const { + return stack::get<T>(L, stack_index()); + } + + template <typename T> + bool is() const { + return stack::check<T>(L, stack_index()); + } + + template <typename T> + decltype(auto) as() const { + return get<T>(); + } + + type get_type() const noexcept { + return type_of(lua_state(), stack_index()); + } + + int push() const { + return push(L); + } + + int push(lua_State* Ls) const { + lua_pushvalue(Ls, index); + return 1; + } + + lua_State* lua_state() const { + return L; + } + int stack_index() const { + return index; + } + }; + + namespace stack { + template <> + struct unqualified_getter<stack_proxy_base> { + static stack_proxy_base get(lua_State* L, int index = -1) { + return stack_proxy_base(L, index); + } + }; + + template <> + struct unqualified_pusher<stack_proxy_base> { + static int push(lua_State*, const stack_proxy_base& ref) { + return ref.push(); + } + }; + } // namespace stack + +} // namespace sol + +#endif // SOL_STACK_PROXY_BASE_HPP diff --git a/lib/sol2/include/sol/stack_push.hpp b/lib/sol2/include/sol/stack_push.hpp new file mode 100644 index 0000000..a895eab --- /dev/null +++ b/lib/sol2/include/sol/stack_push.hpp @@ -0,0 +1,1210 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_PUSH_HPP +#define SOL_STACK_PUSH_HPP + +#include "stack_core.hpp" +#include "raii.hpp" +#include "optional.hpp" +#include "usertype_traits.hpp" +#include "policies.hpp" +#include "unicode.hpp" + +#include <memory> +#include <type_traits> +#include <cassert> +#include <limits> +#include <cmath> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <string_view> +#include <optional> +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#include <variant> +#endif // Can use variant +#endif // C++17 + +namespace sol { + namespace stack { + namespace stack_detail { + template <typename T> + inline bool integer_value_fits(const T& value) { + if constexpr (sizeof(T) < sizeof(lua_Integer) || (std::is_signed_v<T> && sizeof(T) == sizeof(lua_Integer))) { + (void)value; + return true; + } + else { + auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)()); + auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)()); + auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)()); + auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)()); + return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max)); + } + } + + template <typename T> + int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) { + if constexpr (meta::any_same_v<std::underlying_type_t<T>, char/*, char8_t*/, char16_t, char32_t>) { + if constexpr (std::is_signed_v<T>) { + return stack::push(L, static_cast<std::int_least32_t>(value)); + } + else { + return stack::push(L, static_cast<std::uint_least32_t>(value)); + } + } + else { + return stack::push(L, static_cast<std::underlying_type_t<T>>(value)); + } + } + + template <typename T> + int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) { + return 0; + } + } + + inline int push_environment_of(lua_State* L, int index = -1) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_environment); +#endif // make sure stack doesn't overflow +#if SOL_LUA_VERSION < 502 + // Use lua_getfenv + lua_getfenv(L, index); +#else + // Use upvalues as explained in Lua 5.2 and beyond's manual + if (lua_getupvalue(L, index, 1) == nullptr) { + push(L, lua_nil); + return 1; + } +#endif + return 1; + } + + template <typename T> + int push_environment_of(const T& target) { + target.push(); + return push_environment_of(target.lua_state(), -1) + 1; + } + + template <typename T> + struct unqualified_pusher<detail::as_value_tag<T>> { + template <typename F, typename... Args> + static int push_fx(lua_State* L, F&& f, Args&&... args) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + // Basically, we store all user-data like this: + // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new + // data in the first sizeof(T*) bytes, and then however many bytes it takes to + // do the actual object. Things that are std::ref or plain T* are stored as + // just the sizeof(T*), and nothing else. + T* obj = detail::usertype_allocate<T>(L); + f(); + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...); + return 1; + } + + template <typename K, typename... Args> + static int push_keyed(lua_State* L, K&& k, Args&&... args) { + stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<T>); + return push_fx(L, fx, std::forward<Args>(args)...); + } + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) { + (void)arg; + return push_fx(L, std::forward<Args>(args)...); + } + else { + return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + + static int push(lua_State* L) { + return push_keyed(L, usertype_traits<T>::metatable()); + } + }; + + template <typename T> + struct unqualified_pusher<detail::as_pointer_tag<T>> { + typedef meta::unqualified_t<T> U; + + template <typename F> + static int push_fx(lua_State* L, F&& f, T* obj) { + if (obj == nullptr) + return stack::push(L, lua_nil); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + T** pref = detail::usertype_allocate_pointer<T>(L); + f(); + *pref = obj; + return 1; + } + + template <typename K> + static int push_keyed(lua_State* L, K&& k, T* obj) { + stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<U*>); + return push_fx(L, fx, obj); + } + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) { + (void)arg; + return push_fx(L, std::forward<Args>(args)...); + } + else { + return push_keyed(L, usertype_traits<U*>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + }; + + template <> + struct unqualified_pusher<detail::as_reference_tag> { + template <typename T> + static int push(lua_State* L, T&& obj) { + return stack::push(L, detail::ptr(obj)); + } + }; + + namespace stack_detail { + template <typename T> + struct uu_pusher { + using u_traits = unique_usertype_traits<T>; + using P = typename u_traits::type; + using Real = typename u_traits::actual_type; + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_base_of_v<Real, meta::unqualified_t<Arg>>) { + if (u_traits::is_null(arg)) { + return stack::push(L, lua_nil); + } + return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + else { + return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + + template <typename... Args> + static int push_deep(lua_State* L, Args&&... args) { + #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); + #endif // make sure stack doesn't overflow + P** pref = nullptr; + detail::unique_destructor* fx = nullptr; + detail::unique_tag* id = nullptr; + Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx, id); + if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<std::remove_cv_t<P>>>::metatable()[0]) == 1) { + detail::lua_reg_table l{}; + int index = 0; + detail::indexed_insert insert_fx(l, index); + detail::insert_default_registrations<P>(insert_fx, detail::property_always_true); + l[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() }; + luaL_setfuncs(L, l, 0); + } + lua_setmetatable(L, -2); + *fx = detail::usertype_unique_alloc_destroy<P, Real>; + *id = &detail::inheritance<P>::template type_unique_cast<Real>; + detail::default_construct::construct(mem, std::forward<Args>(args)...); + *pref = unique_usertype_traits<T>::get(*mem); + return 1; + } + }; + } // namespace stack_detail + + template <typename T, typename> + struct unqualified_pusher { + template <typename... Args> + static int push(lua_State* L, Args&&... args) { + using Tu = meta::unqualified_t<T>; + if constexpr (is_lua_reference_v<Tu>) { + using int_arr = int[]; + int_arr p{ (std::forward<Args>(args).push(L))... }; + return p[0]; + } + else if constexpr (std::is_same_v<Tu, bool>) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushboolean(L, std::forward<Args>(args)...); + return 1; + } + else if constexpr (std::is_integral_v<Tu> || std::is_same_v<Tu, lua_Integer>) { + const Tu& value(std::forward<Args>(args)...); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_integral); +#endif // make sure stack doesn't overflow +#if SOL_LUA_VERSION >= 503 + if (stack_detail::integer_value_fits<Tu>(value)) { + lua_pushinteger(L, static_cast<lua_Integer>(value)); + return 1; + } +#endif // Lua 5.3 and above +#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) { +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + // Is this really worth it? + assert(false && "integer value will be misrepresented in lua"); + lua_pushnumber(L, static_cast<lua_Number>(std::forward<Args>(args)...)); + return 1; +#else + throw error(detail::direct_error, "integer value will be misrepresented in lua"); +#endif // No Exceptions + } +#endif // Safe Numerics and Number Precision Check + lua_pushnumber(L, static_cast<lua_Number>(value)); + return 1; + } + else if constexpr (std::is_floating_point_v<Tu> || std::is_same_v<Tu, lua_Number>) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_floating); +#endif // make sure stack doesn't overflow + lua_pushnumber(L, std::forward<Args>(args)...); + return 1; + } + else if constexpr (std::is_enum_v<Tu>) { + return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward<Args>(args)...); + } + else if constexpr (std::is_pointer_v<Tu>) { + return stack::push<detail::as_pointer_tag<std::remove_pointer_t<T>>>(L, std::forward<Args>(args)...); + } + else if constexpr (is_unique_usertype_v<Tu>) { + stack_detail::uu_pusher<T> p; + (void)p; + return p.push(L, std::forward<Args>(args)...); + } + else { + return stack::push<detail::as_value_tag<T>>(L, std::forward<Args>(args)...); + } + } + }; + + template <typename T> + struct unqualified_pusher<std::reference_wrapper<T>> { + static int push(lua_State* L, const std::reference_wrapper<T>& t) { + return stack::push(L, std::addressof(detail::deref(t.get()))); + } + }; + + template <typename T> + struct unqualified_pusher<detail::as_table_tag<T>> { + using has_kvp = meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>; + + static int push(lua_State* L, const T& tablecont) { + return push(has_kvp(), std::false_type(), L, tablecont); + } + + static int push(lua_State* L, const T& tablecont, nested_tag_t) { + return push(has_kvp(), std::true_type(), L, tablecont); + } + + static int push(std::true_type, lua_State* L, const T& tablecont) { + return push(has_kvp(), std::true_type(), L, tablecont); + } + + static int push(std::false_type, lua_State* L, const T& tablecont) { + return push(has_kvp(), std::false_type(), L, tablecont); + } + + template <bool is_nested> + static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { + auto& cont = detail::deref(detail::unwrap(tablecont)); + lua_createtable(L, static_cast<int>(cont.size()), 0); + int tableindex = lua_gettop(L); + for (const auto& pair : cont) { + if (is_nested) { + set_field(L, pair.first, as_nested_ref(pair.second), tableindex); + } + else { + set_field(L, pair.first, pair.second, tableindex); + } + } + return 1; + } + + template <bool is_nested> + static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { + auto& cont = detail::deref(detail::unwrap(tablecont)); + lua_createtable(L, stack_detail::get_size_hint(cont), 0); + int tableindex = lua_gettop(L); + std::size_t index = 1; + for (const auto& i : cont) { +#if SOL_LUA_VERSION >= 503 + int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); + for (int pi = 0; pi < p; ++pi) { + lua_seti(L, tableindex, static_cast<lua_Integer>(index++)); + } +#else +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushinteger(L, static_cast<lua_Integer>(index)); + int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); + if (p == 1) { + ++index; + lua_settable(L, tableindex); + } + else { + int firstindex = tableindex + 1 + 1; + for (int pi = 0; pi < p; ++pi) { + stack::push(L, index); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, firstindex); + lua_settable(L, tableindex); + ++index; + ++firstindex; + } + lua_pop(L, 1 + p); + } +#endif // Lua Version 5.3 and others + } + // TODO: figure out a better way to do this...? + // set_field(L, -1, cont.size()); + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<as_table_t<T>> { + static int push(lua_State* L, const T& v) { + using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>; + if constexpr (is_container_v<inner_t>) { + return stack::push<detail::as_table_tag<T>>(L, v); + } + else { + return stack::push(L, v); + } + } + }; + + template <typename T> + struct unqualified_pusher<nested<T>> { + static int push(lua_State* L, const T& tablecont) { + using Tu = meta::unwrap_unqualified_t<T>; + using inner_t = std::remove_pointer_t<Tu>; + if constexpr (is_container_v<inner_t>) { + return stack::push<detail::as_table_tag<T>>(L, tablecont, nested_tag); + } + else { + return stack::push<Tu>(L, tablecont); + } + } + }; + + template <typename T> + struct unqualified_pusher<std::initializer_list<T>> { + static int push(lua_State* L, const std::initializer_list<T>& il) { + unqualified_pusher<detail::as_table_tag<std::initializer_list<T>>> p{}; + // silence annoying VC++ warning + (void)p; + return p.push(L, il); + } + }; + + template <> + struct unqualified_pusher<lua_nil_t> { + static int push(lua_State* L, lua_nil_t) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushnil(L); + return 1; + } + }; + + template <> + struct unqualified_pusher<stack_count> { + static int push(lua_State*, stack_count st) { + return st.count; + } + }; + + template <> + struct unqualified_pusher<metatable_key_t> { + static int push(lua_State* L, metatable_key_t) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, "__mt", 4); + return 1; + } + }; + + template <> + struct unqualified_pusher<std::remove_pointer_t<lua_CFunction>> { + static int push(lua_State* L, lua_CFunction func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; + + template <> + struct unqualified_pusher<lua_CFunction> { + static int push(lua_State* L, lua_CFunction func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + template <> + struct unqualified_pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> { + static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; + + template <> + struct unqualified_pusher<detail::lua_CFunction_noexcept> { + static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; +#endif // noexcept function type + + template <> + struct unqualified_pusher<c_closure> { + static int push(lua_State* L, c_closure cc) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, cc.c_function, cc.upvalues); + return 1; + } + }; + + template <typename Arg, typename... Args> + struct unqualified_pusher<closure<Arg, Args...>> { + template <std::size_t... I, typename T> + static int push(std::index_sequence<I...>, lua_State* L, T&& c) { + using f_tuple = decltype(std::forward<T>(c).upvalues); + int pushcount = multi_push(L, std::get<I>(std::forward<f_tuple>(std::forward<T>(c).upvalues))...); + return stack::push(L, c_closure(c.c_function, pushcount)); + } + + template <typename T> + static int push(lua_State* L, T&& c) { + return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c)); + } + }; + + template <> + struct unqualified_pusher<void*> { + static int push(lua_State* L, void* userdata) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, userdata); + return 1; + } + }; + + template <> + struct unqualified_pusher<const void*> { + static int push(lua_State* L, const void* userdata) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, const_cast<void*>(userdata)); + return 1; + } + }; + + template <> + struct unqualified_pusher<lightuserdata_value> { + static int push(lua_State* L, lightuserdata_value userdata) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, userdata); + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<light<T>> { + static int push(lua_State* L, light<T> l) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, static_cast<void*>(l.value)); + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<user<T>> { + template <bool with_meta = true, typename Key, typename... Args> + static int push_with(lua_State* L, Key&& name, Args&&... args) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + // A dumb pusher + T* data = detail::user_allocate<T>(L); + if (with_meta) { + // Make sure we have a plain GC set for this data +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + if (luaL_newmetatable(L, name) != 0) { + lua_CFunction cdel = detail::user_alloc_destruct<T>; + lua_pushcclosure(L, cdel, 0); + lua_setfield(L, -2, "__gc"); + } + lua_setmetatable(L, -2); + } + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...); + return 1; + } + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_same_v<meta::unqualified_t<Arg>, metatable_key_t>) { + const auto name = &arg[0]; + return push_with<true>(L, name, std::forward<Args>(args)...); + } + else if constexpr (std::is_same_v<meta::unqualified_t<Arg>, no_metatable_t>) { + (void)arg; + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, std::forward<Args>(args)...); + } + else { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + + static int push(lua_State* L, const user<T>& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, u.value); + } + + static int push(lua_State* L, user<T>&& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, std::move(u.value)); + } + + static int push(lua_State* L, no_metatable_t, const user<T>& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, u.value); + } + + static int push(lua_State* L, no_metatable_t, user<T>&& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, std::move(u.value)); + } + }; + + template <> + struct unqualified_pusher<userdata_value> { + static int push(lua_State* L, userdata_value data) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + void** ud = detail::usertype_allocate_pointer<void>(L); + *ud = data.value; + return 1; + } + }; + + template <> + struct unqualified_pusher<const char*> { + static int push_sized(lua_State* L, const char* str, std::size_t len) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str, len); + return 1; + } + + static int push(lua_State* L, const char* str) { + if (str == nullptr) + return stack::push(L, lua_nil); + return push_sized(L, str, std::char_traits<char>::length(str)); + } + + static int push(lua_State* L, const char* strb, const char* stre) { + return push_sized(L, strb, stre - strb); + } + + static int push(lua_State* L, const char* str, std::size_t len) { + return push_sized(L, str, len); + } + }; + + template <> + struct unqualified_pusher<char*> { + static int push_sized(lua_State* L, const char* str, std::size_t len) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push_sized(L, str, len); + } + + static int push(lua_State* L, const char* str) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char* strb, const char* stre) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char* str, std::size_t len) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <size_t N> + struct unqualified_pusher<char[N]> { + static int push(lua_State* L, const char (&str)[N]) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str, std::char_traits<char>::length(str)); + return 1; + } + + static int push(lua_State* L, const char (&str)[N], std::size_t sz) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str, sz); + return 1; + } + }; + + template <> + struct unqualified_pusher<char> { + static int push(lua_State* L, char c) { + const char str[2] = { c, '\0' }; + return stack::push(L, str, 1); + } + }; + + template <typename Ch, typename Traits, typename Al> + struct unqualified_pusher<std::basic_string<Ch, Traits, Al>> { + static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str) { + if constexpr (!std::is_same_v<Ch, char>) { + return stack::push(L, str.data(), str.size()); + } + else { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str.c_str(), str.size()); + return 1; + } + } + + static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str, std::size_t sz) { + if constexpr (!std::is_same_v<Ch, char>) { + return stack::push(L, str.data(), sz); + } + else { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str.c_str(), sz); + return 1; + } + } + }; + + template <typename Ch, typename Traits> + struct unqualified_pusher<basic_string_view<Ch, Traits>> { + static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) { + return stack::push(L, sv.data(), sv.length()); + } + + static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) { + return stack::push(L, sv.data(), n); + } + }; + + template <> + struct unqualified_pusher<meta_function> { + static int push(lua_State* L, meta_function m) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name); +#endif // make sure stack doesn't overflow + const std::string& str = to_string(m); + lua_pushlstring(L, str.c_str(), str.size()); + return 1; + } + }; + + template <> + struct unqualified_pusher<absolute_index> { + static int push(lua_State* L, absolute_index ai) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, ai); + return 1; + } + }; + + template <> + struct unqualified_pusher<raw_index> { + static int push(lua_State* L, raw_index ri) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, ri); + return 1; + } + }; + + template <> + struct unqualified_pusher<ref_index> { + static int push(lua_State* L, ref_index ri) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_rawgeti(L, LUA_REGISTRYINDEX, ri); + return 1; + } + }; + + template <> + struct unqualified_pusher<const wchar_t*> { + static int push(lua_State* L, const wchar_t* wstr) { + return push(L, wstr, std::char_traits<wchar_t>::length(wstr)); + } + + static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) { + return push(L, wstr, wstr + sz); + } + + static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { + if constexpr (sizeof(wchar_t) == 2) { + const char16_t* sb = reinterpret_cast<const char16_t*>(strb); + const char16_t* se = reinterpret_cast<const char16_t*>(stre); + return stack::push(L, sb, se); + } + else { + const char32_t* sb = reinterpret_cast<const char32_t*>(strb); + const char32_t* se = reinterpret_cast<const char32_t*>(stre); + return stack::push(L, sb, se); + } + } + }; + + template <> + struct unqualified_pusher<wchar_t*> { + static int push(lua_State* L, const wchar_t* str) { + unqualified_pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { + unqualified_pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const wchar_t* str, std::size_t len) { + unqualified_pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <> + struct unqualified_pusher<const char16_t*> { + static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) { + char* target = start; + char32_t cp = 0; + for (const char16_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf16_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf8(cp); + const char* utf8data = er.code_units.data(); + std::memcpy(target, utf8data, er.code_units_size); + target += er.code_units_size; + strtarget = dr.next; + } + + return stack::push(L, start, target); + } + + static int push(lua_State* L, const char16_t* u16str) { + return push(L, u16str, std::char_traits<char16_t>::length(u16str)); + } + + static int push(lua_State* L, const char16_t* u16str, std::size_t sz) { + return push(L, u16str, u16str + sz); + } + + static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { + char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; + // if our max string space is small enough, use SBO + // right off the bat + std::size_t max_possible_code_units = (stre - strb) * 4; + if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, max_possible_code_units, strb, stre); + } + // otherwise, we must manually count/check size + std::size_t needed_size = 0; + for (const char16_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf16_to_code_point(strtarget, stre); + auto er = unicode::code_point_to_utf8(dr.codepoint); + needed_size += er.code_units_size; + strtarget = dr.next; + } + if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, needed_size, strb, stre); + } + std::string u8str("", 0); + u8str.resize(needed_size); + char* target = &u8str[0]; + return convert_into(L, target, needed_size, strb, stre); + } + }; + + template <> + struct unqualified_pusher<char16_t*> { + static int push(lua_State* L, const char16_t* str) { + unqualified_pusher<const char16_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { + unqualified_pusher<const char16_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char16_t* str, std::size_t len) { + unqualified_pusher<const char16_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <> + struct unqualified_pusher<const char32_t*> { + static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) { + char* target = start; + char32_t cp = 0; + for (const char32_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf32_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf8(cp); + const char* data = er.code_units.data(); + std::memcpy(target, data, er.code_units_size); + target += er.code_units_size; + strtarget = dr.next; + } + return stack::push(L, start, target); + } + + static int push(lua_State* L, const char32_t* u32str) { + return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str)); + } + + static int push(lua_State* L, const char32_t* u32str, std::size_t sz) { + return push(L, u32str, u32str + sz); + } + + static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { + char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; + // if our max string space is small enough, use SBO + // right off the bat + std::size_t max_possible_code_units = (stre - strb) * 4; + if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, max_possible_code_units, strb, stre); + } + // otherwise, we must manually count/check size + std::size_t needed_size = 0; + for (const char32_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf32_to_code_point(strtarget, stre); + auto er = unicode::code_point_to_utf8(dr.codepoint); + needed_size += er.code_units_size; + strtarget = dr.next; + } + if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, needed_size, strb, stre); + } + std::string u8str("", 0); + u8str.resize(needed_size); + char* target = &u8str[0]; + return convert_into(L, target, needed_size, strb, stre); + } + }; + + template <> + struct unqualified_pusher<char32_t*> { + static int push(lua_State* L, const char32_t* str) { + unqualified_pusher<const char32_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { + unqualified_pusher<const char32_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char32_t* str, std::size_t len) { + unqualified_pusher<const char32_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <size_t N> + struct unqualified_pusher<wchar_t[N]> { + static int push(lua_State* L, const wchar_t (&str)[N]) { + return push(L, str, std::char_traits<wchar_t>::length(str)); + } + + static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) { + return stack::push<const wchar_t*>(L, str, str + sz); + } + }; + + template <size_t N> + struct unqualified_pusher<char16_t[N]> { + static int push(lua_State* L, const char16_t (&str)[N]) { + return push(L, str, std::char_traits<char16_t>::length(str)); + } + + static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) { + return stack::push<const char16_t*>(L, str, str + sz); + } + }; + + template <size_t N> + struct unqualified_pusher<char32_t[N]> { + static int push(lua_State* L, const char32_t (&str)[N]) { + return push(L, str, std::char_traits<char32_t>::length(str)); + } + + static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) { + return stack::push<const char32_t*>(L, str, str + sz); + } + }; + + template <> + struct unqualified_pusher<wchar_t> { + static int push(lua_State* L, wchar_t c) { + const wchar_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <> + struct unqualified_pusher<char16_t> { + static int push(lua_State* L, char16_t c) { + const char16_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <> + struct unqualified_pusher<char32_t> { + static int push(lua_State* L, char32_t c) { + const char32_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <typename... Args> + struct unqualified_pusher<std::tuple<Args...>> { + template <std::size_t... I, typename T> + static int push(std::index_sequence<I...>, lua_State* L, T&& t) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, static_cast<int>(sizeof...(I)), detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + int pushcount = 0; + (void)detail::swallow{ 0, (pushcount += stack::push(L, std::get<I>(std::forward<T>(t))), 0)... }; + return pushcount; + } + + template <typename T> + static int push(lua_State* L, T&& t) { + return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t)); + } + }; + + template <typename A, typename B> + struct unqualified_pusher<std::pair<A, B>> { + template <typename T> + static int push(lua_State* L, T&& t) { + int pushcount = stack::push(L, std::get<0>(std::forward<T>(t))); + pushcount += stack::push(L, std::get<1>(std::forward<T>(t))); + return pushcount; + } + }; + + template <typename O> + struct unqualified_pusher<optional<O>> { + template <typename T> + static int push(lua_State* L, T&& t) { + if (t == nullopt) { + return stack::push(L, nullopt); + } + return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); + } + }; + + template <> + struct unqualified_pusher<nullopt_t> { + static int push(lua_State* L, nullopt_t) { + return stack::push(L, lua_nil); + } + }; + + template <> + struct unqualified_pusher<std::nullptr_t> { + static int push(lua_State* L, std::nullptr_t) { + return stack::push(L, lua_nil); + } + }; + + template <> + struct unqualified_pusher<this_state> { + static int push(lua_State*, const this_state&) { + return 0; + } + }; + + template <> + struct unqualified_pusher<this_main_state> { + static int push(lua_State*, const this_main_state&) { + return 0; + } + }; + + template <> + struct unqualified_pusher<new_table> { + static int push(lua_State* L, const new_table& nt) { + lua_createtable(L, nt.sequence_hint, nt.map_hint); + return 1; + } + }; + + template <typename Allocator> + struct unqualified_pusher<basic_bytecode<Allocator>> { + template <typename T> + static int push(lua_State* L, T&& bc, const char* bytecode_name) { + const auto first = bc.data(); + const auto bcsize = bc.size(); + // pushes either the function, or an error + // if it errors, shit goes south, and people can test that upstream + (void)luaL_loadbuffer(L, reinterpret_cast<const char*>(first), static_cast<std::size_t>(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name); + return 1; + } + + template <typename T> + static int push(lua_State* L, T&& bc) { + return push(L, std::forward<bc>(bc), "bytecode"); + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename O> + struct unqualified_pusher<std::optional<O>> { + template <typename T> + static int push(lua_State* L, T&& t) { + if (t == std::nullopt) { + return stack::push(L, nullopt); + } + return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); + } + }; + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + namespace stack_detail { + + struct push_function { + lua_State* L; + + push_function(lua_State* L) : L(L) { + } + + template <typename T> + int operator()(T&& value) const { + return stack::push<T>(L, std::forward<T>(value)); + } + }; + + } // namespace stack_detail + + template <typename... Tn> + struct unqualified_pusher<std::variant<Tn...>> { + static int push(lua_State* L, const std::variant<Tn...>& v) { + return std::visit(stack_detail::push_function(L), v); + } + + static int push(lua_State* L, std::variant<Tn...>&& v) { + return std::visit(stack_detail::push_function(L), std::move(v)); + } + }; +#endif // Variant because Clang is terrible +#endif // C++17 Support + } +} // namespace sol::stack + +#endif // SOL_STACK_PUSH_HPP diff --git a/lib/sol2/include/sol/stack_reference.hpp b/lib/sol2/include/sol/stack_reference.hpp new file mode 100644 index 0000000..b53eebd --- /dev/null +++ b/lib/sol2/include/sol/stack_reference.hpp @@ -0,0 +1,234 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_REFERENCE_HPP +#define SOL_STACK_REFERENCE_HPP + +#include "types.hpp" + +namespace sol { + namespace detail { + inline bool xmovable(lua_State* leftL, lua_State* rightL) { + if (rightL == nullptr || leftL == nullptr || leftL == rightL) { + return false; + } + const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX); + const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX); + return leftregistry == rightregistry; + } + } // namespace detail + + class stateless_stack_reference { + private: + friend class stack_reference; + + int index = 0; + + int registry_index() const noexcept { + return LUA_NOREF; + } + + public: + stateless_stack_reference() noexcept = default; + stateless_stack_reference(lua_nil_t) noexcept : stateless_stack_reference(){}; + stateless_stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(absolute_index(L, i)) { + } + stateless_stack_reference(lua_State*, absolute_index i) noexcept : stateless_stack_reference(i) { + } + stateless_stack_reference(lua_State*, raw_index i) noexcept : stateless_stack_reference(i) { + } + stateless_stack_reference(absolute_index i) noexcept : index(i) { + } + stateless_stack_reference(raw_index i) noexcept : index(i) { + } + stateless_stack_reference(lua_State*, ref_index) noexcept = delete; + stateless_stack_reference(ref_index) noexcept = delete; + stateless_stack_reference(const reference&) noexcept = delete; + stateless_stack_reference(const stateless_stack_reference&) noexcept = default; + stateless_stack_reference(stateless_stack_reference&& o) noexcept = default; + stateless_stack_reference& operator=(stateless_stack_reference&&) noexcept = default; + stateless_stack_reference& operator=(const stateless_stack_reference&) noexcept = default; + + int push(lua_State* L) const noexcept { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value"); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, index); + return 1; + } + + void pop(lua_State* L, int n = 1) const noexcept { + lua_pop(L, n); + } + + int stack_index() const noexcept { + return index; + } + + const void* pointer(lua_State* L) const noexcept { + const void* vp = lua_topointer(L, stack_index()); + return vp; + } + + type get_type(lua_State* L) const noexcept { + int result = lua_type(L, index); + return static_cast<type>(result); + } + + bool valid(lua_State* L) const noexcept { + type t = get_type(L); + return t != type::lua_nil && t != type::none; + } + + void abandon(lua_State* = nullptr) { + index = 0; + } + }; + + class stack_reference : public stateless_stack_reference { + private: + lua_State* luastate = nullptr; + + public: + stack_reference() noexcept = default; + stack_reference(lua_nil_t) noexcept + : stack_reference() {}; + stack_reference(lua_State* L, lua_nil_t) noexcept : stateless_stack_reference(L, 0), luastate(L) { + } + stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(L, i), luastate(L) { + } + stack_reference(lua_State* L, absolute_index i) noexcept : stateless_stack_reference(L, i), luastate(L) { + } + stack_reference(lua_State* L, raw_index i) noexcept : stateless_stack_reference(L, i), luastate(L) { + } + stack_reference(lua_State* L, ref_index i) noexcept = delete; + stack_reference(lua_State* L, const reference& r) noexcept = delete; + stack_reference(lua_State* L, const stack_reference& r) noexcept + : luastate(L) { + if (!r.valid()) { + index = 0; + return; + } + int i = r.stack_index(); + if (detail::xmovable(lua_state(), r.lua_state())) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value"); +#endif // make sure stack doesn't overflow + lua_pushvalue(r.lua_state(), r.index); + lua_xmove(r.lua_state(), luastate, 1); + i = absolute_index(luastate, -1); + } + index = i; + } + stack_reference(stack_reference&& o) noexcept = default; + stack_reference& operator=(stack_reference&&) noexcept = default; + stack_reference(const stack_reference&) noexcept = default; + stack_reference& operator=(const stack_reference&) noexcept = default; + + int push() const noexcept { + return push(lua_state()); + } + + int push(lua_State* Ls) const noexcept { + return stateless_stack_reference::push(Ls); + } + + void pop() const noexcept { + pop(lua_state()); + } + + void pop(lua_State* Ls, int n = 1) const noexcept { + stateless_stack_reference::pop(Ls, n); + } + + const void* pointer() const noexcept { + return stateless_stack_reference::pointer(lua_state()); + } + + type get_type() const noexcept { + return stateless_stack_reference::get_type(lua_state()); + } + + lua_State* lua_state() const noexcept { + return luastate; + } + + bool valid() const noexcept { + return stateless_stack_reference::valid(lua_state()); + } + + void abandon () { + stateless_stack_reference::abandon(lua_state()); + } + }; + + inline bool operator==(const stack_reference& l, const stack_reference& r) { + return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0; + } + + inline bool operator!=(const stack_reference& l, const stack_reference& r) { + return !operator==(l, r); + } + + inline bool operator==(const stack_reference& lhs, const lua_nil_t&) { + return !lhs.valid(); + } + + inline bool operator==(const lua_nil_t&, const stack_reference& rhs) { + return !rhs.valid(); + } + + inline bool operator!=(const stack_reference& lhs, const lua_nil_t&) { + return lhs.valid(); + } + + inline bool operator!