// The MIT License (MIT) // Copyright (c) 2013-2019 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // This file was generated with a script. // Generated 2019-08-28 04:16:58.879902 UTC // This header was generated with sol (revision ) // https://github.com/ThePhD/sol2 #ifndef SOL_SINGLE_INCLUDE_HPP #define SOL_SINGLE_INCLUDE_HPP // beginning of sol/sol.hpp #ifndef SOL_HPP #define SOL_HPP #if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER) #define SOL_INSIDE_UNREAL #ifdef check #pragma push_macro("check") #undef check #endif #endif // Unreal Engine 4 Bullshit #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #pragma GCC diagnostic ignored "-Wconversion" #if __GNUC__ > 6 #pragma GCC diagnostic ignored "-Wnoexcept-type" #endif #elif defined(__clang__) #elif defined _MSC_VER #pragma warning(push) #pragma warning(disable : 4505) // unreferenced local function has been removed GEE THANKS #endif // clang++ vs. g++ vs. VC++ // beginning of sol/forward.hpp #ifndef SOL_FORWARD_HPP #define SOL_FORWARD_HPP // beginning of sol/feature_test.hpp #if (defined(__cplusplus) && __cplusplus == 201703L) || (defined(_MSC_VER) && _MSC_VER > 1900 && ((defined(_HAS_CXX17) && _HAS_CXX17 == 1) || (defined(_MSVC_LANG) && (_MSVC_LANG > 201402L)))) #ifndef SOL_CXX17_FEATURES #define SOL_CXX17_FEATURES 1 #endif // C++17 features macro #endif // C++17 features check #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #if defined(__cpp_noexcept_function_type) || ((defined(_MSC_VER) && _MSC_VER > 1911) && (defined(_MSVC_LANG) && ((_MSVC_LANG >= 201403L)))) #ifndef SOL_NOEXCEPT_FUNCTION_TYPE #define SOL_NOEXCEPT_FUNCTION_TYPE 1 #endif // noexcept is part of a function's type #endif // compiler-specific checks #if defined(__clang__) && defined(__APPLE__) #if defined(__has_include) #if __has_include(<variant>) #define SOL_STD_VARIANT 1 #endif // has include nonsense #endif // __has_include #else #define SOL_STD_VARIANT 1 #endif // Clang screws up variant #endif // C++17 only // beginning of sol/config.hpp #ifdef _MSC_VER #if defined(_DEBUG) && !defined(NDEBUG) #ifndef SOL_IN_DEBUG_DETECTED #define SOL_IN_DEBUG_DETECTED 1 #endif #endif // VC++ Debug macros #if !defined(_CPPUNWIND) #if !defined(SOL_NO_EXCEPTIONS) #define SOL_NO_EXCEPTIONS 1 #endif #endif // Automatic Exceptions #if !defined(_CPPRTTI) #if !defined(SOL_NO_RTTI) #define SOL_NO_RTTI 1 #endif #endif // Automatic RTTI #elif defined(__GNUC__) || defined(__clang__) #if !defined(NDEBUG) && !defined(__OPTIMIZE__) #if !defined(SOL_IN_DEBUG_DETECTED) #define SOL_IN_DEBUG_DETECTED 1 #endif #endif // Not Debug && g++ optimizer flag #if !defined(__EXCEPTIONS) #if !defined(SOL_NO_EXCEPTIONS) #define SOL_NO_EXCEPTIONS 1 #endif #endif // No Exceptions #if !defined(__GXX_RTTI) #if !defined(SOL_NO_RTTI) #define SOL_NO_RTTI 1 #endif #endif // No RTTI #endif // vc++ || clang++/g++ #if defined(SOL_CHECK_ARGUMENTS) && SOL_CHECK_ARGUMENTS #if defined(SOL_ALL_SAFETIES_ON) #define SOL_ALL_SAFETIES_ON 1 #endif // turn all the safeties on #endif // Compatibility define #if defined(SOL_ALL_SAFETIES_ON) && SOL_ALL_SAFETIES_ON // Checks low-level getter function // (and thusly, affects nearly entire framework) #if !defined(SOL_SAFE_GETTER) #define SOL_SAFE_GETTER 1 #endif // Checks access on usertype functions // local my_obj = my_type.new() // my_obj.my_member_function() // -- bad syntax and crash #if !defined(SOL_SAFE_USERTYPE) #define SOL_SAFE_USERTYPE 1 #endif // Checks sol::reference derived boundaries // sol::function ref(L, 1); // sol::userdata sref(L, 2); #if !defined(SOL_SAFE_REFERENCES) #define SOL_SAFE_REFERENCES 1 #endif // Changes all typedefs of sol::function to point to the // protected_function version, instead of unsafe_function #if !defined(SOL_SAFE_FUNCTION) #define SOL_SAFE_FUNCTION 1 #endif // Checks function parameters and // returns upon call into/from Lua // local a = 1 // local b = "woof" // my_c_function(a, b) #if !defined(SOL_SAFE_FUNCTION_CALLS) #define SOL_SAFE_FUNCTION_CALLS 1 #endif // Checks conversions // int v = lua["bark"]; // int v2 = my_sol_function(); #if !defined(SOL_SAFE_PROXIES) #define SOL_SAFE_PROXIES 1 #endif // Check overflowing number conversions // for things like 64 bit integers that don't fit in a typical lua_Number // for Lua 5.1 and 5.2 #if !defined(SOL_SAFE_NUMERICS) #define SOL_SAFE_NUMERICS 1 #endif // Turn off Number Precision Checks // if this is defined, we do not do range // checks on integers / unsigned integers that might // be bigger than what Lua can represent #if !defined(SOL_NO_CHECK_NUMBER_PRECISION) // off by default #define SOL_NO_CHECK_NUMBER_PRECISION 0 #endif // Print any exceptions / errors that occur // in debug mode to the default error stream / console #if !defined(SOL_SAFE_STACK_CHECK) #define SOL_SAFE_STACK_CHECK 1 #endif #endif // Turn on Safety for all if top-level macro is defined #if defined(SOL_IN_DEBUG_DETECTED) && SOL_IN_DEBUG_DETECTED #if !defined(SOL_SAFE_REFERENCES) // Ensure that references are forcefully type-checked upon construction #define SOL_SAFE_REFERENCES 1 #endif // Safe usertypes checks for errors such as // obj = my_type.new() // obj.f() -- note the '.' instead of ':' // usertypes should be safe no matter what #if !defined(SOL_SAFE_USERTYPE) #define SOL_SAFE_USERTYPE 1 #endif #if !defined(SOL_SAFE_FUNCTION_CALLS) // Function calls from Lua should be automatically safe in debug mode #define SOL_SAFE_FUNCTION_CALLS 1 #endif // Print any exceptions / errors that occur // in debug mode to the default error stream / console #if !defined(SOL_PRINT_ERRORS) #define SOL_PRINT_ERRORS 1 #endif // Print any exceptions / errors that occur // in debug mode to the default error stream / console #if !defined(SOL_SAFE_STACK_CHECK) #define SOL_SAFE_STACK_CHECK 1 #endif #endif // DEBUG: Turn on all debug safety features for VC++ / g++ / clang++ and similar #if !defined(SOL_PRINT_ERRORS) #define SOL_PRINT_ERRORS 0 #endif #if !defined(SOL_DEFAULT_PASS_ON_ERROR) #define SOL_DEFAULT_PASS_ON_ERROR 0 #endif #if !defined(SOL_ENABLE_INTEROP) #define SOL_ENABLE_INTEROP 0 #endif #if defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil) #if !defined(SOL_NO_NIL) #define SOL_NO_NIL 1 #endif #endif // avoiding nil defines / keywords #if defined(SOL_USE_BOOST) && SOL_USE_BOOST #if !defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) #define SOL_UNORDERED_MAP_COMPATIBLE_HASH 1 #endif // SOL_UNORDERED_MAP_COMPATIBLE_HASH #endif #ifndef SOL_STACK_STRING_OPTIMIZATION_SIZE #define SOL_STACK_STRING_OPTIMIZATION_SIZE 1024 #endif // Optimized conversion routines using a KB or so off the stack #if !defined(SOL_SAFE_STACK_CHECK) #define SOL_SAFE_STACK_CHECK 0 #endif // use luaL_checkstack to check stack overflow / overrun // end of sol/config.hpp // beginning of sol/config_setup.hpp // end of sol/config_setup.hpp // end of sol/feature_test.hpp #include <utility> #include <type_traits> #if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA struct lua_State; #else extern "C" { struct lua_State; } #endif // C++ Mangling for Lua vs. Not namespace sol { class stateless_reference; template <bool b> class basic_reference; using reference = basic_reference<false>; using main_reference = basic_reference<true>; class stateless_stack_reference; class stack_reference; template <typename A> class basic_bytecode; struct lua_value; struct proxy_base_tag; template <typename> struct proxy_base; template <typename, typename> struct proxy; template <bool, typename> class basic_table_core; template <bool b> using table_core = basic_table_core<b, reference>; template <bool b> using main_table_core = basic_table_core<b, main_reference>; template <bool b> using stack_table_core = basic_table_core<b, stack_reference>; template <typename base_type> using basic_table = basic_table_core<false, base_type>; using table = table_core<false>; using global_table = table_core<true>; using main_table = main_table_core<false>; using main_global_table = main_table_core<true>; using stack_table = stack_table_core<false>; using stack_global_table = stack_table_core<true>; template <typename> struct basic_lua_table; using lua_table = basic_lua_table<reference>; using stack_lua_table = basic_lua_table<stack_reference>; template <typename T, typename base_type> class basic_usertype; template <typename T> using usertype = basic_usertype<T, reference>; template <typename T> using stack_usertype = basic_usertype<T, stack_reference>; template <typename base_type> class basic_metatable; using metatable = basic_metatable<reference>; using stack_metatable = basic_metatable<stack_reference>; template <typename base_t> struct basic_environment; using environment = basic_environment<reference>; using main_environment = basic_environment<main_reference>; using stack_environment = basic_environment<stack_reference>; template <typename T, bool> class basic_function; template <typename T, bool, typename H> class basic_protected_function; using unsafe_function = basic_function<reference, false>; using safe_function = basic_protected_function<reference, false, reference>; using main_unsafe_function = basic_function<main_reference, false>; using main_safe_function = basic_protected_function<main_reference, false, reference>; using stack_unsafe_function = basic_function<stack_reference, false>; using stack_safe_function = basic_protected_function<stack_reference, false, reference>; using stack_aligned_unsafe_function = basic_function<stack_reference, true>; using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>; using protected_function = safe_function; using main_protected_function = main_safe_function; using stack_protected_function = stack_safe_function; using stack_aligned_protected_function = stack_aligned_safe_function; #if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION using function = protected_function; using main_function = main_protected_function; using stack_function = stack_protected_function; #else using function = unsafe_function; using main_function = main_unsafe_function; using stack_function = stack_unsafe_function; #endif using stack_aligned_function = stack_aligned_unsafe_function; using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>; struct unsafe_function_result; struct protected_function_result; using safe_function_result = protected_function_result; #if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION using function_result = safe_function_result; #else using function_result = unsafe_function_result; #endif template <typename base_t> class basic_object_base; template <typename