// sol3 // The MIT License (MIT) // Copyright (c) 2013-2019 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_STACK_CHECK_UNQUALIFIED_HPP #define SOL_STACK_CHECK_UNQUALIFIED_HPP #include "stack_core.hpp" #include "usertype_traits.hpp" #include "inheritance.hpp" #include <memory> #include <functional> #include <utility> #include <cmath> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #include <optional> #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT #include <variant> #endif // SOL_STD_VARIANT #endif // SOL_CXX17_FEATURES namespace sol { namespace stack { namespace stack_detail { template <typename T, bool poptable = true> inline bool check_metatable(lua_State* L, int index = -2) { const auto& metakey = usertype_traits<T>::metatable(); luaL_getmetatable(L, &metakey[0]); const type expectedmetatabletype = static_cast<type>(lua_type(L, -1)); if (expectedmetatabletype != type::lua_nil) { if (lua_rawequal(L, -1, index) == 1) { lua_pop(L, 1 + static_cast<int>(poptable)); return true; } } lua_pop(L, 1); return false; } template <type expected, int (*check_func)(lua_State*, int)> struct basic_check { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); bool success = check_func(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } }; } // namespace stack_detail template <typename T, typename> struct unqualified_interop_checker { template <typename Handler> static bool check(lua_State*, int, type, Handler&&, record&) { return false; } }; template <typename T, typename> struct qualified_interop_checker { template <typename Handler> static bool check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) { return stack_detail::unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking); } }; template <typename T, type expected, typename> struct unqualified_checker { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (std::is_same_v<T, bool>) { tracking.use(1); bool success = lua_isboolean(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } else if constexpr (meta::any_same_v<T, char /* , char8_t*/, char16_t, char32_t>) { return stack::check<std::basic_string<T>>(L, index, std::forward<Handler>(handler), tracking); } else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) { tracking.use(1); #if SOL_LUA_VERSION >= 503 #if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS int isnum = 0; lua_tointegerx(L, index, &isnum); const bool success = isnum != 0; if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string_integral); } #elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) // this check is precise, does not convert if (lua_isinteger(L, index) == 1) { return true; } const bool success = false; if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number_integral); } #else type t = type_of(L, index); const bool success = t == type::number; #endif // If numbers are enabled, use the imprecise check if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number); } return success; #else #if !defined(SOL_STRINGS_ARE_NUMBERS) || !SOL_STRINGS_ARE_NUMBERS // must pre-check, because it will convert type t = type_of(L, index); if (t != type::number) { // expected type, actual type handler(L, index, type::number, t, detail::not_a_number); return false; } #endif // Do not allow strings to be numbers #if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) int isnum = 0; const lua_Number v = lua_tonumberx(L, index, &isnum); const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v; #else const bool success = true; #endif // Safe numerics and number precision checking if (!success) { // expected type, actual type #if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string); #elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) handler(L, index, type::number, t, detail::not_a_number_or_number_string); #else handler(L, index, type::number, t, detail::not_a_number); #endif } return success; #endif // Lua Version 5.3 versus others } else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) { tracking.use(1); #if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS bool success = lua_isnumber(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string); } return success; #else type t = type_of(L, index); bool success = t == type::number; if (!success) { // expected type, actual type handler(L, index, type::number, t, detail::not_a_number); } return success; #endif // Strings are Numbers } else if constexpr(meta::any_same_v<T, type, this_state, this_main_state, this_environment, variadic_args>) { (void)L; (void)index; (void)handler; tracking.use(0); return true; } else if constexpr (is_unique_usertype_v<T>) { using proper_T = typename unique_usertype_traits<T>::type; const type indextype = type_of(L, index); tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype, "value is not a userdata"); return false; } if (lua_getmetatable(L, index) == 0) { return true; } int metatableindex = lua_gettop(L); if (stack_detail::check_metatable<detail::unique_usertype<proper_T>>(L, metatableindex)) { void* memory = lua_touserdata(L, index); memory = detail::align_usertype_unique_destructor(memory); detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); bool success = &detail::usertype_unique_alloc_destroy<proper_T, T> == pdx; if (!success) { memory = detail::align_usertype_unique_tag<true>(memory); #if 0 // New version #else const char*& name_tag = *static_cast<const char**>(memory); success = usertype_traits<T>::qualified_name() == name_tag; #endif if (!success) { handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype"); } } return success; } lua_pop(L, 1); handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)"); return false; } else if constexpr (meta::any_same_v<T, lua_nil_t, #if defined(SOL_CXX_17_FEATURES) && SOL_CXX_17_FEATURES std::nullopt_t, #endif nullopt_t>) { bool success = lua_isnil(L, index); if (success) { tracking.use(1); return success; } tracking.use(0); success = lua_isnone(L, index); if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } else if constexpr (std::is_same_v<T, env_key_t>) { tracking.use(1); type t = type_of(L, index); if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) { return true; } handler(L, index, type::table, t, "value cannot not have a valid environment"); return true; } else if constexpr (std::is_same_v<T, detail::non_lua_nil_t>) { return !stack::unqualified_check<lua_nil_t>(L, index, std::forward<Handler>(handler), tracking); } else if constexpr (meta::is_specialization_of_v<T, basic_lua_table>) { tracking.use(1); type t = type_of(L, index); if (t != type::table) { handler(L, index, type::table, t, "value is not a table"); return false; } return true; } else if constexpr (meta::is_specialization_of_v<T, basic_bytecode>) { tracking.use(1); type t = type_of(L, index); if (t != type::function) { handler(L, index, type::function, t, "value is not a function that can be dumped"); return false; } return true; } else if constexpr(meta::is_specialization_of_v<T, basic_environment>) { tracking.use(1); if (lua_getmetatable(L, index) == 0) { return true; } type t = type_of(L, -1); if (t == type::table || t == type::none || t == type::lua_nil) { lua_pop(L, 1); return true; } if (t != type::userdata) { lua_pop(L, 1); handler(L, index, type::table, t, "value does not have a valid metatable"); return false; } return true; } else if constexpr (std::is_same_v<T, metatable_key_t>) { tracking.use(1); if (lua_getmetatable(L, index) == 0) { return true; } type t = type_of(L, -1); if (t == type::table || t == type::none || t == type::lua_nil) { lua_pop(L, 1); return true; } if (t != type::userdata) { lua_pop(L, 1); handler(L, index, expected, t, "value does not have a valid metatable"); return false; } return true; } else if constexpr (expected == type::userdata) { if constexpr (meta::any_same_v<T, userdata_value> || meta::is_specialization_of_v<T, basic_userdata>) { tracking.use(1); type t = type_of(L, index); bool success = t == type::userdata; if (!success) { // expected type, actual type handler(L, index, type::userdata, t, ""); } return success; } else if constexpr (meta::is_specialization_of_v<T, user>) { unqualified_checker<lightuserdata_value, type::userdata> c; (void)c; return c.check(L, index, std::forward<Handler>(handler), tracking); } else { if constexpr (std::is_pointer_v<T>) { return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); } else if constexpr (meta::is_specialization_of_v<T, std::reference_wrapper>) { using T_internal = typename T::type; return stack::check<T_internal>(L, index, std::forward<Handler>(handler), tracking); } else { return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); } } } else if constexpr (expected == type::poly) { tracking.use(1); bool success = is_lua_reference_v<T> || !lua_isnone(L, index); if (!success) { // expected type, actual type handler(L, index, type::poly, type_of(L, index), ""); } return success; } else if constexpr (expected == type::lightuserdata) { tracking.use(1); type t = type_of(L, index); bool success = t == type::userdata || t == type::lightuserdata; if (!success) { // expected type, actual type handler(L, index, type::lightuserdata, t, ""); } return success; } else if constexpr (expected == type::function) { if constexpr (meta::any_same_v<T, lua_CFunction, std::remove_pointer_t<lua_CFunction>, c_closure>) { tracking.use(1); bool success = lua_iscfunction(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } else { tracking.use(1); type t = type_of(L, index); if (t == type::lua_nil || t == type::none || t == type::function) { // allow for lua_nil to be returned return true; } if (t != type::userdata && t != type::table) { handler(L, index, type::function, t, "must be a function or table or a userdata"); return false; } // Do advanced check for call-style userdata? static const auto& callkey = to_string(meta_function::call); if (lua_getmetatable(L, index) == 0) { // No metatable, no __call key possible handler(L, index, type::function, t, "value is not a function and does not have overriden metatable"); return false; } if (lua_isnoneornil(L, -1)) { lua_pop(L, 1); handler(L, index, type::function, t, "value is not a function and does not have valid metatable"); return false; } lua_getfield(L, -1, &callkey[0]); if (lua_isnoneornil(L, -1)) { lua_pop(L, 2); handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type"); return false; } // has call, is definitely a function lua_pop(L, 