=(const lua_nil_t&, const stack_reference& rhs) { + return rhs.valid(); + } + + struct stack_reference_equals { + bool operator()(const lua_nil_t& lhs, const stack_reference& rhs) const { + return lhs == rhs; + } + + bool operator()(const stack_reference& lhs, const lua_nil_t& rhs) const { + return lhs == rhs; + } + + bool operator()(const stack_reference& lhs, const stack_reference& rhs) const { + return lhs == rhs; + } + }; + + struct stack_reference_hash { + typedef stack_reference argument_type; + typedef std::size_t result_type; + + result_type operator()(const argument_type& lhs) const { + std::hash<const void*> h; + return h(lhs.pointer()); + } + }; +} // namespace sol + +#endif // SOL_STACK_REFERENCE_HPP diff --git a/lib/sol2/include/sol/state.hpp b/lib/sol2/include/sol/state.hpp new file mode 100644 index 0000000..6327a42 --- /dev/null +++ b/lib/sol2/include/sol/state.hpp @@ -0,0 +1,63 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STATE_HPP +#define SOL_STATE_HPP + +#include "state_view.hpp" +#include "thread.hpp" + +namespace sol { + + class state : private std::unique_ptr<lua_State, detail::state_deleter>, public state_view { + private: + typedef std::unique_ptr<lua_State, detail::state_deleter> unique_base; + + public: + state(lua_CFunction panic = default_at_panic) + : unique_base(luaL_newstate()), state_view(unique_base::get()) { + set_default_state(unique_base::get(), panic); + } + + state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr) + : unique_base(lua_newstate(alfunc, alpointer)), state_view(unique_base::get()) { + set_default_state(unique_base::get(), panic); + } + + state(const state&) = delete; + state(state&&) = default; + state& operator=(const state&) = delete; + state& operator=(state&& that) { + state_view::operator=(std::move(that)); + unique_base::operator=(std::move(that)); + return *this; + } + + using state_view::get; + + ~state() { + } + }; +} // namespace sol + +#endif // SOL_STATE_HPP diff --git a/lib/sol2/include/sol/state_handling.hpp b/lib/sol2/include/sol/state_handling.hpp new file mode 100644 index 0000000..29a7dca --- /dev/null +++ b/lib/sol2/include/sol/state_handling.hpp @@ -0,0 +1,192 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STATE_DEFAULT_HPP +#define SOL_STATE_DEFAULT_HPP + +#include "trampoline.hpp" +#include "stack.hpp" +#include "error.hpp" +#include "function.hpp" +#include "object.hpp" +#include "lua_value.hpp" + +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS +#include <iostream> +#endif + +namespace sol { + inline void register_main_thread(lua_State* L) { +#if SOL_LUA_VERSION < 502 + if (L == nullptr) { + lua_pushnil(L); + lua_setglobal(L, detail::default_main_thread_name()); + return; + } + lua_pushthread(L); + lua_setglobal(L, detail::default_main_thread_name()); +#else + (void)L; +#endif + } + + inline int default_at_panic(lua_State* L) { +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + (void)L; + return -1; +#else + size_t messagesize; + const char* message = lua_tolstring(L, -1, &messagesize); + if (message) { + std::string err(message, messagesize); + lua_settop(L, 0); +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + std::cerr << "[sol3] An error occurred and panic has been invoked: "; + std::cerr << err; + std::cerr << std::endl; +#endif + throw error(err); + } + lua_settop(L, 0); + throw error(std::string("An unexpected error occurred and panic has been invoked")); +#endif // Printing Errors + } + + inline int default_traceback_error_handler(lua_State* L) { + std::string msg = "An unknown error has triggered the default error handler"; + optional<string_view> maybetopmsg = stack::unqualified_check_get<string_view>(L, 1, no_panic); + if (maybetopmsg) { + const string_view& topmsg = maybetopmsg.value(); + msg.assign(topmsg.data(), topmsg.size()); + } + luaL_traceback(L, L, msg.c_str(), 1); + optional<string_view> maybetraceback = stack::unqualified_check_get<string_view>(L, -1, no_panic); + if (maybetraceback) { + const string_view& traceback = maybetraceback.value(); + msg.assign(traceback.data(), traceback.size()); + } +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + //std::cerr << "[sol3] An error occurred and was caught in traceback: "; + //std::cerr << msg; + //std::cerr << std::endl; +#endif // Printing + return stack::push(L, msg); + } + + inline void set_default_state(lua_State* L, lua_CFunction panic_function = &default_at_panic, lua_CFunction traceback_function = c_call<decltype(&default_traceback_error_handler), &default_traceback_error_handler>, exception_handler_function exf = detail::default_exception_handler) { + lua_atpanic(L, panic_function); + protected_function::set_default_handler(object(L, in_place, traceback_function)); + set_default_exception_handler(L, exf); + register_main_thread(L); + stack::luajit_exception_handler(L); + lua_value::set_lua_state(L); + } + + inline std::size_t total_memory_used(lua_State* L) { + std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0); + kb *= 1024; + kb += lua_gc(L, LUA_GCCOUNTB, 0); + return kb; + } + + inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result) { + return result; + } + + inline protected_function_result script_throw_on_error(lua_State*L, protected_function_result result) { + type t = type_of(L, result.stack_index()); + std::string err = "sol: "; + err += to_string(result.status()); + err += " error"; +#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) + std::exception_ptr eptr = std::current_exception(); + if (eptr) { + err += " with a "; + try { + std::rethrow_exception(eptr); + } + catch (const std::exception& ex) { + err += "std::exception -- "; + err.append(ex.what()); + } + catch (const std::string& message) { + err += "thrown message -- "; + err.append(message); + } + catch (const char* message) { + err += "thrown message -- "; + err.append(message); + } + catch (...) { + err.append("thrown but unknown type, cannot serialize into error message"); + } + } +#endif // serialize exception information if possible + if (t == type::string) { + err += ": "; + string_view serr = stack::unqualified_get<string_view>(L, result.stack_index()); + err.append(serr.data(), serr.size()); + } +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + std::cerr << "[sol3] An error occurred and has been passed to an error handler: "; + std::cerr << err; + std::cerr << std::endl; +#endif + // replacing information of stack error into pfr + int target = result.stack_index(); + if (result.pop_count() > 0) { + stack::remove(L, target, result.pop_count()); + } + stack::push(L, err); + int top = lua_gettop(L); + int towards = top - target; + if (towards != 0) { + lua_rotate(L, top, towards); + } +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + return result; +#else + // just throw our error + throw error(detail::direct_error, err); +#endif // If exceptions are allowed + } + + inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr) { +#if defined(SOL_DEFAULT_PASS_ON_ERROR) && SOL_DEFAULT_PASS_ON_ERROR + return script_pass_on_error(L, std::move(pfr)); +#else + return script_throw_on_error(L, std::move(pfr)); +#endif + } + + namespace stack { + inline error get_traceback_or_errors(lua_State* L) { + int p = default_traceback_error_handler(L); + sol::error err = stack::get<sol::error>(L, -p); + lua_pop(L, p); + return err; + } + } +} // namespace sol + +#endif // SOL_STATE_DEFAULT_HPP diff --git a/lib/sol2/include/sol/state_view.hpp b/lib/sol2/include/sol/state_view.hpp new file mode 100644 index 0000000..cb5f1ea --- /dev/null +++ b/lib/sol2/include/sol/state_view.hpp @@ -0,0 +1,753 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STATE_VIEW_HPP +#define SOL_STATE_VIEW_HPP + +#include "error.hpp" +#include "table.hpp" +#include "environment.hpp" +#include "load_result.hpp" +#include "state_handling.hpp" + +#include <memory> +#include <cstddef> + +namespace sol { + + class state_view { + private: + lua_State* L; + table reg; + global_table global; + + optional<object> is_loaded_package(const std::string& key) { + auto loaded = reg.traverse_get<optional<object>>("_LOADED", key); + bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>()); + if (is53mod) + return loaded; +#if SOL_LUA_VERSION <= 501 + auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key); + bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>()); + if (is51mod) + return loaded51; +#endif + return nullopt; + } + + template <typename T> + void ensure_package(const std::string& key, T&& sr) { +#if SOL_LUA_VERSION <= 501 + auto pkg = global["package"]; + if (!pkg.valid()) { + pkg = create_table_with("loaded", create_table_with(key, sr)); + } + else { + auto ld = pkg["loaded"]; + if (!ld.valid()) { + ld = create_table_with(key, sr); + } + else { + ld[key] = sr; + } + } +#endif + auto loaded = reg["_LOADED"]; + if (!loaded.valid()) { + loaded = create_table_with(key, sr); + } + else { + loaded[key] = sr; + } + } + + template <typename Fx> + object require_core(const std::string& key, Fx&& action, bool create_global = true) { + optional<object> loaded = is_loaded_package(key); + if (loaded && loaded->valid()) + return std::move(*loaded); + action(); + stack_reference sr(L, -1); + if (create_global) + set(key, sr); + ensure_package(key, sr); + return stack::pop<object>(L); + } + + public: + using iterator = typename global_table::iterator; + using const_iterator = typename global_table::const_iterator; + + state_view(lua_State* Ls) + : L(Ls), reg(Ls, LUA_REGISTRYINDEX), global(Ls, detail::global_) { + } + + state_view(this_state Ls) + : state_view(Ls.L) { + } + + lua_State* lua_state() const { + return L; + } + + template <typename... Args> + void open_libraries(Args&&... args) { + static_assert(meta::all_same<lib, Args...>::value, "all types must be libraries"); + if constexpr (sizeof...(args) == 0) { + luaL_openlibs(L); + return; + } + else { + lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... }; + + for (auto&& library : libraries) { + switch (library) { + #if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT) + case lib::coroutine: + #endif // luajit opens coroutine base stuff + case lib::base: + luaL_requiref(L, "base", luaopen_base, 1); + lua_pop(L, 1); + break; + case lib::package: + luaL_requiref(L, "package", luaopen_package, 1); + lua_pop(L, 1); + break; + #if !defined(SOL_LUAJIT) + case lib::coroutine: + #if SOL_LUA_VERSION > 501 + luaL_requiref(L, "coroutine", luaopen_coroutine, 1); + lua_pop(L, 1); + #endif // Lua 5.2+ only + break; + #endif // Not LuaJIT - comes builtin + case lib::string: + luaL_requiref(L, "string", luaopen_string, 1); + lua_pop(L, 1); + break; + case lib::table: + luaL_requiref(L, "table", luaopen_table, 1); + lua_pop(L, 1); + break; + case lib::math: + luaL_requiref(L, "math", luaopen_math, 1); + lua_pop(L, 1); + break; + case lib::bit32: + #ifdef SOL_LUAJIT + luaL_requiref(L, "bit32", luaopen_bit, 1); + lua_pop(L, 1); + #elif (SOL_LUA_VERSION == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2) + luaL_requiref(L, "bit32", luaopen_bit32, 1); + lua_pop(L, 1); + #else + #endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags) + break; + case lib::io: + luaL_requiref(L, "io", luaopen_io, 1); + lua_pop(L, 1); + break; + case lib::os: + luaL_requiref(L, "os", luaopen_os, 1); + lua_pop(L, 1); + break; + case lib::debug: + luaL_requiref(L, "debug", luaopen_debug, 1); + lua_pop(L, 1); + break; + case lib::utf8: + #if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT) + luaL_requiref(L, "utf8", luaopen_utf8, 1); + lua_pop(L, 1); + #endif // Lua 5.3+ only + break; + case lib::ffi: + #ifdef SOL_LUAJIT + luaL_requiref(L, "ffi", luaopen_ffi, 1); + lua_pop(L, 1); + #endif // LuaJIT only + break; + case lib::jit: + #ifdef SOL_LUAJIT + luaL_requiref(L, "jit", luaopen_jit, 0); + lua_pop(L, 1); + #endif // LuaJIT Only + break; + case lib::count: + default: + break; + } + } + } + } + + object require(const std::string& key, lua_CFunction open_function, bool create_global = true) { + luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0); + return stack::pop<object>(L); + } + + object require_script(const std::string& key, const string_view& code, bool create_global = true, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + auto action = [this, &code, &chunkname, &mode]() { + stack::script(L, code, chunkname, mode); + }; + return require_core(key, action, create_global); + } + + object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any) { + auto action = [this, &filename, &mode]() { + stack::script_file(L, filename, mode); + }; + return require_core(key, action, create_global); + } + + void clear_package_loaders() { + optional<table> maybe_package = this->global["package"]; + if (!maybe_package) { + // package lib wasn't opened + // open package lib + return; + } + table& package = *maybe_package; + // yay for version differences... + // one day Lua 5.1 will die a peaceful death + // and its old bones will find blissful rest + auto loaders_proxy = package +#if SOL_LUA_VERSION < 502 + ["loaders"] +#else + ["searchers"] +#endif + ; + if (!loaders_proxy.valid()) { + // nothing to clear + return; + } + // we need to create the table for loaders + // table does not exist, so create and move forward + loaders_proxy = new_table(1, 0); + } + + template <typename Fx> + void add_package_loader(Fx&& fx, bool clear_all_package_loaders = false) { + optional<table> maybe_package = this->global["package"]; + if (!maybe_package) { + // package lib wasn't opened + // open package lib + return; + } + table& package = *maybe_package; + // yay for version differences... + // one day Lua 5.1 will die a peaceful death + // and its old bones will find blissful rest + auto loaders_proxy = package +#if SOL_LUA_VERSION < 502 + ["loaders"] +#else + ["searchers"] +#endif + ; + bool make_new_table = clear_all_package_loaders || !loaders_proxy.valid(); + if (make_new_table) { + // we need to create the table for loaders + // table does not exist, so create and move forward + loaders_proxy = new_table(1, 0); + } + optional<table> maybe_loaders = loaders_proxy; + if (!maybe_loaders) { + // loaders/searches + // thing exists in package, but it + // ain't a table or a table-alike...! + return; + } + table loaders = loaders_proxy; + loaders.add(std::forward<Fx>(fx)); + } + + template <typename E> + protected_function_result do_reader(lua_Reader reader, void* data, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); + load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + set_environment(env, pf); + return pf(); + } + + protected_function_result do_reader(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); + load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + return pf(); + } + + template <typename E> + protected_function_result do_string(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + set_environment(env, pf); + return pf(); + } + + protected_function_result do_string(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + return pf(); + } + + template <typename E> + protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { + load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + set_environment(env, pf); + return pf(); + } + + protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any) { + load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + return pf(); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result safe_script(lua_Reader reader, void* data, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + protected_function_result pfr = do_reader(reader, data, chunkname, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + protected_function_result safe_script(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(reader, data, script_default_on_error, chunkname, mode); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result safe_script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + protected_function_result pfr = do_string(code, chunkname, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename Fx, typename E> + protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + protected_function_result pfr = do_string(code, env, chunkname, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename E> + protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, env, script_default_on_error, chunkname, mode); + } + + protected_function_result safe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, script_default_on_error, chunkname, mode); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) { + protected_function_result pfr = do_file(filename, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename Fx, typename E> + protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) { + protected_function_result pfr = do_file(filename, env, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename E> + protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { + return safe_script_file(filename, env, script_default_on_error, mode); + } + + protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any) { + return safe_script_file(filename, script_default_on_error, mode); + } + + template <typename E> + unsafe_function_result unsafe_script(lua_Reader reader, void* data, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); + int index = lua_gettop(L); + if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())) { + lua_error(L); + } + set_environment(env, stack_reference(L, raw_index(index + 1))); + if (lua_pcall(L, 0, LUA_MULTRET, 0)) { + lua_error(L); + } + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + unsafe_function_result unsafe_script(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + int index = lua_gettop(L); + stack::script(L, reader, data, chunkname, mode); + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + template <typename E> + unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + int index = lua_gettop(L); + if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) { + lua_error(L); + } + set_environment(env, stack_reference(L, raw_index(index + 1))); + if (lua_pcall(L, 0, LUA_MULTRET, 0)) { + lua_error(L); + } + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + unsafe_function_result unsafe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + int index = lua_gettop(L); + stack::script(L, code, chunkname, mode); + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + template <typename E> + unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { + int index = lua_gettop(L); + if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) { + lua_error(L); + } + set_environment(env, stack_reference(L, raw_index(index + 1))); + if (lua_pcall(L, 0, LUA_MULTRET, 0)) { + lua_error(L); + } + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any) { + int index = lua_gettop(L); + stack::script_file(L, filename, mode); + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, std::forward<Fx>(on_error), chunkname, mode); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) { + return safe_script_file(filename, std::forward<Fx>(on_error), mode); + } + + template <typename Fx, typename E> + protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode); + } + + template <typename Fx, typename E> + protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) { + return safe_script_file(filename, env, std::forward<Fx>(on_error), mode); + } + + protected_function_result script(const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, env, script_default_on_error, chunkname, mode); + } + + protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any) { + return safe_script_file(filename, env, script_default_on_error, mode); + } + +#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION + protected_function_result script(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(reader, data, chunkname, mode); + } + + protected_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, chunkname, mode); + } + + protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) { + return safe_script_file(filename, mode); + } +#else + unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return unsafe_script(code, chunkname, mode); + } + + unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) { + return unsafe_script_file(filename, mode); + } +#endif + load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); + return load_result(L, absolute_index(L, -1), 1, 1, x); + } + + load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return load(string_view(buff, size), chunkname, mode); + } + + load_result load_buffer(const std::byte* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return load(string_view(reinterpret_cast<const char*>(buff), size), chunkname, mode); + } + + load_result load_file(const std::string& filename, load_mode mode = load_mode::any) { + load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); + return load_result(L, absolute_index(L, -1), 1, 1, x); + } + + load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); + load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())); + return load_result(L, absolute_index(L, -1), 1, 1, x); + } + + iterator begin() const { + return global.begin(); + } + + iterator end() const { + return global.end(); + } + + const_iterator cbegin() const { + return global.cbegin(); + } + + const_iterator cend() const { + return global.cend(); + } + + global_table globals() const { + // if we return a reference + // we'll be screwed a bit + return global; + } + + global_table& globals() { + return global; + } + + table registry() const { + return reg; + } + + std::size_t memory_used() const { + return total_memory_used(lua_state()); + } + + int stack_top() const { + return stack::top(L); + } + + int stack_clear() { + int s = stack_top(); + lua_pop(L, s); + return s; + } + + void collect_garbage() { + lua_gc(lua_state(), LUA_GCCOLLECT, 0); + } + + operator lua_State*() const { + return lua_state(); + } + + void set_panic(lua_CFunction panic) { + lua_atpanic(lua_state(), panic); + } + + void set_exception_handler(exception_handler_function handler) { + set_default_exception_handler(lua_state(), handler); + } + + template <typename... Args, typename... Keys> + decltype(auto) get(Keys&&... keys) const { + return global.get<Args...>(std::forward<Keys>(keys)...); + } + + template <typename T, typename Key> + decltype(auto) get_or(Key&& key, T&& otherwise) const { + return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise)); + } + + template <typename T, typename Key, typename D> + decltype(auto) get_or(Key&& key, D&& otherwise) const { + return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise)); + } + + template <typename... Args> + state_view& set(Args&&... args) { + global.set(std::forward<Args>(args)...); + return *this; + } + + template <typename T, typename... Keys> + decltype(auto) traverse_get(Keys&&... keys) const { + return global.traverse_get<T>(std::forward<Keys>(keys)...); + } + + template <typename... Args> + state_view& traverse_set(Args&&... args) { + global.traverse_set(std::forward<Args>(args)...); + return *this; + } + + template <typename Class, typename... Args> + usertype<Class> new_usertype(const std::string& name, Args&&... args) { + return global.new_usertype<Class>(name, std::forward<Args>(args)...); + } + + template <bool read_only = true, typename... Args> + state_view& new_enum(const string_view& name, Args&&... args) { + global.new_enum<read_only>(name, std::forward<Args>(args)...); + return *this; + } + + template <typename T, bool read_only = true> + state_view& new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) { + global.new_enum<T, read_only>(name, std::move(items)); + return *this; + } + + template <typename Fx> + void for_each(Fx&& fx) { + global.for_each(std::forward<Fx>(fx)); + } + + template <typename T> + proxy<global_table&, detail::proxy_key_t<T>> operator[](T&& key) { + return global[std::forward<T>(key)]; + } + + template <typename T> + proxy<const global_table&, detail::proxy_key_t<T>> operator[](T&& key) const { + return global[std::forward<T>(key)]; + } + + template <typename Sig, typename... Args, typename Key> + state_view& set_function(Key&& key, Args&&... args) { + global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename... Args, typename Key> + state_view& set_function(Key&& key, Args&&... args) { + global.set_function(std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename Name> + table create_table(Name&& name, int narr = 0, int nrec = 0) { + return global.create(std::forward<Name>(name), narr, nrec); + } + + template <typename Name, typename Key, typename Value, typename... Args> + table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename Name, typename... Args> + table create_named_table(Name&& name, Args&&... args) { + table x = global.create_with(std::forward<Args>(args)...); + global.set(std::forward<Name>(name), x); + return x; + } + + table create_table(int narr = 0, int nrec = 0) { + return create_table(lua_state(), narr, nrec); + } + + template <typename Key, typename Value, typename... Args> + table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename... Args> + table create_table_with(Args&&... args) { + return create_table_with(lua_state(), std::forward<Args>(args)...); + } + + static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) { + return global_table::create(L, narr, nrec); + } + + template <typename Key, typename Value, typename... Args> + static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename... Args> + static inline table create_table_with(lua_State* L, Args&&... args) { + return global_table::create_with(L, std::forward<Args>(args)...); + } + }; +} // namespace sol + +#endif // SOL_STATE_VIEW_HPP diff --git a/lib/sol2/include/sol/string_view.hpp b/lib/sol2/include/sol/string_view.hpp new file mode 100644 index 0000000..e631727 --- /dev/null +++ b/lib/sol2/include/sol/string_view.hpp @@ -0,0 +1,176 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STRING_VIEW_HPP +#define SOL_STRING_VIEW_HPP + +#include "feature_test.hpp" +#include <cstddef> +#include <string> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <string_view> +#endif // C++17 features +#include <functional> +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST +#include <boost/functional/hash.hpp> +#endif + +namespace sol { +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename C, typename T = std::char_traits<C>> + using basic_string_view = std::basic_string_view<C, T>; + typedef std::string_view string_view; + typedef std::wstring_view wstring_view; + typedef std::u16string_view u16string_view; + typedef std::u32string_view u32string_view; + typedef std::hash<std::string_view> string_view_hash; +#else + template <typename Char, typename Traits = std::char_traits<Char>> + struct basic_string_view { + std::size_t s; + const Char* p; + + basic_string_view(const std::string& r) + : basic_string_view(r.data(), r.size()) { + } + constexpr basic_string_view(const Char* ptr) : basic_string_view(ptr, Traits::length(ptr)) { + } + constexpr basic_string_view(const Char* ptr, std::size_t sz) : s(sz), p(ptr) { + } + + static int compare(const Char* lhs_p, std::size_t lhs_sz, const Char* rhs_p, std::size_t rhs_sz) { + int result = Traits::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz); + if (result != 0) + return result; + if (lhs_sz < rhs_sz) + return -1; + if (lhs_sz > rhs_sz) + return 1; + return 0; + } + + constexpr const Char* begin() const { + return p; + } + + constexpr const Char* end() const { + return p + s; + } + + constexpr const Char* cbegin() const { + return p; + } + + constexpr const Char* cend() const { + return p + s; + } + + constexpr const Char* data() const { + return p; + } + + constexpr std::size_t size() const { + return s; + } + + constexpr std::size_t length() const { + return size(); + } + + operator std::basic_string<Char, Traits>() const { + return std::basic_string<Char, Traits>(data(), size()); + } + + bool operator==(const basic_string_view& r) const { + return compare(p, s, r.data(), r.size()) == 0; + } + + bool operator==(const Char* r) const { + return compare(r, Traits::length(r), p, s) == 0; + } + + bool operator==(const std::basic_string<Char, Traits>& r) const { + return compare(r.data(), r.size(), p, s) == 0; + } + + bool operator!=(const basic_string_view& r) const { + return !(*this == r); + } + + bool operator!=(const char* r) const { + return !(*this == r); + } + + bool operator!=(const std::basic_string<Char, Traits>& r) const { + return !(*this == r); + } + }; + + template <typename Ch, typename Tr = std::char_traits<Ch>> + struct basic_string_view_hash { + typedef basic_string_view<Ch, Tr> argument_type; + typedef std::size_t result_type; + + template <typename Al> + result_type operator()(const std::basic_string<Ch, Tr, Al>& r) const { + return (*this)(argument_type(r.c_str(), r.size())); + } + + result_type operator()(const argument_type& r) const { +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST + return boost::hash_range(r.begin(), r.end()); +#else + // Modified, from libstdc++ + // An implementation attempt at Fowler No Voll, 1a. + // Supposedly, used in MSVC, + // GCC (libstdc++) uses MurmurHash of some sort for 64-bit though...? + // But, well. Can't win them all, right? + // This should normally only apply when NOT using boost, + // so this should almost never be tapped into... + std::size_t hash = 0; + const unsigned char* cptr = reinterpret_cast<const unsigned char*>(r.data()); + for (std::size_t sz = r.size(); sz != 0; --sz) { + hash ^= static_cast<size_t>(*cptr++); + hash *= static_cast<size_t>(1099511628211ULL); + } + return hash; +#endif + } + }; +} // namespace sol + +namespace std { + template <typename Ch, typename Tr> + struct hash< ::sol::basic_string_view<Ch, Tr> > : ::sol::basic_string_view_hash<Ch, Tr> {}; +} // namespace std + +namespace sol { + using string_view = basic_string_view<char>; + using wstring_view = basic_string_view<wchar_t>; + using u16string_view = basic_string_view<char16_t>; + using u32string_view = basic_string_view<char32_t>; + using string_view_hash = std::hash<string_view>; +#endif // C++17 Support +} // namespace sol + +#endif // SOL_STRING_VIEW_HPP diff --git a/lib/sol2/include/sol/table.hpp b/lib/sol2/include/sol/table.hpp new file mode 100644 index 0000000..d27b81c --- /dev/null +++ b/lib/sol2/include/sol/table.hpp @@ -0,0 +1,100 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_TABLE_HPP
+#define SOL_TABLE_HPP
+
+#include "table_core.hpp"
+#include "lua_table.hpp"
+#include "usertype.hpp"
+
+namespace sol {
+ typedef table_core<false> table;
+
+ template <bool is_global, typename base_type>
+ template <typename Class, typename Key>
+ usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key) {
+ automagic_enrollments enrollments;
+ return this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
+ }
+
+ template <bool is_global, typename base_type>
+ template <typename Class, typename Key>
+ usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, automagic_enrollments enrollments) {
+ int mt_index = u_detail::register_usertype<Class>(this->lua_state(), std::move(enrollments));
+ usertype<Class> mt(this->lua_state(), -mt_index);
+ lua_pop(this->lua_state(), 1);
+ set(std::forward<Key>(key), mt);
+ return mt;
+ }
+
+ template <bool is_global, typename base_type>
+ template <typename Class, typename Key, typename Arg, typename... Args, typename>
+ usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, Arg&& arg, Args&&... args) {
+ automagic_enrollments enrollments;
+ enrollments.default_constructor = !detail::any_is_constructor_v<Arg, Args...>;
+ enrollments.destructor = !detail::any_is_destructor_v<Arg, Args...>;
+ usertype<Class> ut = this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
+ static_assert(sizeof...(Args) % 2 == static_cast<std::size_t>(!detail::any_is_constructor_v<Arg>),
+ "you must pass an even number of arguments to new_usertype after first passing a constructor");
+ if constexpr (detail::any_is_constructor_v<Arg>) {
+ ut.set(meta_function::construct, std::forward<Arg>(arg));
+ ut.tuple_set(std::make_index_sequence<(sizeof...(Args)) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
+ }
+ else {
+ ut.tuple_set(std::make_index_sequence<(sizeof...(Args) + 1) / 2>(), std::forward_as_tuple(std::forward<Arg>(arg), std::forward<Args>(args)...));
+ }
+ return ut;
+ }
+
+ template <typename base_type>
+ template <typename Key, typename Value>
+ void basic_metatable<base_type>::set(Key&& key, Value&& value) {
+ this->push();
+ lua_State* L = this->lua_state();
+ int target = lua_gettop(L);
+ optional<u_detail::usertype_storage_base&> maybe_uts = u_detail::maybe_get_usertype_storage_base(L, target);
+ lua_pop(L, 1);
+ if (maybe_uts) {
+ u_detail::usertype_storage_base& uts = *maybe_uts;
+ uts.set(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+ else {
+ base_t::set(std::forward<Key>(key), std::forward<Value>(value));
+ }
+ }
+
+ namespace stack {
+ template <>
+ struct unqualified_getter<metatable_key_t> {
+ static table get(lua_State* L, int index = -1) {
+ if (lua_getmetatable(L, index) == 0) {
+ return table(L, ref_index(LUA_REFNIL));
+ }
+ return table(L, -1);
+ }
+ };
+ } // namespace stack
+} // namespace sol
+
+#endif // SOL_TABLE_HPP
diff --git a/lib/sol2/include/sol/table_core.hpp b/lib/sol2/include/sol/table_core.hpp new file mode 100644 index 0000000..1786fe9 --- /dev/null +++ b/lib/sol2/include/sol/table_core.hpp @@ -0,0 +1,688 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_TABLE_CORE_HPP +#define SOL_TABLE_CORE_HPP + +#include "proxy.hpp" +#include "stack.hpp" +#include "function_types.hpp" +#include "table_iterator.hpp" +#include "types.hpp" +#include "object.hpp" +#include "usertype.hpp" +#include "optional.hpp" + +namespace sol { + namespace detail { + template <std::size_t n> + struct clean { + lua_State* L; + clean(lua_State* luastate) : L(luastate) { + } + ~clean() { + lua_pop(L, static_cast<int>(n)); + } + }; + + struct ref_clean { + lua_State* L; + int& n; + ref_clean(lua_State* luastate, int& n) : L(luastate), n(n) { + } + ~ref_clean() { + lua_pop(L, static_cast<int>(n)); + } + }; + + inline int fail_on_newindex(lua_State* L) { + return luaL_error(L, "sol: cannot modify the elements of an enumeration table"); + } + + } // namespace detail + + template <bool top_level, typename ref_t> + class basic_table_core : public basic_object<ref_t> { + private: + using base_t = basic_object<ref_t>; + + friend class state; + friend class state_view; + template <typename, typename> + friend class basic_usertype; + template <typename> + friend class basic_metatable; + + template <bool raw, typename... Ret, typename... Keys> + decltype(auto) tuple_get(int table_index, Keys&&... keys) const { + if constexpr (sizeof...(Ret) < 2) { + return traverse_get_single_maybe_tuple<raw, Ret...>(table_index, std::forward<Keys>(keys)...); + } + else { + using multi_ret = decltype(stack::pop<std::tuple<Ret...>>(nullptr)); + return multi_ret(traverse_get_single_maybe_tuple<raw, Ret>(table_index, std::forward<Keys>(keys))...); + } + } + + template <bool raw, typename Ret, size_t... I, typename Key> + decltype(auto) traverse_get_single_tuple(int table_index, std::index_sequence<I...>, Key&& key) const { + return traverse_get_single<raw, Ret>(table_index, std::get<I>(std::forward<Key>(key))...); + } + + template <bool raw, typename Ret, typename Key> + decltype(auto) traverse_get_single_maybe_tuple(int table_index, Key&& key) const { + if constexpr (meta::is_tuple_v<meta::unqualified_t<Key>>) { + return traverse_get_single_tuple<raw, Ret>( + table_index, std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<Key>>>(), std::forward<Key>(key)); + } + else { + return traverse_get_single<raw, Ret>(table_index, std::forward<Key>(key)); + } + } + + template <bool raw, typename Ret, typename... Keys> + decltype(auto) traverse_get_single(int table_index, Keys&&... keys) const { + constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); + if constexpr (meta::is_optional_v<meta::unqualified_t<Ret>>) { + int popcount = 0; + detail::ref_clean c(base_t::lua_state(), popcount); + return traverse_get_deep_optional<global, raw, detail::insert_mode::none, Ret>(popcount, table_index, std::forward<Keys>(keys)...); + } + else { + detail::clean<sizeof...(Keys) - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>> c(base_t::lua_state()); + return traverse_get_deep<global, raw, detail::insert_mode::none, Ret>(table_index, std::forward<Keys>(keys)...); + } + } + + template <bool raw, typename Pairs, std::size_t... I> + void tuple_set(std::index_sequence<I...>, Pairs&& pairs) { + constexpr static bool global = top_level && (meta::count_even_for_pack_v<meta::is_c_str, meta::unqualified_t<decltype(std::get<I * 2>(std::forward<Pairs>(pairs)))>...> > 0); + auto pp = stack::push_pop<global>(*this); + int table_index = pp.index_of(*this); + lua_State* L = base_t::lua_state(); + (void)table_index; + (void)L; + void(detail::swallow{ (stack::set_field<(top_level), raw>(L, + std::get<I * 2>(std::forward<Pairs>(pairs)), + std::get<I * 2 + 1>(std::forward<Pairs>(pairs)), + table_index), + 0)... }); + } + + template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys> + decltype(auto) traverse_get_deep(int table_index, Key&& key, Keys&&... keys) const { + if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) { + (void)key; + return traverse_get_deep<false, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil), T>( + table_index, std::forward<Keys>(keys)...); + } + else { + lua_State* L = base_t::lua_state(); + stack::get_field<global, raw>(L, std::forward<Key>(key), table_index); + if constexpr (sizeof...(Keys) > 0) { + if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { + type t = type_of(L, -1); + if (t == type::lua_nil || t == type::none) { + lua_pop(L, 1); + stack::push(L, new_table(0, 0)); + } + } + return traverse_get_deep<false, raw, mode, T>(lua_gettop(L), std::forward<Keys>(keys)...); + } + else { + if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { + type t = type_of(L, -1); + if ((t == type::lua_nil || t == type::none) && (is_table_like_v<T>)) { + lua_pop(L, 1); + stack::push(L, new_table(0, 0)); + } + } + return stack::get<T>(L); + } + } + } + + template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys> + decltype(auto) traverse_get_deep_optional(int& popcount, int table_index, Key&& key, Keys&&... keys) const { + if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) { + constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil); + (void)key; + return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...); + } + else if constexpr (std::is_same_v<meta::unqualified_t<Key>, update_if_empty_t>) { + constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty); + (void)key; + return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...); + } + else if constexpr (std::is_same_v<meta::unqualified_t<Key>, override_value_t>) { + constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value); + (void)key; + return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...); + } + else { + if constexpr (sizeof...