base_t> class basic_object; template <typename base_t> class basic_userdata; template <typename base_t> class basic_lightuserdata; template <typename base_t> class basic_coroutine; template <typename base_t> class basic_thread; using object = basic_object<reference>; using userdata = basic_userdata<reference>; using lightuserdata = basic_lightuserdata<reference>; using thread = basic_thread<reference>; using coroutine = basic_coroutine<reference>; using main_object = basic_object<main_reference>; using main_userdata = basic_userdata<main_reference>; using main_lightuserdata = basic_lightuserdata<main_reference>; using main_coroutine = basic_coroutine<main_reference>; using stack_object = basic_object<stack_reference>; using stack_userdata = basic_userdata<stack_reference>; using stack_lightuserdata = basic_lightuserdata<stack_reference>; using stack_thread = basic_thread<stack_reference>; using stack_coroutine = basic_coroutine<stack_reference>; struct stack_proxy_base; struct stack_proxy; struct variadic_args; struct variadic_results; struct stack_count; struct this_state; struct this_main_state; struct this_environment; class state_view; class state; template <typename T> struct as_table_t; template <typename T> struct as_container_t; template <typename T> struct nested; template <typename T> struct light; template <typename T> struct user; template <typename T> struct as_args_t; template <typename T> struct protect_t; template <typename F, typename... Policies> struct policy_wrapper; template <typename T> struct usertype_traits; template <typename T> struct unique_usertype_traits; template <typename... Args> struct types { typedef std::make_index_sequence<sizeof...(Args)> indices; static constexpr std::size_t size() { return sizeof...(Args); } }; template <typename T> struct derive : std::false_type { typedef types<> type; }; template <typename T> struct base : std::false_type { typedef types<> type; }; template <typename T> struct weak_derive { static bool value; }; template <typename T> bool weak_derive<T>::value = false; namespace stack { struct record; } #if !defined(SOL_USE_BOOST) || (SOL_USE_BOOST == 0) template <class T> class optional; template <class T> class optional<T&>; #endif } // namespace sol #define SOL_BASE_CLASSES(T, ...) \ namespace sol { \ template <> \ struct base<T> : std::true_type { \ typedef ::sol::types<__VA_ARGS__> type; \ }; \ } \ void a_sol3_detail_function_decl_please_no_collide() #define SOL_DERIVED_CLASSES(T, ...) \ namespace sol { \ template <> \ struct derive<T> : std::true_type { \ typedef ::sol::types<__VA_ARGS__> type; \ }; \ } \ void a_sol3_detail_function_decl_please_no_collide() #endif // SOL_FORWARD_HPP // end of sol/forward.hpp // beginning of sol/forward_detail.hpp #ifndef SOL_FORWARD_DETAIL_HPP #define SOL_FORWARD_DETAIL_HPP // beginning of sol/traits.hpp // beginning of sol/tuple.hpp // beginning of sol/base_traits.hpp namespace sol { namespace detail { struct unchecked_t {}; const unchecked_t unchecked = unchecked_t{}; } // namespace detail namespace meta { using sfinae_yes_t = std::true_type; using sfinae_no_t = std::false_type; template <typename T> using void_t = void; template <typename T> using unqualified = std::remove_cv<std::remove_reference_t<T>>; template <typename T> using unqualified_t = typename unqualified<T>::type; namespace meta_detail { template <typename T> struct unqualified_non_alias : unqualified<T> {}; template <template <class...> class Test, class, class... Args> struct is_detected : std::false_type {}; template <template <class...> class Test, class... Args> struct is_detected<Test, void_t<Test<Args...>>, Args...> : std::true_type {}; } // namespace meta_detail template <template <class...> class Trait, class... Args> using is_detected = typename meta_detail::is_detected<Trait, void, Args...>::type; template <template <class...> class Trait, class... Args> constexpr inline bool is_detected_v = is_detected<Trait, Args...>::value; template <std::size_t I> using index_value = std::integral_constant<std::size_t, I>; template <bool> struct conditional { template <typename T, typename U> using type = T; }; template <> struct conditional<false> { template <typename T, typename U> using type = U; }; template <bool B, typename T, typename U> using conditional_t = typename conditional<B>::template type<T, U>; namespace meta_detail { template <typename T, template <typename...> class Templ> struct is_specialization_of : std::false_type {}; template <typename... T, template <typename...> class Templ> struct is_specialization_of<Templ<T...>, Templ> : std::true_type {}; } // namespace meta_detail template <typename T, template <typename...> class Templ> using is_specialization_of = meta_detail::is_specialization_of<std::remove_cv_t<T>, Templ>; template <typename T, template <typename...> class Templ> inline constexpr bool is_specialization_of_v = is_specialization_of<std::remove_cv_t<T>, Templ>::value; template <typename T> struct identity { typedef T type; }; template <typename T> using identity_t = typename identity<T>::type; template <typename T> using is_builtin_type = std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value>; } // namespace meta } // namespace sol // end of sol/base_traits.hpp #include <tuple> #include <cstddef> namespace sol { namespace detail { using swallow = std::initializer_list<int>; } // namespace detail namespace meta { template <typename T> using is_tuple = is_specialization_of<T, std::tuple>; template <typename T> constexpr inline bool is_tuple_v = is_tuple<T>::value; namespace detail { template <typename... Args> struct tuple_types_ { typedef types<Args...> type; }; template <typename... Args> struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; }; } // namespace detail template <typename... Args> using tuple_types = typename detail::tuple_types_<Args...>::type; template <typename Arg> struct pop_front_type; template <typename Arg> using pop_front_type_t = typename pop_front_type<Arg>::type; template <typename... Args> struct pop_front_type<types<Args...>> { typedef void front_type; typedef types<Args...> type; }; template <typename Arg, typename... Args> struct pop_front_type<types<Arg, Args...>> { typedef Arg front_type; typedef types<Args...> type; }; template <std::size_t N, typename Tuple> using tuple_element = std::tuple_element<N, std::remove_reference_t<Tuple>>; template <std::size_t N, typename Tuple> using tuple_element_t = std::tuple_element_t<N, std::remove_reference_t<Tuple>>; template <std::size_t N, typename Tuple> using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>; template <std::size_t N, typename Tuple> using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>; } // namespace meta } // namespace sol // end of sol/tuple.hpp // beginning of sol/bind_traits.hpp namespace sol { namespace meta { namespace meta_detail { template <class F> struct check_deducible_signature { struct nat {}; template <class G> static auto test(int) -> decltype(&G::operator(), void()); template <class> static auto test(...) -> nat; using type = std::is_void<decltype(test<F>(0))>; }; } // namespace meta_detail template <class F> struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type {}; namespace meta_detail { template <std::size_t I, typename T> struct void_tuple_element : meta::tuple_element<I, T> {}; template <std::size_t I> struct void_tuple_element<I, std::tuple<>> { typedef void type; }; template <std::size_t I, typename T> using void_tuple_element_t = typename void_tuple_element<I, T>::type; template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args> struct basic_traits { private: using first_type = meta::conditional_t<std::is_void<T>::value, int, T>&; public: static const bool is_noexcept = it_is_noexcept; static const bool is_member_function = std::is_void<T>::value; static const bool has_c_var_arg = has_c_variadic; static const std::size_t arity = sizeof...(Args); static const std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value); typedef types<Args...> args_list; typedef std::tuple<Args...> args_tuple; typedef T object_type; typedef R return_type; typedef tuple_types<R> returns_list; typedef R(function_type)(Args...); typedef meta::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list; typedef meta::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type; typedef meta::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type; typedef std::remove_pointer_t<free_function_pointer_type> signature_type; template <std::size_t i> using arg_at = void_tuple_element_t<i, args_tuple>; }; template <typename Signature, bool b = has_deducible_signature<Signature>::value> struct fx_traits : basic_traits<false, false, void, void> {}; // Free Functions template <typename R, typename... Args> struct fx_traits<R(Args...), false> : basic_traits<false, false, void, R, Args...> { typedef R (*function_pointer_type)(Args...); }; template <typename R, typename... Args> struct fx_traits<R (*)(Args...), false> : basic_traits<false, false, void, R, Args...> { typedef R (*function_pointer_type)(Args...); }; template <typename R, typename... Args> struct fx_traits<R(Args..., ...), false> : basic_traits<false, true, void, R, Args...> { typedef R (*function_pointer_type)(Args..., ...); }; template <typename R, typename... Args> struct fx_traits<R (*)(Args..., ...), false> : basic_traits<false, true, void, R, Args...> { typedef R (*function_pointer_type)(Args..., ...); }; // Member Functions /* C-Style Variadics */ template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...); }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...), false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...); }; /* Const Volatile */ template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const volatile; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const volatile; }; /* Member Function Qualifiers */ template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) &; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...)&, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) &; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const&, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const volatile&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const volatile&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) &&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...)