<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>FFI Library</title> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> <meta name="Copyright" content="Copyright (C) 2005-2018"> <meta name="Language" content="en"> <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen"> <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print"> </head> <body> <div id="site"> <a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a> </div> <div id="head"> <h1>FFI Library</h1> </div> <div id="nav"> <ul><li> <a href="luajit.html">LuaJIT</a> <ul><li> <a href="http://luajit.org/download.html">Download <span class="ext">»</span></a> </li><li> <a href="install.html">Installation</a> </li><li> <a href="running.html">Running</a> </li></ul> </li><li> <a href="extensions.html">Extensions</a> <ul><li> <a class="current" href="ext_ffi.html">FFI Library</a> <ul><li> <a href="ext_ffi_tutorial.html">FFI Tutorial</a> </li><li> <a href="ext_ffi_api.html">ffi.* API</a> </li><li> <a href="ext_ffi_semantics.html">FFI Semantics</a> </li></ul> </li><li> <a href="ext_jit.html">jit.* Library</a> </li><li> <a href="ext_c_api.html">Lua/C API</a> </li><li> <a href="ext_profiler.html">Profiler</a> </li></ul> </li><li> <a href="status.html">Status</a> <ul><li> <a href="changes.html">Changes</a> </li></ul> </li><li> <a href="faq.html">FAQ</a> </li><li> <a href="http://luajit.org/performance.html">Performance <span class="ext">»</span></a> </li><li> <a href="http://wiki.luajit.org/">Wiki <span class="ext">»</span></a> </li><li> <a href="http://luajit.org/list.html">Mailing List <span class="ext">»</span></a> </li></ul> </div> <div id="main"> <p> The FFI library allows <b>calling external C functions</b> and <b>using C data structures</b> from pure Lua code. </p> <p> The FFI library largely obviates the need to write tedious manual Lua/C bindings in C. No need to learn a separate binding language — <b>it parses plain C declarations!</b> These can be cut-n-pasted from C header files or reference manuals. It's up to the task of binding large libraries without the need for dealing with fragile binding generators. </p> <p> The FFI library is tightly integrated into LuaJIT (it's not available as a separate module). The code generated by the JIT-compiler for accesses to C data structures from Lua code is on par with the code a C compiler would generate. Calls to C functions can be inlined in JIT-compiled code, unlike calls to functions bound via the classic Lua/C API. </p> <p> This page gives a short introduction to the usage of the FFI library. <em>Please use the FFI sub-topics in the navigation bar to learn more.</em> </p> <h2 id="call">Motivating Example: Calling External C Functions</h2> <p> It's really easy to call an external C library function: </p> <pre class="code mark"> <span class="codemark">① ② ③</span>local ffi = require("ffi") ffi.cdef[[ <span style="color:#00a000;">int printf(const char *fmt, ...);</span> ]] ffi.C.printf("Hello %s!", "world") </pre> <p> So, let's pick that apart: </p> <p> <span class="mark">①</span> Load the FFI library. </p> <p> <span class="mark">②</span> Add a C declaration for the function. The part inside the double-brackets (in green) is just standard C syntax. </p> <p> <span class="mark">③</span> Call the named C function — Yes, it's that simple! </p> <p style="font-size: 8pt;"> Actually, what goes on behind the scenes is far from simple: <span style="color:#4040c0;">③</span> makes use of the standard C library namespace <tt>ffi.C</tt>. Indexing this namespace with a symbol name (<tt>"printf"</tt>) automatically binds it to the standard C library. The result is a special kind of object which, when called, runs the <tt>printf</tt> function. The arguments passed to this function are automatically converted from Lua objects to the corresponding C types. </p> <p> Ok, so maybe the use of <tt>printf()</tt> wasn't such a spectacular example. You could have done that with <tt>io.write()</tt> and <tt>string.format()</tt>, too. But you get the idea ... </p> <p> So here's something to pop up a message box on Windows: </p> <pre class="code"> local ffi = require("ffi") ffi.cdef[[ <span style="color:#00a000;">int MessageBoxA(void *w, const char *txt, const char *cap, int type);</span> ]] ffi.C.MessageBoxA(nil, "Hello world!", "Test", 0) </pre> <p> Bing! Again, that was far too easy, no? </p> <p style="font-size: 8pt;"> Compare this with the effort required to bind that function using the classic Lua/C API: create an extra C file, add a C function that retrieves and checks the argument types passed from Lua and calls the actual C function, add a list of module functions and their names, add a <tt>luaopen_*</tt> function and register all module functions, compile and link it into a shared library (DLL), move it to the proper path, add Lua code that loads the module aaaand ... finally call the binding function. Phew! </p> <h2 