(Keys) > 0) { + lua_State* L = base_t::lua_state(); + auto p = stack::probe_get_field<global, raw>(L, std::forward<Key>(key), table_index); + popcount += p.levels; + if (!p.success) { + if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { + lua_pop(L, 1); + constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0; + stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq))); + stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); + } + else { + return T(nullopt); + } + } + return traverse_get_deep_optional<false, raw, mode, T>(popcount, lua_gettop(L), std::forward<Keys>(keys)...); + } + else { + using R = decltype(stack::get<T>(nullptr)); + using value_type = typename meta::unqualified_t<R>::value_type; + lua_State* L = base_t::lua_state(); + auto p = stack::probe_get_field<global, raw, value_type>(L, key, table_index); + popcount += p.levels; + if (!p.success) { + if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { + lua_pop(L, 1); + stack::push(L, new_table(0, 0)); + stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); + if (stack::check<value_type>(L, lua_gettop(L), no_panic)) { + return stack::get<T>(L); + } + } + return R(nullopt); + } + return stack::get<T>(L); + } + } + } + + template <bool global, bool raw, detail::insert_mode mode, typename Key, typename... Keys> + void traverse_set_deep(int table_index, Key&& key, Keys&&... keys) const { + using KeyU = meta::unqualified_t<Key>; + if constexpr (std::is_same_v<KeyU, update_if_empty_t>) { + (void)key; + traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty)>(table_index, std::forward<Keys>(keys)...); + } + else if constexpr (std::is_same_v<KeyU, create_if_nil_t>) { + (void)key; + traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil)>( + table_index, std::forward<Keys>(keys)...); + } + else if constexpr (std::is_same_v<KeyU, override_value_t>) { + (void)key; + traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value)>( + table_index, std::forward<Keys>(keys)...); + } + else { + lua_State* L = base_t::lua_state(); + if constexpr (sizeof...(Keys) == 1) { + if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty) { + auto p = stack::probe_get_field<global, raw>(L, key, table_index); + lua_pop(L, p.levels); + if (!p.success) { + stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index); + } + } + else { + stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index); + } + } + else { + if constexpr (mode != detail::insert_mode::none) { + stack::get_field<global, raw>(L, key, table_index); + type vt = type_of(L, -1); + if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty + || (mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { + if (vt == type::lua_nil || vt == type::none) { + constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0; + lua_pop(L, 1); + stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq))); + stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); + } + } + else { + if (vt != type::table) { + constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0; + lua_pop(L, 1); + stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq))); + stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); + } + } + } + else { + stack::get_field<global, raw>(L, std::forward<Key>(key), table_index); + } + traverse_set_deep<false, raw, mode>(lua_gettop(L), std::forward<Keys>(keys)...); + } + } + } + + basic_table_core(lua_State* L, detail::global_tag t) noexcept : base_t(L, t) { + } + + protected: + basic_table_core(detail::no_safety_tag, lua_nil_t n) : base_t(n) { + } + basic_table_core(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) { + } + basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) { + } + template <typename T, + meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>, + meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) { + } + + public: + using iterator = basic_table_iterator<ref_t>; + using const_iterator = iterator; + + using base_t::lua_state; + + basic_table_core() noexcept = default; + basic_table_core(const basic_table_core&) = default; + basic_table_core(basic_table_core&&) = default; + basic_table_core& operator=(const basic_table_core&) = default; + basic_table_core& operator=(basic_table_core&&) = default; + basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) { + } + basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) { + } + template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_table_core>(lua_state(), -1, handler); +#endif // Safety + } + basic_table_core(lua_State* L, const new_table& nt) : base_t(L, -stack::push(L, nt)) { + if (!is_stack_based<meta::unqualified_t<ref_t>>::value) { + lua_pop(L, 1); + } + } + basic_table_core(lua_State* L, int index = -1) : basic_table_core(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_table_core>(L, index, handler); +#endif // Safety + } + basic_table_core(lua_State* L, ref_index index) : basic_table_core(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_table_core>(lua_state(), -1, handler); +#endif // Safety + } + template <typename T, + meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>, + meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(T&& r) noexcept : basic_table_core(detail::no_safety, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_table<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_table_core>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_table_core(lua_nil_t r) noexcept : basic_table_core(detail::no_safety, r) { + } + + iterator begin() const { + return iterator(*this); + } + + iterator end() const { + return iterator(); + } + + const_iterator cbegin() const { + return begin(); + } + + const_iterator cend() const { + return end(); + } + + void clear () { + auto pp = stack::push_pop<false>(*this); + int table_index = pp.index_of(*this); + stack::clear(lua_state(), table_index); + } + + template <typename... Ret, typename... Keys> + decltype(auto) get(Keys&&... keys) const { + static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match"); + constexpr static bool global = meta::all<meta::boolean<top_level>, meta::is_c_str<meta::unqualified_t<Keys>>...>::value; + auto pp = stack::push_pop<global>(*this); + int table_index = pp.index_of(*this); + return tuple_get<false, Ret...>(table_index, std::forward<Keys>(keys)...); + } + + template <typename T, typename Key> + decltype(auto) get_or(Key&& key, T&& otherwise) const { + typedef decltype(get<T>("")) U; + optional<U> option = get<optional<U>>(std::forward<Key>(key)); + if (option) { + return static_cast<U>(option.value()); + } + return static_cast<U>(std::forward<T>(otherwise)); + } + + template <typename T, typename Key, typename D> + decltype(auto) get_or(Key&& key, D&& otherwise) const { + optional<T> option = get<optional<T>>(std::forward<Key>(key)); + if (option) { + return static_cast<T>(option.value()); + } + return static_cast<T>(std::forward<D>(otherwise)); + } + + template <typename T, typename... Keys> + decltype(auto) traverse_get(Keys&&... keys) const { + static_assert(sizeof...(Keys) > 0, "must pass at least 1 key to get"); + constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); + auto pp = stack::push_pop<global>(*this); + int table_index = pp.index_of(*this); + return traverse_get_single<false, T>(table_index, std::forward<Keys>(keys)...); + } + + template <typename... Keys> + basic_table_core& traverse_set(Keys&&... keys) { + static_assert(sizeof...(Keys) > 1, "must pass at least 1 key and 1 value to set"); + constexpr static bool global = top_level && (meta::count_when_for_to_pack_v<detail::is_not_insert_mode, 1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); + auto pp = stack::push_pop<global>(*this); + int table_index = pp.index_of(*this); + lua_State* L = base_t::lua_state(); + auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>)); + traverse_set_deep<top_level, false, detail::insert_mode::none>(table_index, std::forward<Keys>(keys)...); + return *this; + } + + template <typename... Args> + basic_table_core& set(Args&&... args) { + if constexpr(sizeof...(Args) == 2) { + traverse_set(std::forward<Args>(args)...); + } + else { + tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...)); + } + return *this; + } + + template <typename... Ret, typename... Keys> + decltype(auto) raw_get(Keys&&... keys) const { + static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match"); + constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); + auto pp = stack::push_pop<global>(*this); + int table_index = pp.index_of(*this); + return tuple_get<true, Ret...>(table_index, std::forward<Keys>(keys)...); + } + + template <typename T, typename Key> + decltype(auto) raw_get_or(Key&& key, T&& otherwise) const { + typedef decltype(raw_get<T>("")) U; + optional<U> option = raw_get<optional<U>>(std::forward<Key>(key)); + if (option) { + return static_cast<U>(option.value()); + } + return static_cast<U>(std::forward<T>(otherwise)); + } + + template <typename T, typename Key, typename D> + decltype(auto) raw_get_or(Key&& key, D&& otherwise) const { + optional<T> option = raw_get<optional<T>>(std::forward<Key>(key)); + if (option) { + return static_cast<T>(option.value()); + } + return static_cast<T>(std::forward<D>(otherwise)); + } + + template <typename T, typename... Keys> + decltype(auto) traverse_raw_get(Keys&&... keys) const { + constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); + auto pp = stack::push_pop<global>(*this); + int table_index = pp.index_of(*this); + return traverse_get_single<true, T>(table_index, std::forward<Keys>(keys)...); + } + + template <typename... Keys> + basic_table_core& traverse_raw_set(Keys&&... keys) { + constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); + auto pp = stack::push_pop<global>(*this); + lua_State* L = base_t::lua_state(); + auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>)); + traverse_set_deep<top_level, true, false>(std::forward<Keys>(keys)...); + return *this; + } + + template <typename... Args> + basic_table_core& raw_set(Args&&... args) { + tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...)); + return *this; + } + + template <typename Class, typename Key> + usertype<Class> new_usertype(Key&& key); + + template <typename Class, typename Key> + usertype<Class> new_usertype(Key&& key, automagic_enrollments enrollment); + + template <typename Class, typename Key, typename Arg, typename... Args, + typename = std::enable_if_t<!std::is_same_v<meta::unqualified_t<Arg>, automagic_enrollments>>> + usertype<Class> new_usertype(Key&& key, Arg&& arg, Args&&... args); + + template <bool read_only = true, typename... Args> + table new_enum(const string_view& name, Args&&... args) { + table target = create_with(std::forward<Args>(args)...); + if (read_only) { + table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target); + table shim = create_named(name, metatable_key, x); + return shim; + } + else { + set(name, target); + return target; + } + } + + template <typename T, bool read_only = true> + table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) { + table target = create(static_cast<int>(items.size()), static_cast<int>(0)); + for (const auto& kvp : items) { + target.set(kvp.first, kvp.second); + } + if constexpr (read_only) { + table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target); + table shim = create_named(name, metatable_key, x); + return shim; + } + else { + set(name, target); + return target; + } + } + + template <typename Key = object, typename Value = object, typename Fx> + void for_each(Fx&& fx) const { + lua_State* L = base_t::lua_state(); + if constexpr (std::is_invocable_v<Fx, Key, Value>) { + auto pp = stack::push_pop(*this); + stack::push(L, lua_nil); + while (lua_next(L, -2)) { + Key key(L, -2); + Value value(L, -1); + auto pn = stack::pop_n(L, 1); + fx(key, value); + } + } + else { + auto pp = stack::push_pop(*this); + stack::push(L, lua_nil); + while (lua_next(L, -2)) { + Key key(L, -2); + Value value(L, -1); + auto pn = stack::pop_n(L, 1); + std::pair<Key&, Value&> keyvalue(key, value); + fx(keyvalue); + } + } + } + + size_t size() const { + auto pp = stack::push_pop(*this); + lua_State* L = base_t::lua_state(); + lua_len(L, -1); + return stack::pop<size_t>(L); + } + + bool empty() const { + return cbegin() == cend(); + } + + template <typename T> + auto operator[](T&& key) & { + return proxy<basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key)); + } + + template <typename T> + auto operator[](T&& key) const& { + return proxy<const basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key)); + } + + template <typename T> + auto operator[](T&& key) && { + return proxy<basic_table_core, detail::proxy_key_t<T>>(std::move(*this), std::forward<T>(key)); + } + + template <typename Sig, typename Key, typename... Args> + basic_table_core& set_function(Key&& key, Args&&... args) { + set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename Key, typename... Args> + basic_table_core& set_function(Key&& key, Args&&... args) { + set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename... Args> + basic_table_core& add(Args&&... args) { + auto pp = stack::push_pop(*this); + int table_index = pp.index_of(*this); + lua_State* L = base_t::lua_state(); + (void)detail::swallow{ 0, (stack::set_ref(L, std::forward<Args>(args), table_index), 0)... }; + return *this; + } + + private: + template <typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>> + void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) { + set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx)); + } + + template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler> + void set_fx(types<>, Key&& key, Fx&& fx) { + set(std::forward<Key>(key), std::forward<Fx>(fx)); + } + + template <typename Fx, typename Key, typename... Args, + meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler> + void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) { + set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...)); + } + + template <typename... Sig, typename... Args, typename Key> + void set_resolved_function(Key&& key, Args&&... args) { + set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...)); + } + + public: + static inline table create(lua_State* L, int narr = 0, int nrec = 0) { + lua_createtable(L, narr, nrec); + table result(L); + lua_pop(L, 1); + return result; + } + + template <typename Key, typename Value, typename... Args> + static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + lua_createtable(L, narr, nrec); + table result(L); + result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + lua_pop(L, 1); + return result; + } + + template <typename... Args> + static inline table create_with(lua_State* L, Args&&... args) { + static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list."); + constexpr int narr = static_cast<int>(meta::count_odd_for_pack_v<std::is_integral, Args...>); + return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...); + } + + table create(int narr = 0, int nrec = 0) { + return create(base_t::lua_state(), narr, nrec); + } + + template <typename Key, typename Value, typename... Args> + table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename Name> + table create(Name&& name, int narr = 0, int nrec = 0) { + table x = create(base_t::lua_state(), narr, nrec); + this->set(std::forward<Name>(name), x); + return x; + } + + template <typename Name, typename Key, typename Value, typename... Args> + table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + this->set(std::forward<Name>(name), x); + return x; + } + + template <typename... Args> + table create_with(Args&&... args) { + return create_with(base_t::lua_state(), std::forward<Args>(args)...); + } + + template <typename Name, typename... Args> + table create_named(Name&& name, Args&&... args) { + static const int narr = static_cast<int>(meta::count_even_for_pack_v<std::is_integral, Args...>); + return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...); + } + }; +} // namespace sol + +#endif // SOL_TABLE_CORE_HPP diff --git a/lib/sol2/include/sol/table_iterator.hpp b/lib/sol2/include/sol/table_iterator.hpp new file mode 100644 index 0000000..3f5662c --- /dev/null +++ b/lib/sol2/include/sol/table_iterator.hpp @@ -0,0 +1,120 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_TABLE_ITERATOR_HPP +#define SOL_TABLE_ITERATOR_HPP + +#include "object.hpp" +#include <iterator> + +namespace sol { + + template <typename reference_type> + class basic_table_iterator : public std::iterator<std::input_iterator_tag, std::pair<object, object>> { + public: + typedef object key_type; + typedef object mapped_type; + typedef std::pair<object, object> value_type; + typedef std::input_iterator_tag iterator_category; + typedef std::ptrdiff_t difference_type; + typedef value_type* pointer; + typedef value_type& reference; + typedef const value_type& const_reference; + + private: + std::pair<object, object> kvp; + reference_type ref; + int tableidx = 0; + int keyidx = 0; + std::ptrdiff_t idx = 0; + + public: + basic_table_iterator() + : keyidx(-1), idx(-1) { + } + + basic_table_iterator(reference_type x) + : ref(std::move(x)) { + ref.push(); + tableidx = lua_gettop(ref.lua_state()); + stack::push(ref.lua_state(), lua_nil); + this->operator++(); + if (idx == -1) { + return; + } + --idx; + } + + basic_table_iterator& operator++() { + if (idx == -1) + return *this; + + if (lua_next(ref.lua_state(), tableidx) == 0) { + idx = -1; + keyidx = -1; + return *this; + } + ++idx; + kvp.first = object(ref.lua_state(), -2); + kvp.second = object(ref.lua_state(), -1); + lua_pop(ref.lua_state(), 1); + // leave key on the stack + keyidx = lua_gettop(ref.lua_state()); + return *this; + } + + basic_table_iterator operator++(int) { + auto saved = *this; + this->operator++(); + return saved; + } + + reference operator*() { + return kvp; + } + + const_reference operator*() const { + return kvp; + } + + bool operator==(const basic_table_iterator& right) const { + return idx == right.idx; + } + + bool operator!=(const basic_table_iterator& right) const { + return idx != right.idx; + } + + ~basic_table_iterator() { + if (keyidx != -1) { + stack::remove(ref.lua_state(), keyidx, 1); + } + if (ref.lua_state() != nullptr && ref.valid()) { + stack::remove(ref.lua_state(), tableidx, 1); + } + } + }; + +} // namespace sol + +#endif // SOL_TABLE_ITERATOR_HPP diff --git a/lib/sol2/include/sol/thread.hpp b/lib/sol2/include/sol/thread.hpp new file mode 100644 index 0000000..a631e74 --- /dev/null +++ b/lib/sol2/include/sol/thread.hpp @@ -0,0 +1,198 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_THREAD_HPP +#define SOL_THREAD_HPP + +#include "reference.hpp" +#include "object.hpp" +#include "stack.hpp" +#include "state_view.hpp" + +namespace sol { + struct lua_thread_state { + lua_State* L; + + lua_thread_state(lua_State* Ls) + : L(Ls) { + } + + lua_State* lua_state() const noexcept { + return L; + } + operator lua_State*() const noexcept { + return lua_state(); + } + lua_State* operator->() const noexcept { + return lua_state(); + } + }; + + namespace stack { + template <> + struct unqualified_pusher<lua_thread_state> { + int push(lua_State*, lua_thread_state lts) { + lua_pushthread(lts.L); + return 1; + } + }; + + template <> + struct unqualified_getter<lua_thread_state> { + lua_thread_state get(lua_State* L, int index, record& tracking) { + tracking.use(1); + lua_thread_state lts( lua_tothread(L, index) ); + return lts; + } + }; + + template <> + struct unqualified_check_getter<lua_thread_state> { + template <typename Handler> + optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) { + lua_thread_state lts( lua_tothread(L, index) ); + if (lts.lua_state() == nullptr) { + handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type"); + return nullopt; + } + tracking.use(1); + return lts; + } + }; + } // namespace stack + + template <typename ref_t> + class basic_thread : public basic_object<ref_t> { + private: + using base_t = basic_object<ref_t>; + + public: + using base_t::lua_state; + + basic_thread() noexcept = default; + basic_thread(const basic_thread&) = default; + basic_thread(basic_thread&&) = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_thread(T&& r) + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + } + basic_thread(const stack_reference& r) + : basic_thread(r.lua_state(), r.stack_index()){}; + basic_thread(stack_reference&& r) + : basic_thread(r.lua_state(), r.stack_index()){}; + basic_thread& operator=(const basic_thread&) = default; + basic_thread& operator=(basic_thread&&) = default; + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_thread(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + } + basic_thread(lua_State* L, int index = -1) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_thread>(L, index, handler); +#endif // Safety + } + basic_thread(lua_State* L, ref_index index) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + } + basic_thread(lua_State* L, lua_State* actualthread) + : basic_thread(L, lua_thread_state{ actualthread }) { + } + basic_thread(lua_State* L, this_state actualthread) + : basic_thread(L, lua_thread_state{ actualthread.L }) { + } + basic_thread(lua_State* L, lua_thread_state actualthread) + : base_t(L, -stack::push(L, actualthread)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + if (!is_stack_based<base_t>::value) { + lua_pop(lua_state(), 1); + } + } + + state_view state() const { + return state_view(this->thread_state()); + } + + bool is_main_thread() const { + return stack::is_main_thread(this->thread_state()); + } + + lua_State* thread_state() const { + auto pp = stack::push_pop(*this); + lua_State* lthread = lua_tothread(lua_state(), -1); + return lthread; + } + + thread_status status() const { + lua_State* lthread = thread_state(); + auto lstat = static_cast<thread_status>(lua_status(lthread)); + if (lstat == thread_status::ok) { + lua_Debug ar; + if (lua_getstack(lthread, 0, &ar) > 0) + return thread_status::ok; + else if (lua_gettop(lthread) == 0) + return thread_status::dead; + else + return thread_status::yielded; + } + return lstat; + } + + basic_thread create() { + return create(lua_state()); + } + + static basic_thread create(lua_State* L) { + lua_newthread(L); + basic_thread result(L); + if (!is_stack_based<base_t>::value) { + lua_pop(L, 1); + } + return result; + } + }; + + typedef basic_thread<reference> thread; + typedef basic_thread<stack_reference> stack_thread; +} // namespace sol + +#endif // SOL_THREAD_HPP diff --git a/lib/sol2/include/sol/tie.hpp b/lib/sol2/include/sol/tie.hpp new file mode 100644 index 0000000..c9f63c3 --- /dev/null +++ b/lib/sol2/include/sol/tie.hpp @@ -0,0 +1,100 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_TIE_HPP +#define SOL_TIE_HPP + +#include "traits.hpp" + +namespace sol { + + namespace detail { + template <typename T> + struct is_speshul : std::false_type {}; + } // namespace detail + + template <typename T> + struct tie_size : std::tuple_size<T> {}; + + template <typename T> + struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {}; + + template <typename... Tn> + struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> { + private: + typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t; + + template <typename T> + void set(std::false_type, T&& target) { + std::get<0>(*this) = std::forward<T>(target); + } + + template <typename T> + void set(std::true_type, T&& target) { + typedef tie_size<meta::unqualified_t<T>> value_size; + typedef tie_size<std::tuple<Tn...>> tie_size; + typedef meta::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size; + typedef std::make_index_sequence<indices_size::value> indices; + set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target)); + } + + template <std::size_t... I, typename T> + void set_extra(std::true_type, std::index_sequence<I...>, T&& target) { + using std::get; + (void)detail::swallow{0, + (get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0}; + } + + template <std::size_t... I, typename T> + void set_extra(std::false_type, std::index_sequence<I...>, T&& target) { + using std::get; + (void)detail::swallow{0, + (get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0}; + } + + public: + using base_t::base_t; + + template <typename T> + tie_t& operator=(T&& value) { + typedef is_tieable<meta::unqualified_t<T>> tieable; + set(tieable(), std::forward<T>(value)); + return *this; + } + }; + + template <typename... Tn> + struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> {}; + + namespace adl_barrier_detail { + template <typename... Tn> + inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) { + return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...); + } + } // namespace adl_barrier_detail + + using namespace adl_barrier_detail; + +} // namespace sol + +#endif // SOL_TIE_HPP diff --git a/lib/sol2/include/sol/traits.hpp b/lib/sol2/include/sol/traits.hpp new file mode 100644 index 0000000..b47fdc9 --- /dev/null +++ b/lib/sol2/include/sol/traits.hpp @@ -0,0 +1,708 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_TRAITS_HPP +#define SOL_TRAITS_HPP + +#include "tuple.hpp" +#include "bind_traits.hpp" +#include "pointer_like.hpp" +#include "base_traits.hpp" +#include "string_view.hpp" + +#include <type_traits> +#include <cstdint> +#include <memory> +#include <functional> +#include <array> +#include <iterator> +#include <iosfwd> + + +namespace sol { + namespace meta { + template <typename T> + struct unwrapped { + typedef T type; + }; + + template <typename T> + struct unwrapped<std::reference_wrapper<T>> { + typedef T type; + }; + + template <typename T> + using unwrapped_t = typename unwrapped<T>::type; + + template <typename T> + struct unwrap_unqualified : unwrapped<unqualified_t<T>> {}; + + template <typename T> + using unwrap_unqualified_t = typename unwrap_unqualified<T>::type; + + template <typename T> + struct remove_member_pointer; + + template <typename R, typename T> + struct remove_member_pointer<R T::*> { + typedef R type; + }; + + template <typename R, typename T> + struct remove_member_pointer<R T::*const> { + typedef R type; + }; + + template <typename T> + using remove_member_pointer_t = remove_member_pointer<T>; + + template <typename T, typename...> + struct all_same : std::true_type {}; + + template <typename T, typename U, typename... Args> + struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> {}; + + template <typename T, typename...> + struct any_same : std::false_type {}; + + template <typename T, typename U, typename... Args> + struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> {}; + + template <typename T, typename... Args> + constexpr inline bool any_same_v = any_same<T, Args...>::value; + + template <bool B> + using boolean = std::integral_constant<bool, B>; + + template <bool B> + constexpr inline bool boolean_v = boolean<B>::value; + + template <typename T> + using neg = boolean<!T::value>; + + template <typename T> + constexpr inline bool neg_v = neg<T>::value; + + template <typename... Args> + struct all : boolean<true> {}; + + template <typename T, typename... Args> + struct all<T, Args...> : std::conditional_t<T::value, all<Args...>, boolean<false>> {}; + + template <typename... Args> + struct any : boolean<false> {}; + + template <typename T, typename... Args> + struct any<T, Args...> : std::conditional_t<T::value, boolean<true>, any<Args...>> {}; + + template <typename T, typename... Args> + constexpr inline bool all_v = all<T, Args...>::value; + + template <typename T, typename... Args> + constexpr inline bool any_v = any<T, Args...>::value; + + enum class enable_t { _ }; + + constexpr const auto enabler = enable_t::_; + + template <bool value, typename T = void> + using disable_if_t = std::enable_if_t<!value, T>; + + template <typename... Args> + using enable = std::enable_if_t<all<Args...>::value, enable_t>; + + template <typename... Args> + using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>; + + template <typename... Args> + using enable_any = std::enable_if_t<any<Args...>::value, enable_t>; + + template <typename... Args> + using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>; + + template <typename V, typename... Vs> + struct find_in_pack_v : boolean<false> {}; + + template <typename V, typename Vs1, typename... Vs> + struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> {}; + + namespace meta_detail { + template <std::size_t I, typename T, typename... Args> + struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> {}; + + template <std::size_t I, typename T, typename T1, typename... Args> + struct index_in_pack<I, T, T1, Args...> + : conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> {}; + } // namespace meta_detail + + template <typename T, typename... Args> + struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> {}; + + template <typename T, typename List> + struct index_in : meta_detail::index_in_pack<0, T, List> {}; + + template <typename T, typename... Args> + struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> {}; + + template <std::size_t I, typename... Args> + struct at_in_pack {}; + + template <std::size_t I, typename... Args> + using at_in_pack_t = typename at_in_pack<I, Args...>::type; + + template <std::size_t I, typename Arg, typename... Args> + struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {}; + + template <typename Arg, typename... Args> + struct at_in_pack<0, Arg, Args...> { + typedef Arg type; + }; + + namespace meta_detail { + template <typename, typename TI> + using on_even = meta::boolean<(TI::value % 2) == 0>; + + template <typename, typename TI> + using on_odd = meta::boolean<(TI::value % 2) == 1>; + + template <typename, typename> + using on_always = std::true_type; + + template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts> + struct count_when_for_pack : std::integral_constant<std::size_t, 0> {}; + template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts> + struct count_when_for_pack<When, Limit, I, Pred, T, Ts...> : conditional_t< + sizeof...(Ts) == 0 || Limit < 2, + std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>, + count_when_for_pack<When, Limit - static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value), I + static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value && Pred<T>::value), Pred, Ts...> + > {}; + } // namespace meta_detail + + template <template <typename...> class Pred, typename... Ts> + struct count_for_pack : meta_detail::count_when_for_pack<meta_detail::on_always, sizeof...(Ts), 0, Pred, Ts...> {}; + + template <template <typename...> class Pred, typename... Ts> + inline constexpr std::size_t count_for_pack_v = count_for_pack<Pred, Ts...>::value; + + template <template <typename...> class Pred, typename List> + struct count_for; + + template <template <typename...> class Pred, typename... Args> + struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {}; + + template <std::size_t Limit, template <typename...> class Pred, typename... Ts> + struct count_for_to_pack : meta_detail::count_when_for_pack<meta_detail::on_always, Limit, 0, Pred, Ts...> {}; + + template <std::size_t Limit, template <typename...> class Pred, typename... Ts> + inline constexpr std::size_t count_for_to_pack_v = count_for_to_pack<Limit, Pred, Ts...>::value; + + template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts> + struct count_when_for_to_pack : meta_detail::count_when_for_pack<When, Limit, 0, Pred, Ts...> {}; + + template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts> + inline constexpr std::size_t count_when_for_to_pack_v = count_when_for_to_pack<When, Limit, Pred, Ts...>::value; + + template <template <typename...> class Pred, typename... Ts> + using count_even_for_pack = count_when_for_to_pack<meta_detail::on_even, sizeof...(Ts), Pred, Ts...>; + + template <template <typename...> class Pred, typename... Ts> + inline constexpr std::size_t count_even_for_pack_v = count_even_for_pack<Pred, Ts...>::value; + + template <template <typename...> class Pred, typename... Ts> + using count_odd_for_pack = count_when_for_to_pack<meta_detail::on_odd, sizeof...(Ts), Pred, Ts...>; + + template <template <typename...> class Pred, typename... Ts> + inline constexpr std::size_t count_odd_for_pack_v = count_odd_for_pack<Pred, Ts...>::value; + + template <typename... Args> + struct return_type { + typedef std::tuple<Args...> type; + }; + + template <typename T> + struct return_type<T> { + typedef T type; + }; + + template <> + struct return_type<> { + typedef void type; + }; + + template <typename... Args> + using return_type_t = typename return_type<Args...>::type; + + namespace meta_detail { + template <typename> + struct always_true : std::true_type {}; + struct is_invokable_tester { + template <typename Fun, typename... Args> + static always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int); + template <typename...> + static std::false_type test(...); + }; + } // namespace meta_detail + + template <typename T> + struct is_invokable; + template <typename Fun, typename... Args> + struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {}; + + namespace meta_detail { + + template <typename T, typename = void> + struct is_callable : std::is_function<std::remove_pointer_t<T>> {}; + + template <typename T> + struct is_callable<T, + std::enable_if_t<std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value + && std::is_same<decltype(void(&T::operator())), void>::value>> {}; + + template <typename T> + struct is_callable<T, + std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value + && std::is_destructible<unqualified_t<T>>::value>> { + struct F { + void operator()() {}; + }; + struct Derived : T, F {}; + template <typename U, U> + struct Check; + + template <typename V> + static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*); + + template <typename> + static sfinae_yes_t test(...); + + static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>; + }; + + template <typename T> + struct is_callable<T, + std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value + && !std::is_destructible<unqualified_t<T>>::value>> { + struct F { + void operator()() {}; + }; + struct Derived : T, F { + ~Derived() = delete; + }; + template <typename U, U> + struct Check; + + template <typename V> + static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*); + + template <typename> + static sfinae_yes_t test(...); + + static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>; + }; + + struct has_begin_end_impl { + template <typename T, typename U = unqualified_t<T>, typename B = decltype(std::declval<U&>().begin()), + typename E = decltype(std::declval<U&>().end())> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_key_type_impl { + template <typename T, typename U = unqualified_t<T>, typename V = typename U::key_type> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_key_comp_impl { + template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().key_comp())> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_load_factor_impl { + template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().load_factor())> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_mapped_type_impl { + template <typename T, typename V = typename unqualified_t<T>::mapped_type> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_value_type_impl { + template <typename T, typename V = typename unqualified_t<T>::value_type> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_iterator_impl { + template <typename T, typename V = typename unqualified_t<T>::iterator> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_key_value_pair_impl { + template <typename T, typename U = unqualified_t<T>, typename V = typename U::value_type, typename F = decltype(std::declval<V&>().first), + typename S = decltype(std::declval<V&>().second)> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + template <typename T> + struct has_push_back_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); + template <typename C> + static sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; + }; + + template <typename T> + struct has_insert_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), + std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); + template <typename C> + static sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; + }; + + template <typename T> + struct has_insert_after_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), + std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); + template <typename C> + static sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; + }; + + template <typename T> + struct has_size_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().size())*); + template <typename C> + static sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; + }; + + template <typename T> + struct has_max_size_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().max_size())*); + template <typename C> + static sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; + }; + + template <typename T> + struct has_to_string_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().to_string())*); + template <typename C> + static sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; + }; + +#if defined(_MSC_VER) && _MSC_VER <= 1910 + template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())> + std::true_type supports_op_less_test(std::reference_wrapper<T>, std::reference_wrapper<U>); + std::false_type supports_op_less_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())> + std::true_type supports_op_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>); + std::false_type supports_op_equal_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())> + std::true_type supports_op_less_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>); + std::false_type supports_op_less_equal_test(...); + template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())> + std::true_type supports_ostream_op(std::reference_wrapper<T>, std::reference_wrapper<OS>); + std::false_type supports_ostream_op(...); + template <typename T, typename = decltype(to_string(std::declval<T&>()))> + std::true_type supports_adl_to_string(std::reference_wrapper<T>); + std::false_type supports_adl_to_string(...); +#else + template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())> + std::true_type supports_op_less_test(const T&, const U&); + std::false_type supports_op_less_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())> + std::true_type supports_op_equal_test(const T&, const U&); + std::false_type supports_op_equal_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())> + std::true_type supports_op_less_equal_test(const T&, const U&); + std::false_type supports_op_less_equal_test(...); + template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())> + std::true_type supports_ostream_op(const T&, const OS&); + std::false_type supports_ostream_op(...); + template <typename T, typename = decltype(to_string(std::declval<T&>()))> + std::true_type supports_adl_to_string(const T&); + std::false_type supports_adl_to_string(...); +#endif + + template <typename T, bool