&&, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) &&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const&&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const&&, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const&&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const volatile&&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : basic_traits<false, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&; }; #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE template <typename R, typename... Args> struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { typedef R (*function_pointer_type)(Args...) noexcept; }; template <typename R, typename... Args> struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { typedef R (*function_pointer_type)(Args...) noexcept; }; template <typename R, typename... Args> struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { typedef R (*function_pointer_type)(Args..., ...) noexcept; }; template <typename R, typename... Args> struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { typedef R (*function_pointer_type)(Args..., ...) noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) noexcept; }; /* Const Volatile */ template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const volatile noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) & noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) & noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const& noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) && noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) && noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const&& noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept; }; template <typename T, typename R, typename... Args> struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept; }; #endif // noexcept is part of a function's type #if defined(_MSC_VER) && defined(_M_IX86) template <typename R, typename... Args> struct fx_traits<R __stdcall(Args...), false> : basic_traits<false, false, void, R, Args...> { typedef R(__stdcall* function_pointer_type)(Args...); }; template <typename R, typename... Args> struct fx_traits<R(__stdcall*)(Args...), false> : basic_traits<false, false, void, R, Args...> { typedef R(__stdcall* function_pointer_type)(Args...); }; template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...); }; /* Const Volatile */ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const; }; template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile; }; /* Member Function Qualifiers */ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) &; }; template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) &&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const&&; }; template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&; }; #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE template <typename R, typename... Args> struct fx_traits<R __stdcall(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { typedef R(__stdcall* function_pointer_type)(Args...) noexcept; }; template <typename R, typename... Args> struct fx_traits<R (__stdcall *)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { typedef R(__stdcall* function_pointer_type)(Args...) noexcept; }; /* __stdcall cannot be applied to functions with varargs*/ /*template <typename R, typename... Args> struct fx_traits<__stdcall R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept; }; template <typename R, typename... Args> struct fx_traits<R (__stdcall *)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept; };*/ /* Const Volatile */ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept; };*/ template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept; }; /* __stdcall does not work with varargs */ /*template <typename T, typename R, typename... Args> struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> { typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept; };*/ #endif // noexcept is part of a function's type #endif // __stdcall x86 VC++ bug template <typename Signature> struct fx_traits<Signature, true> : fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {}; template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value> struct callable_traits : fx_traits<std::decay_t<Signature>> { }; template <typename R, typename T> struct callable_traits<R(T::*), true> { typedef meta::conditional_t<std::is_array_v<R>, std::add_lvalue_reference_t<R>, R> return_type; typedef return_type Arg; typedef T object_type; using signature_type = R(T::*); static const bool is_noexcept = false; static const bool is_member_function = false; static const std::size_t arity = 1; static const std::size_t free_arity = 2; typedef std::tuple<Arg> args_tuple; typedef types<Arg> args_list; typedef types<T, Arg> free_args_list; typedef meta::tuple_types<return_type> returns_list; typedef return_type(function_type)(T&, return_type); typedef return_type(*function_pointer_type)(T&, Arg); typedef return_type(*free_function_pointer_type)(T&, Arg); template <std::size_t i> using arg_at = void_tuple_element_t<i, args_tuple>; }; } // namespace meta_detail template <typename Signature> struct bind_traits : meta_detail::callable_traits<Signature> {}; template <typename Signature> using function_args_t = typename bind_traits<Signature>::args_list; template <typename Signature> using function_signature_t = typename bind_traits<Signature>::signature_type; template <typename Signature> using function_return_t = typename bind_traits<Signature>::return_type; } } // namespace sol::meta // end of sol/bind_traits.hpp // beginning of sol/pointer_like.hpp namespace sol { namespace meta { namespace meta_detail { template <typename T> using is_dereferenceable_test = decltype(*std::declval<T>()); template <typename T> using is_explicitly_dereferenceable_test = decltype(std::declval<T>().operator*()); } template <typename T> using is_pointer_like = std::integral_constant<bool, !std::is_array_v<T> && (std::is_pointer_v<T> || is_detected_v<meta_detail::is_explicitly_dereferenceable_test, T>)>; template <typename T> constexpr inline bool is_pointer_like_v = is_pointer_like<T>::value; } // namespace meta namespace detail { template <typename T> auto unwrap(T&& item) -> decltype(std::forward<T>(item)) { return std::forward<T>(item); } template <typename T> T& unwrap(std::reference_wrapper<T> arg) { return arg.get(); } template <typename T> inline decltype(auto) deref(T&& item) { using Tu = meta::unqualified_t<T>; if constexpr (meta::is_pointer_like_v<Tu>) { return *std::forward<T>(item); } else { return std::forward<T>(item); } } template <typename T> inline decltype(auto) deref_non_pointer(T&& item) { using Tu = meta::unqualified_t<T>; if constexpr (meta::is_pointer_like_v<Tu> && !std::is_pointer_v<Tu>) { return *std::forward<T>(item); } else { return std::forward<T>(item); } } template <typename T> inline T* ptr(T& val) { return std::addressof(val); } template <typename T> inline T* ptr(std::reference_wrapper<T> val) { return std::addressof(val.get()); } template <typename T> inline T* ptr(T* val) { return val; } } // namespace detail } // namespace sol // end of sol/pointer_like.hpp // beginning of sol/string_view.hpp #include <string> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #include <string_view> #endif // C++17 features #include <functional> #if defined(SOL_USE_BOOST) && SOL_USE_BOOST #include <boost/functional/hash.hpp> #endif namespace sol { #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename C, typename T = std::char_traits<C>> using basic_string_view = std::basic_string_view<C, T>; typedef std::string_view string_view; typedef std::wstring_view wstring_view; typedef std::u16string_view u16string_view; typedef std::u32string_view u32string_view; typedef std::hash<std::string_view> string_view_hash; #else template <typename Char, typename Traits = std::char_traits<Char>> struct basic_string_view { std::size_t s; const Char* p; basic_string_view(const std::string& r) : basic_string_view(r.data(), r.size()) { } constexpr basic_string_view(const Char* ptr) : basic_string_view(ptr, Traits::length(ptr)) { } constexpr basic_string_view(const Char* ptr, std::size_t sz) : s(sz), p(ptr) { } static int compare(const Char* lhs_p, std::size_t lhs_sz, const Char* rhs_p, std::size_t rhs_sz) { int result = Traits::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz); if (result != 0) return result; if (lhs_sz < rhs_sz) return -1; if (lhs_sz > rhs_sz) return 1; return 0; } constexpr const Char* begin() const { return p; } constexpr const Char* end() const { return p + s; } constexpr const Char* cbegin() const { return p; } constexpr const Char* cend() const { return p + s; } constexpr const Char* data() const { return p; } constexpr std::size_t size() const { return s; } constexpr std::size_t length() const { return size(); } operator std::basic_string<Char, Traits>() const { return std::basic_string<Char, Traits>(data(), size()); } bool operator==(const basic_string_view& r) const { return compare(p, s, r.data(), r.size()) == 0; } bool operator==(const Char* r) const { return compare(r, Traits::length(r), p, s) == 0; } bool operator==(const std::basic_string<Char, Traits>& r) const { return compare(r.data(), r.size(), p, s) == 0; } bool operator!=(const basic_string_view& r) const { return !(*this == r); } bool operator!=(const char* r) const { return !(*this == r); } bool operator!=(const std::basic_string<Char, Traits>& r) const { return !