id="cdata">Motivating Example: Using C Data Structures</h2> <p> The FFI library allows you to create and access C data structures. Of course the main use for this is for interfacing with C functions. But they can be used stand-alone, too. </p> <p> Lua is built upon high-level data types. They are flexible, extensible and dynamic. That's why we all love Lua so much. Alas, this can be inefficient for certain tasks, where you'd really want a low-level data type. E.g. a large array of a fixed structure needs to be implemented with a big table holding lots of tiny tables. This imposes both a substantial memory overhead as well as a performance overhead. </p> <p> Here's a sketch of a library that operates on color images plus a simple benchmark. First, the plain Lua version: </p> <pre class="code"> local floor = math.floor local function image_ramp_green(n) local img = {} local f = 255/(n-1) for i=1,n do img[i] = { red = 0, green = floor((i-1)*f), blue = 0, alpha = 255 } end return img end local function image_to_grey(img, n) for i=1,n do local y = floor(0.3*img[i].red + 0.59*img[i].green + 0.11*img[i].blue) img[i].red = y; img[i].green = y; img[i].blue = y end end local N = 400*400 local img = image_ramp_green(N) for i=1,1000 do image_to_grey(img, N) end </pre> <p> This creates a table with 160.000 pixels, each of which is a table holding four number values in the range of 0-255. First an image with a green ramp is created (1D for simplicity), then the image is converted to greyscale 1000 times. Yes, that's silly, but I was in need of a simple example ... </p> <p> And here's the FFI version. The modified parts have been marked in bold: </p> <pre class="code mark"> <span class="codemark">① ② ③ ④ ③ ⑤</span><b>local ffi = require("ffi") ffi.cdef[[ </b><span style="color:#00a000;">typedef struct { uint8_t red, green, blue, alpha; } rgba_pixel;</span><b> ]]</b> local function image_ramp_green(n) <b>local img = ffi.new("rgba_pixel[?]", n)</b> local f = 255/(n-1) for i=<b>0,n-1</b> do <b>img[i].green = i*f</b> <b>img[i].alpha = 255</b> end return img end local function image_to_grey(img, n) for i=<b>0,n-1</b> do local y = <b>0.3*img[i].red + 0.59*img[i].green + 0.11*img[i].blue</b> img[i].red = y; img[i].green = y; img[i].blue = y end end local N = 400*400 local img = image_ramp_green(N) for i=1,1000 do image_to_grey(img, N) end </pre> <p> Ok, so that wasn't too difficult: </p> <p> <span class="mark">①</span> First, load the FFI library and declare the low-level data type. Here we choose a <tt>struct</tt> which holds four byte fields, one for each component of a 4x8 bit RGBA pixel. </p> <p> <span class="mark">②</span> Creating the data structure with <tt>ffi.new()</tt> is straightforward — the <tt>'?'</tt> is a placeholder for the number of elements of a variable-length array. </p> <p> <span class="mark">③</span> C arrays are zero-based, so the indexes have to run from <tt>0</tt> to <tt>n-1</tt>. One might want to allocate one more element instead to simplify converting legacy code. </p> <p> <span class="mark">④</span> Since <tt>ffi.new()</tt> zero-fills the array by default, we only need to set the green and the alpha fields. </p> <p> <span class="mark">⑤</span> The calls to <tt>math.floor()</tt> can be omitted here, because floating-point numbers are already truncated towards zero when converting them to an integer. This happens implicitly when the number is stored in the fields of each pixel. </p> <p> Now let's have a look at the impact of the changes: first, memory consumption for the image is down from 22 Megabytes to 640 Kilobytes (400*400*4 bytes). That's a factor of 35x less! So, yes, tables do have a noticeable overhead. BTW: The original program would consume 40 Megabytes in plain Lua (on x64). </p> <p> Next, performance: the pure Lua version runs in 9.57 seconds (52.9 seconds with the Lua interpreter) and the FFI version runs in 0.48 seconds on my machine (YMMV). That's a factor of 20x faster (110x faster than the Lua interpreter). </p> <p style="font-size: 8pt;"> The avid reader may notice that converting the pure Lua version over to use array indexes for the colors (<tt>[1]</tt> instead of <tt>.red</tt>, <tt>[2]</tt> instead of <tt>.green</tt> etc.) ought to be more compact and faster. This is certainly true (by a factor of ~1.7x). Switching to a struct-of-arrays would help, too. </p> <p style="font-size: 8pt;"> However the resulting code would be less idiomatic and rather error-prone. And it still doesn't get even close to the performance of the FFI version of the code. Also, high-level data structures cannot be easily passed to other C functions, especially I/O functions, without undue conversion penalties. </p> <br class="flush"> </div> <div id="foot"> <hr class="hide"> Copyright © 2005-2018 <span class="noprint"> · <a href="contact.html">Contact</a> </span> </div> </body> </html>