b> + struct is_matched_lookup_impl : std::false_type {}; + template <typename T> + struct is_matched_lookup_impl<T, true> : std::is_same<typename T::key_type, typename T::value_type> {}; + + template <typename T> + using non_void_t = meta::conditional_t<std::is_void_v<T>, ::sol::detail::unchecked_t, T>; + } // namespace meta_detail + + template <typename T, typename U = T> + using supports_op_less + = decltype(meta_detail::supports_op_less_test(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); + template <typename T, typename U = T> + using supports_op_equal + = decltype(meta_detail::supports_op_equal_test(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); + template <typename T, typename U = T> + using supports_op_less_equal + = decltype(meta_detail::supports_op_less_equal_test(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); + template <typename T, typename U = std::ostream> + using supports_ostream_op + = decltype(meta_detail::supports_ostream_op(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); + template <typename T> + using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::declval<meta_detail::non_void_t<T>&>())); + + template <typename T> + using supports_to_string_member = meta::boolean<meta_detail::has_to_string_test<meta_detail::non_void_t<T>>::value>; + + template <typename T> + using is_callable = boolean<meta_detail::is_callable<T>::value>; + + template <typename T> + constexpr inline bool is_callable_v = is_callable<T>::value; + + template <typename T> + struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {}; + + template <typename T> + constexpr inline bool has_begin_end_v = has_begin_end<T>::value; + + template <typename T> + struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {}; + + template <typename T> + struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) {}; + + template <typename T> + struct has_key_comp : decltype(meta_detail::has_key_comp_impl::test<T>(0)) {}; + + template <typename T> + struct has_load_factor : decltype(meta_detail::has_load_factor_impl::test<T>(0)) {}; + + template <typename T> + struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) {}; + + template <typename T> + struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) {}; + + template <typename T> + struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) {}; + + template <typename T> + using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>; + + template <typename T> + using has_max_size = meta::boolean<meta_detail::has_max_size_test<T>::value>; + + template <typename T> + using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>; + + template <typename T> + using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>; + + template <typename T> + using has_size = meta::boolean<meta_detail::has_size_test<T>::value>; + + template <typename T> + using is_associative = meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>>; + + template <typename T> + using is_lookup = meta::all<has_key_type<T>, has_value_type<T>>; + + template <typename T> + using is_ordered = meta::all<has_key_comp<T>, meta::neg<has_load_factor<T>>>; + + template <typename T> + using is_matched_lookup = meta_detail::is_matched_lookup_impl<T, is_lookup<T>::value>; + + template <typename T> + using is_initializer_list = meta::is_specialization_of<T, std::initializer_list>; + + template <typename T> + constexpr inline bool is_initializer_list_v = is_initializer_list<T>::value; + + template <typename T, typename CharT = char> + using is_string_literal_array_of = boolean<std::is_array_v<T> && std::is_same_v<std::remove_all_extents_t<T>, CharT>>; + + template <typename T, typename CharT = char> + constexpr inline bool is_string_literal_array_of_v = is_string_literal_array_of<T, CharT>::value; + + template <typename T> + using is_string_literal_array = boolean<std::is_array_v<T> && any_same_v<std::remove_all_extents_t<T>, char, char16_t, char32_t, wchar_t>>; + + template <typename T> + constexpr inline bool is_string_literal_array_v = is_string_literal_array<T>::value; + + template <typename T, typename CharT> + struct is_string_of : std::false_type {}; + + template <typename CharT, typename CharTargetT, typename TraitsT, typename AllocT> + struct is_string_of<std::basic_string<CharT, TraitsT, AllocT>, CharTargetT> : std::is_same<CharT, CharTargetT> {}; + + template <typename T, typename CharT> + constexpr inline bool is_string_of_v = is_string_of<T, CharT>::value; + + template <typename T, typename CharT> + struct is_string_view_of : std::false_type {}; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename CharT, typename CharTargetT, typename TraitsT> + struct is_string_view_of<std::basic_string_view<CharT, TraitsT>, CharTargetT> : std::is_same<CharT, CharTargetT> {}; +#else + template <typename CharT, typename CharTargetT, typename TraitsT> + struct is_string_view_of<basic_string_view<CharT, TraitsT>, CharTargetT> : std::is_same<CharT, CharTargetT> {}; +#endif + + template <typename T, typename CharT> + constexpr inline bool is_string_view_of_v = is_string_view_of<T, CharT>::value; + + template <typename T> + using is_string_like = meta::boolean<is_specialization_of_v<T, std::basic_string> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + || is_specialization_of_v<T, std::basic_string_view> +#else + || is_specialization_of_v<T, basic_string_view> +#endif + || is_string_literal_array_v<T>>; + + template <typename T> + constexpr inline bool is_string_like_v = is_string_like<T>::value; + + template <typename T, typename CharT = char> + using is_string_constructible = meta::boolean< + is_string_literal_array_of_v<T, + CharT> || std::is_same_v<T, const CharT*> || std::is_same_v<T, CharT> || is_string_of_v<T, CharT> || std::is_same_v<T, std::initializer_list<CharT>> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + || is_string_view_of_v<T, CharT> +#endif + >; + + template <typename T, typename CharT = char> + constexpr inline bool is_string_constructible_v = is_string_constructible<T, CharT>::value; + + template <typename T> + using is_string_like_or_constructible = meta::boolean<is_string_like_v<T> || is_string_constructible_v<T>>; + + template <typename T> + struct is_pair : std::false_type {}; + + template <typename T1, typename T2> + struct is_pair<std::pair<T1, T2>> : std::true_type {}; + + template <typename T, typename Char> + using is_c_str_of = any<std::is_same<T, const Char*>, std::is_same<T, Char const* const>, std::is_same<T, Char*>, is_string_of<T, Char>, + is_string_literal_array_of<T, Char>>; + + template <typename T, typename Char> + constexpr inline bool is_c_str_of_v = is_c_str_of<T, Char>::value; + + template <typename T> + using is_c_str = is_c_str_of<T, char>; + + template <typename T> + constexpr inline bool is_c_str_v = is_c_str<T>::value; + + template <typename T> + struct is_move_only + : all<neg<std::is_reference<T>>, neg<std::is_copy_constructible<unqualified_t<T>>>, std::is_move_constructible<unqualified_t<T>>> {}; + + template <typename T> + using is_not_move_only = neg<is_move_only<T>>; + + namespace meta_detail { + template <typename T> + decltype(auto) force_tuple(T&& x) { + if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>) { + return std::forward<T>(x); + } + else { + return std::tuple<T>(std::forward<T>(x)); + } + } + } // namespace meta_detail + + template <typename... X> + decltype(auto) tuplefy(X&&... x) { + return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...); + } + + template <typename T, typename = void> + struct iterator_tag { + using type = std::input_iterator_tag; + }; + + template <typename T> + struct iterator_tag<T, conditional_t<false, typename std::iterator_traits<T>::iterator_category, void>> { + using type = typename std::iterator_traits<T>::iterator_category; + }; + + } // namespace meta +} // namespace sol + +#endif // SOL_TRAITS_HPP diff --git a/lib/sol2/include/sol/trampoline.hpp b/lib/sol2/include/sol/trampoline.hpp new file mode 100644 index 0000000..d0cdad1 --- /dev/null +++ b/lib/sol2/include/sol/trampoline.hpp @@ -0,0 +1,216 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_TRAMPOLINE_HPP +#define SOL_TRAMPOLINE_HPP + +#include "types.hpp" +#include "traits.hpp" +#include <exception> +#include <cstring> + +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS +#include <iostream> +#endif + +namespace sol { + // must push a single object to be the error object + // NOTE: the VAST MAJORITY of all Lua libraries -- C or otherwise -- expect a string for the type of error + // break this convention at your own risk + using exception_handler_function = int(*)(lua_State*, optional<const std::exception&>, string_view); + + namespace detail { + inline const char(&default_exception_handler_name())[11]{ + static const char name[11] = "sol.\xE2\x98\xA2\xE2\x98\xA2"; + return name; + } + + // must push at least 1 object on the stack + inline int default_exception_handler(lua_State* L, optional<const std::exception&>, string_view what) { +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + std::cerr << "[sol3] An exception occurred: "; + std::cerr.write(what.data(), what.size()); + std::cerr << std::endl; +#endif + lua_pushlstring(L, what.data(), what.size()); + return 1; + } + + inline int call_exception_handler(lua_State* L, optional<const std::exception&> maybe_ex, string_view what) { + lua_getglobal(L, default_exception_handler_name()); + type t = static_cast<type>(lua_type(L, -1)); + if (t != type::lightuserdata) { + lua_pop(L, 1); + return default_exception_handler(L, std::move(maybe_ex), std::move(what)); + } + void* vfunc = lua_touserdata(L, -1); + lua_pop(L, 1); + if (vfunc == nullptr) { + return default_exception_handler(L, std::move(maybe_ex), std::move(what)); + } + exception_handler_function exfunc = reinterpret_cast<exception_handler_function>(vfunc); + return exfunc(L, std::move(maybe_ex), std::move(what)); + } + +#ifdef SOL_NO_EXCEPTIONS + template <lua_CFunction f> + int static_trampoline(lua_State* L) noexcept { + return f(L); + } + +#ifdef SOL_NOEXCEPT_FUNCTION_TYPE + template <lua_CFunction_noexcept f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#else + template <lua_CFunction f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#endif + + template <typename Fx, typename... Args> + int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept { + return f(L, std::forward<Args>(args)...); + } + + inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept { + return trampoline(L, f); + } +#else + template <lua_CFunction f> + int static_trampoline(lua_State* L) { +#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT) + return f(L); + +#else + try { + return f(L); + } + catch (const char* cs) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs)); + } + catch (const std::string& s) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size())); + } + catch (const std::exception& e) { + call_exception_handler(L, optional<const std::exception&>(e), e.what()); + } +#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) + // LuaJIT cannot have the catchall when the safe propagation is on + // but LuaJIT will swallow all C++ errors + // if we don't at least catch std::exception ones + catch (...) { + call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception"); + } +#endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it + return lua_error(L); +#endif // Safe exceptions + } + +#ifdef SOL_NOEXCEPT_FUNCTION_TYPE +#if 0 + // impossible: g++/clang++ choke as they think this function is ambiguous: + // to fix, wait for template <auto X> and then switch on no-exceptness of the function + template <lua_CFunction_noexcept f> + int static_trampoline(lua_State* L) noexcept { + return f(L); + } +#else + template <lua_CFunction_noexcept f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#endif // impossible + +#else + template <lua_CFunction f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#endif // noexcept lua_CFunction type + + template <typename Fx, typename... Args> + int trampoline(lua_State* L, Fx&& f, Args&&... args) { + if (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) { + return f(L, std::forward<Args>(args)...); + } +#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT) + return f(L, std::forward<Args>(args)...); +#else + try { + return f(L, std::forward<Args>(args)...); + } + catch (const char* cs) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs)); + } + catch (const std::string& s) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size())); + } + catch (const std::exception& e) { + call_exception_handler(L, optional<const std::exception&>(e), e.what()); + } +#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) + // LuaJIT cannot have the catchall when the safe propagation is on + // but LuaJIT will swallow all C++ errors + // if we don't at least catch std::exception ones + catch (...) { + call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception"); + } +#endif + return lua_error(L); +#endif + } + + inline int c_trampoline(lua_State* L, lua_CFunction f) { + return trampoline(L, f); + } +#endif // Exceptions vs. No Exceptions + + template <typename F, F fx> + inline int typed_static_trampoline_raw(std::true_type, lua_State* L) { + return static_trampoline_noexcept<fx>(L); + } + + template <typename F, F fx> + inline int typed_static_trampoline_raw(std::false_type, lua_State* L) { + return static_trampoline<fx>(L); + } + + template <typename F, F fx> + inline int typed_static_trampoline(lua_State* L) { + return typed_static_trampoline_raw<F, fx>(std::integral_constant<bool, meta::bind_traits<F>::is_noexcept>(), L); + } + } // namespace detail + + inline void set_default_exception_handler(lua_State* L, exception_handler_function exf = &detail::default_exception_handler) { + static_assert(sizeof(void*) >= sizeof(exception_handler_function), "void* storage is too small to transport the exception handler: please file a bug on the issue tracker"); + void* storage; + std::memcpy(&storage, &exf, sizeof(exception_handler_function)); + lua_pushlightuserdata(L, storage); + lua_setglobal(L, detail::default_exception_handler_name()); + } +} // sol + +#endif // SOL_TRAMPOLINE_HPP diff --git a/lib/sol2/include/sol/tuple.hpp b/lib/sol2/include/sol/tuple.hpp new file mode 100644 index 0000000..6b01add --- /dev/null +++ b/lib/sol2/include/sol/tuple.hpp @@ -0,0 +1,89 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_TUPLE_HPP
+#define SOL_TUPLE_HPP
+
+#include "forward.hpp"
+#include "base_traits.hpp"
+
+#include <tuple>
+#include <cstddef>
+
+namespace sol {
+ namespace detail {
+ using swallow = std::initializer_list<int>;
+ } // namespace detail
+
+ namespace meta {
+ template <typename T>
+ using is_tuple = is_specialization_of<T, std::tuple>;
+
+ template <typename T>
+ constexpr inline bool is_tuple_v = is_tuple<T>::value;
+
+ namespace detail {
+ template <typename... Args>
+ struct tuple_types_ { typedef types<Args...> type; };
+
+ template <typename... Args>
+ struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; };
+ } // namespace detail
+
+ template <typename... Args>
+ using tuple_types = typename detail::tuple_types_<Args...>::type;
+
+ template <typename Arg>
+ struct pop_front_type;
+
+ template <typename Arg>
+ using pop_front_type_t = typename pop_front_type<Arg>::type;
+
+ template <typename... Args>
+ struct pop_front_type<types<Args...>> {
+ typedef void front_type;
+ typedef types<Args...> type;
+ };
+
+ template <typename Arg, typename... Args>
+ struct pop_front_type<types<Arg, Args...>> {
+ typedef Arg front_type;
+ typedef types<Args...> type;
+ };
+
+ template <std::size_t N, typename Tuple>
+ using tuple_element = std::tuple_element<N, std::remove_reference_t<Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using tuple_element_t = std::tuple_element_t<N, std::remove_reference_t<Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;
+
+ template <std::size_t N, typename Tuple>
+ using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;
+
+ } // namespace meta
+} // namespace sol
+
+#endif // SOL_TUPLE_HPP
diff --git a/lib/sol2/include/sol/types.hpp b/lib/sol2/include/sol/types.hpp new file mode 100644 index 0000000..7441df3 --- /dev/null +++ b/lib/sol2/include/sol/types.hpp @@ -0,0 +1,1381 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_TYPES_HPP +#define SOL_TYPES_HPP + +#include "error.hpp" +#include "optional.hpp" +#include "compatibility.hpp" +#include "forward.hpp" +#include "forward_detail.hpp" +#include "traits.hpp" +#include "string_view.hpp" +#include "raii.hpp" +#include "policies.hpp" +#include "ebco.hpp" + +#include <array> +#include <initializer_list> +#include <string> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <string_view> +#include <optional> +#ifdef SOL_STD_VARIANT +#include <variant> +#endif +#endif // C++17 +#ifdef SOL_USE_BOOST +#include <boost/unordered_map.hpp> +#else +#include <unordered_map> +#endif // Using Boost + +namespace sol { + namespace usertype_detail { +#if defined(SOL_USE_BOOST) +#if defined(SOL_CXX17_FEATURES) + template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> + using map_t = boost::unordered_map<K, V, H, E>; +#else + template <typename K, typename V, typename H = boost::hash<K>, typename E = std::equal_to<>> + using map_t = boost::unordered_map<K, V, H, E>; +#endif // C++17 or not, WITH boost +#else + template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> + using map_t = std::unordered_map<K, V, H, E>; +#endif // Boost map target + } // namespace usertype_detail + + namespace detail { +#ifdef SOL_NOEXCEPT_FUNCTION_TYPE + typedef int (*lua_CFunction_noexcept)(lua_State* L) noexcept; +#else + typedef int (*lua_CFunction_noexcept)(lua_State* L); +#endif // noexcept function type for lua_CFunction + + template <typename T> + struct unique_usertype {}; + + template <typename T> + struct implicit_wrapper { + T& item; + implicit_wrapper(T* item) : item(*item) { + } + implicit_wrapper(T& item) : item(item) { + } + operator T&() { + return item; + } + operator T*() { + return std::addressof(item); + } + }; + + struct yield_tag_t {}; + const yield_tag_t yield_tag = yield_tag_t{}; + } // namespace detail + + struct lua_nil_t {}; + inline constexpr lua_nil_t lua_nil{}; + inline bool operator==(lua_nil_t, lua_nil_t) { + return true; + } + inline bool operator!=(lua_nil_t, lua_nil_t) { + return false; + } +#if !defined(SOL_NO_NIL) || (SOL_NO_NIL == 0) + using nil_t = lua_nil_t; + inline constexpr const nil_t& nil = lua_nil; +#endif + + namespace detail { + struct non_lua_nil_t {}; + } // namespace detail + + struct metatable_key_t {}; + const metatable_key_t metatable_key = {}; + + struct env_key_t {}; + const env_key_t env_key = {}; + + struct no_metatable_t {}; + const no_metatable_t no_metatable = {}; + + template <typename T> + struct yielding_t { + T func; + + yielding_t() = default; + yielding_t(const yielding_t&) = default; + yielding_t(yielding_t&&) = default; + yielding_t& operator=(const yielding_t&) = default; + yielding_t& operator=(yielding_t&&) = default; + template <typename Arg, + meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>, + meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + yielding_t(Arg&& arg) : func(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + }; + + template <typename F> + inline yielding_t<std::decay_t<F>> yielding(F&& f) { + return yielding_t<std::decay_t<F>>(std::forward<F>(f)); + } + + typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref; + + template <typename T> + struct non_null {}; + + template <typename... Args> + struct function_sig {}; + + struct upvalue_index { + int index; + upvalue_index(int idx) : index(lua_upvalueindex(idx)) { + } + + operator int() const { + return index; + } + }; + + struct raw_index { + int index; + raw_index(int i) : index(i) { + } + + operator int() const { + return index; + } + }; + + struct absolute_index { + int index; + absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) { + } + + operator int() const { + return index; + } + }; + + struct ref_index { + int index; + ref_index(int idx) : index(idx) { + } + + operator int() const { + return index; + } + }; + + struct stack_count { + int count; + + stack_count(int cnt) : count(cnt) { + } + }; + + struct lightuserdata_value { + void* value; + lightuserdata_value(void* data) : value(data) { + } + operator void*() const { + return value; + } + }; + + struct userdata_value { + void* value; + userdata_value(void* data) : value(data) { + } + operator void*() const { + return value; + } + }; + + template <typename L> + struct light { + L* value; + + light(L& x) : value(std::addressof(x)) { + } + light(L* x) : value(x) { + } + light(void* x) : value(static_cast<L*>(x)) { + } + operator L*() const { + return value; + } + operator L&() const { + return *value; + } + }; + + template <typename T> + auto make_light(T& l) { + typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L; + return light<L>(l); + } + + template <typename U> + struct user { + U value; + + user(U&& x) : value(std::forward<U>(x)) { + } + operator std::add_pointer_t<std::remove_reference_t<U>>() { + return std::addressof(value); + } + operator std::add_lvalue_reference_t<U>() { + return value; + } + operator std::add_const_t<std::add_lvalue_reference_t<U>>&() const { + return value; + } + }; + + template <typename T> + auto make_user(T&& u) { + typedef meta::unwrapped_t<meta::unqualified_t<T>> U; + return user<U>(std::forward<T>(u)); + } + + template <typename T> + struct metatable_registry_key { + T key; + + metatable_registry_key(T key) : key(std::forward<T>(key)) { + } + }; + + template <typename T> + auto meta_registry_key(T&& key) { + typedef meta::unqualified_t<T> K; + return metatable_registry_key<K>(std::forward<T>(key)); + } + + template <typename... Upvalues> + struct closure { + lua_CFunction c_function; + std::tuple<Upvalues...> upvalues; + closure(lua_CFunction f, Upvalues... targetupvalues) : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) { + } + }; + + template <> + struct closure<> { + lua_CFunction c_function; + int upvalues; + closure(lua_CFunction f, int upvalue_count = 0) : c_function(f), upvalues(upvalue_count) { + } + }; + + typedef closure<> c_closure; + + template <typename... Args> + closure<Args...> make_closure(lua_CFunction f, Args&&... args) { + return closure<Args...>(f, std::forward<Args>(args)...); + } + + template <typename Sig, typename... Ps> + struct function_arguments { + std::tuple<Ps...> arguments; + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler> + function_arguments(Arg&& arg, Args&&... args) : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + }; + + template <typename Sig = function_sig<>, typename... Args> + auto as_function(Args&&... args) { + return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...); + } + + template <typename Sig = function_sig<>, typename... Args> + auto as_function_reference(Args&&... args) { + return function_arguments<Sig, Args...>(std::forward<Args>(args)...); + } + + template <typename T> + struct as_table_t { + private: + T value_; + + public: + as_table_t() = default; + as_table_t(const as_table_t&) = default; + as_table_t(as_table_t&&) = default; + as_table_t& operator=(const as_table_t&) = default; + as_table_t& operator=(as_table_t&&) = default; + template <typename Arg, + meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>, + meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + as_table_t(Arg&& arg) : value_(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + + T& value() & { + return value_; + } + + T&& value() && { + return std::move(value_); + } + + const T& value() const& { + return value_; + } + + operator std::add_lvalue_reference_t<T>() { + return value_; + } + }; + + template <typename T> + struct nested { + private: + T value_; + + public: + nested() = default; + nested(const nested&) = default; + nested(nested&&) = default; + nested& operator=(const nested&) = default; + nested& operator=(nested&&) = default; + template <typename Arg, + meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>, + meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + nested(Arg&& arg) : value_(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + nested(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + + T& value() & { + return value_; + } + + T&& value() && { + return std::move(value_); + } + + const T& value() const& { + return value_; + } + + operator std::add_lvalue_reference_t<T>() { + return value_; + } + }; + + struct nested_tag_t {}; + constexpr inline nested_tag_t nested_tag{}; + + template <typename T> + as_table_t<T> as_table_ref(T&& container) { + return as_table_t<T>(std::forward<T>(container)); + } + + template <typename T> + as_table_t<meta::unqualified_t<T>> as_table(T&& container) { + return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container)); + } + + template <typename T> + nested<T> as_nested_ref(T&& container) { + return nested<T>(std::forward<T>(container)); + } + + template <typename T> + nested<meta::unqualified_t<T>> as_nested(T&& container) { + return nested<meta::unqualified_t<T>>(std::forward<T>(container)); + } + + template <typename T> + struct as_container_t { + private: + T value_; + + public: + using type = T; + + as_container_t() = default; + as_container_t(const as_container_t&) = default; + as_container_t(as_container_t&&) = default; + as_container_t& operator=(const as_container_t&) = default; + as_container_t& operator=(as_container_t&&) = default; + template <typename Arg, + meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_container_t>>, + meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + as_container_t(Arg&& arg) : value_(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + as_container_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + + T& value() & { + return value_; + } + + T&& value() && { + return std::move(value_); + } + + const T& value() const& { + return value_; + } + }; + + template <typename T> + struct as_container_t<T&> { + private: + std::reference_wrapper<T> value_; + + public: + as_container_t(T& value) : value_(value) { + } + + T& value() { + return value_; + } + + operator T&() { + return value(); + } + }; + + template <typename T> + auto as_container(T&& value) { + return as_container_t<T>(std::forward<T>(value)); + } + + template <typename T> + struct push_invoke_t { + private: + T value_; + + public: + push_invoke_t() = default; + push_invoke_t(const push_invoke_t&) = default; + push_invoke_t(push_invoke_t&&) = default; + push_invoke_t& operator=(const push_invoke_t&) = default; + push_invoke_t& operator=(push_invoke_t&&) = default; + template <typename Arg, + meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, push_invoke_t>>, + meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + push_invoke_t(Arg&& arg) : value_(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + push_invoke_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + + T& value() & { + return value_; + } + + T&& value() && { + return std::move(value_); + } + + const T& value() const & { + return value_; + } + }; + + template <typename T> + struct push_invoke_t<T&> { + std::reference_wrapper<T> value_; + + push_invoke_t(T& value) : value_(value) { + } + + T& value() { + return value_; + } + }; + + template <typename Fx> + auto push_invoke(Fx&& fx) { + return push_invoke_t<Fx>(std::forward<Fx>(fx)); + } + + struct override_value_t {}; + constexpr inline override_value_t override_value = override_value_t(); + struct update_if_empty_t {}; + constexpr inline update_if_empty_t update_if_empty = update_if_empty_t(); + struct create_if_nil_t {}; + constexpr inline create_if_nil_t create_if_nil = create_if_nil_t(); + + namespace detail { + enum insert_mode { none = 0x0, update_if_empty = 0x01, override_value = 0x02, create_if_nil = 0x04 }; + + template <typename T, typename...> + using is_insert_mode = std::integral_constant<bool, + std::is_same_v<T, override_value_t> || std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, create_if_nil_t>>; + + template <typename T, typename...> + using is_not_insert_mode = meta::neg<is_insert_mode<T>>; + } // namespace detail + + struct this_state { + lua_State* L; + + this_state(lua_State* Ls) : L(Ls) { + } + + operator lua_State*() const noexcept { + return lua_state(); + } + + lua_State* operator->() const noexcept { + return lua_state(); + } + + lua_State* lua_state() const noexcept { + return L; + } + }; + + struct this_main_state { + lua_State* L; + + this_main_state(lua_State* Ls) : L(Ls) { + } + + operator lua_State*() const noexcept { + return lua_state(); + } + + lua_State* operator->() const noexcept { + return lua_state(); + } + + lua_State* lua_state() const noexcept { + return L; + } + }; + + struct new_table { + int sequence_hint = 0; + int map_hint = 0; + + new_table() = default; + new_table(const new_table&) = default; + new_table(new_table&&) = default; + new_table& operator=(const new_table&) = default; + new_table& operator=(new_table&&) = default; + + new_table(int sequence_hint, int map_hint = 0) : sequence_hint(sequence_hint), map_hint(map_hint) { + } + }; + + const new_table create = {}; + + enum class lib : char { + // print, assert, and other base functions + base, + // require and other package functions + package, + // coroutine functions and utilities + coroutine, + // string library + string, + // functionality from the OS + os, + // all things math + math, + // the table manipulator and observer functions + table, + // the debug library + debug, + // the bit library: different based on which you're using + bit32, + // input/output library + io, + // LuaJIT only + ffi, + // LuaJIT only + jit, + // library for handling utf8: new to Lua + utf8, + // do not use + count + }; + + enum class call_syntax { dot = 0, colon = 1 }; + + enum class load_mode { + any = 0, + text = 1, + binary = 2, + }; + + enum class call_status : int { + ok = LUA_OK, + yielded = LUA_YIELD, + runtime = LUA_ERRRUN, + memory = LUA_ERRMEM, + handler = LUA_ERRERR, + gc = LUA_ERRGCMM, + syntax = LUA_ERRSYNTAX, + file = LUA_ERRFILE, + }; + + enum class thread_status : int { + ok = LUA_OK, + yielded = LUA_YIELD, + runtime = LUA_ERRRUN, + memory = LUA_ERRMEM, + gc = LUA_ERRGCMM, + handler = LUA_ERRERR, + dead = -1, + }; + + enum class load_status : int { + ok = LUA_OK, + syntax = LUA_ERRSYNTAX, + memory = LUA_ERRMEM, + gc = LUA_ERRGCMM, + file = LUA_ERRFILE, + }; + + enum class type : int { + none = LUA_TNONE, + lua_nil = LUA_TNIL, +#if !defined(SOL_NO_NIL) + nil = lua_nil, +#endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect + string = LUA_TSTRING, + number = LUA_TNUMBER, + thread = LUA_TTHREAD, + boolean = LUA_TBOOLEAN, + function = LUA_TFUNCTION, + userdata = LUA_TUSERDATA, + lightuserdata = LUA_TLIGHTUSERDATA, + table = LUA_TTABLE, + poly = -0xFFFF + }; + + inline const std::string& to_string(call_status c) { + static const std::array<std::string, 10> names{ { "ok", + "yielded", + "runtime", + "memory", + "handler", + "gc", + "syntax", + "file", + "CRITICAL_EXCEPTION_FAILURE", + "CRITICAL_INDETERMINATE_STATE_FAILURE" } }; + switch (c) { + case call_status::ok: + return names[0]; + case call_status::yielded: + return names[1]; + case call_status::runtime: + return names[2]; + case call_status::memory: + return names[3]; + case call_status::handler: + return names[4]; + case call_status::gc: + return names[5]; + case call_status::syntax: + return names[6]; + case call_status::file: + return names[7]; + } + if (static_cast<std::ptrdiff_t>(c) == -1) { + // One of the many cases where a critical exception error has occurred + return names[8]; + } + return names[9]; + } + + inline bool is_indeterminate_call_failure(call_status c) { + switch (c) { + case call_status::ok: + case call_status::yielded: + case call_status::runtime: + case call_status::memory: + case call_status::handler: + case call_status::gc: + case call_status::syntax: + case call_status::file: + return false; + } + return true; + } + + inline const std::string& to_string(load_status c) { + static const std::array<std::string, 7> names{ + { "ok", "memory", "gc", "syntax", "file", "CRITICAL_EXCEPTION_FAILURE", "CRITICAL_INDETERMINATE_STATE_FAILURE" } + }; + switch (c) { + case load_status::ok: + return names[0]; + case load_status::memory: + return names[1]; + case load_status::gc: + return names[2]; + case load_status::syntax: + return names[3]; + case load_status::file: + return names[4]; + } + if (static_cast<int>(c) == -1) { + // One of the many cases where a critical exception error has occurred + return names[5]; + } + return names[6]; + } + + inline const std::string& to_string(load_mode c) { + static const std::array<std::string, 3> names{ { + "bt", + "t", + "b", + } }; + return names[static_cast<std::size_t>(c)]; + } + + enum class meta_function { + construct, + index, + new_index, + mode, + call, + call_function = call, + metatable, + to_string, + length, + unary_minus, + addition, + subtraction, + multiplication, + division, + modulus, + power_of, + involution = power_of, + concatenation, + equal_to, + less_than, + less_than_or_equal_to, + garbage_collect, + floor_division, + bitwise_left_shift, + bitwise_right_shift, + bitwise_not, + bitwise_and, + bitwise_or, + bitwise_xor, + pairs, + ipairs, + next, + type, + type_info, + call_construct, + storage, + gc_names, + static_index, + static_new_index, + }; + + typedef meta_function meta_method; + + inline const std::array<std::string, 37>& meta_function_names() { + static const std::array<std::string, 37> names = { { "new", + "__index", + "__newindex", + "__mode", + "__call", + "__mt", + "__tostring", + "__len", + "__unm", + "__add", + "__sub", + "__mul", + "__div", + "__mod", + "__pow", + "__concat", + "__eq", + "__lt", + "__le", + "__gc", + + "__idiv", + "__shl", + "__shr", + "__bnot", + "__band", + "__bor", + "__bxor", + + "__pairs", + "__ipairs", + "next", + + "__type", + "__typeinfo", + "__sol.call_new", + "__sol.storage", + "__sol.gc_names", + "__sol.static_index", + "__sol.static_new_index" } }; + return names; + } + + inline const std::string& to_string(meta_function mf) { + return meta_function_names()[static_cast<int>(mf)]; + } + + inline type type_of(lua_State* L, int index) { + return static_cast<type>(lua_type(L, index)); + } + + inline std::string type_name(lua_State* L, type t) { + return lua_typename(L, static_cast<int>(t)); + } + + template <typename T> + struct is_lua_reference : std::integral_constant<bool, + std::is_base_of_v<reference, T> || std::is_base_of_v<main_reference, T> + || std::is_base_of_v<stack_reference, T>> {}; + + template <typename T> + inline constexpr bool is_lua_reference_v = is_lua_reference<T>::value; + + template <typename T> + struct is_lua_reference_or_proxy + : std::integral_constant<bool, is_lua_reference_v<T> || meta::is_specialization_of_v<T, proxy>> {}; + + template <typename T> + inline constexpr bool is_lua_reference_or_proxy_v = is_lua_reference_or_proxy<T>::value; + + template <typename T> + struct is_transparent_argument : std::false_type {}; + + template <typename T> + constexpr inline bool is_transparent_argument_v = is_transparent_argument<T>::value; + + template <> + struct is_transparent_argument<this_state> : std::true_type {}; + template <> + struct is_transparent_argument<this_main_state> : std::true_type {}; + template <> + struct is_transparent_argument<this_environment> : std::true_type {}; + template <> + struct is_transparent_argument<variadic_args> : std::true_type {}; + template <typename T> + struct is_variadic_arguments : std::is_same<T, variadic_args> {}; + + template <typename T> + struct is_container + : std::integral_constant<bool, + !std::is_same_v<state_view, T> && !std::is_same_v<state, T> && !meta::is_initializer_list_v<T> && !meta::is_string_like_v<T> && !meta::is_string_literal_array_v<T> && !is_transparent_argument_v<T> && !is_lua_reference_v<T> && (meta::has_begin_end_v<T> || std::is_array_v<T>)> { + }; + + template <typename T> + constexpr inline bool is_container_v = is_container<T>::value; + + template <typename T> + struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>, + meta::supports_ostream_op<meta::unqualified_t<T>>> {}; + + namespace detail { + template <typename T, typename = void> + struct lua_type_of : std::integral_constant<type, type::userdata> {}; + + template <typename C, typename T, typename A> + struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> {}; + + template <typename C, typename T> + struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<char> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<const char*> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {}; + + template <> + struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> {}; + + template <> + struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> {}; + + template <> + struct lua_type_of<lua_value> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<detail::non_lua_nil_t> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> {}; + + template <> + struct lua_type_of<error> : std::integral_constant<type, type::string> {}; + + template <bool b, typename Base> + struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> {}; + + template <typename Base> + struct lua_type_of<basic_lua_table<Base>> : std::integral_constant<type, type::table> {}; + + template <typename Base> + struct lua_type_of<basic_metatable<Base>> : std::integral_constant<type, type::table> {}; + + template <typename T, typename Base> + struct lua_type_of<basic_usertype<T, Base>> : std::integral_constant<type, type::table> {}; + + template <> + struct lua_type_of<metatable_key_t> : std::integral_constant<type, type::table> {}; + + template <typename B> + struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<env_key_t> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<new_table> : std::integral_constant<type, type::table> {}; + + template <typename T> + struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> {}; + + template <typename T> + struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> {}; + + template <bool b> + struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {}; + + template <typename Base> + struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {}; + + template <typename... Args> + struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {}; + + template <typename A, typename B> + struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {}; + + template <> + struct lua_type_of<const void*> : std::integral_constant<type, type::lightuserdata> {}; + + template <> + struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {}; + + template <> + struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {}; + + template <typename T> + struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {}; + + template <typename T> + struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {}; + + template <typename Base> + struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {}; + + template <typename Base> + struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {}; + + template <> + struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {}; + + template <> + struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {}; + + template <typename Base, bool aligned> + struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> {}; + + template <typename Base, bool aligned, typename Handler> + struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> {}; + + template <typename Base> + struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> {}; + + template <typename Base> + struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> {}; + + template <typename Signature> + struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {}; + + template <typename T> + struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {}; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + struct lua_type_of<std::optional<T>> : std::integral_constant<type, type::poly> {}; +#endif // std::optional + + template <> + struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<type> : std::integral_constant<type, type::poly> {}; + + template <typename T> + struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {}; + + template <typename T> + struct lua_type_of<T, std::enable_if_t<std::is_arithmetic_v<T> || std::is_same_v<T, lua_Number> || std::is_same_v<T, lua_Integer>>> : std::integral_constant<type, type::number> {}; + + template <typename T> + struct lua_type_of<T, std::enable_if_t<std::is_enum_v<T>>> : std::integral_constant<type, type::number> {}; + + template <> + struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {}; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + template <typename... Tn> + struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> {}; +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES + + template <typename T> + struct lua_type_of<nested<T>> + : meta::conditional_t<::sol::is_container_v<T>, std::integral_constant<type, type::table>, lua_type_of<T>> {}; + + template <typename C, C v, template <typename...