(*this == r); } }; template <typename Ch, typename Tr = std::char_traits<Ch>> struct basic_string_view_hash { typedef basic_string_view<Ch, Tr> argument_type; typedef std::size_t result_type; template <typename Al> result_type operator()(const std::basic_string<Ch, Tr, Al>& r) const { return (*this)(argument_type(r.c_str(), r.size())); } result_type operator()(const argument_type& r) const { #if defined(SOL_USE_BOOST) && SOL_USE_BOOST return boost::hash_range(r.begin(), r.end()); #else // Modified, from libstdc++ // An implementation attempt at Fowler No Voll, 1a. // Supposedly, used in MSVC, // GCC (libstdc++) uses MurmurHash of some sort for 64-bit though...? // But, well. Can't win them all, right? // This should normally only apply when NOT using boost, // so this should almost never be tapped into... std::size_t hash = 0; const unsigned char* cptr = reinterpret_cast<const unsigned char*>(r.data()); for (std::size_t sz = r.size(); sz != 0; --sz) { hash ^= static_cast<size_t>(*cptr++); hash *= static_cast<size_t>(1099511628211ULL); } return hash; #endif } }; } // namespace sol namespace std { template <typename Ch, typename Tr> struct hash< ::sol::basic_string_view<Ch, Tr> > : ::sol::basic_string_view_hash<Ch, Tr> {}; } // namespace std namespace sol { using string_view = basic_string_view<char>; using wstring_view = basic_string_view<wchar_t>; using u16string_view = basic_string_view<char16_t>; using u32string_view = basic_string_view<char32_t>; using string_view_hash = std::hash<string_view>; #endif // C++17 Support } // namespace sol // end of sol/string_view.hpp #include <cstdint> #include <memory> #include <array> #include <iterator> #include <iosfwd> namespace sol { namespace meta { template <typename T> struct unwrapped { typedef T type; }; template <typename T> struct unwrapped<std::reference_wrapper<T>> { typedef T type; }; template <typename T> using unwrapped_t = typename unwrapped<T>::type; template <typename T> struct unwrap_unqualified : unwrapped<unqualified_t<T>> {}; template <typename T> using unwrap_unqualified_t = typename unwrap_unqualified<T>::type; template <typename T> struct remove_member_pointer; template <typename R, typename T> struct remove_member_pointer<R T::*> { typedef R type; }; template <typename R, typename T> struct remove_member_pointer<R T::*const> { typedef R type; }; template <typename T> using remove_member_pointer_t = remove_member_pointer<T>; template <typename T, typename...> struct all_same : std::true_type {}; template <typename T, typename U, typename... Args> struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> {}; template <typename T, typename...> struct any_same : std::false_type {}; template <typename T, typename U, typename... Args> struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> {}; template <typename T, typename... Args> constexpr inline bool any_same_v = any_same<T, Args...>::value; template <bool B> using boolean = std::integral_constant<bool, B>; template <bool B> constexpr inline bool boolean_v = boolean<B>::value; template <typename T> using neg = boolean<!T::value>; template <typename T> constexpr inline bool neg_v = neg<T>::value; template <typename... Args> struct all : boolean<true> {}; template <typename T, typename... Args> struct all<T, Args...> : std::conditional_t<T::value, all<Args...>, boolean<false>> {}; template <typename... Args> struct any : boolean<false> {}; template <typename T, typename... Args> struct any<T, Args...> : std::conditional_t<T::value, boolean<true>, any<Args...>> {}; template <typename T, typename... Args> constexpr inline bool all_v = all<T, Args...>::value; template <typename T, typename... Args> constexpr inline bool any_v = any<T, Args...>::value; enum class enable_t { _ }; constexpr const auto enabler = enable_t::_; template <bool value, typename T = void> using disable_if_t = std::enable_if_t<!value, T>; template <typename... Args> using enable = std::enable_if_t<all<Args...>::value, enable_t>; template <typename... Args> using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>; template <typename... Args> using enable_any = std::enable_if_t<any<Args...>::value, enable_t>; template <typename... Args> using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>; template <typename V, typename... Vs> struct find_in_pack_v : boolean<false> {}; template <typename V, typename Vs1, typename... Vs> struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> {}; namespace meta_detail { template <std::size_t I, typename T, typename... Args> struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> {}; template <std::size_t I, typename T, typename T1, typename... Args> struct index_in_pack<I, T, T1, Args...> : conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> {}; } // namespace meta_detail template <typename T, typename... Args> struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> {}; template <typename T, typename List> struct index_in : meta_detail::index_in_pack<0, T, List> {}; template <typename T, typename... Args> struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> {}; template <std::size_t I, typename... Args> struct at_in_pack {}; template <std::size_t I, typename... Args> using at_in_pack_t = typename at_in_pack<I, Args...>::type; template <std::size_t I, typename Arg, typename... Args> struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {}; template <typename Arg, typename... Args> struct at_in_pack<0, Arg, Args...> { typedef Arg type; }; namespace meta_detail { template <typename, typename TI> using on_even = meta::boolean<(TI::value % 2) == 0>; template <typename, typename TI> using on_odd = meta::boolean<(TI::value % 2) == 1>; template <typename, typename> using on_always = std::true_type; template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts> struct count_when_for_pack : std::integral_constant<std::size_t, 0> {}; template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts> struct count_when_for_pack<When, Limit, I, Pred, T, Ts...> : conditional_t< sizeof...(Ts) == 0 || Limit < 2, std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>, count_when_for_pack<When, Limit - static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value), I + static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value && Pred<T>::value), Pred, Ts...> > {}; } // namespace meta_detail template <template <typename...> class Pred, typename... Ts> struct count_for_pack : meta_detail::count_when_for_pack<meta_detail::on_always, sizeof...(Ts), 0, Pred, Ts...> {}; template <template <typename...> class Pred, typename... Ts> inline constexpr std::size_t count_for_pack_v = count_for_pack<Pred, Ts...>::value; template <template <typename...> class Pred, typename List> struct count_for; template <template <typename...> class Pred, typename... Args> struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {}; template <std::size_t Limit, template <typename...> class Pred, typename... Ts> struct count_for_to_pack : meta_detail::count_when_for_pack<meta_detail::on_always, Limit, 0, Pred, Ts...> {}; template <std::size_t Limit, template <typename...> class Pred, typename... Ts> inline constexpr std::size_t count_for_to_pack_v = count_for_to_pack<Limit, Pred, Ts...>::value; template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts> struct count_when_for_to_pack : meta_detail::count_when_for_pack<When, Limit, 0, Pred, Ts...> {}; template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts> inline constexpr std::size_t count_when_for_to_pack_v = count_when_for_to_pack<When, Limit, Pred, Ts...>::value; template <template <typename...> class Pred, typename... Ts> using count_even_for_pack = count_when_for_to_pack<meta_detail::on_even, sizeof...(Ts), Pred, Ts...>; template <template <typename...> class Pred, typename... Ts> inline constexpr std::size_t count_even_for_pack_v = count_even_for_pack<Pred, Ts...>::value; template <template <typename...> class Pred, typename... Ts> using count_odd_for_pack = count_when_for_to_pack<meta_detail::on_odd, sizeof...(Ts), Pred, Ts...>; template <template <typename...> class Pred, typename... Ts> inline constexpr std::size_t count_odd_for_pack_v = count_odd_for_pack<Pred, Ts...>::value; template <typename... Args> struct return_type { typedef std::tuple<Args...> type; }; template <typename T> struct return_type<T> { typedef T type; }; template <> struct return_type<> { typedef void type; }; template <typename... Args> using return_type_t = typename return_type<Args...>::type; namespace meta_detail { template <typename> struct always_true : std::true_type {}; struct is_invokable_tester { template <typename Fun, typename... Args> static always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int); template <typename...> static std::false_type test(...); }; } // namespace meta_detail template <typename T> struct is_invokable; template <typename Fun, typename... Args> struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {}; namespace meta_detail { template <typename T, typename = void> struct is_callable : std::is_function<std::remove_pointer_t<T>> {}; template <typename T> struct is_callable<T, std::enable_if_t<std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && std::is_same<decltype(void(&T::operator())), void>::value>> {}; template <typename T> struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && std::is_destructible<unqualified_t<T>>::value>> { struct F { void operator()() {}; }; struct Derived : T, F {}; template <typename U, U> struct Check; template <typename V> static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*); template <typename> static sfinae_yes_t test(...); static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>; }; template <typename T> struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && !std::is_destructible<unqualified_t<T>>::value>> { struct F { void operator()() {}; }; struct Derived : T, F { ~Derived() = delete; }; template <typename U, U> struct Check; template <typename V> static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*); template <typename> static sfinae_yes_t test(...); static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>; }; struct has_begin_end_impl { template <typename T, typename U = unqualified_t<T>, typename B = decltype(std::declval<U&>().begin()), typename E = decltype(std::declval<U&>().end())> static std::true_type test(int); template <typename...> static std::false_type test(...); }; struct has_key_type_impl { template <typename T, typename U = unqualified_t<T>, typename V = typename U::key_type> static std::true_type test(int); template <typename...> static std::false_type test(...); }; struct has_key_comp_impl { template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().key_comp())> static std::true_type test(int); template <typename...> static std::false_type test(...); }; struct has_load_factor_impl { template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().load_factor())> static std::true_type test(int); template <typename...> static std::false_type test(...); }; struct has_mapped_type_impl { template <typename T, typename V = typename unqualified_t<T>::mapped_type> static std::true_type test(int); template <typename...> static std::false_type test(...); }; struct has_value_type_impl { template <typename T, typename V = typename unqualified_t<T>::value_type> static std::true_type test(int); template <typename...> static std::false_type test(...); }; struct has_iterator_impl { template <typename T, typename V = typename unqualified_t<T>::iterator> static std::true_type test(int); template <typename...> static std::false_type test(...); }; struct has_key_value_pair_impl { template <typename T, typename U = unqualified_t<T>, typename V = typename U::value_type, typename F = decltype(std::declval<V&>().first), typename S = decltype(std::declval<V&>().second)> static std::true_type test(int); template <typename...