2); return true; } } else if constexpr (expected == type::table) { tracking.use(1); type t = type_of(L, index); if (t == type::table) { return true; } if (t != type::userdata) { handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one"); return false; } return true; } else { tracking.use(1); const type indextype = type_of(L, index); bool success = expected == indextype; if (!success) { // expected type, actual type, message handler(L, index, expected, indextype, ""); } return success; } } }; template <typename T> struct unqualified_checker<non_null<T>, type::userdata> : unqualified_checker<T, lua_type_of_v<T>> {}; template <typename T> struct unqualified_checker<detail::as_value_tag<T>, type::userdata> { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { const type indextype = type_of(L, index); return check(types<T>(), L, index, indextype, std::forward<Handler>(handler), tracking); } template <typename U, typename Handler> static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { if constexpr (std::is_same_v<T, lightuserdata_value> || std::is_same_v<T, userdata_value> || std::is_same_v<T, userdata> || std::is_same_v<T, lightuserdata>) { tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype, "value is not a valid userdata"); return false; } return true; } else { #if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP if (stack_detail::interop_check<U>(L, index, indextype, handler, tracking)) { return true; } #endif // interop extensibility tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype, "value is not a valid userdata"); return false; } if (lua_getmetatable(L, index) == 0) { return true; } int metatableindex = lua_gettop(L); if (stack_detail::check_metatable<U>(L, metatableindex)) return true; if (stack_detail::check_metatable<U*>(L, metatableindex)) return true; if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex)) return true; if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex)) return true; bool success = false; bool has_derived = derive<T>::value || weak_derive<T>::value; if (has_derived) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow auto pn = stack::pop_n(L, 1); lua_pushstring(L, &detail::base_class_check_key()[0]); lua_rawget(L, metatableindex); if (type_of(L, -1) != type::lua_nil) { void* basecastdata = lua_touserdata(L, -1); detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata); success = ic(usertype_traits<T>::qualified_name()); } } lua_pop(L, 1); if (!success) { handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type"); return false; } return true; } } }; template <typename T> struct unqualified_checker<detail::as_pointer_tag<T>, type::userdata> { template <typename Handler> static bool check(lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { if (indextype == type::lua_nil) { tracking.use(1); return true; } return check_usertype<std::remove_pointer_t<T>>(L, index, std::forward<Handler>(handler), tracking); } template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { const type indextype = type_of(L, index); return check(L, index, indextype, std::forward<Handler>(handler), tracking); } }; template <typename... Args> struct unqualified_checker<std::tuple<Args...>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking); } }; template <typename A, typename B> struct unqualified_checker<std::pair<A, B>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking); } }; template <typename T> struct unqualified_checker<optional<T>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&&, record& tracking) { type t = type_of(L, index); if (t == type::none) { tracking.use(0); return true; } if (t == type::lua_nil) { tracking.use(1); return true; } return stack::unqualified_check<T>(L, index, no_panic, tracking); } }; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename T> struct unqualified_checker<std::optional<T>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&&, record& tracking) { type t = type_of(L, index); if (t == type::none) { tracking.use(0); return true; } if (t == type::lua_nil) { tracking.use(1); return true; } return stack::check<T>(L, index, no_panic, tracking); } }; #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT template <typename... Tn> struct unqualified_checker<std::variant<Tn...>, type::poly> { typedef std::variant<Tn...> V; typedef std::variant_size<V> V_size; typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; template <typename Handler> static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (V_is_empty::value) { if (lua_isnone(L, index)) { return true; } } tracking.use(1); handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant"); return false; } template <std::size_t I, typename Handler> static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) { typedef std::variant_alternative_t<I - 1, V> T; record temp_tracking = tracking; if (stack::check<T>(L, index, no_panic, temp_tracking)) { tracking = temp_tracking; return true; } return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking); } template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking); } }; #endif // SOL_STD_VARIANT #endif // SOL_CXX17_FEATURES }} // namespace sol::stack #endif // SOL_STACK_CHECK_UNQUALIFIED_HPP