> class V, typename... Args> + struct accumulate : std::integral_constant<C, v> {}; + + template <typename C, C v, template <typename...> class V, typename T, typename... Args> + struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {}; + + template <typename C, C v, template <typename...> class V, typename List> + struct accumulate_list; + + template <typename C, C v, template <typename...> class V, typename... Args> + struct accumulate_list<C, v, V, types<Args...>> : accumulate<C, v, V, Args...> {}; + } // namespace detail + + template <typename T> + struct lua_type_of : detail::lua_type_of<T> { + typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_; + }; + + template <typename T> + inline constexpr type lua_type_of_v = lua_type_of<T>::value; + + template <typename T> + struct lua_size : std::integral_constant<int, 1> { + typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_; + }; + + template <typename A, typename B> + struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> {}; + + template <typename... Args> + struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> {}; + + template <typename T> + inline constexpr int lua_size_v = lua_size<T>::value; + + namespace detail { + template <typename...> + struct void_ { + typedef void type; + }; + template <typename T, typename = void> + struct has_internal_marker_impl : std::false_type {}; + template <typename T> + struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {}; + + template <typename T> + using has_internal_marker = has_internal_marker_impl<T>; + + template <typename T> + constexpr inline bool has_internal_marker_v = has_internal_marker<T>::value; + } // namespace detail + + template <typename T> + struct is_lua_primitive + : std::integral_constant<bool, + type::userdata != lua_type_of_v<T> + || ((type::userdata == lua_type_of_v<T>) && detail::has_internal_marker_v<lua_type_of<T>> + && !detail::has_internal_marker_v<lua_size<T>>) + || is_lua_reference_v<T> || meta::is_specialization_of_v<T, std::tuple> + || meta::is_specialization_of_v<T, std::pair>> {}; + + template <typename T> + constexpr inline bool is_lua_primitive_v = is_lua_primitive<T>::value; + + template <typename T> + struct is_main_threaded : std::is_base_of<main_reference, T> {}; + + template <typename T> + struct is_stack_based : std::is_base_of<stack_reference, T> {}; + template <> + struct is_stack_based<variadic_args> : std::true_type {}; + template <> + struct is_stack_based<unsafe_function_result> : std::true_type {}; + template <> + struct is_stack_based<protected_function_result> : std::true_type {}; + template <> + struct is_stack_based<stack_proxy> : std::true_type {}; + template <> + struct is_stack_based<stack_proxy_base> : std::true_type {}; + + template <typename T> + constexpr inline bool is_stack_based_v = is_stack_based<T>::value; + + template <typename T> + struct is_lua_primitive<T*> : std::true_type {}; + template <> + struct is_lua_primitive<unsafe_function_result> : std::true_type {}; + template <> + struct is_lua_primitive<protected_function_result> : std::true_type {}; + template <typename T> + struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type {}; + template <typename T> + struct is_lua_primitive<user<T>> : std::true_type {}; + template <typename T> + struct is_lua_primitive<light<T>> : is_lua_primitive<T*> {}; + template <typename T> + struct is_lua_primitive<optional<T>> : std::true_type {}; +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + struct is_lua_primitive<std::optional<T>> : std::true_type {}; +#endif + template <typename T> + struct is_lua_primitive<as_table_t<T>> : std::true_type {}; + template <typename T> + struct is_lua_primitive<nested<T>> : std::true_type {}; + template <> + struct is_lua_primitive<userdata_value> : std::true_type {}; + template <> + struct is_lua_primitive<lightuserdata_value> : std::true_type {}; + template <typename T> + struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {}; + + template <typename T> + struct is_lua_index : std::is_integral<T> {}; + template <> + struct is_lua_index<raw_index> : std::true_type {}; + template <> + struct is_lua_index<absolute_index> : std::true_type {}; + template <> + struct is_lua_index<ref_index> : std::true_type {}; + template <> + struct is_lua_index<upvalue_index> : std::true_type {}; + + template <typename Signature> + struct lua_bind_traits : meta::bind_traits<Signature> { + private: + typedef meta::bind_traits<Signature> base_t; + + public: + typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t; + static const std::size_t true_arity = base_t::arity; + static const std::size_t arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::args_list>::value + - meta::count_for<is_transparent_argument, typename base_t::args_list>::value; + static const std::size_t true_free_arity = base_t::free_arity; + static const std::size_t free_arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::free_args_list>::value + - meta::count_for<is_transparent_argument, typename base_t::args_list>::value; + }; + + template <typename T> + struct is_table : std::false_type {}; + template <bool x, typename T> + struct is_table<basic_table_core<x, T>> : std::true_type {}; + template <typename T> + struct is_table<basic_lua_table<T>> : std::true_type {}; + + template <typename T> + inline constexpr bool is_table_v = is_table<T>::value; + + template <typename T> + struct is_function : std::false_type {}; + template <typename T, bool aligned> + struct is_function<basic_function<T, aligned>> : std::true_type {}; + template <typename T, bool aligned, typename Handler> + struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type {}; + + + template <typename T> + using is_lightuserdata = meta::is_specialization_of<T, basic_lightuserdata>; + + template <typename T> + inline constexpr bool is_lightuserdata_v = is_lightuserdata<T>::value; + + template <typename T> + using is_userdata = meta::is_specialization_of<T, basic_userdata>; + + template <typename T> + inline constexpr bool is_userdata_v = is_userdata<T>::value; + + template <typename T> + using is_environment = std::integral_constant<bool, is_userdata_v<T> || is_table_v<T> || meta::is_specialization_of_v<T, basic_environment>>; + + template <typename T> + inline constexpr bool is_environment_v = is_environment<T>::value; + + template <typename T> + using is_table_like = std::integral_constant<bool, is_table_v<T> || is_environment_v<T> || is_userdata_v<T>>; + + template <typename T> + inline constexpr bool is_table_like_v = is_table_like<T>::value; + + template <typename T> + struct is_automagical + : std::integral_constant<bool, + std::is_array_v<meta::unqualified_t<T>> || !std::is_same_v<meta::unqualified_t<T>, state> || !std::is_same_v<meta::unqualified_t<T>, state_view>> {}; + + template <typename T> + inline type type_of() { + return lua_type_of<meta::unqualified_t<T>>::value; + } + + namespace detail { + template <typename T> + struct is_non_factory_constructor : std::false_type {}; + + template <typename... Args> + struct is_non_factory_constructor<constructors<Args...>> : std::true_type {}; + + template <typename... Args> + struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {}; + + template <> + struct is_non_factory_constructor<no_construction> : std::true_type {}; + + template <typename T> + inline constexpr bool is_non_factory_constructor_v = is_non_factory_constructor<T>::value; + + template <typename T> + struct is_constructor : is_non_factory_constructor<T> {}; + + template <typename... Args> + struct is_constructor<factory_wrapper<Args...>> : std::true_type {}; + + template <typename T> + struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> {}; + + template <typename F, typename... Policies> + struct is_constructor<policy_wrapper<F, Policies...>> : is_constructor<meta::unqualified_t<F>> {}; + + template <typename T> + inline constexpr bool is_constructor_v = is_constructor<T>::value; + + template <typename... Args> + using any_is_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>; + + template <typename... Args> + inline constexpr bool any_is_constructor_v = any_is_constructor<Args...>::value; + + template <typename T> + struct is_destructor : std::false_type {}; + + template <typename Fx> + struct is_destructor<destructor_wrapper<Fx>> : std::true_type {}; + + template <typename... Args> + using any_is_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>; + + template <typename... Args> + inline constexpr bool any_is_destructor_v = any_is_destructor<Args...>::value; + } // namespace detail + + template <typename T> + using is_lua_c_function = meta::any<std::is_same<lua_CFunction, T>, std::is_same<detail::lua_CFunction_noexcept, T>, std::is_same<lua_CFunction_ref, T>>; + + template <typename T> + inline constexpr bool is_lua_c_function_v = is_lua_c_function<T>::value; + + struct automagic_enrollments { + bool default_constructor = true; + bool destructor = true; + bool pairs_operator = true; + bool to_string_operator = true; + bool call_operator = true; + bool less_than_operator = true; + bool less_than_or_equal_to_operator = true; + bool length_operator = true; + bool equal_to_operator = true; + }; + + +} // namespace sol + +#endif // SOL_TYPES_HPP diff --git a/lib/sol2/include/sol/unicode.hpp b/lib/sol2/include/sol/unicode.hpp new file mode 100644 index 0000000..6c89af6 --- /dev/null +++ b/lib/sol2/include/sol/unicode.hpp @@ -0,0 +1,312 @@ +#pragma once
+
+#include "string_view.hpp"
+#include <array>
+#include <cstring>
+
+namespace sol {
+ // Everything here was lifted pretty much straight out of
+ // ogonek, because fuck figuring it out=
+ namespace unicode {
+ enum class error_code {
+ ok = 0,
+ invalid_code_point,
+ invalid_code_unit,
+ invalid_leading_surrogate,
+ invalid_trailing_surrogate,
+ sequence_too_short,
+ overlong_sequence,
+ };
+
+ inline const string_view& to_string(error_code ec) {
+ static const string_view storage[7] = {
+ "ok",
+ "invalid code points",
+ "invalid code unit",
+ "invalid leading surrogate",
+ "invalid trailing surrogate",
+ "sequence too short",
+ "overlong sequence"
+ };
+ return storage[static_cast<std::size_t>(ec)];
+ }
+
+ template <typename It>
+ struct decoded_result {
+ error_code error;
+ char32_t codepoint;
+ It next;
+ };
+
+ template <typename C>
+ struct encoded_result {
+ error_code error;
+ std::size_t code_units_size;
+ std::array<C, 4> code_units;
+ };
+
+ struct unicode_detail {
+ // codepoint related
+ static constexpr char32_t last_code_point = 0x10FFFF;
+
+ static constexpr char32_t first_lead_surrogate = 0xD800;
+ static constexpr char32_t last_lead_surrogate = 0xDBFF;
+
+ static constexpr char32_t first_trail_surrogate = 0xDC00;
+ static constexpr char32_t last_trail_surrogate = 0xDFFF;
+
+ static constexpr char32_t first_surrogate = first_lead_surrogate;
+ static constexpr char32_t last_surrogate = last_trail_surrogate;
+
+ static constexpr bool is_lead_surrogate(char32_t u) {
+ return u >= first_lead_surrogate && u <= last_lead_surrogate;
+ }
+ static constexpr bool is_trail_surrogate(char32_t u) {
+ return u >= first_trail_surrogate && u <= last_trail_surrogate;
+ }
+ static constexpr bool is_surrogate(char32_t u) {
+ return u >= first_surrogate && u <= last_surrogate;
+ }
+
+ // utf8 related
+ static constexpr auto last_1byte_value = 0x7Fu;
+ static constexpr auto last_2byte_value = 0x7FFu;
+ static constexpr auto last_3byte_value = 0xFFFFu;
+
+ static constexpr auto start_2byte_mask = 0x80u;
+ static constexpr auto start_3byte_mask = 0xE0u;
+ static constexpr auto start_4byte_mask = 0xF0u;
+
+ static constexpr auto continuation_mask = 0xC0u;
+ static constexpr auto continuation_signature = 0x80u;
+
+ static constexpr bool is_invalid(unsigned char b) {
+ return b == 0xC0 || b == 0xC1 || b > 0xF4;
+ }
+
+ static constexpr bool is_continuation(unsigned char b) {
+ return (b & unicode_detail::continuation_mask) == unicode_detail::continuation_signature;
+ }
+
+ static constexpr bool is_overlong(char32_t u, std::size_t bytes) {
+ return u <= unicode_detail::last_1byte_value || (u <= unicode_detail::last_2byte_value && bytes > 2)
+ || (u <= unicode_detail::last_3byte_value && bytes > 3);
+ }
+
+ static constexpr int sequence_length(unsigned char b) {
+ return (b & start_2byte_mask) == 0 ? 1
+ : (b & start_3byte_mask) != start_3byte_mask ? 2
+ : (b & start_4byte_mask) != start_4byte_mask ? 3
+ : 4;
+ }
+
+ static constexpr char32_t decode(unsigned char b0, unsigned char b1) {
+ return ((b0 & 0x1F) << 6) | (b1 & 0x3F);
+ }
+ static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2) {
+ return ((b0 & 0x0F) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F);
+ }
+ static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2, unsigned char b3) {
+ return ((b0 & 0x07) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F);
+ }
+
+ // utf16 related
+ static constexpr char32_t last_bmp_value = 0xFFFF;
+ static constexpr char32_t normalizing_value = 0x10000;
+ static constexpr int lead_surrogate_bitmask = 0xFFC00;
+ static constexpr int trail_surrogate_bitmask = 0x3FF;
+ static constexpr int lead_shifted_bits = 10;
+ static constexpr char32_t replacement = 0xFFFD;
+
+ static char32_t combine_surrogates(char16_t lead, char16_t trail) {
+ auto hi = lead - first_lead_surrogate;
+ auto lo = trail - first_trail_surrogate;
+ return normalizing_value + ((hi << lead_shifted_bits) | lo);
+ }
+ };
+
+ inline encoded_result<char> code_point_to_utf8(char32_t codepoint) {
+ encoded_result<char> er;
+ er.error = error_code::ok;
+ if (codepoint <= unicode_detail::last_1byte_value) {
+ er.code_units_size = 1;
+ er.code_units = std::array<char, 4>{ { static_cast<char>(codepoint) } };
+ }
+ else if (codepoint <= unicode_detail::last_2byte_value) {
+ er.code_units_size = 2;
+ er.code_units = std::array<char, 4>{{
+ static_cast<char>(0xC0 | ((codepoint & 0x7C0) >> 6)),
+ static_cast<char>(0x80 | (codepoint & 0x3F)),
+ }};
+ }
+ else if (codepoint <= unicode_detail::last_3byte_value) {
+ er.code_units_size = 3;
+ er.code_units = std::array<char, 4>{{
+ static_cast<char>(0xE0 | ((codepoint & 0xF000) >> 12)),
+ static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
+ static_cast<char>(0x80 | (codepoint & 0x3F)),
+ }};
+ }
+ else {
+ er.code_units_size = 4;
+ er.code_units = std::array<char, 4>{ {
+ static_cast<char>(0xF0 | ((codepoint & 0x1C0000) >> 18)),
+ static_cast<char>(0x80 | ((codepoint & 0x3F000) >> 12)),
+ static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
+ static_cast<char>(0x80 | (codepoint & 0x3F)),
+ } };
+ }
+ return er;
+ }
+
+ inline encoded_result<char16_t> code_point_to_utf16(char32_t codepoint) {
+ encoded_result<char16_t> er;
+
+ if (codepoint <= unicode_detail::last_bmp_value) {
+ er.code_units_size = 1;
+ er.code_units = std::array<char16_t, 4>{ { static_cast<char16_t>(codepoint) } };
+ er.error = error_code::ok;
+ }
+ else {
+ auto normal = codepoint - unicode_detail::normalizing_value;
+ auto lead = unicode_detail::first_lead_surrogate + ((normal & unicode_detail::lead_surrogate_bitmask) >> unicode_detail::lead_shifted_bits);
+ auto trail = unicode_detail::first_trail_surrogate + (normal & unicode_detail::trail_surrogate_bitmask);
+ er.code_units = std::array<char16_t, 4>{ {
+ static_cast<char16_t>(lead),
+ static_cast<char16_t>(trail)
+ } };
+ er.code_units_size = 2;
+ er.error = error_code::ok;
+ }
+ return er;
+ }
+
+ inline encoded_result<char32_t> code_point_to_utf32(char32_t codepoint) {
+ encoded_result<char32_t> er;
+ er.code_units_size = 1;
+ er.code_units[0] = codepoint;
+ er.error = error_code::ok;
+ return er;
+ }
+
+ template <typename It>
+ inline decoded_result<It> utf8_to_code_point(It it, It last) {
+ decoded_result<It> dr;
+ if (it == last) {
+ dr.next = it;
+ dr.error = error_code::sequence_too_short;
+ return dr;
+ }
+
+ unsigned char b0 = *it;
+ std::size_t length = unicode_detail::sequence_length(b0);
+
+ if (length == 1) {
+ dr.codepoint = static_cast<char32_t>(b0);
+ dr.error = error_code::ok;
+ ++it;
+ dr.next = it;
+ return dr;
+ }
+
+ if (unicode_detail::is_invalid(b0) || unicode_detail::is_continuation(b0)) {
+ dr.error = error_code::invalid_code_unit;
+ dr.next = it;
+ return dr;
+ }
+
+ ++it;
+ std::array<unsigned char, 4> b;
+ b[0] = b0;
+ for (std::size_t i = 1; i < length; ++i) {
+ b[i] = *it;
+ if (!unicode_detail::is_continuation(b[i])) {
+ dr.error = error_code::invalid_code_unit;
+ dr.next = it;
+ return dr;
+ }
+ ++it;
+ }
+
+ char32_t decoded;
+ switch (length) {
+ case 2:
+ decoded = unicode_detail::decode(b[0], b[1]);
+ break;
+ case 3:
+ decoded = unicode_detail::decode(b[0], b[1], b[2]);
+ break;
+ default:
+ decoded = unicode_detail::decode(b[0], b[1], b[2], b[3]);
+ break;
+ }
+
+ if (unicode_detail::is_overlong(decoded, length)) {
+ dr.error = error_code::overlong_sequence;
+ return dr;
+ }
+ if (unicode_detail::is_surrogate(decoded) || decoded > unicode_detail::last_code_point) {
+ dr.error = error_code::invalid_code_point;
+ return dr;
+ }
+
+ // then everything is fine
+ dr.codepoint = decoded;
+ dr.error = error_code::ok;
+ dr.next = it;
+ return dr;
+ }
+
+ template <typename It>
+ inline decoded_result<It> utf16_to_code_point(It it, It last) {
+ decoded_result<It> dr;
+ if (it == last) {
+ dr.next = it;
+ dr.error = error_code::sequence_too_short;
+ return dr;
+ }
+
+ char16_t lead = static_cast<char16_t>(*it);
+
+ if (!unicode_detail::is_surrogate(lead)) {
+ ++it;
+ dr.codepoint = static_cast<char32_t>(lead);
+ dr.next = it;
+ dr.error = error_code::ok;
+ return dr;
+ }
+ if (!unicode_detail::is_lead_surrogate(lead)) {
+ dr.error = error_code::invalid_leading_surrogate;
+ dr.next = it;
+ return dr;
+ }
+
+ ++it;
+ auto trail = *it;
+ if (!unicode_detail::is_trail_surrogate(trail)) {
+ dr.error = error_code::invalid_trailing_surrogate;
+ dr.next = it;
+ return dr;
+ }
+
+ dr.codepoint = unicode_detail::combine_surrogates(lead, trail);
+ dr.next = ++it;
+ dr.error = error_code::ok;
+ return dr;
+ }
+
+ template <typename It>
+ inline decoded_result<It> utf32_to_code_point(It it, It last) {
+ decoded_result<It> dr;
+ if (it == last) {
+ dr.next = it;
+ dr.error = error_code::sequence_too_short;
+ return dr;
+ }
+ dr.codepoint = static_cast<char32_t>(*it);
+ dr.next = ++it;
+ dr.error = error_code::ok;
+ return dr;
+ }
+ }
+}
diff --git a/lib/sol2/include/sol/unique_usertype_traits.hpp b/lib/sol2/include/sol/unique_usertype_traits.hpp new file mode 100644 index 0000000..fbd3e17 --- /dev/null +++ b/lib/sol2/include/sol/unique_usertype_traits.hpp @@ -0,0 +1,125 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_UNIQUE_USERTYPE_TRAITS_HPP
+#define SOL_UNIQUE_USERTYPE_TRAITS_HPP
+
+#include "base_traits.hpp"
+#include "pointer_like.hpp"
+
+#include <memory>
+
+namespace sol {
+
+ template <typename T>
+ struct unique_usertype_traits {
+ typedef T type;
+ typedef T actual_type;
+ template <typename X>
+ using rebind_base = void;
+
+ static const bool value = false;
+
+ template <typename U>
+ static bool is_null(U&&) {
+ return false;
+ }
+
+ template <typename U>
+ static auto get(U&& value) {
+ return std::addressof(detail::deref(value));
+ }
+ };
+
+ template <typename T>
+ struct unique_usertype_traits<std::shared_ptr<T>> {
+ typedef T type;
+ typedef std::shared_ptr<T> actual_type;
+ // rebind is non-void
+ // if and only if unique usertype
+ // is cast-capable
+ template <typename X>
+ using rebind_base = std::shared_ptr<X>;
+
+ static const bool value = true;
+
+ static bool is_null(const actual_type& p) {
+ return p == nullptr;
+ }
+
+ static type* get(const actual_type& p) {
+ return p.get();
+ }
+ };
+
+ template <typename T, typename D>
+ struct unique_usertype_traits<std::unique_ptr<T, D>> {
+ using type = T;
+ using actual_type = std::unique_ptr<T, D>;
+
+ static const bool value = true;
+
+ static bool is_null(const actual_type& p) {
+ return p == nullptr;
+ }
+
+ static type* get(const actual_type& p) {
+ return p.get();
+ }
+ };
+
+ template <typename T>
+ struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {};
+
+ template <typename T>
+ inline constexpr bool is_unique_usertype_v = is_unique_usertype<T>::value;
+
+ namespace detail {
+ template <typename T>
+ using is_base_rebindable_test = decltype(T::rebind_base);
+ }
+
+ template <typename T>
+ using is_base_rebindable = meta::is_detected<detail::is_base_rebindable_test, T>;
+
+ template <typename T>
+ inline constexpr bool is_base_rebindable_v = is_base_rebindable<T>::value;
+
+ namespace detail {
+ template <typename T, typename>
+ struct is_base_rebindable_non_void_sfinae : std::false_type {};
+
+ template <typename T>
+ struct is_base_rebindable_non_void_sfinae<T, std::enable_if_t<is_base_rebindable_v<T>>>
+ : std::integral_constant<bool, !std::is_void_v<typename T::template rebind_base<void>>> {};
+ } // namespace detail
+
+ template <typename T>
+ using is_base_rebindable_non_void = meta::is_detected<detail::is_base_rebindable_test, T>;
+
+ template <typename T>
+ inline constexpr bool is_base_rebindable_non_void_v = is_base_rebindable_non_void<T>::value;
+
+} // namespace sol
+
+#endif // SOL_UNIQUE_USERTYPE_TRAITS_HPP
diff --git a/lib/sol2/include/sol/unsafe_function.hpp b/lib/sol2/include/sol/unsafe_function.hpp new file mode 100644 index 0000000..e2b3ac5 --- /dev/null +++ b/lib/sol2/include/sol/unsafe_function.hpp @@ -0,0 +1,175 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_UNSAFE_FUNCTION_HPP +#define SOL_UNSAFE_FUNCTION_HPP + +#include "reference.hpp" +#include "object.hpp" +#include "stack.hpp" +#include "function_result.hpp" +#include "function_types.hpp" +#include "bytecode.hpp" +#include "dump_handler.hpp" +#include <cstdint> + +namespace sol { + template <typename ref_t, bool aligned = false> + class basic_function : public basic_object<ref_t> { + private: + using base_t = basic_object<ref_t>; + + void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const { + lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount)); + } + + template <std::size_t... I, typename... Ret> + auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const { + luacall(n, lua_size<std::tuple<Ret...>>::value); + return stack::pop<std::tuple<Ret...>>(lua_state()); + } + + template <std::size_t I, typename Ret, meta::enable<meta::neg<std::is_void<Ret>>> = meta::enabler> + Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const { + luacall(n, lua_size<Ret>::value); + return stack::pop<Ret>(lua_state()); + } + + template <std::size_t I> + void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const { + luacall(n, 0); + } + + unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const { + int stacksize = lua_gettop(lua_state()); + int firstreturn = (std::max)(1, stacksize - static_cast<int>(n)); + luacall(n, LUA_MULTRET); + int poststacksize = lua_gettop(lua_state()); + int returncount = poststacksize - (firstreturn - 1); + return unsafe_function_result(lua_state(), firstreturn, returncount); + } + + public: + using base_t::lua_state; + + basic_function() = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_function(T&& r) noexcept + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_function<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_function>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_function(const basic_function&) = default; + basic_function& operator=(const basic_function&) = default; + basic_function(basic_function&&) = default; + basic_function& operator=(basic_function&&) = default; + basic_function(const stack_reference& r) + : basic_function(r.lua_state(), r.stack_index()) { + } + basic_function(stack_reference&& r) + : basic_function(r.lua_state(), r.stack_index()) { + } + basic_function(lua_nil_t n) + : base_t(n) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_function(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_function>(lua_state(), -1, handler); +#endif // Safety + } + basic_function(lua_State* L, int index = -1) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_function>(L, index, handler); +#endif // Safety + } + basic_function(lua_State* L, ref_index index) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_function>(lua_state(), -1, handler); +#endif // Safety + } + + template <typename Fx> + int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const { + this->push(); + auto ppn = stack::push_popper_n<false>(this->lua_state(), 1); + int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0); + if (r != 0) { + return on_error(this->lua_state(), r, writer, userdata, strip); + } + return r; + } + + int dump(lua_Writer writer, void* userdata, bool strip = false) const { + return dump(writer, userdata, strip, &dump_throw_on_error); + } + + template <typename Container = bytecode> + Container dump() const { + Container bc; + (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_panic_on_error); + return bc; + } + + template <typename Container = bytecode, typename Fx> + Container dump(Fx&& on_error) const { + Container bc; + (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error)); + return bc; + } + + template <typename... Args> + unsafe_function_result operator()(Args&&... args) const { + return call<>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) operator()(types<Ret...>, Args&&... args) const { + return call<Ret...>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) const { + if (!aligned) { + base_t::push(); + } + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), static_cast<std::ptrdiff_t>(pushcount)); + } + }; +} // namespace sol + +#endif // SOL_UNSAFE_FUNCTION_HPP diff --git a/lib/sol2/include/sol/unsafe_function_result.hpp b/lib/sol2/include/sol/unsafe_function_result.hpp new file mode 100644 index 0000000..2273dcf --- /dev/null +++ b/lib/sol2/include/sol/unsafe_function_result.hpp @@ -0,0 +1,175 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_UNSAFE_FUNCTION_RESULT_HPP +#define SOL_UNSAFE_FUNCTION_RESULT_HPP + +#include "reference.hpp" +#include "tuple.hpp" +#include "stack.hpp" +#include "proxy_base.hpp" +#include "stack_iterator.hpp" +#include "stack_proxy.hpp" +#include <cstdint> + +namespace sol { + struct unsafe_function_result : public proxy_base<unsafe_function_result> { + private: + lua_State* L; + int index; + int returncount; + + public: + typedef stack_proxy reference_type; + typedef stack_proxy value_type; + typedef stack_proxy* pointer; + typedef std::ptrdiff_t difference_type; + typedef std::size_t size_type; + typedef stack_iterator<stack_proxy, false> iterator; + typedef stack_iterator<stack_proxy, true> const_iterator; + typedef std::reverse_iterator<iterator> reverse_iterator; + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; + + unsafe_function_result() = default; + unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0) + : L(Ls), index(idx), returncount(retnum) { + } + unsafe_function_result(const unsafe_function_result&) = default; + unsafe_function_result& operator=(const unsafe_function_result&) = default; + unsafe_function_result(unsafe_function_result&& o) + : L(o.L), index(o.index), returncount(o.returncount) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.abandon(); + } + unsafe_function_result& operator=(unsafe_function_result&& o) { + L = o.L; + index = o.index; + returncount = o.returncount; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.abandon(); + return *this; + } + + unsafe_function_result(const protected_function_result& o) = delete; + unsafe_function_result& operator=(const protected_function_result& o) = delete; + unsafe_function_result(protected_function_result&& o) noexcept; + unsafe_function_result& operator=(protected_function_result&& o) noexcept; + + template <typename T> + decltype(auto) get(difference_type index_offset = 0) const { + return stack::get<T>(L, index + static_cast<int>(index_offset)); + } + + type get_type(difference_type index_offset = 0) const noexcept { + return type_of(L, index + static_cast<int>(index_offset)); + } + + stack_proxy operator[](difference_type index_offset) const { + return stack_proxy(L, index + static_cast<int>(index_offset)); + } + + iterator begin() { + return iterator(L, index, stack_index() + return_count()); + } + iterator end() { + return iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator begin() const { + return const_iterator(L, index, stack_index() + return_count()); + } + const_iterator end() const { + return const_iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator cbegin() const { + return begin(); + } + const_iterator cend() const { + return end(); + } + + reverse_iterator rbegin() { + return std::reverse_iterator<iterator>(begin()); + } + reverse_iterator rend() { + return std::reverse_iterator<iterator>(end()); + } + const_reverse_iterator rbegin() const { + return std::reverse_iterator<const_iterator>(begin()); + } + const_reverse_iterator rend() const { + return std::reverse_iterator<const_iterator>(end()); + } + const_reverse_iterator crbegin() const { + return std::reverse_iterator<const_iterator>(cbegin()); + } + const_reverse_iterator crend() const { + return std::reverse_iterator<const_iterator>(cend()); + } + + call_status status() const noexcept { + return call_status::ok; + } + + bool valid() const noexcept { + return status() == call_status::ok || status() == call_status::yielded; + } + + lua_State* lua_state() const { + return L; + }; + int stack_index() const { + return index; + }; + int return_count() const { + return returncount; + }; + void abandon() noexcept { + //L = nullptr; + index = 0; + returncount = 0; + } + ~unsafe_function_result() { + lua_pop(L, returncount); + } + }; + + namespace stack { + template <> + struct unqualified_pusher<unsafe_function_result> { + static int push(lua_State* L, const unsafe_function_result& fr) { + int p = 0; + for (int i = 0; i < fr.return_count(); ++i) { + lua_pushvalue(L, i + fr.stack_index()); + ++p; + } + return p; + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_UNSAFE_FUNCTION_RESULT_HPP diff --git a/lib/sol2/include/sol/userdata.hpp b/lib/sol2/include/sol/userdata.hpp new file mode 100644 index 0000000..15c5635 --- /dev/null +++ b/lib/sol2/include/sol/userdata.hpp @@ -0,0 +1,142 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_USERDATA_HPP +#define SOL_USERDATA_HPP + +#include "object_base.hpp" +#include "table.hpp" + +namespace sol { + template <typename base_type> + class basic_userdata : public basic_table<base_type> { + private: + using base_t = basic_table<base_type>; + + public: + using base_t::lua_state; + + basic_userdata() noexcept = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_userdata(T&& r) noexcept + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_userdata<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + type_assert(lua_state(), -1, type::userdata); + } +#endif // Safety + } + basic_userdata(const basic_userdata&) = default; + basic_userdata(basic_userdata&&) = default; + basic_userdata& operator=(const basic_userdata&) = default; + basic_userdata& operator=(basic_userdata&&) = default; + basic_userdata(const stack_reference& r) + : basic_userdata(r.lua_state(), r.stack_index()) { + } + basic_userdata(stack_reference&& r) + : basic_userdata(r.lua_state(), r.stack_index()) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_userdata(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_userdata>(L, -1, handler); +#endif // Safety + } + basic_userdata(lua_State* L, int index = -1) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_userdata>(L, index, handler); +#endif // Safety + } + basic_userdata(lua_State* L, ref_index index) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_userdata>(L, -1, handler); +#endif // Safety + } + }; + + template <typename base_type> + class basic_lightuserdata : public basic_object_base<base_type> { + typedef basic_object_base<base_type> base_t; + + public: + using base_t::lua_state; + + basic_lightuserdata() noexcept = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_lightuserdata(T&& r) noexcept + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_lightuserdata<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + type_assert(lua_state(), -1, type::lightuserdata); + } +#endif // Safety + } + basic_lightuserdata(const basic_lightuserdata&) = default; + basic_lightuserdata(basic_lightuserdata&&) = default; + basic_lightuserdata& operator=(const basic_lightuserdata&) = default; + basic_lightuserdata& operator=(basic_lightuserdata&&) = default; + basic_lightuserdata(const stack_reference& r) + : basic_lightuserdata(r.lua_state(), r.stack_index()) { + } + basic_lightuserdata(stack_reference&& r) + : basic_lightuserdata(r.lua_state(), r.stack_index()) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_lightuserdata(lua_State* L, T&& r) + : basic_lightuserdata(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_lightuserdata>(lua_state(), -1, handler); +#endif // Safety + } + basic_lightuserdata(lua_State* L, int index = -1) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_lightuserdata>(L, index, handler); +#endif // Safety + } + basic_lightuserdata(lua_State* L, ref_index index) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_lightuserdata>(lua_state(), index, handler); +#endif // Safety + } + }; + +} // namespace sol + +#endif // SOL_USERDATA_HPP diff --git a/lib/sol2/include/sol/usertype.hpp b/lib/sol2/include/sol/usertype.hpp new file mode 100644 index 0000000..fc485a6 --- /dev/null +++ b/lib/sol2/include/sol/usertype.hpp @@ -0,0 +1,99 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_USERTYPE_HPP +#define SOL_USERTYPE_HPP + +#include "usertype_core.hpp" +#include "usertype_container_launch.hpp" +#include "usertype_storage.hpp" +#include "usertype_proxy.hpp" +#include "metatable.hpp" + +namespace sol { + + template <typename T, typename base_type> + class basic_usertype : private basic_metatable<base_type> { + private: + using base_t = basic_metatable<base_type>; + using table_base_t = basic_table<base_type>; + + template <typename> + friend class basic_metatable; + + template <bool, typename> + friend class basic_table_core; + + template <std::size_t... I, typename... Args> + void tuple_set(std::index_sequence<I...>, std::tuple<Args...