> static std::false_type test(...); }; template <typename T> struct has_push_back_test { private: template <typename C> static sfinae_yes_t test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); template <typename C> static sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; }; template <typename T> struct has_insert_test { private: template <typename C> static sfinae_yes_t test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); template <typename C> static sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; }; template <typename T> struct has_insert_after_test { private: template <typename C> static sfinae_yes_t test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); template <typename C> static sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; }; template <typename T> struct has_size_test { private: template <typename C> static sfinae_yes_t test(decltype(std::declval<C>().size())*); template <typename C> static sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; }; template <typename T> struct has_max_size_test { private: template <typename C> static sfinae_yes_t test(decltype(std::declval<C>().max_size())*); template <typename C> static sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; }; template <typename T> struct has_to_string_test { private: template <typename C> static sfinae_yes_t test(decltype(std::declval<C>().to_string())*); template <typename C> static sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>; }; #if defined(_MSC_VER) && _MSC_VER <= 1910 template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())> std::true_type supports_op_less_test(std::reference_wrapper<T>, std::reference_wrapper<U>); std::false_type supports_op_less_test(...); template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())> std::true_type supports_op_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>); std::false_type supports_op_equal_test(...); template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())> std::true_type supports_op_less_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>); std::false_type supports_op_less_equal_test(...); template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())> std::true_type supports_ostream_op(std::reference_wrapper<T>, std::reference_wrapper<OS>); std::false_type supports_ostream_op(...); template <typename T, typename = decltype(to_string(std::declval<T&>()))> std::true_type supports_adl_to_string(std::reference_wrapper<T>); std::false_type supports_adl_to_string(...); #else template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())> std::true_type supports_op_less_test(const T&, const U&); std::false_type supports_op_less_test(...); template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())> std::true_type supports_op_equal_test(const T&, const U&); std::false_type supports_op_equal_test(...); template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())> std::true_type supports_op_less_equal_test(const T&, const U&); std::false_type supports_op_less_equal_test(...); template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())> std::true_type supports_ostream_op(const T&, const OS&); std::false_type supports_ostream_op(...); template <typename T, typename = decltype(to_string(std::declval<T&>()))> std::true_type supports_adl_to_string(const T&); std::false_type supports_adl_to_string(...); #endif template <typename T, bool b> struct is_matched_lookup_impl : std::false_type {}; template <typename T> struct is_matched_lookup_impl<T, true> : std::is_same<typename T::key_type, typename T::value_type> {}; template <typename T> using non_void_t = meta::conditional_t<std::is_void_v<T>, ::sol::detail::unchecked_t, T>; } // namespace meta_detail template <typename T, typename U = T> using supports_op_less = decltype(meta_detail::supports_op_less_test(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); template <typename T, typename U = T> using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); template <typename T, typename U = T> using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); template <typename T, typename U = std::ostream> using supports_ostream_op = decltype(meta_detail::supports_ostream_op(std::declval<meta_detail::non_void_t<T>&>(), std::declval<meta_detail::non_void_t<U>&>())); template <typename T> using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::declval<meta_detail::non_void_t<T>&>())); template <typename T> using supports_to_string_member = meta::boolean<meta_detail::has_to_string_test<meta_detail::non_void_t<T>>::value>; template <typename T> using is_callable = boolean<meta_detail::is_callable<T>::value>; template <typename T> constexpr inline bool is_callable_v = is_callable<T>::value; template <typename T> struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {}; template <typename T> constexpr inline bool has_begin_end_v = has_begin_end<T>::value; template <typename T> struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {}; template <typename T> struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) {}; template <typename T> struct has_key_comp : decltype(meta_detail::has_key_comp_impl::test<T>(0)) {}; template <typename T> struct has_load_factor : decltype(meta_detail::has_load_factor_impl::test<T>(0)) {}; template <typename T> struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) {}; template <typename T> struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) {}; template <typename T> struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) {}; template <typename T> using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>; template <typename T> using has_max_size = meta::boolean<meta_detail::has_max_size_test<T>::value>; template <typename T> using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>; template <typename T> using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>; template <typename T> using has_size = meta::boolean<meta_detail::has_size_test<T>::value>; template <typename T> using is_associative = meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>>; template <typename T> using is_lookup = meta::all<has_key_type<T>, has_value_type<T>>; template <typename T> using is_ordered = meta::all<has_key_comp<T>, meta::neg<has_load_factor<T>>>; template <typename T> using is_matched_lookup = meta_detail::is_matched_lookup_impl<T, is_lookup<T>::value>; template <typename T> using is_initializer_list = meta::is_specialization_of<T, std::initializer_list>; template <typename T> constexpr inline bool is_initializer_list_v = is_initializer_list<T>::value; template <typename T, typename CharT = char> using is_string_literal_array_of = boolean<std::is_array_v<T> && std::is_same_v<std::remove_all_extents_t<T>, CharT>>; template <typename T, typename CharT = char> constexpr inline bool is_string_literal_array_of_v = is_string_literal_array_of<T, CharT>::value; template <typename T> using is_string_literal_array = boolean<std::is_array_v<T> && any_same_v<std::remove_all_extents_t<T>, char, char16_t, char32_t, wchar_t>>; template <typename T> constexpr inline bool is_string_literal_array_v = is_string_literal_array<T>::value; template <typename T, typename CharT> struct is_string_of : std::false_type {}; template <typename CharT, typename CharTargetT, typename TraitsT, typename AllocT> struct is_string_of<std::basic_string<CharT, TraitsT, AllocT>, CharTargetT> : std::is_same<CharT, CharTargetT> {}; template <typename T, typename CharT> constexpr inline bool is_string_of_v = is_string_of<T, CharT>::value; template <typename T, typename CharT> struct is_string_view_of : std::false_type {}; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename CharT, typename CharTargetT, typename TraitsT> struct is_string_view_of<std::basic_string_view<CharT, TraitsT>, CharTargetT> : std::is_same<CharT, CharTargetT> {}; #else template <typename CharT, typename CharTargetT, typename TraitsT> struct is_string_view_of<basic_string_view<CharT, TraitsT>, CharTargetT> : std::is_same<CharT, CharTargetT> {}; #endif template <typename T, typename CharT> constexpr inline bool is_string_view_of_v = is_string_view_of<T, CharT>::value; template <typename T> using is_string_like = meta::boolean<is_specialization_of_v<T, std::basic_string> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES || is_specialization_of_v<T, std::basic_string_view> #else || is_specialization_of_v<T, basic_string_view> #endif || is_string_literal_array_v<T>>; template <typename T> constexpr inline bool is_string_like_v = is_string_like<T>::value; template <typename T, typename CharT = char> using is_string_constructible = meta::boolean< is_string_literal_array_of_v<T, CharT> || std::is_same_v<T, const CharT*> || std::is_same_v<T, CharT> || is_string_of_v<T, CharT> || std::is_same_v<T, std::initializer_list<CharT>> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES || is_string_view_of_v<T, CharT> #endif >; template <typename T, typename CharT = char> constexpr inline bool is_string_constructible_v = is_string_constructible<T, CharT>::value; template <typename T> using is_string_like_or_constructible = meta::boolean<is_string_like_v<T> || is_string_constructible_v<T>>; template <typename T> struct is_pair : std::false_type {}; template <typename T1, typename T2> struct is_pair<std::pair<T1, T2>> : std::true_type {}; template <typename T, typename Char> using is_c_str_of = any<std::is_same<T, const Char*>, std::is_same<T, Char const* const>, std::is_same<T, Char*>, is_string_of<T, Char>, is_string_literal_array_of<T, Char>>; template <typename T, typename Char> constexpr inline bool is_c_str_of_v = is_c_str_of<T, Char>::value; template <typename T> using is_c_str = is_c_str_of<T, char>; template <typename T> constexpr inline bool is_c_str_v = is_c_str<T>::value; template <typename T> struct is_move_only : all<neg<std::is_reference<T>>, neg<std::is_copy_constructible<unqualified_t<T>>>, std::is_move_constructible<unqualified_t<T>>> {}; template <typename T> using is_not_move_only = neg<is_move_only<T>>; namespace meta_detail { template <typename T> decltype(auto) force_tuple(T&& x) { if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>) { return std::forward<T>(x); } else { return std::tuple<T>(std::forward<T>(x)); } } } // namespace meta_detail template <typename... X> decltype(auto) tuplefy(X&&... x) { return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...); } template <typename T, typename = void> struct iterator_tag { using type = std::input_iterator_tag; }; template <typename T> struct iterator_tag<T, conditional_t<false, typename std::iterator_traits<T>::iterator_category, void>> { using type = typename std::iterator_traits<T>::iterator_category; }; } // namespace meta } // namespace sol // end of sol/traits.hpp namespace sol { namespace detail { const bool default_safe_function_calls = #if defined(SOL_SAFE_FUNCTION_CALLS) && SOL_SAFE_FUNCTION_CALLS true; #else false; #endif } // namespace detail namespace meta { namespace meta_detail { } } // namespace meta::meta_detail namespace stack { namespace stack_detail { using undefined_method_func = void (*)(stack_reference); template <typename T> void set_undefined_methods_on(stack_reference); struct undefined_metatable; } } // namespace stack::stack_detail } // namespace sol #endif // SOL_FORWARD_DETAIL_HPP // end of sol/forward_detail.hpp // beginning of sol/bytecode.hpp // beginning of sol/compatibility.hpp // beginning of sol/compatibility/version.hpp #if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA #include <lua.h> #include <lualib.h> #include <lauxlib.h> #if defined(SOL_USING_CXX_LUAJIT) && SOL_USING_CXX_LUAJIT #include <luajit.h> #endif // C++ LuaJIT ... whatever that means #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !(SOL_EXCEPTIONS_SAFE_PROPAGATION)) && (!defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE) || !(SOL_EXCEPTIONS_ALWAYS_UNSAFE)) #define SOL_EXCEPTIONS_SAFE_PROPAGATION 1 #endif // Exceptions can be propagated safely using C++-compiled Lua #else #if defined(SOL_NO_LUA_HPP) && SOL_NO_LUA_HPP extern "C" { #if defined(LUAJIT_VERSION) && LUAJIT_VERSION #endif } #else #if defined(__has_include) #if __has_include(<lua.hpp>) #include <lua.hpp> #else extern "C" { #if defined(LUAJIT_VERSION) && LUAJIT_VERSION #endif } #endif // lua.hpp exists or does not #else #endif // check for lua.hpp safely for Lua 5.1 derps #endif // Manual - have lua.hpp or not #endif // C++ Mangling for Lua vs. Not #ifdef LUAJIT_VERSION #ifndef SOL_LUAJIT #define SOL_LUAJIT 1 #endif // sol luajit #if defined(SOL_LUAJIT) && SOL_LUAJIT #ifndef SOL_LUAJIT_VERSION #define SOL_LUAJIT_VERSION LUAJIT_VERSION_NUM #endif // SOL_LUAJIT_VERSION definition, if not present #endif #endif // luajit #if SOL_LUAJIT && SOL_LUAJIT_VERSION >= 20100 #if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && (!defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE) && !(SOL_EXCEPTIONS_ALWAYS_UNSAFE)) #define SOL_EXCEPTIONS_SAFE_PROPAGATION 1 #endif // Do not catch (...) clauses #endif // LuaJIT beta 02.01.00 have better exception handling on all platforms since beta3 #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502 #define SOL_LUA_VERSION LUA_VERSION_NUM #elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 #define SOL_LUA_VERSION LUA_VERSION_NUM #elif !defined(LUA_VERSION_NUM) || !(LUA_VERSION_NUM) // Definitely 5.0 #define SOL_LUA_VERSION 500 #else // ??? Not sure, assume 503? #define SOL_LUA_VERSION 503 #endif // Lua Version 503, 502, 501 || luajit, 500 // end of sol/compatibility/version.hpp #if !defined(SOL_NO_COMPAT) || !(SOL_NO_COMPAT) #if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA #ifndef COMPAT53_LUA_CPP #define COMPAT53_LUA_CPP 1 #endif // Build Lua Compat layer as C++ #endif #ifndef COMPAT53_INCLUDE_SOURCE #define COMPAT53_INCLUDE_SOURCE 1 #endif // Build Compat Layer Inline // beginning of sol/compatibility/compat-5.3.h #ifndef KEPLER_PROJECT_COMPAT53_H_ #define KEPLER_PROJECT_COMPAT53_H_ #include <stddef.h> #include <limits.h> #include <string.h> #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP) extern "C" { #endif #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP) } #endif #ifndef COMPAT53_PREFIX /* we chose this name because many other lua bindings / libs have * their own compatibility layer, and that use the compat53 declaration * frequently, causing all kinds of linker / compiler issues */ # define COMPAT53_PREFIX kp_compat53 #endif // COMPAT53_PREFIX #ifndef COMPAT53_API # if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE # if defined(__GNUC__) || defined(__clang__) # define COMPAT53_API __attribute__((__unused__)) static inline # else # define COMPAT53_API static inline # endif /* Clang/GCC */ # else /* COMPAT53_INCLUDE_SOURCE */ /* we are not including source, so everything is extern */ # define COMPAT53_API extern # endif /* COMPAT53_INCLUDE_SOURCE */ #endif /* COMPAT53_PREFIX */ #define COMPAT53_CONCAT_HELPER(a, b) a##b #define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b) /* declarations for Lua 5.1 */ #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 /* XXX not implemented: * lua_arith (new operators) * lua_upvalueid * lua_upvaluejoin * lua_version * lua_yieldk */ #ifndef LUA_OK # define LUA_OK 0 #endif #ifndef LUA_OPADD # define LUA_OPADD 0 #endif #ifndef LUA_OPSUB # define LUA_OPSUB 1 #endif #ifndef LUA_OPMUL # define LUA_OPMUL 2 #endif #ifndef LUA_OPDIV # define LUA_OPDIV 3 #endif #ifndef LUA_OPMOD # define LUA_OPMOD 4 #endif #ifndef LUA_OPPOW # define LUA_OPPOW 5 #endif #ifndef LUA_OPUNM # define LUA_OPUNM 6 #endif #ifndef LUA_OPEQ # define LUA_OPEQ 0 #endif #ifndef LUA_OPLT # define LUA_OPLT 1 #endif #ifndef LUA_OPLE # define LUA_OPLE 2 #endif /* LuaJIT/Lua 5.1 does not have the updated * error codes for thread status/function returns (but some patched versions do) * define it only if it's not found */ #if !defined(LUA_ERRGCMM) /* Use + 2 because in some versions of Lua (Lua 5.1) * LUA_ERRFILE is defined as (LUA_ERRERR+1) * so we need to avoid it (LuaJIT might have something at this * integer value too) */ # define LUA_ERRGCMM (LUA_ERRERR + 2) #endif /* LUA_ERRGCMM define */ typedef size_t lua_Unsigned; typedef struct luaL_Buffer_53 { luaL_Buffer b; /* make incorrect code crash! */ char *ptr; size_t nelems; size_t capacity; lua_State *L2; } luaL_Buffer_53; #define luaL_Buffer luaL_Buffer_53 /* In PUC-Rio 5.1, userdata is a simple FILE* * In LuaJIT, it's a struct where the first member is a FILE* * We can't support the `closef` member */ typedef struct luaL_Stream { FILE *f; } luaL_Stream; #define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex) COMPAT53_API int lua_absindex(lua_State *L, int i); #define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith) COMPAT53_API void lua_arith(lua_State *L, int op); #define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare) COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op); #define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy) COMPAT53_API void lua_copy(lua_State *L, int from, int to); #define lua_getuservalue(L, i) \ (lua_getfenv((L), (i)), lua_type((L), -1)) #define lua_setuservalue(L, i) \ (luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i))) #define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len) COMPAT53_API void lua_len(lua_State *L, int i); #define lua_pushstring(L, s) \ (lua_pushstring((L), (s)), lua_tostring((L), -1)) #define lua_pushlstring(L, s, len) \ ((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1)) #ifndef luaL_newlibtable # define luaL_newlibtable(L, l) \ (lua_createtable((L), 0, sizeof((l))/sizeof(*(l))-1)) #endif #ifndef luaL_newlib # define luaL_newlib(L, l) \ (luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l))) #endif #define lua_pushglobaltable(L) \ lua_pushvalue((L), LUA_GLOBALSINDEX) #define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp) COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p); #define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp) COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p); #define lua_rawlen(L, i) lua_objlen((L), (i)) #define lua_tointeger(L, i) lua_tointegerx((L), (i), NULL) #define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx) COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum); #define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion) COMPAT53_API void luaL_checkversion(lua_State *L); #define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53) COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char* source, const char* mode); #define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex) COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode); #define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx) COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode); #define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53) COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg); #define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable) COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char *name); #define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len) COMPAT53_API lua_Integer luaL_len(lua_State *L, int i); #define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs) COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup); #define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable) COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname); #define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata) COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname); #define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback) COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level); #define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult) COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname); #define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult) COMPAT53_API int luaL_execresult(lua_State *L, int stat); #define lua_callk(L, na, nr, ctx, cont) \ ((void)(ctx), (void)(cont), lua_call((L), (na), (nr))) #define lua_pcallk(L, na, nr, err, ctx, cont) \ ((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err))) #define lua_resume(L, from, nargs) \ ((void)(from), lua_resume((L), (nargs))) #define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53) COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B); #define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53) COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s); #define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53) COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l); #define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53) COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B); #define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53) COMPAT53_API void luaL_pushresult(luaL_Buffer_53 *B); #undef luaL_buffinitsize #define luaL_buffinitsize(L, B, s) \ (luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s))) #undef