>&& args) { + (void)args; + (void)detail::swallow{ 0, + (this->set(std::get<I * 2>(std::move(args)), std::get<I * 2 + 1>(std::move(args))), 0)... }; + } + + public: + using base_t::base_t; + + using base_t::pop; + using base_t::push; + using base_t::lua_state; + using base_t::get; + using base_t::set_function; + using base_t::traverse_set; + using base_t::traverse_get; + using base_t::unregister; + + template <typename Key, typename Value> + void set(Key&& key, Value&& value) { + optional<u_detail::usertype_storage<T>&> maybe_uts = u_detail::maybe_get_usertype_storage<T>(this->lua_state()); + if (maybe_uts) { + u_detail::usertype_storage<T>& uts = *maybe_uts; + uts.set(this->lua_state(), std::forward<Key>(key), std::forward<Value>(value)); + } + else { + using ValueU = meta::unqualified_t<Value>; + // cannot get metatable: try regular table set? + if constexpr (detail::is_non_factory_constructor_v<ValueU> || detail::is_policy_v<ValueU>) { + // tag constructors so we don't get destroyed by lack of info + table_base_t::set(std::forward<Key>(key), detail::tagged<T, Value>(std::forward<Value>(value))); + } + else { + table_base_t::set(std::forward<Key>(key), std::forward<Value>(value)); + } + } + } + + template <typename Key> + usertype_proxy<basic_usertype&, std::decay_t<Key>> operator[](Key&& key) { + return usertype_proxy<basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key)); + } + + template <typename Key> + usertype_proxy<const basic_usertype&, std::decay_t<Key>> operator[](Key&& key) const { + return usertype_proxy<const basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key)); + } + }; + +} // namespace sol + +#endif // SOL_USERTYPE_HPP diff --git a/lib/sol2/include/sol/usertype_container.hpp b/lib/sol2/include/sol/usertype_container.hpp new file mode 100644 index 0000000..ce4a1bb --- /dev/null +++ b/lib/sol2/include/sol/usertype_container.hpp @@ -0,0 +1,1500 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_USERTYPE_CONTAINER_HPP +#define SOL_USERTYPE_CONTAINER_HPP + +#include "traits.hpp" +#include "stack.hpp" +#include "object.hpp" +#include "map.hpp" + +namespace sol { + + template <typename T> + struct usertype_container; + + namespace container_detail { + + template <typename T> + struct has_clear_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::clear)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_empty_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::empty)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_erase_after_test { + private: + template <typename C> + static meta::sfinae_yes_t test( + decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T, typename = void> + struct has_find_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_erase_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_find_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::find)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_index_of_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::index_of)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_insert_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::insert)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_erase_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::erase)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_index_set_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::index_set)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_index_get_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::index_get)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_set_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::set)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_get_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::get)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_at_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::at)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_pairs_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::pairs)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_ipairs_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::ipairs)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_next_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::next)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_add_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::add)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + struct has_traits_size_test { + private: + template <typename C> + static meta::sfinae_yes_t test(decltype(&C::size)); + template <typename C> + static meta::sfinae_no_t test(...); + + public: + static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; + }; + + template <typename T> + using has_clear = meta::boolean<has_clear_test<T>::value>; + + template <typename T> + using has_empty = meta::boolean<has_empty_test<T>::value>; + + template <typename T> + using has_find = meta::boolean<has_find_test<T>::value>; + + template <typename T> + using has_erase = meta::boolean<has_erase_test<T>::value>; + + template <typename T> + using has_erase_after = meta::boolean<has_erase_after_test<T>::value>; + + template <typename T> + using has_traits_get = meta::boolean<has_traits_get_test<T>::value>; + + template <typename T> + using has_traits_at = meta::boolean<has_traits_at_test<T>::value>; + + template <typename T> + using has_traits_set = meta::boolean<has_traits_set_test<T>::value>; + + template <typename T> + using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>; + + template <typename T> + using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>; + + template <typename T> + using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>; + + template <typename T> + using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>; + + template <typename T> + using has_traits_next = meta::boolean<has_traits_next_test<T>::value>; + + template <typename T> + using has_traits_add = meta::boolean<has_traits_add_test<T>::value>; + + template <typename T> + using has_traits_size = meta::boolean<has_traits_size_test<T>::value>; + + template <typename T> + using has_traits_clear = has_clear<T>; + + template <typename T> + using has_traits_empty = has_empty<T>; + + template <typename T> + using has_traits_find = meta::boolean<has_traits_find_test<T>::value>; + + template <typename T> + using has_traits_index_of = meta::boolean<has_traits_index_of_test<T>::value>; + + template <typename T> + using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>; + + template <typename T> + using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>; + + template <typename T> + struct is_forced_container : is_container<T> {}; + + template <typename T> + struct is_forced_container<as_container_t<T>> : std::true_type {}; + + template <typename T> + struct container_decay { + typedef T type; + }; + + template <typename T> + struct container_decay<as_container_t<T>> { + typedef T type; + }; + + template <typename T> + using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type; + + template <typename T> + decltype(auto) get_key(std::false_type, T&& t) { + return std::forward<T>(t); + } + + template <typename T> + decltype(auto) get_key(std::true_type, T&& t) { + return t.first; + } + + template <typename T> + decltype(auto) get_value(std::false_type, T&& t) { + return std::forward<T>(t); + } + + template <typename T> + decltype(auto) get_value(std::true_type, T&& t) { + return t.second; + } + + template <typename X, typename = void> + struct usertype_container_default { + private: + typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T; + + public: + typedef lua_nil_t iterator; + typedef lua_nil_t value_type; + + static int at(lua_State* L) { + return luaL_error(L, "sol: cannot call 'at(index)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int get(lua_State* L) { + return luaL_error(L, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int index_get(lua_State* L) { + return luaL_error(L, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int set(lua_State* L) { + return luaL_error(L, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int index_set(lua_State* L) { + return luaL_error( + L, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int add(lua_State* L) { + return luaL_error(L, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int insert(lua_State* L) { + return luaL_error(L, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int find(lua_State* L) { + return luaL_error(L, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int index_of(lua_State* L) { + return luaL_error(L, "sol: cannot call 'index_of' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int size(lua_State* L) { + return luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int clear(lua_State* L) { + return luaL_error(L, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int empty(lua_State* L) { + return luaL_error(L, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int erase(lua_State* L) { + return luaL_error(L, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int next(lua_State* L) { + return luaL_error(L, "sol: cannot call 'next' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int pairs(lua_State* L) { + return luaL_error(L, "sol: cannot call '__pairs/pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int ipairs(lua_State* L) { + return luaL_error(L, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static iterator begin(lua_State* L, T&) { + luaL_error(L, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + return lua_nil; + } + + static iterator end(lua_State* L, T&) { + luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + return lua_nil; + } + }; + + template <typename X> + struct usertype_container_default<X, + std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>, + meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> { + private: + using T = std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>>; + + private: + using deferred_uc = usertype_container<X>; + using is_associative = meta::is_associative<T>; + using is_lookup = meta::is_lookup<T>; + using is_ordered = meta::is_ordered<T>; + using is_matched_lookup = meta::is_matched_lookup<T>; + using iterator = typename T::iterator; + using value_type = typename T::value_type; + typedef meta::conditional_t<is_matched_lookup::value, std::pair<value_type, value_type>, + meta::conditional_t<is_associative::value || is_lookup::value, value_type, std::pair<std::ptrdiff_t, value_type>>> + KV; + typedef typename KV::first_type K; + typedef typename KV::second_type V; + typedef meta::conditional_t<is_matched_lookup::value, std::ptrdiff_t, K> next_K; + typedef decltype(*std::declval<iterator&>()) iterator_return; + typedef meta::conditional_t<is_associative::value || is_matched_lookup::value, std::add_lvalue_reference_t<V>, + meta::conditional_t<is_lookup::value, V, iterator_return>> + captured_type; + typedef typename meta::iterator_tag<iterator>::type iterator_category; + typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator; + typedef meta::conditional_t<is_input_iterator::value, V, decltype(detail::deref_non_pointer(std::declval<captured_type>()))> push_type; + typedef std::is_copy_assignable<V> is_copyable; + typedef meta::neg<meta::any<std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable>>> is_writable; + typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type; + typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral; + + struct iter { + T& source; + iterator it; + std::size_t i; + + iter(T& source, iterator it) : source(source), it(std::move(it)), i(0) { + } + + ~iter() { + } + }; + + static auto& get_src(lua_State* L) { +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto p = stack::unqualified_check_get<T*>(L, 1); + if (!p) { + luaL_error(L, + "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", + detail::demangle<T>().c_str()); + } + if (p.value() == nullptr) { + luaL_error( + L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str()); + } + return *p.value(); +#else + return stack::unqualified_get<T>(L, 1); +#endif // Safe getting with error + } + + static detail::error_result at_category(std::input_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) { + pos += deferred_uc::index_adjustment(L, self); + if (pos < 0) { + return stack::push(L, lua_nil); + } + auto it = deferred_uc::begin(L, self); + auto e = deferred_uc::end(L, self); + if (it == e) { + return stack::push(L, lua_nil); + } + while (pos > 0) { + --pos; + ++it; + if (it == e) { + return stack::push(L, lua_nil); + } + } + return get_associative(is_associative(), L, it); + } + + static detail::error_result at_category(std::random_access_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) { + std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); + pos += deferred_uc::index_adjustment(L, self); + if (pos < 0 || pos >= len) { + return stack::push(L, lua_nil); + } + auto it = std::next(deferred_uc::begin(L, self), pos); + return get_associative(is_associative(), L, it); + } + + static detail::error_result at_start(lua_State* L, T& self, std::ptrdiff_t pos) { + return at_category(iterator_category(), L, self, pos); + } + + template <typename Iter> + static detail::error_result get_associative(std::true_type, lua_State* L, Iter& it) { + decltype(auto) v = *it; + return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(v.second)); + } + + template <typename Iter> + static detail::error_result get_associative(std::false_type, lua_State* L, Iter& it) { + return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it)); + } + + static detail::error_result get_category(std::input_iterator_tag, lua_State* L, T& self, K& key) { + key += deferred_uc::index_adjustment(L, self); + if (key < 0) { + return stack::push(L, lua_nil); + } + auto it = deferred_uc::begin(L, self); + auto e = deferred_uc::end(L, self); + if (it == e) { + return stack::push(L, lua_nil); + } + while (key > 0) { + --key; + ++it; + if (it == e) { + return stack::push(L, lua_nil); + } + } + return get_associative(is_associative(), L, it); + } + + static detail::error_result get_category(std::random_access_iterator_tag, lua_State* L, T& self, K& key) { + std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); + key += deferred_uc::index_adjustment(L, self); + if (key < 0 || key >= len) { + return stack::push(L, lua_nil); + } + auto it = std::next(deferred_uc::begin(L, self), key); + return get_associative(is_associative(), L, it); + } + + static detail::error_result get_it(std::true_type, lua_State* L, T& self, K& key) { + return get_category(iterator_category(), L, self, key); + } + + static detail::error_result get_comparative(std::true_type, lua_State* L, T& self, K& key) { + auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); }; + auto e = deferred_uc::end(L, self); + auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx)); + if (it == e) { + return stack::push(L, lua_nil); + } + return get_associative(is_associative(), L, it); + } + + static detail::error_result get_comparative(std::false_type, lua_State*, T&, K&) { + return detail::error_result("cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'", + detail::demangle<T>().data(), + detail::demangle<K>().data()); + } + + static detail::error_result get_it(std::false_type, lua_State* L, T& self, K& key) { + return get_comparative(meta::supports_op_equal<K, key_type>(), L, self, key); + } + + static detail::error_result set_associative(std::true_type, iterator& it, stack_object value) { + decltype(auto) v = *it; + v.second = value.as<V>(); + return {}; + } + + static detail::error_result set_associative(std::false_type, iterator& it, stack_object value) { + decltype(auto) v = *it; + v = value.as<V>(); + return {}; + } + + static detail::error_result set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value) { + return set_associative(is_associative(), it, std::move(value)); + } + + static detail::error_result set_writable(std::false_type, lua_State*, T&, iterator&, stack_object) { + return detail::error_result( + "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data()); + } + + static detail::error_result set_category(std::input_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + key += deferred_uc::index_adjustment(L, self); + auto e = deferred_uc::end(L, self); + auto it = deferred_uc::begin(L, self); + auto backit = it; + for (; key > 0 && it != e; --key, ++it) { + backit = it; + } + if (it == e) { + if (key == 0) { + return add_copyable(is_copyable(), L, self, std::move(value), meta::has_insert_after<T>::value ? backit : it); + } + return detail::error_result("out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static detail::error_result set_category(std::random_access_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + if (key <= 0) { + return detail::error_result("sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str()); + } + key += deferred_uc::index_adjustment(L, self); + std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); + if (key == len) { + return add_copyable(is_copyable(), L, self, std::move(value)); + } + else if (key > len) { + return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + auto it = std::next(deferred_uc::begin(L, self), key); + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static detail::error_result set_comparative(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + if (!is_writable::value) { + return detail::error_result( + "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data()); + } + auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); }; + auto e = deferred_uc::end(L, self); + auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx)); + if (it == e) { + return {}; + } + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static detail::error_result set_comparative(std::false_type, lua_State*, T&, stack_object, stack_object) { + return detail::error_result("cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key", + detail::demangle<T>().data(), + detail::demangle<K>().data()); + } + + template <typename Iter> + static detail::error_result set_associative_insert(std::true_type, lua_State*, T& self, Iter& it, K& key, stack_object value) { + if constexpr (meta::has_insert<T>::value) { + self.insert(it, value_type(key, value.as<V>())); + return {}; + } + else { + (void)self; + (void)it; + (void)key; + return detail::error_result( + "cannot call 'set' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str()); + } + } + + template <typename Iter> + static detail::error_result set_associative_insert(std::false_type, lua_State*, T& self, Iter& it, K& key, stack_object) { + if constexpr (meta::has_insert<T>::value) { + self.insert(it, key); + return {}; + } + else { + (void)self; + (void)it; + (void)key; + return detail::error_result( + "cannot call 'set' on '%s': there is no 'insert' function on this non-associative type", detail::demangle<T>().c_str()); + } + } + + static detail::error_result set_associative_find(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + auto it = self.find(key); + if (it == deferred_uc::end(L, self)) { + return set_associative_insert(is_associative(), L, self, it, key, std::move(value)); + } + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static detail::error_result set_associative_find(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) { + return set_comparative(meta::supports_op_equal<K, key_type>(), L, self, std::move(key), std::move(value)); + } + + static detail::error_result set_it(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { + return set_category(iterator_category(), L, self, std::move(key), std::move(value)); + } + + static detail::error_result set_it(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) { + return set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L, self, std::move(key), std::move(value)); + } + + template <bool idx_of = false> + static detail::error_result find_has_associative_lookup(std::true_type, lua_State* L, T& self) { + if constexpr (!is_ordered::value && idx_of) { + (void)L; + (void)self; + return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data()); + } + else { + decltype(auto) key = stack::unqualified_get<K>(L, 2); + auto it = self.find(key); + if (it == deferred_uc::end(L, self)) { + return stack::push(L, lua_nil); + } + if constexpr (idx_of) { + auto dist = std::distance(deferred_uc::begin(L, self), it); + dist -= deferred_uc::index_adjustment(L, self); + return stack::push(L, dist); + } + else { + return get_associative(is_associative(), L, it); + } + } + } + + template <bool idx_of = false> + static detail::error_result find_has_associative_lookup(std::false_type, lua_State* L, T& self) { + if constexpr (!is_ordered::value && idx_of) { + (void)L; + (void)self; + return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data()); + } + else { + decltype(auto) value = stack::unqualified_get<V>(L, 2); + auto it = self.find(value); + if (it == deferred_uc::end(L, self)) { + return stack::push(L, lua_nil); + } + if constexpr (idx_of) { + auto dist = std::distance(deferred_uc::begin(L, self), it); + dist -= deferred_uc::index_adjustment(L, self); + return stack::push(L, dist); + } + else { + return get_associative(is_associative(), L, it); + } + } + } + + template <bool idx_of = false> + static detail::error_result find_has(std::true_type, lua_State* L, T& self) { + return find_has_associative_lookup<idx_of>(meta::any<is_lookup, is_associative>(), L, self); + } + + template <typename Iter> + static detail::error_result find_associative_lookup(std::true_type, lua_State* L, T&, Iter& it, std::size_t) { + return get_associative(is_associative(), L, it); + } + + template <typename Iter> + static detail::error_result find_associative_lookup(std::false_type, lua_State* L, T& self, Iter&, std::size_t idx) { + idx -= deferred_uc::index_adjustment(L, self); + return stack::push(L, idx); + } + + template <bool = false> + static detail::error_result find_comparative(std::false_type, lua_State*, T&) { + return detail::error_result("cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable", + detail::demangle<T>().c_str()); + } + + template <bool idx_of = false> + static detail::error_result find_comparative(std::true_type, lua_State* L, T& self) { + decltype(auto) value = stack::unqualified_get<V>(L, 2); + auto it = deferred_uc::begin(L, self); + auto e = deferred_uc::end(L, self); + std::size_t idx = 0; + for (;; ++it, ++idx) { + if (it == e) { + return stack::push(L, lua_nil); + } + if (value == get_value(is_associative(), *it)) { + break; + } + } + return find_associative_lookup(meta::all<meta::boolean<!idx_of>, meta::any<is_lookup, is_associative>>(), L, self, it, idx); + } + + template <bool idx_of = false> + static detail::error_result find_has(std::false_type, lua_State* L, T& self) { + return find_comparative<idx_of>(meta::supports_op_equal<V>(), L, self); + } + + template <typename Iter> + static detail::error_result add_insert_after(std::false_type, lua_State* L, T& self, stack_object value, Iter&) { + return add_insert_after(std::false_type(), L, self, value); + } + + static detail::error_result add_insert_after(std::false_type, lua_State*, T&, stack_object) { + return detail::error_result("cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data()); + } + + template <typename Iter> + static detail::error_result add_insert_after(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) { + self.insert_after(pos, value.as<V>()); + return {}; + } + + static detail::error_result add_insert_after(std::true_type, lua_State* L, T& self, stack_object value) { + auto backit = self.before_begin(); + { + auto e = deferred_uc::end(L, self); + for (auto it = deferred_uc::begin(L, self); it != e; ++backit, ++it) { + } + } + return add_insert_after(std::true_type(), L, self, value, backit); + } + + template <typename Iter> + static detail::error_result add_insert(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) { + self.insert(pos, value.as<V>()); + return {}; + } + + static detail::error_result add_insert(std::true_type, lua_State* L, T& self, stack_object value) { + auto pos = deferred_uc::end(L, self); + return add_insert(std::true_type(), L, self, value, pos); + } + + template <typename Iter> + static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) { + return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value), pos); + } + + static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value) { + return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value)); + } + + template <typename Iter> + static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value, Iter&) { + self.push_back(value.as<V>()); + return {}; + } + + static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value) { + self.push_back(value.as<V>()); + return {}; + } + + template <typename Iter> + static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) { + return add_insert(meta::has_insert<T>(), L, self, value, pos); + } + + static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value) { + return add_insert(meta::has_insert<T>(), L, self, value); + } + + template <typename Iter> + static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key, Iter& pos) { + if constexpr (meta::has_insert<T>::value) { + self.insert(pos, value_type(key.as<K>(), stack::unqualified_get<V>(L, 3))); + return {}; + } + else { + (void)L; + (void)self; + (void)key; + (void)pos; + return detail::error_result( + "cannot call 'insert' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str()); + } + } + + static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key) { + auto pos = deferred_uc::end(L, self); + return add_associative(std::true_type(), L, self, std::move(key), pos); + } + + template <typename Iter> + static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) { + return add_push_back(meta::has_push_back<T>(), L, self, value, pos); + } + + static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value) { + return add_push_back(meta::has_push_back<T>(), L, self, value); + } + + template <typename Iter> + static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value, Iter& pos) { + return add_associative(is_associative(), L, self, std::move(value), pos); + } + + static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value) { + return add_associative(is_associative(), L, self, value); + } + + template <typename Iter> + static detail::error_result add_copyable(std::false_type, lua_State* L, T& self, stack_object value, Iter&) { + return add_copyable(std::false_type(), L, self, std::move(value)); + } + + static detail::error_result add_copyable(std::false_type, lua_State*, T&, stack_object) { + return detail::error_result("cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data()); + } + + static detail::error_result insert_lookup(std::true_type, lua_State* L, T& self, stack_object, stack_object value) { + // TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity? + return add_copyable(std::true_type(), L, self, std::move(value)); + } + + static detail::error_result insert_lookup(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) { + auto it = deferred_uc::begin(L, self); + auto key = where.as<K>(); + key += deferred_uc::index_adjustment(L, self); + std::advance(it, key); + self.insert(it, value.as<V>()); + return {}; + } + + static detail::error_result insert_after_has(std::true_type, lua_State* L, T& self, stack_object where, stack_object value) { + auto key = where.as<K>(); + auto backit = self.before_begin(); + { + key += deferred_uc::index_adjustment(L, self); + auto e = deferred_uc::end(L, self); + for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) { + if (backit == e) { + return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + } + } + self.insert_after(backit, value.as<V>()); + return {}; + } + + static detail::error_result insert_after_has(std::false_type, lua_State*, T&, stack_object, stack_object) { + return detail::error_result( + "cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data()); + } + + static detail::error_result insert_has(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { + return insert_lookup(meta::any<is_associative, is_lookup>(), L, self, std::move(key), std::move(value)); + } + + static detail::error_result insert_has(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) { + return insert_after_has(meta::has_insert_after<T>(), L, self, where, value); + } + + static detail::error_result insert_copyable(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { + return insert_has(meta::has_insert<T>(), L, self, std::move(key), std::move(value)); + } + + static detail::error_result insert_copyable(std::false_type, lua_State*, T&, stack_object, stack_object) { + return detail::error_result("cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data()); + } + + static detail::error_result erase_integral(std::true_type, lua_State* L, T& self, K& key) { + auto it = deferred_uc::begin(L, self); + key += deferred_uc::index_adjustment(L, self); + std::advance(it, key); + self.erase(it); + + return {}; + } + + static detail::error_result erase_integral(std::false_type, lua_State* L, T& self, const K& key) { + auto fx = [&](const value_type& r) -> bool { return key == r; }; + auto e = deferred_uc::end(L, self); + auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx)); + if (it == e) { + return {}; + } + self.erase(it); + + return {}; + } + + static detail::error_result erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key) { + self.erase(key); + return {}; + } + + static detail::error_result erase_associative_lookup(std::false_type, lua_State* L, T& self, K& key) { + return erase_integral(std::is_integral<K>(), L, self, key); + } + + static detail::error_result erase_after_has(std::true_type, lua_State* L, T& self, K& key) { + auto backit = self.before_begin(); + { + key += deferred_uc::index_adjustment(L, self); + auto e = deferred_uc::end(L, self); + for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) { + if (backit == e) { + return detail::error_result("sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str()); + } + } + } + self.erase_after(backit); + return {}; + } + + static detail::error_result erase_after_has(std::false_type, lua_State*, T&, const K&) { + return detail::error_result("sol: cannot call erase on '%s'", detail::demangle<T>().c_str()); + } + + static detail::error_result erase_has(std::true_type, lua_State* L, T& self, K& key) { + return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key); + } + + static detail::error_result erase_has(std::false_type, lua_State* L, T& self, K& key) { + return erase_after_has(has_erase_after<T>(), L, self, key); + } + + static auto size_has(std::false_type, lua_State* L, T& self) { + return std::distance(deferred_uc::begin(L, self), deferred_uc::end(L, self)); + } + + static auto size_has(std::true_type, lua_State*, T& self) { + return self.size(); + } + + static void clear_has(std::true_type, lua_State*, T& self) { + self.clear(); + } + + static void clear_has(std::false_type, lua_State* L, T&) { + luaL_error(L, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str()); + } + + static bool empty_has(std::true_type, lua_State*, T& self) { + return self.empty(); + } + + static bool empty_has(std::false_type, lua_State* L, T& self) { + return deferred_uc::begin(L, self) == deferred_uc::end(L, self); + } + + static detail::error_result get_associative_find(std::true_type, lua_State* L, T& self, K& key) { + auto it = self.find(key); + if (it == deferred_uc::end(L, self)) { + stack::push(L, lua_nil); + return {}; + } + return get_associative(std::true_type(), L, it); + } + + static detail::error_result get_associative_find(std::false_type, lua_State* L, T& self, K& key) { + return get_it(is_linear_integral(), L, self, key); + } + + static detail::error_result get_start(lua_State* L, T& self, K& key) { + return get_associative_find(std::integral_constant < bool, is_associative::value&& has_find<T>::value > (), L, self, key); + } + + static detail::error_result set_start(lua_State* L, T& self, stack_object key, stack_object value) { + return set_it(is_linear_integral(), L, self, std::move(key), std::move(value)); + } + + static std::size_t size_start(lua_State* L, T& self) { + return size_has(meta::has_size<T>(), L, self); + } + + static void clear_start(lua_State* L, T& self) { + clear_has(has_clear<T>(), L, self); + } + + static bool empty_start(lua_State* L, T& self) { + return empty_has(has_empty<T>(), L, self); + } + + static detail::error_result erase_start(lua_State* L, T& self, K& key) { + return erase_has(has_erase<T>(), L, self, key); + } + + template <bool ip> + static int next_associative(std::true_type, lua_State* L) { + iter& i = stack::unqualified_get<user<iter>>(L, 1); + auto& source = i.source; + auto& it = i.it; + if (it == deferred_uc::end(L, source)) { + return stack::push(L, lua_nil); + } + int p; + if constexpr (ip) { + ++i.i; + p = stack::push_reference(L, i.i); + } + else { + p = stack::push_reference(L, it->first); + } + p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(it->second)); + std::advance(it, 1); + return p; + } + + template <bool> + static int next_associative(std::false_type, lua_State* L) { + iter& i = stack::unqualified_get<user<iter>>(L, 1); + auto& source = i.source; + auto& it = i.it; + next_K k = stack::unqualified_get<next_K>(L, 2); + if (it == deferred_uc::end(L, source)) { + return stack::push(L, lua_nil); + } + int p; + if constexpr (std::is_integral_v<next_K>) { + p = stack::push_reference(L, k + 1); + } + else { + p = stack::stack_detail::push_reference(L, k + 1); + } + p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it)); + std::advance(it, 1); + return p; + } + + template <bool ip> + static int next_iter(lua_State* L) { + typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; + return next_associative<ip>(is_assoc(), L); + } + + template <bool ip> + static int pairs_associative(std::true_type, lua_State* L) { + auto& src = get_src(L); + stack::push(L, next_iter<ip>); + stack::push<user<iter>>(L, src, deferred_uc::begin(L, src)); + stack::push(L, lua_nil); + return 3; + } + + template <bool ip> + static int pairs_associative(std::false_type, lua_State* L) { + auto& src = get_src(L); + stack::push(L, next_iter<ip>); + stack::push<user<iter>>(L, src, deferred_uc::begin(L, src)); + stack::push(L, 0); + return 3; + } + + public: + static int at(lua_State* L) { + auto& self = get_src(L); + detail::error_result er; + { + std::ptrdiff_t pos = stack::unqualified_get<std::ptrdiff_t>(L, 2); + er = at_start(L, self, pos); + } + return handle_errors(L, er); + } + + static int get(lua_State* L) { + auto& self = get_src(L); + detail::error_result er; + { + decltype(auto) key = stack::unqualified_get<K>(L); + er = get_start(L, self, key); + } + return handle_errors(L, er); + } + + static int index_get(lua_State* L) { + return get(L); + } + + static int set(lua_State* L) { + stack_object value = stack_object(L, raw_index(3)); + if (type_of(L, 3) == type::lua_nil) { + return erase(L); + } + auto& self = get_src(L); + detail::error_result er = set_start(L, self, stack_object(L, raw_index(2)), std::move(value)); + return handle_errors(L, er); + } + + static int index_set(lua_State* L) { + return set(L); + } + + static int add(lua_State* L) { + auto& self = get_src(L); + detail::error_result er = add_copyable(is_copyable(), L, self, stack_object(L, raw_index(2))); + return handle_errors(L, er); + } + + static int insert(lua_State* L) { + auto& self = get_src(L); + detail::error_result er = insert_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)), stack_object(L, raw_index(3))); + return handle_errors(L, er); + } + + static int find(lua_State* L) { + auto& self = get_src(L); + detail::error_result er = find_has(has_find<T>(), L, self); + return handle_errors(L, er); + } + + static int index_of(lua_State* L) { + auto& self = get_src(L); + detail::error_result er = find_has<true>(has_find<T>(), L, self); + return handle_errors(L, er); + } + + static iterator begin(lua_State*, T& self) { + using std::begin; + return begin(self); + } + + static iterator end(lua_State*, T& self) { + using std::end; + return end(self); + } + + static int size(lua_State* L) { + auto& self = get_src(L); + std::size_t r = size_start(L, self); + return stack::push(L, r); + } + + static int clear(lua_State* L) { + auto& self = get_src(L); + clear_start(L, self); + return 0; + } + + static int erase(lua_State* L) { + auto& self = get_src(L); + detail::error_result er; + { + decltype(auto) key = stack::unqualified_get<K>(L, 2); + er = erase_start(L, self, key); + } + return handle_errors(L, er); + } + + static int empty(lua_State* L) { + auto& self = get_src(L); + return stack::push(L, empty_start(L, self)); + } + + static std::ptrdiff_t index_adjustment(lua_State*, T&) { +#if defined(SOL_CONTAINERS_START_INDEX) + return static_cast<std::ptrdiff_t>((SOL_CONTAINERS_START) == 0 ? 0 : -(SOL_CONTAINERS_START)); +#else + return static_cast<std::ptrdiff_t>(-1); +#endif + } + + static int pairs(lua_State* L) { + typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; + return pairs_associative<false>(is_assoc(), L); + } + + static int ipairs(lua_State* L) { + typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; + return pairs_associative<true>(is_assoc(), L); + } + + static int next(lua_State* L) { + return stack::push(L, next_iter<false>); + } + }; + + template <typename X> + struct usertype_container_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> { + private: + typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T; + typedef usertype_container<X> deferred_uc; + + public: + typedef std::remove_extent_t<T> value_type; + typedef value_type* iterator; + + private: + struct iter { + T& source; + iterator it; + + iter(T& source, iterator it) : source(source), it(std::move(it)) { + } + }; + + static auto& get_src(lua_State* L) { + auto p = stack::unqualified_check_get<T*>(L, 1); +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + if (!p) { + luaL_error(L, + "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", + detail::demangle<T>().c_str()); + } + if (p.value() == nullptr) { + luaL_error( + L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str()); + } +#endif // Safe getting with error + return *p.value(); + } + + static int find(std::true_type, lua_State* L) { + T& self = get_src(L); + decltype(auto) value = stack::unqualified_get<value_type>(L, 2); + std::size_t N = std::extent<T>::value; + for (std::size_t idx = 0; idx < N; ++idx) { + using v_t = std::add_const_t<decltype(self[idx])>; + v_t v = self[idx]; + if (v == value) { + idx -= deferred_uc::index_adjustment(L, self); + return stack::push(L, idx); + } + } + return stack::push(L, lua_nil); + } + + static int find(std::false_type, lua_State* L) { + return luaL_error(L, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str()); + } + + static int next_iter(lua_State* L) { + iter& i = stack::unqualified_get<user<iter>>(L, 1); + auto& source = i.source; + auto& it = i.it; + std::size_t k = stack::unqualified_get<std::size_t>(L, 2); + if (it == deferred_uc::end(L, source)) { + return 0; + } + int p; + p = stack::push(L, k + 1); + p += stack::push_reference(L, detail::deref_non_pointer(*it)); + std::advance(it, 1); + return p; + } + + public: + static int clear(lua_State* L) { + return luaL_error(L, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str()); + } + + static int erase(lua_State* L) { + return luaL_error(L, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str()); + } + + static int add(lua_State* L) { + return luaL_error(L, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str()); + } + + static int insert(lua_State* L) { + return luaL_error(L, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str()); + } + + static int at(lua_State* L) { + return get(L); + } + + static int get(lua_State* L) { + T& self = get_src(L); + std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2); + idx += deferred_uc::index_adjustment(L, self); + if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 0) { + return stack::push(L, lua_nil); + } + return stack::push_reference(L, detail::deref_non_pointer(self[idx])); + } + + static int index_get(lua_State* L) { + return get(L); + } + + static int set(lua_State* L) { + T& self = get_src(L); + std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2); + idx += deferred_uc::index_adjustment(L, self); + if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value)) { + return luaL_error(L, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + if (idx < 0) { + return luaL_error(L, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str()); + } + self[idx] = stack::unqualified_get<value_type>(L, 3); + return 0; + } + + static int index_set(lua_State* L) { + return set(L); + } + + static int index_of(lua_State* L) { + return find(L); + } + + static int find(lua_State* L) { + return find(meta::supports_op_equal<value_type, value_type>(), L); + } + + static int size(lua_State* L) { + return stack::push(L, std::extent<T>::value); + } + + static int empty(lua_State* L) { + return stack::push(L, std::extent<T>::value > 0); + } + + static int pairs(lua_State* L) { + auto& src = get_src(L); + stack::push(L, next_iter); + stack::push<user<iter>>(L, src, deferred_uc::begin(L, src)); + stack::push(L, 0); + return 3; + } + + static int ipairs(lua_State* L) { + return pairs(L); + } + + static int next(lua_State* L) { + return stack::push(L, next_iter); + } + + static std::ptrdiff_t index_adjustment(lua_State*, T&) { +#if defined(SOL_CONTAINERS_START_INDEX) + return (SOL_CONTAINERS_START) == 0 ? 0 : -(SOL_CONTAINERS_START); +#else + return -1; +#endif + } + + static iterator begin(lua_State*, T& self) { + return std::addressof(self[0]); + } + + static iterator end(lua_State*, T& self) { + return std::addressof(self[0]) + std::extent<T>::value; + } + }; + + template <typename X> + struct usertype_container_default<usertype_container<X>> : usertype_container_default<X> {}; + } // namespace container_detail + + template <typename T> + struct usertype_container : container_detail::usertype_container_default<T> {}; + +} // namespace sol + +#endif // SOL_USERTYPE_CONTAINER_HPP diff --git a/lib/sol2/include/sol/usertype_container_launch.hpp b/lib/sol2/include/sol/usertype_container_launch.hpp new file mode 100644 index 0000000..a9b8f08 --- /dev/null +++ b/lib/sol2/include/sol/usertype_container_launch.hpp @@ -0,0 +1,432 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_USERTYPE_CONTAINER_LAUNCH_HPP +#define SOL_USERTYPE_CONTAINER_LAUNCH_HPP + +#include "stack.hpp" +#include "usertype_container.hpp" +#include "map.hpp" + +namespace sol { + + namespace container_detail { + template <typename X> + struct u_c_launch { + using T = std::remove_pointer_t<meta::unqualified_t<X>>; + using uc = usertype_container<T>; + using default_uc = usertype_container_default<T>; + + static inline int real_index_get_traits(std::true_type, lua_State* L) { + return uc::index_get(L); + } + + static inline int real_index_get_traits(std::false_type, lua_State* L) { + return default_uc::index_get(L); + } + + static inline int real_index_call(lua_State* L) { + typedef detail::unordered_map<string_view, lua_CFunction> call_map; + static const call_map calls{ + { "at", &real_at_call }, + { "get", &real_get_call }, + { "set", &real_set_call }, + { "size", &real_length_call }, + { "add", &real_add_call }, + { "empty", &real_empty_call }, + { "insert", &real_insert_call }, + { "clear", &real_clear_call }, + { "find", &real_find_call }, + { "index_of", &real_index_of_call }, + { "erase", &real_erase_call }, + { "pairs", &pairs_call }, + { "next", &next_call }, + }; + auto maybenameview = stack::unqualified_check_get<string_view>(L, 2); + if (maybenameview) { + const string_view& name = *maybenameview; + auto it = calls.find(name); + if (it != calls.cend()) { + return stack::push(L, it->second); + } + } + return real_index_get_traits(container_detail::has_traits_index_get<uc>(), L); + } + + static inline int real_at_traits(std::true_type, lua_State* L) { + return uc::at(L); + } + + static inline int real_at_traits(std::false_type, lua_State* L) { + return default_uc::at(L); + } + + static inline int real_at_call(lua_State* L) { + return real_at_traits(container_detail::has_traits_at<uc>(), L); + } + + static inline int real_get_traits(std::true_type, lua_State* L) { + return uc::get(L); + } + + static inline int real_get_traits(std::false_type, lua_State* L) { + return default_uc::get(L); + } + + static inline int real_get_call(lua_State* L) { + return real_get_traits(container_detail::has_traits_get<uc>(), L); + } + + static inline int real_set_traits(std::true_type, lua_State* L) { + return uc::set(L); + } + + static inline int real_set_traits(std::false_type, lua_State* L) { + return default_uc::set(L); + } + + static inline int real_set_call(lua_State* L) { + return real_set_traits(container_detail::has_traits_set<uc>(), L); + } + + static inline int real_index_set_traits(std::true_type, lua_State* L) { + return uc::index_set(L); + } + + static inline int real_index_set_traits(std::false_type, lua_State* L) { + return default_uc::index_set(L); + } + + static inline int real_new_index_call(lua_State* L) { + return real_index_set_traits(container_detail::has_traits_index_set<uc>(), L); + } + + static inline int real_pairs_traits(std::true_type, lua_State* L) { + return uc::pairs(L); + } + + static inline int real_pairs_traits(std::false_type, lua_State* L) { + return default_uc::pairs(L); + } + + static inline int real_pairs_call(lua_State* L) { + return real_pairs_traits(container_detail::has_traits_pairs<uc>(), L); + } + + static inline int real_ipairs_traits(std::true_type, lua_State* L) { + return uc::ipairs(L); + } + + static inline int real_ipairs_traits(std::false_type, lua_State* L) { + return default_uc::ipairs(L); + } + + static inline int real_ipairs_call(lua_State* L) { + return real_ipairs_traits(container_detail::has_traits_ipairs<uc>(), L); + } + + static inline int real_next_traits(std::true_type, lua_State* L) { + return uc::next(L); + } + + static inline int real_next_traits(std::false_type, lua_State* L) { + return default_uc::next(L); + } + + static inline int real_next_call(lua_State* L) { + return real_next_traits(container_detail::has_traits_next<uc>(), L); + } + + static inline int real_size_traits(std::true_type, lua_State* L) { + return uc::size(L); + } + + static inline int real_size_traits(std::false_type, lua_State* L) { + return default_uc::size(L); + } + + static inline int real_length_call(lua_State* L) { + return real_size_traits(container_detail::has_traits_size<uc>(), L); + } + + static inline int real_add_traits(std::true_type, lua_State* L) { + return uc::add(L); + } + + static inline int real_add_traits(std::false_type, lua_State* L) { + return default_uc::add(L); + } + + static inline int real_add_call(lua_State* L) { + return real_add_traits(container_detail::has_traits_add<uc>(), L); + } + + static inline int real_insert_traits(std::true_type, lua_State* L) { + return uc::insert(L); + } + + static inline int real_insert_traits(std::false_type, lua_State* L) { + return default_uc::insert(L); + } + + static inline int real_insert_call(lua_State* L) { + return real_insert_traits(container_detail::has_traits_insert<uc>(), L); + } + + static inline int real_clear_traits(std::true_type, lua_State* L) { + return uc::clear(L); + } + + static inline int real_clear_traits(std::false_type, lua_State* L) { + return default_uc::clear(L); + } + + static inline int real_clear_call(lua_State* L) { + return real_clear_traits(container_detail::has_traits_clear<uc>(), L); + } + + static inline int real_empty_traits(std::true_type, lua_State* L) { + return uc::empty(L); + } + + static inline int real_empty_traits(std::false_type, lua_State* L) { + return default_uc::empty(L); + } + + static inline int real_empty_call(lua_State* L) { + return real_empty_traits(container_detail::has_traits_empty<uc>(), L); + } + + static inline int real_erase_traits(std::true_type, lua_State* L) { + return uc::erase(L); + } + + static inline int real_erase_traits(std::false_type, lua_State* L) { + return default_uc::erase(L); + } + + static inline int real_erase_call(lua_State* L) { + return real_erase_traits(container_detail::has_traits_erase<uc>(), L); + } + + static inline int real_find_traits(std::true_type, lua_State* L) { + return uc::find(L); + } + + static inline int real_find_traits(std::false_type, lua_State* L) { + return default_uc::find(L); + } + + static inline int real_find_call(lua_State* L) { + return real_find_traits(container_detail::has_traits_find<uc>(), L); + } + + static inline int real_index_of_call(lua_State* L) { + if constexpr(container_detail::has_traits_index_of<uc>()) { + return uc::index_of(L); + } + else { + return default_uc::index_of(L); + } + } + + static inline int add_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L); + } + + static inline int erase_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L); + } + + static inline int insert_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L); + } + + static inline int clear_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L); + } + + static inline int empty_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L); + } + + static inline int find_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L); + } + + static inline int index_of_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_index_of_call), (&real_index_of_call)>(L); + } + + static inline int length_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L); + } + + static inline int pairs_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L); + } + + static inline int ipairs_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L); + } + + static inline int next_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_next_call), (&real_next_call)>(L); + } + + static inline int at_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_at_call), (&real_at_call)>(L); + } + + static inline int get_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L); + } + + static inline int set_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L); + } + + static inline int index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L); + } + + static inline int new_index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L); + } + }; + } // namespace container_detail + + namespace stack { + namespace stack_detail { + template <typename T, bool is_shim = false> + struct metatable_setup { + lua_State* L; + + metatable_setup(lua_State* L) + : L(L) { + } + + void operator()() { + using meta_usertype_container = container_detail::u_c_launch< + meta::conditional_t<is_shim, as_container_t<std::remove_pointer_t<T>>, std::remove_pointer_t<T>>>; + static const char* metakey = is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0]; + static const std::array<luaL_Reg, 20> reg = { { + // clang-format off + { "__pairs", &meta_usertype_container::pairs_call }, + { "__ipairs", &meta_usertype_container::ipairs_call }, + { "__len", &meta_usertype_container::length_call }, + { "__index", &meta_usertype_container::index_call }, + { "__newindex", &meta_usertype_container::new_index_call }, + { "pairs", &meta_usertype_container::pairs_call }, + { "next", &meta_usertype_container::next_call }, + { "at", &meta_usertype_container::at_call }, + { "get", &meta_usertype_container::get_call }, + { "set", &meta_usertype_container::set_call }, + { "size", &meta_usertype_container::length_call }, + { "empty", &meta_usertype_container::empty_call }, + { "clear", &meta_usertype_container::clear_call }, + { "insert", &meta_usertype_container::insert_call }, + { "add", &meta_usertype_container::add_call }, + { "find", &meta_usertype_container::find_call }, + { "index_of", &meta_usertype_container::index_of_call }, + { "erase", &meta_usertype_container::erase_call }, + std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destruct<T> }, + { nullptr, nullptr } + // clang-format on + } }; + + if (luaL_newmetatable(L, metakey) == 1) { + luaL_setfuncs(L, reg.data(), 0); + } + lua_setmetatable(L, -2); + } + }; + } // namespace stack_detail + + template <typename T> + struct unqualified_pusher<as_container_t<T>> { + using C = meta::unqualified_t<T>; + + static int push_lvalue(std::true_type, lua_State* L, const C& cont) { + stack_detail::metatable_setup<C*, true> fx(L); + return stack::push<detail::as_pointer_tag<const C>>(L, detail::with_function_tag(), fx, detail::ptr(cont)); + } + + static int push_lvalue(std::false_type, lua_State* L, const C& cont) { + stack_detail::metatable_setup<C, true> fx(L); + return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, cont); + } + + static int push_rvalue(std::true_type, lua_State* L, C&& cont) { + stack_detail::metatable_setup<C, true> fx(L); + return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, std::move(cont)); + } + + static int push_rvalue(std::false_type, lua_State* L, const C& cont) { + return push_lvalue(std::is_lvalue_reference<T>(), L, cont); + } + + static int push(lua_State* L, const as_container_t<T>& as_cont) { + return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.value()); + } + + static int push(lua_State* L, as_container_t<T>&& as_cont) { + return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.value())); + } + }; + + template <typename T> + struct unqualified_pusher<as_container_t<T*>> { + using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>; + + static int push(lua_State* L, T* cont) { + stack_detail::metatable_setup<C> fx(L); + return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont); + } + }; + + template <typename T> + struct unqualified_pusher<T, std::enable_if_t<is_container_v<T>>> { + using C = T; + + template <typename... Args> + static int push(lua_State* L, Args&&... args) { + stack_detail::metatable_setup<C> fx(L); + return stack::push<detail::as_value_tag<T>>(L, detail::with_function_tag(), fx, std::forward<Args>(args)...); + } + }; + + template <typename T> + struct unqualified_pusher<T*, std::enable_if_t<is_container_v<T>>> { + using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>; + + static int push(lua_State* L, T* cont) { + stack_detail::metatable_setup<C> fx(L); + return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont); + } + }; + } // namespace stack + +} // namespace sol + +#endif // SOL_USERTYPE_CONTAINER_LAUNCH_HPP diff --git a/lib/sol2/include/sol/usertype_core.hpp b/lib/sol2/include/sol/usertype_core.hpp new file mode 100644 index 0000000..cb57a04 --- /dev/null +++ b/lib/sol2/include/sol/usertype_core.hpp @@ -0,0 +1,204 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_USERTYPE_CORE_HPP +#define SOL_USERTYPE_CORE_HPP + +#include "wrapper.hpp" +#include "stack.hpp" +#include "types.hpp" +#include "stack_reference.hpp" +#include "usertype_traits.hpp" +#include "inheritance.hpp" +#include "raii.hpp" +#include "deprecate.hpp" +#include "object.hpp" +#include "function_types.hpp" +#include "usertype_container_launch.hpp" + +#include <sstream> +#include <type_traits> + +namespace sol { + namespace u_detail { + constexpr const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1); + + constexpr const int environment_index = 1; + constexpr const int usertype_storage_index = 2; + constexpr const int usertype_storage_base_index = 3; + constexpr const int exact_function_index = 4; + constexpr const int magic_index = 5; + + constexpr const int simple_usertype_storage_index = 2; + constexpr const int index_function_index = 3; + constexpr const int new_index_function_index = 4; + + constexpr const int base_walking_failed_index = -32467; + constexpr const int lookup_failed_index = -42469; + + enum class submetatable_type { + // must be sequential + value, + reference, + unique, + const_reference, + const_value, + // must be LAST! + named + }; + + inline auto make_string_view(string_view s) { + return s; + } + + inline auto make_string_view(call_construction) { + return string_view(to_string(meta_function::call_function)); + } + + inline auto make_string_view(meta_function mf) { + return string_view(to_string(mf)); + } + + inline auto make_string_view(base_classes_tag) { + return string_view(detail::base_class_cast_key()); + } + + template <typename Arg> + inline std::string make_string(Arg&& arg) { + string_view s = make_string_view(arg); + return std::string(s.data(), s.size()); + } + + inline int is_indexer(string_view s) { + if (s == to_string(meta_function::index)) { + return 1; + } + else if (s == to_string(meta_function::new_index)) { + return 2; + } + return 0; + } + + inline int is_indexer(meta_function mf) { + if (mf == meta_function::index) { + return 1; + } + else if (mf == meta_function::new_index) { + return 2; + } + return 0; + } + + inline int is_indexer(call_construction) { + return 0; + } + } // namespace u_detail + + namespace detail { + + template <typename T, typename IFx, typename Fx> + inline void insert_default_registrations(IFx&& ifx, Fx&& fx) { + (void)ifx; + (void)fx; + if constexpr (is_automagical<T>::value) { + if (fx(meta_function::less_than)) { + if constexpr (meta::supports_op_less<T>::value) { + lua_CFunction f = &comparsion_operator_wrap<T, std::less<>>; + ifx(meta_function::less_than, f); + } + } + if (fx(meta_function::less_than_or_equal_to)) { + if constexpr (meta::supports_op_less_equal<T>::value) { + lua_CFunction f = &comparsion_operator_wrap<T, std::less_equal<>>; + ifx(meta_function::less_than_or_equal_to, f); + } + } + if (fx(meta_function::equal_to)) { + if constexpr (meta::supports_op_equal<T>::value) { + lua_CFunction f = &comparsion_operator_wrap<T, std::equal_to<>>; + ifx(meta_function::equal_to, f); + } + else { + lua_CFunction f = &comparsion_operator_wrap<T, no_comp>; + ifx(meta_function::equal_to, f); + } + } + if (fx(meta_function::pairs)) { + ifx(meta_function::pairs, &container_detail::u_c_launch<as_container_t<T>>::pairs_call); + } + if (fx(meta_function::length)) { + if constexpr (meta::has_size<const T>::value || meta::has_size<T>::value) { + auto f = &default_size<T>; + ifx(meta_function::length, f); + } + } + if (fx(meta_function::to_string)) { + if constexpr (is_to_stringable<T>::value) { + auto f = &detail::static_trampoline<&default_to_string<T>>; + ifx(meta_function::to_string, f); + } + } + if (fx(meta_function::call_function)) { + if constexpr (meta::has_deducible_signature<T>::value) { + auto f = &c_call<decltype(&T::operator()), &T::operator()>; + ifx(meta_function::call_function, f); + } + } + } + } + } // namespace detail + + namespace stack { namespace stack_detail { + template <typename X> + void set_undefined_methods_on(stack_reference t) { + using T = std::remove_pointer_t<X>; + + lua_State* L = t.lua_state(); + + t.push(); + + detail::lua_reg_table l{}; + int index = 0; + detail::indexed_insert insert_fx(l, index); + detail::insert_default_registrations<T>(insert_fx, detail::property_always_true); + if constexpr (!std::is_pointer_v<X>) { + l[index] = luaL_Reg{ to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() }; + } + luaL_setfuncs(L, l, 0); + + // __type table + lua_createtable(L, 0, 2); + const std::string& name = detail::demangle<T>(); + lua_pushlstring(L, name.c_str(), name.size()); + lua_setfield(L, -2, "name"); + lua_CFunction is_func = &detail::is_check<T>; + lua_pushcclosure(L, is_func, 0); + lua_setfield(L, -2, "is"); + lua_setfield(L, t.stack_index(), to_string(meta_function::type).c_str()); + + t.pop(); + } + }} // namespace stack::stack_detail +} // namespace sol + +#endif // SOL_USERTYPE_CORE_HPP diff --git a/lib/sol2/include/sol/usertype_proxy.hpp b/lib/sol2/include/sol/usertype_proxy.hpp new file mode 100644 index 0000000..2262337 --- /dev/null +++ b/lib/sol2/include/sol/usertype_proxy.hpp @@ -0,0 +1,188 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_USERTYPE_PROXY_HPP +#define SOL_USERTYPE_PROXY_HPP + +#include "traits.hpp" +#include "function.hpp" +#include "protected_function.hpp" +#include "proxy_base.hpp" + +namespace sol { + template <typename Table, typename Key> + struct usertype_proxy : public proxy_base<usertype_proxy<Table, Key>> { + private: + using key_type = detail::proxy_key_t<Key>; + + template <typename T, std::size_t... I> + decltype(auto) tuple_get(std::index_sequence<I...>) const & { + return tbl.template traverse_get<T>(std::get<I>(key)...); + } + + template <typename T, std::size_t... I> + decltype(auto) tuple_get(std::index_sequence<I...>) && { + return tbl.template traverse_get<T>(std::get<I>(std::move(key))...); + } + + template <std::size_t... I, typename T> + void tuple_set(std::index_sequence<I...>, T&& value) & { + if constexpr (sizeof...(I) > 1) { + tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value)); + } + else { + tbl.set(std::get<I>(key)..., std::forward<T>(value)); + } + } + + template <std::size_t... I, typename T> + void tuple_set(std::index_sequence<I...>, T&& value) && { + if constexpr (sizeof...(I) > 1) { + tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value)); + } + else { + tbl.set(std::get<I>(std::move(key))..., std::forward<T>(value)); + } + } + + public: + Table tbl; + key_type key; + + template <typename T> + usertype_proxy(Table table, T&& k) + : tbl(table), key(std::forward<T>(k)) { + } + + template <typename T> + usertype_proxy& set(T&& item) & { + using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; + tuple_set(idx_seq(), std::forward<T>(item)); + return *this; + } + + template <typename T> + usertype_proxy&& set(T&& item) && { + using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; + std::move(*this).tuple_set(idx_seq(), std::forward<T>(item)); + return std::move(*this); + } + + template <typename T> + usertype_proxy& operator=(T&& other) & { + return set(std::forward<T>(other)); + } + + template <typename T> + usertype_proxy&& operator=(T&& other) && { + return std::move(*this).set(std::forward<T>(other)); + } + + template <typename T> + usertype_proxy& operator=(std::initializer_list<T> other) & { + return set(std::move(other)); + } + + template <typename T> + usertype_proxy&& operator=(std::initializer_list<T> other) && { + return std::move(*this).set(std::move(other)); + } + + template <typename T> + decltype(auto) get() const& { + using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; + return tuple_get<T>(idx_seq()); + } + + template <typename T> + decltype(auto) get() && { + using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; + return std::move(*this).template tuple_get<T>(idx_seq()); + } + + template <typename K> + decltype(auto) operator[](K&& k) const& { + auto keys = meta::tuplefy(key, std::forward<K>(k)); + return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys)); + } + + template <typename K> + decltype(auto) operator[](K&& k) & { + auto keys = meta::tuplefy(key, std::forward<K>(k)); + return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys)); + } + + template <typename K> + decltype(auto) operator[](K&& k) && { + auto keys = meta::tuplefy(std::move(key), std::forward<K>(k)); + return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys)); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) { +#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 + // MSVC is ass sometimes + return get<function>().call<Ret...>(std::forward<Args>(args)...); +#else + return get<function>().template call<Ret...>(std::forward<Args>(args)...); +#endif + } + + template <typename... Args> + decltype(auto) operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + + bool valid() const { + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); + lua_pop(lua_state(), p.levels); + return p; + } + + int push() const noexcept { + return push(this->lua_state()); + } + + int push(lua_State* L) const noexcept { + return get<reference>().push(L); + } + + type get_type() const { + type t = type::none; + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); + if (p) { + t = type_of(lua_state(), -1); + } + lua_pop(lua_state(), p.levels); + return t; + } + + lua_State* lua_state() const { + return tbl.lua_state(); + } + }; +} // namespace sol + +#endif // SOL_USERTYPE_PROXY_HPP diff --git a/lib/sol2/include/sol/usertype_storage.hpp b/lib/sol2/include/sol/usertype_storage.hpp new file mode 100644 index 0000000..690f65f --- /dev/null +++ b/lib/sol2/include/sol/usertype_storage.hpp @@ -0,0 +1,1118 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_USERTYPE_STORAGE_HPP +#define SOL_USERTYPE_STORAGE_HPP + +#include "usertype_core.hpp" +#include "make_reference.hpp" +#include "map.hpp" + +#include <bitset> + +namespace sol { namespace u_detail { + + struct usertype_storage_base; + template <typename T> + struct usertype_storage; + + optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index); + usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey); + template <typename T> + optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L); + template <typename T> + usertype_storage<T>& get_usertype_storage(lua_State* L); + + using index_call_function = int(lua_State*, void*); + using change_indexing_mem_func + = void (usertype_storage_base::*)(lua_State*, submetatable_type, void*, stack_reference&, lua_CFunction, lua_CFunction, lua_CFunction, lua_CFunction); + + struct index_call_storage { + index_call_function* index; + index_call_function* new_index; + void* binding_data; + }; + + struct new_index_call_storage : index_call_storage { + void* new_binding_data; + }; + + struct binding_base { + virtual void* data() = 0; + virtual ~binding_base() { + } + }; + + template <typename K, typename Fq, typename T = void> + struct binding : binding_base { + using uF = meta::unqualified_t<Fq>; + using F = meta::conditional_t<meta::is_c_str_of_v<uF, char> +#ifdef __cpp_char8_t + || meta::is_c_str_of_v<uF, char8_t> +#endif + || meta::is_c_str_of_v<uF, char16_t> || meta::is_c_str_of_v<uF, char32_t> || meta::is_c_str_of_v<uF, wchar_t>, + std::add_pointer_t<std::add_const_t<std::remove_all_extents_t<Fq>>>, std::decay_t<Fq>>; + F data_; + + template <typename... Args> + binding(Args&&... args) : data_(std::forward<Args>(args)...) { + } + + virtual void* data() override { + return static_cast<void*>(std::addressof(data_)); + } + + template <bool is_index = true, bool is_variable = false> + static inline int call_with_(lua_State* L, void* target) { + constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0; + auto& f = *static_cast<F*>(target); + return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f); + } + + template <bool is_index = true, bool is_variable = false> + static inline int call_(lua_State* L) { + void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index)); + return call_with_<is_index, is_variable>(L, f); + } + + template <bool is_index = true, bool is_variable = false> + static inline int call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&call_<is_index, is_variable>), (&call_<is_index, is_variable>)>(L); + } + + template <bool is_index = true, bool is_variable = false> + static inline int index_call_with_(lua_State* L, void* target) { + if constexpr (!is_variable) { + if constexpr (is_lua_c_function_v<std::decay_t<F>>) { + auto& f = *static_cast<std::decay_t<F>*>(target); + return stack::push(L, f); + } + else { + // set up upvalues + // for a chained call + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push(L, target); + auto cfunc = &call<is_index, is_variable>; + return stack::push(L, c_closure(cfunc, upvalues)); + } + } + else { + constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0; + auto& f = *static_cast<F*>(target); + return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f); + } + } + + template <bool is_index = true, bool is_variable = false> + static inline int index_call_(lua_State* L) { + void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index)); + return index_call_with_<is_index, is_variable>(L, f); + } + + template <bool is_index = true, bool is_variable = false> + static inline int index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&index_call_<is_index, is_variable>), (&index_call_<is_index, is_variable>)>(L); + } + }; + + inline int index_fail(lua_State* L) { + if (lua_getmetatable(L, 1) == 1) { + int metatarget = lua_gettop(L); + stack::get_field<false, true>(L, stack_reference(L, raw_index(2)), metatarget); + return 1; + } + // With runtime extensibility, we can't + // hard-error things. They have to + // return nil, like regular table types + return stack::push(L, lua_nil); + } + + inline int index_target_fail(lua_State* L, void*) { + return index_fail(L); + } + + inline int new_index_fail(lua_State* L) { + return luaL_error(L, "sol: cannot set (new_index) into this object: no defined new_index operation on usertype"); + } + + inline int new_index_target_fail(lua_State* L, void*) { + return new_index_fail(L); + } + + struct string_for_each_metatable_func { + bool is_destruction = false; + bool is_index = false; + bool is_new_index = false; + bool is_static_index = false; + bool is_static_new_index = false; + bool poison_indexing = false; + bool is_unqualified_lua_CFunction = false; + bool is_unqualified_lua_reference = false; + std::string* p_key = nullptr; + reference* p_binding_ref = nullptr; + lua_CFunction call_func = nullptr; + index_call_storage* p_ics = nullptr; + usertype_storage_base* p_usb = nullptr; + void* p_derived_usb = nullptr; + lua_CFunction idx_call = nullptr, + new_idx_call = nullptr, + meta_idx_call = nullptr, + meta_new_idx_call = nullptr; + change_indexing_mem_func change_indexing; + + void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) { + std::string& key = *p_key; + usertype_storage_base& usb = *p_usb; + index_call_storage& ics = *p_ics; + + if (smt == submetatable_type::named) { + // do not override __call or + // other specific meta functions on named metatable: + // we need that for call construction + // and other amenities + return; + } + int fast_index_table_push = fast_index_table.push(); + stack_reference t(L, -fast_index_table_push); + if (poison_indexing) { + (usb.*change_indexing)(L, + smt, + p_derived_usb, + t, + idx_call, + new_idx_call, + meta_idx_call, + meta_new_idx_call); + } + if (is_destruction + && (smt == submetatable_type::reference || smt == submetatable_type::const_reference || smt == submetatable_type::named + || smt == submetatable_type::unique)) { + // gc does not apply to us here + // for reference types (raw T*, std::ref) + // for the named metatable itself, + // or for unique_usertypes, which do their own custom destruction + t.pop(); + return; + } + if (is_index || is_new_index || is_static_index || is_static_new_index) { + // do not serialize the new_index and index functions here directly + // we control those... + t.pop(); + return; + } + if (is_unqualified_lua_CFunction) { + stack::set_field<false, true>(L, key, call_func, t.stack_index()); + } + else if (is_unqualified_lua_reference) { + reference& binding_ref = *p_binding_ref; + stack::set_field<false, true>(L, key, binding_ref, t.stack_index()); + } + else { + stack::set_field<false, true>(L, key, make_closure(call_func, nullptr, ics.binding_data), t.stack_index()); + } + t.pop(); + } + }; + + struct lua_reference_func { + reference key; + reference value; + + void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) { + if (smt == submetatable_type::named) { + return; + } + int fast_index_table_push = fast_index_table.push(); + stack_reference t(L, -fast_index_table_push); + stack::set_field<false, true>(L, key, value, t.stack_index()); + t.pop(); + } + }; + + struct update_bases_func { + detail::inheritance_check_function base_class_check_func; + detail::inheritance_cast_function base_class_cast_func; + lua_CFunction idx_call, new_idx_call, meta_idx_call, meta_new_idx_call; + usertype_storage_base* p_usb; + void* p_derived_usb; + change_indexing_mem_func change_indexing; + + void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) { + int fast_index_table_push = fast_index_table.push(); + stack_reference t(L, -fast_index_table_push); + stack::set_field(L, detail::base_class_check_key(), reinterpret_cast<void*>(base_class_check_func), t.stack_index()); + stack::set_field(L, detail::base_class_cast_key(), reinterpret_cast<void*>(base_class_cast_func), t.stack_index()); + // change indexing, forcefully + (p_usb->*change_indexing)(L, + smt, + p_derived_usb, + t, + idx_call, + new_idx_call, + meta_idx_call, + meta_new_idx_call); + t.pop(); + } + }; + + struct binding_data_equals { + void* binding_data; + + binding_data_equals(void* b) : binding_data(b) {} + + bool operator()(const std::unique_ptr<binding_base>& ptr) const { + return binding_data == ptr->data(); + } + }; + + struct usertype_storage_base { + public: + std::vector<std::unique_ptr<binding_base>> storage; + std::vector<std::unique_ptr<char[]>> string_keys_storage; + detail::unordered_map<string_view, index_call_storage> string_keys; + detail::unordered_map<reference, reference, reference_hash, reference_equals> auxiliary_keys; + reference value_index_table; + reference reference_index_table; + reference unique_index_table; + reference const_reference_index_table; + reference const_value_index_table; + reference named_index_table; + reference type_table; + reference gc_names_table; + reference named_metatable; + new_index_call_storage base_index; + new_index_call_storage static_base_index; + bool is_using_index; + bool is_using_new_index; + std::bitset<64> properties; + + usertype_storage_base(lua_State* L) + : storage() + , string_keys() + , auxiliary_keys() + , value_index_table() + , reference_index_table() + , unique_index_table() + , const_reference_index_table() + , type_table(make_reference(L, create)) + , gc_names_table(make_reference(L, create)) + , named_metatable(make_reference(L, create)) + , base_index() + , static_base_index() + , is_using_index(false) + , is_using_new_index(false) + , properties() { + base_index.binding_data = nullptr; + base_index.index = index_target_fail; + base_index.new_index = new_index_target_fail; + base_index.new_binding_data = nullptr; + static_base_index.binding_data = nullptr; + static_base_index.index = index_target_fail; + static_base_index.new_binding_data = this; + static_base_index.new_index = new_index_target_set; + } + + template <typename Fx> + void for_each_table(lua_State* L, Fx&& fx) { + for (int i = 0; i < 6; ++i) { + submetatable_type smt = static_cast<submetatable_type>(i); + reference* p_fast_index_table = nullptr; + switch (smt) { + case submetatable_type::const_value: + p_fast_index_table = &this->const_value_index_table; + break; + case submetatable_type::reference: + p_fast_index_table = &this->reference_index_table; + break; + case submetatable_type::unique: + p_fast_index_table = &this->unique_index_table; + break; + case submetatable_type::const_reference: + p_fast_index_table = &this->const_reference_index_table; + break; + case submetatable_type::named: + p_fast_index_table = &this->named_index_table; + break; + case submetatable_type::value: + default: + p_fast_index_table = &this->value_index_table; + break; + } + fx(L, smt, *p_fast_index_table); + } + } + + void add_entry(string_view sv, index_call_storage ics) { + string_keys_storage.emplace_back(new char[sv.size()]); + std::unique_ptr<char[]>& sv_storage = string_keys_storage.back(); + std::memcpy(sv_storage.get(), sv.data(), sv.size()); + string_view stored_sv(sv_storage.get(), sv.size()); + string_keys.insert_or_assign(std::move(stored_sv), std::move(ics)); + } + + template <typename T, typename... Bases> + void update_bases(lua_State* L, bases<Bases...>) { + static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), + "The size of this data pointer is too small to fit the inheritance checking function: Please file " + "a bug report."); + static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), + "The size of this data pointer is too small to fit the inheritance checking function: Please file " + "a bug report."); + static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases"); + if constexpr (sizeof...(Bases) < 1) { + return; + } + + (void)detail::swallow{ 0, ((weak_derive<Bases>::value = true), 0)... }; + + void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this)); + + update_bases_func for_each_fx; + for_each_fx.base_class_check_func = &detail::inheritance<T>::template type_check_with<Bases...>; + for_each_fx.base_class_cast_func = &detail::inheritance<T>::template type_cast_with<Bases...>; + for_each_fx.idx_call = &usertype_storage<T>::template index_call_with_bases<false, Bases...>; + for_each_fx.new_idx_call = &usertype_storage<T>::template index_call_with_bases<true, Bases...>; + for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<false, Bases...>; + for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<true, Bases...>; + for_each_fx.p_usb = this; + for_each_fx.p_derived_usb = derived_this; + for_each_fx.change_indexing = &usertype_storage_base::change_indexing; + for_each_fx.p_derived_usb = derived_this; + this->for_each_table(L, for_each_fx); + } + + void clear() { + if (value_index_table.valid()) { + stack::clear(value_index_table); + } + if (reference_index_table.valid()) { + stack::clear(reference_index_table); + } + if (unique_index_table.valid()) { + stack::clear(unique_index_table); + } + if (const_reference_index_table.valid()) { + stack::clear(const_reference_index_table); + } + if (const_value_index_table.valid()) { + stack::clear(const_value_index_table); + } + if (named_index_table.valid()) { + stack::clear(named_index_table); + } + if (type_table.valid()) { + stack::clear(type_table); + } + if (gc_names_table.valid()) { + stack::clear(gc_names_table); + } + if (named_metatable.valid()) { + lua_State* L = named_metatable.lua_state(); + auto pp = stack::push_pop(named_metatable); + int named_metatable_index = pp.index_of(named_metatable); + if (lua_getmetatable(L, named_metatable_index) == 1) { + stack::clear(L, absolute_index(L, -1)); + } + stack::clear(named_metatable); + } + + value_index_table = lua_nil; + reference_index_table = lua_nil; + unique_index_table = lua_nil; + const_reference_index_table = lua_nil; + const_value_index_table = lua_nil; + named_index_table = lua_nil; + type_table = lua_nil; + gc_names_table = lua_nil; + named_metatable = lua_nil; + + storage.clear(); + string_keys.clear(); + auxiliary_keys.clear(); + } + + template <bool is_new_index, typename Base> + static void base_walk_index(lua_State* L, usertype_storage_base& self, bool& keep_going, int& base_result) { + using bases = typename base<Base>::type; + if (!keep_going) { + return; + } + (void)L; + (void)self; +#if defined(SOL_UNSAFE_BASE_LOOKUP) && SOL_UNSAFE_BASE_LOOKUP + usertype_storage_base& base_storage = get_usertype_storage<Base>(L); + base_result = self_index_call<is_new_index, true>(bases(), L, base_storage); +#else + optional<usertype_storage<Base>&> maybe_base_storage = maybe_get_usertype_storage<Base>(L); + if (static_cast<bool>(maybe_base_storage)) { + base_result = self_index_call<is_new_index, true>(bases(), L, *maybe_base_storage); + keep_going = base_result == base_walking_failed_index; + } +#endif // Fast versus slow, safe base lookup + } + + template <bool is_new_index = false, bool base_walking = false, bool from_named_metatable = false, typename... Bases> + static inline int self_index_call(types<Bases...