luaL_prepbuffer #define luaL_prepbuffer(B) \ luaL_prepbuffsize((B), LUAL_BUFFERSIZE) #undef luaL_addchar #define luaL_addchar(B, c) \ ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \ ((B)->ptr[(B)->nelems++] = (c))) #undef luaL_addsize #define luaL_addsize(B, s) \ ((B)->nelems += (s)) #undef luaL_addstring #define luaL_addstring(B, s) \ luaL_addlstring((B), (s), strlen((s))) #undef luaL_pushresultsize #define luaL_pushresultsize(B, s) \ (luaL_addsize((B), (s)), luaL_pushresult((B))) #if defined(LUA_COMPAT_APIINTCASTS) #define lua_pushunsigned(L, n) \ lua_pushinteger((L), (lua_Integer)(n)) #define lua_tounsignedx(L, i, is) \ ((lua_Unsigned)lua_tointegerx((L), (i), (is))) #define lua_tounsigned(L, i) \ lua_tounsignedx((L), (i), NULL) #define luaL_checkunsigned(L, a) \ ((lua_Unsigned)luaL_checkinteger((L), (a))) #define luaL_optunsigned(L, a, d) \ ((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d))) #endif #endif /* Lua 5.1 only */ /* declarations for Lua 5.1 and 5.2 */ #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502 typedef int lua_KContext; typedef int(*lua_KFunction)(lua_State *L, int status, lua_KContext ctx); #define lua_dump(L, w, d, s) \ ((void)(s), lua_dump((L), (w), (d))) #define lua_getfield(L, i, k) \ (lua_getfield((L), (i), (k)), lua_type((L), -1)) #define lua_gettable(L, i) \ (lua_gettable((L), (i)), lua_type((L), -1)) #define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti) COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i); #define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger) COMPAT53_API int lua_isinteger(lua_State *L, int index); #define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx_53) COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum); #define lua_numbertointeger(n, p) \ ((*(p) = (lua_Integer)(n)), 1) #define lua_rawget(L, i) \ (lua_rawget((L), (i)), lua_type((L), -1)) #define lua_rawgeti(L, i, n) \ (lua_rawgeti((L), (i), (n)), lua_type((L), -1)) #define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate) COMPAT53_API void lua_rotate(lua_State *L, int idx, int n); #define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti) COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i); #define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber) COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s); #define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring) COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len); #define luaL_getmetafield(L, o, e) \ (luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL) #define luaL_newmetatable(L, tn) \ (luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0) #define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53) COMPAT53_API void luaL_requiref(lua_State *L, const char *modname, lua_CFunction openf, int glb); #endif /* Lua 5.1 and Lua 5.2 */ /* declarations for Lua 5.2 */ #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502 /* XXX not implemented: * lua_isyieldable * lua_getextraspace * lua_arith (new operators) * lua_pushfstring (new formats) */ #define lua_getglobal(L, n) \ (lua_getglobal((L), (n)), lua_type((L), -1)) #define lua_getuservalue(L, i) \ (lua_getuservalue((L), (i)), lua_type((L), -1)) #define lua_pushlstring(L, s, len) \ (((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))) #define lua_rawgetp(L, i, p) \ (lua_rawgetp((L), (i), (p)), lua_type((L), -1)) #define LUA_KFUNCTION(_name) \ static int (_name)(lua_State *L, int status, lua_KContext ctx); \ static int (_name ## _52)(lua_State *L) { \ lua_KContext ctx; \ int status = lua_getctx(L, &ctx); \ return (_name)(L, status, ctx); \ } \ static int (_name)(lua_State *L, int status, lua_KContext ctx) #define lua_pcallk(L, na, nr, err, ctx, cont) \ lua_pcallk((L), (na), (nr), (err), (ctx), cont ## _52) #define lua_callk(L, na, nr, ctx, cont) \ lua_callk((L), (na), (nr), (ctx), cont ## _52) #define lua_yieldk(L, nr, ctx, cont) \ lua_yieldk((L), (nr), (ctx), cont ## _52) #ifdef lua_call # undef lua_call # define lua_call(L, na, nr) \ (lua_callk)((L), (na), (nr), 0, NULL) #endif #ifdef lua_pcall # undef lua_pcall # define lua_pcall(L, na, nr, err) \ (lua_pcallk)((L), (na), (nr), (err), 0, NULL) #endif #ifdef lua_yield # undef lua_yield # define lua_yield(L, nr) \ (lua_yieldk)((L), (nr), 0, NULL) #endif #endif /* Lua 5.2 only */ /* other Lua versions */ #if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 504 # error "unsupported Lua version (i.e. not Lua 5.1, 5.2, or 5.3)" #endif /* other Lua versions except 5.1, 5.2, and 5.3 */ /* helper macro for defining continuation functions (for every version * *except* Lua 5.2) */ #ifndef LUA_KFUNCTION #define LUA_KFUNCTION(_name) \ static int (_name)(lua_State *L, int status, lua_KContext ctx) #endif #if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE == 1 // beginning of sol/compatibility/compat-5.3.c.h #include <stdlib.h> #include <ctype.h> #include <errno.h> #include <stdio.h> /* don't compile it again if it already is included via compat53.h */ #ifndef KEPLER_PROJECT_COMPAT53_C_ #define KEPLER_PROJECT_COMPAT53_C_ /* definitions for Lua 5.1 only */ #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 #ifndef COMPAT53_FOPEN_NO_LOCK # if defined(_MSC_VER) # define COMPAT53_FOPEN_NO_LOCK 1 # else /* otherwise */ # define COMPAT53_FOPEN_NO_LOCK 0 # endif /* VC++ only so far */ #endif /* No-lock fopen_s usage if possible */ #if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK # include <share.h> #endif /* VC++ _fsopen for share-allowed file read */ #ifndef COMPAT53_HAVE_STRERROR_R # if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || \ (!defined (__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6)) # define COMPAT53_HAVE_STRERROR_R 1 # else /* none of the defines matched: define to 0 */ # define COMPAT53_HAVE_STRERROR_R 0 # endif /* have strerror_r of some form */ #endif /* strerror_r */ #ifndef COMPAT53_HAVE_STRERROR_S # if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || \ (defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__) # define COMPAT53_HAVE_STRERROR_S 1 # else /* not VC++ or C11 */ # define COMPAT53_HAVE_STRERROR_S 0 # endif /* strerror_s from VC++ or C11 */ #endif /* strerror_s */ #ifndef COMPAT53_LUA_FILE_BUFFER_SIZE # define COMPAT53_LUA_FILE_BUFFER_SIZE 4096 #endif /* Lua File Buffer Size */ static char* compat53_strerror(int en, char* buff, size_t sz) { #if COMPAT53_HAVE_STRERROR_R /* use strerror_r here, because it's available on these specific platforms */ if (sz > 0) { buff[0] = '\0'; /* we don't care whether the GNU version or the XSI version is used: */ if (strerror_r(en, buff, sz)) { /* Yes, we really DO want to ignore the return value! * GCC makes that extra hard, not even a (void) cast will do. */ } if (buff[0] == '\0') { /* Buffer is unchanged, so we probably have called GNU strerror_r which * returned a static constant string. Chances are that strerror will * return the same static constant string and therefore be thread-safe. */ return strerror(en); } } return buff; /* sz is 0 *or* strerror_r wrote into the buffer */ #elif COMPAT53_HAVE_STRERROR_S /* for MSVC and other C11 implementations, use strerror_s since it's * provided by default by the libraries */ strerror_s(buff, sz, en); return buff; #else /* fallback, but strerror is not guaranteed to be threadsafe due to modifying * errno itself and some impls not locking a static buffer for it ... but most * known systems have threadsafe errno: this might only change if the locale * is changed out from under someone while this function is being called */ (void)buff; (void)sz; return strerror(en); #endif } COMPAT53_API int lua_absindex(lua_State *L, int i) { if (i < 0 && i > LUA_REGISTRYINDEX) i += lua_gettop(L) + 1; return i; } static void compat53_call_lua(lua_State *L, char const code[], size_t len, int nargs, int nret) { lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code); if (lua_type(L, -1) != LUA_TFUNCTION) { lua_pop(L, 1); if (luaL_loadbuffer(L, code, len, "=none")) lua_error(L); lua_pushvalue(L, -1); lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code); } lua_insert(L, -nargs - 1); lua_call(L, nargs, nret); } static const char compat53_arith_code[] = "local op,a,b=...\n" "if op==0 then return a+b\n" "elseif op==1 then return a-b\n" "elseif op==2 then return a*b\n" "elseif op==3 then return a/b\n" "elseif op==4 then return a%b\n" "elseif op==5 then return a^b\n" "elseif op==6 then return -a\n" "end\n"; COMPAT53_API void lua_arith(lua_State *L, int op) { if (op < LUA_OPADD || op > LUA_OPUNM) luaL_error(L, "invalid 'op' argument for lua_arith"); luaL_checkstack(L, 5, "not enough stack slots"); if (op == LUA_OPUNM) lua_pushvalue(L, -1); lua_pushnumber(L, op); lua_insert(L, -3); compat53_call_lua(L, compat53_arith_code, sizeof(compat53_arith_code) - 1, 3, 1); } static const char compat53_compare_code[] = "local a,b=...\n" "return a<=b\n"; COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op) { int result = 0; switch (op) { case LUA_OPEQ: return lua_equal(L, idx1, idx2); case LUA_OPLT: return lua_lessthan(L, idx1, idx2); case LUA_OPLE: luaL_checkstack(L, 5, "not enough stack slots"); idx1 = lua_absindex(L, idx1); idx2 = lua_absindex(L, idx2); lua_pushvalue(L, idx1); lua_pushvalue(L, idx2); compat53_call_lua(L, compat53_compare_code, sizeof(compat53_compare_code) - 1, 2, 1); result = lua_toboolean(L, -1); lua_pop(L, 1); return result; default: luaL_error(L, "invalid 'op' argument for lua_compare"); } return 0; } COMPAT53_API void lua_copy(lua_State *L, int from, int to) { int abs_to = lua_absindex(L, to); luaL_checkstack(L, 1, "not enough stack slots"); lua_pushvalue(L, from); lua_replace(L, abs_to); } COMPAT53_API void lua_len(lua_State *L, int i) { switch (lua_type(L, i)) { case LUA_TSTRING: lua_pushnumber(L, (lua_Number)lua_objlen(L, i)); break; case LUA_TTABLE: if (!luaL_callmeta(L, i, "__len")) lua_pushnumber(L, (lua_Number)lua_objlen(L, i)); break; case LUA_TUSERDATA: if (luaL_callmeta(L, i, "__len")) break; /* FALLTHROUGH */ default: luaL_error(L, "attempt to get length of a %s value", lua_typename(L, lua_type(L, i))); } } COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p) { int abs_i = lua_absindex(L, i); lua_pushlightuserdata(L, (void*)p); lua_rawget(L, abs_i); return lua_type(L, -1); } COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p) { int abs_i = lua_absindex(L, i); luaL_checkstack(L, 1, "not enough stack slots"); lua_pushlightuserdata(L, (void*)p); lua_insert(L, -2); lua_rawset(L, abs_i); } COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum) { lua_Number