>, lua_State* L, usertype_storage_base& self) { + type k_type = stack::get<type>(L, 2); + if (k_type == type::string) { + index_call_storage* target = nullptr; + { + string_view k = stack::get<string_view>(L, 2); + auto it = self.string_keys.find(k); + if (it != self.string_keys.cend()) { + target = &it->second; + } + } + if (target != nullptr) { + // let the target decide what to do + if constexpr (is_new_index) { + return (target->new_index)(L, target->binding_data); + } + else { + return (target->index)(L, target->binding_data); + } + } + } + else if (k_type != type::lua_nil && k_type != type::none) { + reference* target = nullptr; + { + stack_reference k = stack::get<stack_reference>(L, 2); + auto it = self.auxiliary_keys.find(k); + if (it != self.auxiliary_keys.cend()) { + target = &it->second; + } + } + if (target != nullptr) { + if constexpr(is_new_index) { + // set value and return + *target = reference(L, 3); + return 0; + } + else { + // push target to return + // what we found + return stack::push(L, *target); + } + } + } + + // retrieve bases and walk through them. + bool keep_going = true; + int base_result; + (void)keep_going; + (void)base_result; + (void)detail::swallow{ 1, (base_walk_index<is_new_index, Bases>(L, self, keep_going, base_result), 1)... }; + if constexpr (sizeof...(Bases) > 0) { + if (!keep_going) { + return base_result; + } + } + if constexpr (base_walking) { + // if we're JUST base-walking then don't index-fail, just + // return the false bits + return base_walking_failed_index; + } + else if constexpr (from_named_metatable) { + if constexpr (is_new_index) { + return self.static_base_index.new_index(L, self.static_base_index.new_binding_data); + } + else { + return self.static_base_index.index(L, self.static_base_index.binding_data); + } + } + else { + if constexpr (is_new_index) { + return self.base_index.new_index(L, self.base_index.new_binding_data); + } + else { + return self.base_index.index(L, self.base_index.binding_data); + } + } + } + + void change_indexing(lua_State* L, submetatable_type submetatable, void* derived_this, stack_reference& t, lua_CFunction index, + lua_CFunction new_index, lua_CFunction meta_index, lua_CFunction meta_new_index) { + usertype_storage_base& this_base = *this; + void* base_this = static_cast<void*>(&this_base); + + this->is_using_index |= true; + this->is_using_new_index |= true; + if (submetatable == submetatable_type::named) { + stack::set_field(L, metatable_key, named_index_table, t.stack_index()); + stack_reference stack_metametatable(L, -named_metatable.push()); + stack::set_field<false, true>(L, + meta_function::index, + make_closure(meta_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), + stack_metametatable.stack_index()); + stack::set_field<false, true>(L, + meta_function::new_index, + make_closure(meta_new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), + stack_metametatable.stack_index()); + stack_metametatable.pop(); + } + else { + stack::set_field<false, true>( + L, meta_function::index, make_closure(index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index()); + stack::set_field<false, true>( + L, meta_function::new_index, make_closure(new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index()); + } + } + + template <typename T = void, typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value); + + static int new_index_target_set(lua_State* L, void* target) { + usertype_storage_base& self = *static_cast<usertype_storage_base*>(target); + self.set(L, reference(L, raw_index(2)), reference(L, raw_index(3))); + return 0; + } + }; + + template <typename T> + struct usertype_storage : usertype_storage_base { + + using usertype_storage_base::usertype_storage_base; + + template <bool is_new_index, bool from_named_metatable> + static inline int index_call_(lua_State* L) { + using bases = typename base<T>::type; + usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index)); + return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self); + } + + template <bool is_new_index, bool from_named_metatable, typename... Bases> + static inline int index_call_with_bases_(lua_State* L) { + using bases = types<Bases...>; + usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index)); + return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self); + } + + template <bool is_new_index> + static inline int index_call(lua_State* L) { + return detail::static_trampoline<&index_call_<is_new_index, false>>(L); + } + + template <bool is_new_index, typename... Bases> + static inline int index_call_with_bases(lua_State* L) { + return detail::static_trampoline<&index_call_with_bases_<is_new_index, false, Bases...>>(L); + } + + template <bool is_new_index> + static inline int meta_index_call(lua_State* L) { + return detail::static_trampoline<&index_call_<is_new_index, true>>(L); + } + + template <bool is_new_index, typename... Bases> + static inline int meta_index_call_with_bases(lua_State* L) { + return detail::static_trampoline<&index_call_with_bases_<is_new_index, true, Bases...>>(L); + } + + template <typename Key, typename Value> + inline void set(lua_State* L, Key&& key, Value&& value); + }; + + template <typename T> + inline int destruct_usertype_storage (lua_State* L) { + return detail::user_alloc_destruct<usertype_storage<T>>(L); + } + + template <typename T, typename Key, typename Value> + void usertype_storage_base::set(lua_State* L, Key&& key, Value&& value) { + using ValueU = meta::unwrap_unqualified_t<Value>; + using KeyU = meta::unwrap_unqualified_t<Key>; + using Binding = binding<KeyU, ValueU, T>; + using is_var_bind = is_variable_binding<ValueU>; + if constexpr (std::is_same_v<KeyU, call_construction>) { + std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value)); + Binding& b = *p_binding; + this->storage.push_back(std::move(p_binding)); + + this->named_index_table.push(); + absolute_index metametatable_index(L, -1); + stack::push(L, nullptr); + stack::push(L, b.data()); + lua_CFunction target_func = &b.template call<false, false>; + lua_pushcclosure(L, target_func, 2); + lua_setfield(L, metametatable_index, to_string(meta_function::call).c_str()); + this->named_index_table.pop(); + } + else if constexpr (std::is_same_v<KeyU, base_classes_tag>) { + this->update_bases<T>(L, std::forward<Value>(value)); + } + else if constexpr ((meta::is_string_like_or_constructible<KeyU>::value || std::is_same_v<KeyU, meta_function>)) { + std::string s = u_detail::make_string(std::forward<Key>(key)); + auto storage_it = this->storage.end(); + auto string_it = this->string_keys.find(s); + if (string_it != this->string_keys.cend()) { + const auto& binding_data = string_it->second.binding_data; + storage_it = std::find_if(this->storage.begin(), this->storage.end(), binding_data_equals(binding_data)); + this->string_keys.erase(string_it); + } + + std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value)); + Binding& b = *p_binding; + if (storage_it != this->storage.cend()) { + *storage_it = std::move(p_binding); + } + else { + this->storage.push_back(std::move(p_binding)); + } + + bool is_index = (s == to_string(meta_function::index)); + bool is_new_index = (s == to_string(meta_function::new_index)); + bool is_static_index = (s == to_string(meta_function::static_index)); + bool is_static_new_index = (s == to_string(meta_function::static_new_index)); + bool is_destruction = s == to_string(meta_function::garbage_collect); + bool poison_indexing = (!is_using_index || !is_using_new_index) && (is_var_bind::value || is_index || is_new_index); + void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this)); + index_call_storage ics; + ics.binding_data = b.data(); + ics.index = is_index || is_static_index ? &Binding::template call_with_<true, is_var_bind::value> : &Binding::template index_call_with_<true, is_var_bind::value>; + ics.new_index + = is_new_index || is_static_new_index ? &Binding::template call_with_<false, is_var_bind::value> : &Binding::template index_call_with_<false, is_var_bind::value>; + + string_for_each_metatable_func for_each_fx; + for_each_fx.is_destruction = is_destruction; + for_each_fx.is_index = is_index; + for_each_fx.is_new_index = is_new_index; + for_each_fx.is_static_index = is_static_index; + for_each_fx.is_static_new_index = is_static_new_index; + for_each_fx.poison_indexing = poison_indexing; + for_each_fx.p_key = &s; + for_each_fx.p_ics = &ics; + if constexpr (is_lua_c_function_v<ValueU>) { + for_each_fx.is_unqualified_lua_CFunction = true; + for_each_fx.call_func = *static_cast<lua_CFunction*>(ics.binding_data); + } + else if constexpr (is_lua_reference_or_proxy_v<ValueU>) { + for_each_fx.is_unqualified_lua_reference = true; + for_each_fx.p_binding_ref = static_cast<reference*>(ics.binding_data); + } + else { + for_each_fx.call_func = &b.template call<false, is_var_bind::value>; + } + for_each_fx.p_usb = this; + for_each_fx.p_derived_usb = derived_this; + for_each_fx.idx_call = &usertype_storage<T>::template index_call<false>; + for_each_fx.new_idx_call = &usertype_storage<T>::template index_call<true>; + for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call<false>; + for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call<true>; + for_each_fx.change_indexing = &usertype_storage_base::change_indexing; + // set base index and base new_index + // functions here + if (is_index) { + this->base_index.index = ics.index; + this->base_index.binding_data = ics.binding_data; + } + if (is_new_index) { + this->base_index.new_index = ics.new_index; + this->base_index.new_binding_data = ics.binding_data; + } + if (is_static_index) { + this->static_base_index.index = ics.index; + this->static_base_index.binding_data = ics.binding_data; + } + if (is_static_new_index) { + this->static_base_index.new_index = ics.new_index; + this->static_base_index.new_binding_data = ics.binding_data; + } + this->for_each_table(L, for_each_fx); + this->add_entry(s, std::move(ics)); + } + else { + // the reference-based implementation might compare poorly and hash + // poorly in some cases... + if constexpr (is_lua_reference_v<KeyU> && is_lua_reference_v<ValueU>) { + if (key.get_type() == type::string) { + stack::push(L, key); + std::string string_key = stack::pop<std::string>(L); + this->set<T>(L, string_key, std::forward<Value>(value)); + } + else { + lua_reference_func ref_additions_fx{ key, value }; + + this->for_each_table(L, ref_additions_fx); + this->auxiliary_keys.insert_or_assign(std::forward<Key>(key), std::forward<Value>(value)); + } + } + else { + reference ref_key = make_reference(L, std::forward<Key>(key)); + reference ref_value = make_reference(L, std::forward<Value>(value)); + lua_reference_func ref_additions_fx{ key, value }; + + this->for_each_table(L, ref_additions_fx); + this->auxiliary_keys.insert_or_assign(std::move(ref_key), std::move(ref_value)); + } + } + } + + template <typename T> + template <typename Key, typename Value> + void usertype_storage<T>::set(lua_State* L, Key&& key, Value&& value) { + static_cast<usertype_storage_base&>(*this).set<T>(L, std::forward<Key>(key), std::forward<Value>(value)); + } + + template <typename T> + inline usertype_storage<T>& create_usertype_storage(lua_State* L) { + const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; + + // Make sure userdata's memory is properly in lua first, + // otherwise all the light userdata we make later will become invalid + int usertype_storage_push_count = stack::push<user<usertype_storage<T>>>(L, no_metatable, L); + stack_reference usertype_storage_ref(L, -usertype_storage_push_count); + + // create and push onto the stack a table to use as metatable for this GC + // we create a metatable to attach to the regular gc_table + // so that the destructor is called for the usertype storage + int usertype_storage_metatabe_count = stack::push(L, new_table(0, 1)); + stack_reference usertype_storage_metatable(L, -usertype_storage_metatabe_count); + // set the destruction routine on the metatable + stack::set_field(L, meta_function::garbage_collect, &destruct_usertype_storage<T>, usertype_storage_metatable.stack_index()); + // set the metatable on the usertype storage userdata + stack::set_field(L, metatable_key, usertype_storage_metatable, usertype_storage_ref.stack_index()); + usertype_storage_metatable.pop(); + + // set the usertype storage and its metatable + // into the global table... + stack::set_field<true>(L, gcmetakey, usertype_storage_ref); + usertype_storage_ref.pop(); + + // then retrieve the lua-stored version so we have a well-pinned + // reference that does not die + stack::get_field<true>(L, gcmetakey); + usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); + return target_umt; + } + + inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index) { + stack::record tracking; + if (!stack::check<user<usertype_storage_base>>(L, index)) { + return nullopt; + } + usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking); + return target_umt; + } + + inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, const char* gcmetakey) { + stack::get_field<true>(L, gcmetakey); + auto maybe_storage = maybe_get_usertype_storage_base(L, lua_gettop(L)); + lua_pop(L, 1); + return maybe_storage; + } + + inline usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey) { + stack::get_field<true>(L, gcmetakey); + stack::record tracking; + usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking); + lua_pop(L, 1); + return target_umt; + } + + template <typename T> + inline optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L) { + const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; + stack::get_field<true>(L, gcmetakey); + int target = lua_gettop(L); + if (!stack::check<user<usertype_storage<T>>>(L, target)) { + return nullopt; + } + usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); + return target_umt; + } + + template <typename T> + inline usertype_storage<T>& get_usertype_storage(lua_State* L) { + const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; + stack::get_field<true>(L, gcmetakey); + usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); + return target_umt; + } + + template <typename T> + inline void delete_usertype_storage(lua_State* L) { + using u_traits = usertype_traits<T>; +#if 0 + using u_const_traits = usertype_traits<const T>; + using u_unique_traits = usertype_traits<detail::unique_usertype<T>>; + using u_ref_traits = usertype_traits<T*>; + using u_const_ref_traits = usertype_traits<T const*>; +#endif + using uts = usertype_storage<T>; + + const char* gcmetakey = &u_traits::gc_table()[0]; + stack::get_field<true>(L, gcmetakey); + if (!stack::check<user<uts>>(L)) { + lua_pop(L, 1); + return; + } + usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); + target_umt.clear(); + + // get the registry +#if 0 + stack_reference registry(L, raw_index(LUA_REGISTRYINDEX)); + registry.push(); + // eliminate all named entries for this usertype + // in the registry (luaL_newmetatable does + // [name] = new table + // in registry upon creation + stack::set_field(L, &u_traits::metatable()[0], lua_nil, registry.stack_index()); + stack::set_field(L, &u_const_traits::metatable()[0], lua_nil, registry.stack_index()); + stack::set_field(L, &u_const_ref_traits::metatable()[0], lua_nil, registry.stack_index()); + stack::set_field(L, &u_ref_traits::metatable()[0], lua_nil, registry.stack_index()); + stack::set_field(L, &u_unique_traits::metatable()[0], lua_nil, registry.stack_index()); + registry.pop(); +#endif // Registry Cleanout + + stack::set_field<true>(L, gcmetakey, lua_nil); + } + + template <typename T> + inline int register_usertype(lua_State* L, automagic_enrollments enrollments = {}) { + using u_traits = usertype_traits<T>; + using u_const_traits = usertype_traits<const T>; + using u_unique_traits = usertype_traits<detail::unique_usertype<T>>; + using u_ref_traits = usertype_traits<T*>; + using u_const_ref_traits = usertype_traits<T const*>; + using uts = usertype_storage<T>; + + // always have __new_index point to usertype_storage method + // have __index always point to regular fast-lookup + // meta_method table + // if __new_index is invoked, runtime-swap + // to slow __index if necessary + // (no speed penalty because function calls + // are all read-only -- only depend on __index + // to retrieve function and then call happens VIA Lua) + + // __type entry: + // table contains key -> value lookup, + // where key is entry in metatable + // and value is type information as a string as + // best as we can give it + + // name entry: + // string that contains raw class name, + // as defined from C++ + + // is entry: + // checks if argument supplied is of type T + + // __storage entry: + // a light userdata pointing to the storage + // mostly to enable this new abstraction + // to not require the type name `T` + // to get at the C++ usertype storage within + + + // we then let typical definitions potentially override these intrinsics + // it's the user's fault if they override things or screw them up: + // these names have been reserved and documented since sol3 + + // STEP 0: tell the old usertype (if it exists) + // to fuck off + delete_usertype_storage<T>(L); + + // STEP 1: Create backing store for usertype storage + // Pretty much the most important step. + // STEP 2: Create Lua tables used for fast method indexing. + // This is done inside of the storage table's constructor + usertype_storage<T>& storage = create_usertype_storage<T>(L); + usertype_storage_base& base_storage = storage; + void* light_storage = static_cast<void*>(&storage); + void* light_base_storage = static_cast<void*>(&base_storage); + + + // STEP 3: set up GC escape hatch table entirely + storage.gc_names_table.push(); + stack_reference gnt(L, -1); + stack::set_field(L, submetatable_type::named, &u_traits::gc_table()[0], gnt.stack_index()); + stack::set_field(L, submetatable_type::const_value, &u_const_traits::metatable()[0], gnt.stack_index()); + stack::set_field(L, submetatable_type::const_reference, &u_const_ref_traits::metatable()[0], gnt.stack_index()); + stack::set_field(L, submetatable_type::reference, &u_ref_traits::metatable()[0], gnt.stack_index()); + stack::set_field(L, submetatable_type::unique, &u_unique_traits::metatable()[0], gnt.stack_index()); + stack::set_field(L, submetatable_type::value, &u_traits::metatable()[0], gnt.stack_index()); + gnt.pop(); + + // STEP 4: add some useful information to the type table + stack_reference stacked_type_table(L, -storage.type_table.push()); + stack::set_field(L, "name", detail::demangle<T>(), stacked_type_table.stack_index()); + stack::set_field(L, "is", &detail::is_check<T>, stacked_type_table.stack_index()); + stacked_type_table.pop(); + + // STEP 5: create and hook up metatable, + // add intrinsics + // this one is the actual meta-handling table, + // the next one will be the one for + int for_each_backing_metatable_calls = 0; + auto for_each_backing_metatable = [&](lua_State* L, submetatable_type smt, reference& fast_index_table) { + // Pointer types, AKA "references" from C++ + const char* metakey = nullptr; + switch (smt) { + case submetatable_type::const_value: + metakey = &u_const_traits::metatable()[0]; + break; + case submetatable_type::reference: + metakey = &u_ref_traits::metatable()[0]; + break; + case submetatable_type::unique: + metakey = &u_unique_traits::metatable()[0]; + break; + case submetatable_type::const_reference: + metakey = &u_const_ref_traits::metatable()[0]; + break; + case submetatable_type::named: + metakey = &u_traits::user_metatable()[0]; + break; + case submetatable_type::value: + default: + metakey = &u_traits::metatable()[0]; + break; + } + + luaL_newmetatable(L, metakey); + if (smt == submetatable_type::named) { + // the named table itself + // gets the associated name value + storage.named_metatable = reference(L, -1); + lua_pop(L, 1); + // but the thing we perform the methods on + // is still the metatable of the named + // table + lua_createtable(L, 0, 6); + } + stack_reference t(L, -1); + fast_index_table = reference(t); + stack::set_field<false, true>(L, meta_function::type, storage.type_table, t.stack_index()); + if constexpr (std::is_destructible_v<T>) { + // destructible: serialize default + // destructor here + switch (smt) { + case submetatable_type::const_reference: + case submetatable_type::reference: + case submetatable_type::named: + break; + case submetatable_type::unique: + stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::unique_destruct<T>, t.stack_index()); + break; + case submetatable_type::value: + case submetatable_type::const_value: + default: + stack::set_field<false, true>(L, meta_function::garbage_collect, detail::make_destructor<T>(), t.stack_index()); + break; + } + } + else { + // not destructible: serialize a + // "hey you messed up" + // destructor + switch (smt) { + case submetatable_type::const_reference: + case submetatable_type::reference: + case submetatable_type::named: + break; + case submetatable_type::unique: + stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index()); + break; + case submetatable_type::value: + case submetatable_type::const_value: + default: + stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index()); + break; + } + } + + static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), + "The size of this data pointer is too small to fit the inheritance checking function: file a bug " + "report."); + static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), + "The size of this data pointer is too small to fit the inheritance checking function: file a bug " + "report."); + stack::set_field<false, true>(L, detail::base_class_check_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_check), t.stack_index()); + stack::set_field<false, true>(L, detail::base_class_cast_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_cast), t.stack_index()); + + auto prop_fx = detail::properties_enrollment_allowed(for_each_backing_metatable_calls, storage.properties, enrollments); + auto insert_fx = [&L, &t, &storage](meta_function mf, lua_CFunction reg) { + stack::set_field<false, true>(L, mf, reg, t.stack_index()); + storage.properties[static_cast<int>(mf)] = true; + }; + detail::insert_default_registrations<T>(insert_fx, prop_fx); + + // There are no variables, so serialize the fast function stuff + // be sure to reset the index stuff to the non-fast version + // if the user ever adds something later! + if (smt == submetatable_type::named) { + // add escape hatch storage pointer and gc names + stack::set_field<false, true>(L, meta_function::storage, light_base_storage, t.stack_index()); + stack::set_field<false, true>(L, meta_function::gc_names, storage.gc_names_table, t.stack_index()); + + // fancy new_indexing when using the named table + { + absolute_index named_metatable_index(L, -storage.named_metatable.push()); + stack::set_field<false, true>(L, metatable_key, t, named_metatable_index); + storage.named_metatable.pop(); + } + stack_reference stack_metametatable(L, -storage.named_index_table.push()); + stack::set_field<false, true>(L, + meta_function::index, + make_closure(uts::template meta_index_call<false>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic), + stack_metametatable.stack_index()); + stack::set_field<false, true>(L, + meta_function::new_index, + make_closure(uts::template meta_index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic), + stack_metametatable.stack_index()); + stack_metametatable.pop(); + } + else { + // otherwise just plain for index, + // and elaborated for new_index + stack::set_field<false, true>(L, meta_function::index, t, t.stack_index()); + stack::set_field<false, true>(L, + meta_function::new_index, + make_closure(uts::template index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic), + t.stack_index()); + storage.is_using_new_index = true; + } + + ++for_each_backing_metatable_calls; + fast_index_table = reference(L, t); + t.pop(); + }; + + storage.for_each_table(L, for_each_backing_metatable); + + // can only use set AFTER we initialize all the metatables + if constexpr (std::is_default_constructible_v<T>) { + if (enrollments.default_constructor) { + storage.set(L, meta_function::construct, constructors<T()>()); + } + } + + // return the named metatable we want names linked into + storage.named_metatable.push(); + return 1; + } +}} // namespace sol::u_detail + +#endif // SOL_USERTYPE_STORAGE_HPP diff --git a/lib/sol2/include/sol/usertype_traits.hpp b/lib/sol2/include/sol/usertype_traits.hpp new file mode 100644 index 0000000..85363ed --- /dev/null +++ b/lib/sol2/include/sol/usertype_traits.hpp @@ -0,0 +1,61 @@ +// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_USERTYPE_TRAITS_HPP
+#define SOL_USERTYPE_TRAITS_HPP
+
+#include "demangle.hpp"
+
+namespace sol {
+
+ template <typename T>
+ struct usertype_traits {
+ static const std::string& name() {
+ static const std::string& n = detail::short_demangle<T>();
+ return n;
+ }
+ static const std::string& qualified_name() {
+ static const std::string& q_n = detail::demangle<T>();
+ return q_n;
+ }
+ static const std::string& metatable() {
+ static const std::string m = std::string("sol.").append(detail::demangle<T>());
+ return m;
+ }
+ static const std::string& user_metatable() {
+ static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
+ return u_m;
+ }
+ static const std::string& user_gc_metatable() {
+ static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
+ return u_g_m;
+ }
+ static const std::string& gc_table() {
+ static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
+ return g_t;
+ }
+ };
+
+} // namespace sol
+
+#endif // SOL_USERTYPE_TRAITS_HPP
diff --git a/lib/sol2/include/sol/variadic_args.hpp b/lib/sol2/include/sol/variadic_args.hpp new file mode 100644 index 0000000..14a0c46 --- /dev/null +++ b/lib/sol2/include/sol/variadic_args.hpp @@ -0,0 +1,184 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_VARIADIC_ARGS_HPP +#define SOL_VARIADIC_ARGS_HPP + +#include "stack.hpp" +#include "stack_proxy.hpp" +#include "stack_iterator.hpp" +#include <limits> +#include <iterator> + +namespace sol { + struct variadic_args { + private: + lua_State* L; + int index; + int stacktop; + + public: + typedef stack_proxy reference_type; + typedef stack_proxy value_type; + typedef stack_proxy* pointer; + typedef std::ptrdiff_t difference_type; + typedef std::size_t size_type; + typedef stack_iterator<stack_proxy, false> iterator; + typedef stack_iterator<stack_proxy, true> const_iterator; + typedef std::reverse_iterator<iterator> reverse_iterator; + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; + + variadic_args() = default; + variadic_args(lua_State* luastate, int stackindex = -1) + : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) { + } + variadic_args(lua_State* luastate, int stackindex, int lastindex) + : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lastindex) { + } + variadic_args(const variadic_args&) = default; + variadic_args& operator=(const variadic_args&) = default; + variadic_args(variadic_args&& o) + : L(o.L), index(o.index), stacktop(o.stacktop) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.L = nullptr; + o.index = 0; + o.stacktop = 0; + } + variadic_args& operator=(variadic_args&& o) { + L = o.L; + index = o.index; + stacktop = o.stacktop; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.L = nullptr; + o.index = 0; + o.stacktop = 0; + return *this; + } + + iterator begin() { + return iterator(L, index, stacktop + 1); + } + iterator end() { + return iterator(L, stacktop + 1, stacktop + 1); + } + const_iterator begin() const { + return const_iterator(L, index, stacktop + 1); + } + const_iterator end() const { + return const_iterator(L, stacktop + 1, stacktop + 1); + } + const_iterator cbegin() const { + return begin(); + } + const_iterator cend() const { + return end(); + } + + reverse_iterator rbegin() { + return std::reverse_iterator<iterator>(begin()); + } + reverse_iterator rend() { + return std::reverse_iterator<iterator>(end()); + } + const_reverse_iterator rbegin() const { + return std::reverse_iterator<const_iterator>(begin()); + } + const_reverse_iterator rend() const { + return std::reverse_iterator<const_iterator>(end()); + } + const_reverse_iterator crbegin() const { + return std::reverse_iterator<const_iterator>(cbegin()); + } + const_reverse_iterator crend() const { + return std::reverse_iterator<const_iterator>(cend()); + } + + int push() const { + return push(L); + } + + int push(lua_State* target) const { + int pushcount = 0; + for (int i = index; i <= stacktop; ++i) { + lua_pushvalue(L, i); + pushcount += 1; + } + if (target != L) { + lua_xmove(L, target, pushcount); + } + return pushcount; + } + + template <typename T> + decltype(auto) get(difference_type index_offset = 0) const { + return stack::get<T>(L, index + static_cast<int>(index_offset)); + } + + type get_type(difference_type index_offset = 0) const noexcept { + return type_of(L, index + static_cast<int>(index_offset)); + } + + stack_proxy operator[](difference_type index_offset) const { + return stack_proxy(L, index + static_cast<int>(index_offset)); + } + + lua_State* lua_state() const { + return L; + }; + int stack_index() const { + return index; + }; + int leftover_count() const { + return stacktop - (index - 1); + } + std::size_t size() const { + return static_cast<std::size_t>(leftover_count()); + } + int top() const { + return stacktop; + } + }; + + namespace stack { + template <> + struct unqualified_getter<variadic_args> { + static variadic_args get(lua_State* L, int index, record& tracking) { + tracking.last = 0; + return variadic_args(L, index); + } + }; + + template <> + struct unqualified_pusher<variadic_args> { + static int push(lua_State* L, const variadic_args& ref) { + return ref.push(L); + } + }; + } // namespace stack +} // namespace sol + +#endif // SOL_VARIADIC_ARGS_HPP diff --git a/lib/sol2/include/sol/variadic_results.hpp b/lib/sol2/include/sol/variadic_results.hpp new file mode 100644 index 0000000..b604071 --- /dev/null +++ b/lib/sol2/include/sol/variadic_results.hpp @@ -0,0 +1,102 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_VARIADIC_RESULTS_HPP +#define SOL_VARIADIC_RESULTS_HPP + +#include "stack.hpp" +#include "object.hpp" +#include "as_returns.hpp" +#include "function_result.hpp" +#include "protected_function_result.hpp" + +#include <vector> + +namespace sol { + + template <typename Al = typename std::allocator<object>> + struct basic_variadic_results : public std::vector<object, Al> { + private: + using base_t = std::vector<object, Al>; + + public: + basic_variadic_results() : base_t() {} + + basic_variadic_results(unsafe_function_result fr) : base_t() { + this->reserve(fr.return_count()); + this->insert(this->cend(), fr.begin(), fr.end()); + } + + basic_variadic_results(protected_function_result fr) : base_t() { + this->reserve(fr.return_count()); + this->insert(this->cend(), fr.begin(), fr.end()); + } + + template <typename Arg0, typename... Args, + meta::disable_any<std::is_same<meta::unqualified_t<Arg0>, basic_variadic_results>, std::is_same<meta::unqualified_t<Arg0>, function_result>, + std::is_same<meta::unqualified_t<Arg0>, protected_function_result>> = meta::enabler> + basic_variadic_results(Arg0&& arg0, Args&&... args) : base_t(std::forward<Arg0>(arg0), std::forward<Args>(args)...) { + } + + basic_variadic_results(const basic_variadic_results&) = default; + basic_variadic_results(basic_variadic_results&&) = default; + }; + + struct variadic_results : public basic_variadic_results<> { + private: + using base_t = basic_variadic_results<>; + + public: + using base_t::base_t; + }; + + template <typename Al> + struct is_container<basic_variadic_results<Al>> : std::false_type {}; + + template <> + struct is_container<variadic_results> : std::false_type {}; + + namespace stack { + template <typename Al> + struct unqualified_pusher<basic_variadic_results<Al>> { + int push(lua_State* L, const basic_variadic_results<Al>& e) { + int p = 0; + for (const auto& i : e) { + p += stack::push(L, i); + } + return p; + } + }; + + template <> + struct unqualified_pusher<variadic_results> { + int push(lua_State* L, const variadic_results& r) { + using base_t = basic_variadic_results<>; + return stack::push(L, static_cast<const base_t&>(r)); + } + }; + } // namespace stack + +} // namespace sol + +#endif // SOL_VARIADIC_RESULTS_HPP diff --git a/lib/sol2/include/sol/wrapper.hpp b/lib/sol2/include/sol/wrapper.hpp new file mode 100644 index 0000000..75670f0 --- /dev/null +++ b/lib/sol2/include/sol/wrapper.hpp @@ -0,0 +1,307 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_WRAPPER_HPP +#define SOL_WRAPPER_HPP + +#include "types.hpp" + +namespace sol { + + namespace detail { + template <typename T> + using array_return_type = meta::conditional_t<std::is_array<T>::value, std::add_lvalue_reference_t<T>, T>; + } + + template <typename F, typename = void> + struct wrapper { + typedef lua_bind_traits<meta::unqualified_t<F>> traits_type; + typedef typename traits_type::args_list args_list; + typedef typename traits_type::args_list free_args_list; + typedef typename traits_type::returns_list returns_list; + + template <typename... Args> + static decltype(auto) call(F& f, Args&&... args) { + return f(std::forward<Args>(args)...); + } + + struct caller { + template <typename... Args> + decltype(auto) operator()(F& fx, Args&&... args) const { + return call(fx, std::forward<Args>(args)...); + } + }; + }; + + template <typename F> + struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> { + typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type; + typedef typename traits_type::args_list args_list; + typedef typename traits_type::args_list free_args_list; + typedef typename traits_type::returns_list returns_list; + + template <F fx, typename... Args> + static decltype(auto) invoke(Args&&... args) { + return fx(std::forward<Args>(args)...); + } + + template <typename... Args> + static decltype(auto) call(F& fx, Args&&... args) { + return fx(std::forward<Args>(args)...); + } + + struct caller { + template <typename... Args> + decltype(auto) operator()(F& fx, Args&&... args) const { + return call(fx, std::forward<Args>(args)...); + } + }; + + template <F fx> + struct invoker { + template <typename... Args> + decltype(auto) operator()(Args&&... args) const { + return invoke<fx>(std::forward<Args>(args)...); + } + }; + }; + + template <typename F> + struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> { + typedef lua_bind_traits<meta::unqualified_t<F>> traits_type; + typedef typename traits_type::object_type object_type; + typedef typename traits_type::return_type return_type; + typedef typename traits_type::args_list args_list; + typedef types<object_type&, return_type> free_args_list; + typedef typename traits_type::returns_list returns_list; + + template <F fx> + static auto call(object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> { + return mem.*fx; + } + + template <F fx, typename Arg, typename... Args> + static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...) { + return mem.*fx = std::forward<Arg>(arg); + } + + template <typename Fx> + static auto call(Fx&& fx, object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> { + return mem.*fx; + } + + template <typename Fx, typename Arg, typename... Args> + static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) { + using actual_type = meta::unqualified_t<detail::array_return_type<decltype(mem.*fx)>>; + if constexpr (std::is_array_v<actual_type>) { + using std::cend; + using std::cbegin; + auto first = cbegin(arg); + auto last = cend(arg); + for (std::size_t i = 0; first != last; ++i, ++first) { + (mem.*fx)[i] = *first; + } + } + else { + (mem.*fx) = std::forward<Arg>(arg); + } + } + + struct caller { + template <typename Fx, typename... Args> + decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const { + return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...); + } + }; + + template <F fx> + struct invoker { + template <typename... Args> + decltype(auto) operator()(Args&&... args) const { + return invoke<fx>(std::forward<Args>(args)...); + } + }; + }; + + template <typename F, typename R, typename O, typename... FArgs> + struct member_function_wrapper { + typedef O object_type; + typedef lua_bind_traits<F> traits_type; + typedef typename traits_type::args_list args_list; + typedef types<object_type&, FArgs...> free_args_list; + typedef meta::tuple_types<R> returns_list; + + template <F fx, typename... Args> + static R invoke(O& mem, Args&&... args) { + return (mem.*fx)(std::forward<Args>(args)...); + } + + template <typename Fx, typename... Args> + static R call(Fx&& fx, O& mem, Args&&... args) { + return (mem.*fx)(std::forward<Args>(args)...); + } + + struct caller { + template <typename Fx, typename... Args> + decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const { + return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...); + } + }; + + template <F fx> + struct invoker { + template <typename... Args> + decltype(auto) operator()(O& mem, Args&&... args) const { + return invoke<fx>(mem, std::forward<Args>(args)...); + } + }; + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + //noexcept has become a part of a function's type + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) & noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) & noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) && noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) && noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { + }; + +#endif // noexcept is part of a function's type + +} // namespace sol + +#endif // SOL_WRAPPER_HPP |