n = lua_tonumber(L, i); if (isnum != NULL) { *isnum = (n != 0 || lua_isnumber(L, i)); } return n; } COMPAT53_API void luaL_checkversion(lua_State *L) { (void)L; } COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg) { if (!lua_checkstack(L, sp + LUA_MINSTACK)) { if (msg != NULL) luaL_error(L, "stack overflow (%s)", msg); else { lua_pushliteral(L, "stack overflow"); lua_error(L); } } } COMPAT53_API int luaL_getsubtable(lua_State *L, int i, const char *name) { int abs_i = lua_absindex(L, i); luaL_checkstack(L, 3, "not enough stack slots"); lua_pushstring(L, name); lua_gettable(L, abs_i); if (lua_istable(L, -1)) return 1; lua_pop(L, 1); lua_newtable(L); lua_pushstring(L, name); lua_pushvalue(L, -2); lua_settable(L, abs_i); return 0; } COMPAT53_API lua_Integer luaL_len(lua_State *L, int i) { lua_Integer res = 0; int isnum = 0; luaL_checkstack(L, 1, "not enough stack slots"); lua_len(L, i); res = lua_tointegerx(L, -1, &isnum); lua_pop(L, 1); if (!isnum) luaL_error(L, "object length is not an integer"); return res; } COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) { luaL_checkstack(L, nup + 1, "too many upvalues"); for (; l->name != NULL; l++) { /* fill the table with given functions */ int i; lua_pushstring(L, l->name); for (i = 0; i < nup; i++) /* copy upvalues to the top */ lua_pushvalue(L, -(nup + 1)); lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */ lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */ } lua_pop(L, nup); /* remove upvalues */ } COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname) { luaL_checkstack(L, 1, "not enough stack slots"); luaL_getmetatable(L, tname); lua_setmetatable(L, -2); } COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname) { void *p = lua_touserdata(L, i); luaL_checkstack(L, 2, "not enough stack slots"); if (p == NULL || !lua_getmetatable(L, i)) return NULL; else { int res = 0; luaL_getmetatable(L, tname); res = lua_rawequal(L, -1, -2); lua_pop(L, 2); if (!res) p = NULL; } return p; } static int compat53_countlevels(lua_State *L) { lua_Debug ar; int li = 1, le = 1; /* find an upper bound */ while (lua_getstack(L, le, &ar)) { li = le; le *= 2; } /* do a binary search */ while (li < le) { int m = (li + le) / 2; if (lua_getstack(L, m, &ar)) li = m + 1; else le = m; } return le - 1; } static int compat53_findfield(lua_State *L, int objidx, int level) { if (level == 0 || !lua_istable(L, -1)) return 0; /* not found */ lua_pushnil(L); /* start 'next' loop */ while (lua_next(L, -2)) { /* for each pair in table */ if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */ if (lua_rawequal(L, objidx, -1)) { /* found object? */ lua_pop(L, 1); /* remove value (but keep name) */ return 1; } else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */ lua_remove(L, -2); /* remove table (but keep name) */ lua_pushliteral(L, "."); lua_insert(L, -2); /* place '.' between the two names */ lua_concat(L, 3); return 1; } } lua_pop(L, 1); /* remove value */ } return 0; /* not found */ } static int compat53_pushglobalfuncname(lua_State *L, lua_Debug *ar) { int top = lua_gettop(L); lua_getinfo(L, "f", ar); /* push function */ lua_pushvalue(L, LUA_GLOBALSINDEX); if (compat53_findfield(L, top + 1, 2)) { lua_copy(L, -1, top + 1); /* move name to proper place */ lua_pop(L, 2); /* remove pushed values */ return 1; } else { lua_settop(L, top); /* remove function and global table */ return 0; } } static void compat53_pushfuncname(lua_State *L, lua_Debug *ar) { if (*ar->namewhat != '\0') /* is there a name? */ lua_pushfstring(L, "function " LUA_QS, ar->name); else if (*ar->what == 'm') /* main? */ lua_pushliteral(L, "main chunk"); else if (*ar->what == 'C') { if (compat53_pushglobalfuncname(L, ar)) { lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1)); lua_remove(L, -2); /* remove name */ } else lua_pushliteral(L, "?"); } else lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined); } #define COMPAT53_LEVELS1 12 /* size of the first part of the stack */ #define COMPAT53_LEVELS2 10 /* size of the second part of the stack */ COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level) { lua_Debug ar; int top = lua_gettop(L); int numlevels = compat53_countlevels(L1); int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0; if (msg) lua_pushfstring(L, "%s\n", msg); lua_pushliteral(L, "stack traceback:"); while (lua_getstack(L1, level++, &ar)) { if (level == mark) { /* too many levels? */ lua_pushliteral(L, "\n\t..."); /* add a '...' */ level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */ } else { lua_getinfo(L1, "Slnt", &ar); lua_pushfstring(L, "\n\t%s:", ar.short_src); if (ar.currentline > 0) lua_pushfstring(L, "%d:", ar.currentline); lua_pushliteral(L, " in "); compat53_pushfuncname(L, &ar); lua_concat(L, lua_gettop(L) - top); } } lua_concat(L, lua_gettop(L) - top); } COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname) { const char *serr = NULL; int en = errno; /* calls to Lua API may change this value */ char buf[512] = { 0 }; if (stat) { lua_pushboolean(L, 1); return 1; } else { lua_pushnil(L); serr = compat53_strerror(en, buf, sizeof(buf)); if (fname) lua_pushfstring(L, "%s: %s", fname, serr); else lua_pushstring(L, serr); lua_pushnumber(L, (lua_Number)en); return 3; } } static int compat53_checkmode(lua_State *L, const char *mode, const char *modename, int err) { if (mode && strchr(mode, modename[0]) == NULL) { lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode); return err; } return LUA_OK; } typedef struct { lua_Reader reader; void *ud; int has_peeked_data; const char *peeked_data; size_t peeked_data_size; } compat53_reader_data; static const char *compat53_reader(lua_State *L, void *ud, size_t *size) { compat53_reader_data *data = (compat53_reader_data *)ud; if (data->has_peeked_data) { data->has_peeked_data = 0; *size = data->peeked_data_size; return data->peeked_data; } else return data->reader(L, data->ud, size); } COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char *source, const char *mode) { int status = LUA_OK; compat53_reader_data compat53_data = { reader, data, 1, 0, 0 }; compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size)); if (compat53_data.peeked_data && compat53_data.peeked_data_size && compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */ status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX); else status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX); if (status != LUA_OK) return status; /* we need to call the original 5.1 version of lua_load! */ #undef lua_load return lua_load(L, compat53_reader, &compat53_data, source); #define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53) } typedef struct { int n; /* number of pre-read characters */ FILE *f; /* file being read */ char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */ } compat53_LoadF; static const char *compat53_getF(lua_State *L, void *ud, size_t *size) { compat53_LoadF *lf = (compat53_LoadF *)ud; (void)L; /* not used */ if (lf->n > 0) { /* are there pre-read characters to be read? */ *size = lf->n; /* return them (chars already in buffer) */ lf->n = 0; /* no more pre-read characters */ } else { /* read a block from file */ /* 'fread' can return > 0 *and* set the EOF flag. If next call to 'compat53_getF' called 'fread', it might still wait for user input. The next check avoids this problem. */ if (feof(lf->f)) return NULL; *size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */ } return lf->buff; } static int compat53_errfile(lua_State *L, const char *what, int fnameindex) { char buf[512] = { 0 }; const char *serr = compat53_strerror(errno, buf, sizeof(buf)); const char *filename = lua_tostring(L, fnameindex) + 1; lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr); lua_remove(L, fnameindex); return LUA_ERRFILE; } static int compat53_skipBOM(compat53_LoadF *lf) { const char *p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */ int c; lf->n = 0; do { c = getc(lf->f); if (c == EOF || c != *(const unsigned char *)p++) return c; lf->buff[lf->n++] = (char)c; /* to be read by the parser */ } while (*p != '\0'); lf->n = 0; /* prefix matched; discard it */ return getc(lf->f); /* return next character */ } /* ** reads the first character of file 'f' and skips an optional BOM mark ** in its beginning plus its first line if it starts with '#'. Returns ** true if it skipped the first line. In any case, '*cp' has the ** first "valid" character of the file (after the optional BOM and ** a first-line comment). */ static int compat53_skipcomment(compat53_LoadF *lf, int *cp) { int c = *cp = compat53_skipBOM(lf); if (c == '#') { /* first line is a comment (Unix exec. file)? */ do { /* skip first line */ c = getc(lf->f); } while (c != EOF && c != '\n'); *cp = getc(lf->f); /* skip end-of-line, if present */ return 1; /* there was a comment */ } else return 0; /* no comment */ } COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode) { compat53_LoadF lf; int status, readstatus; int c; int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */ if (filename == NULL) { lua_pushliteral(L, "=stdin"); lf.f = stdin; } else { lua_pushfstring(L, "@%s", filename); #if defined(_MSC_VER) /* This code is here to stop a deprecation error that stops builds * if a certain macro is defined. While normally not caring would * be best, some header-only libraries and builds can't afford to * dictate this to the user. A quick check shows that fopen_s this * goes back to VS 2005, and _fsopen goes back to VS 2003 .NET, * possibly even before that so we don't need to do any version * number checks, since this has been there since forever. */ /* TO USER: if you want the behavior of typical fopen_s/fopen, * which does lock the file on VC++, define the macro used below to 0 */ #if COMPAT53_FOPEN_NO_LOCK lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */ if (lf.f == NULL) return compat53_errfile(L, "open", fnameindex); #else /* use default locking version */ if (fopen_s(&lf.f, filename, "r") != 0) return compat53_errfile(L, "open", fnameindex); #endif /* Locking vs. No-locking fopen variants */ #else lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */ if (lf.f == NULL) return compat53_errfile(L, "open", fnameindex); #endif } if (compat53_skipcomment(&lf, &c)) /* read initial portion */ lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */ if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */ #if defined(_MSC_VER) if (freopen_s(&lf.f, filename, "rb", lf.f) != 0) return compat53_errfile(L, "reopen", fnameindex); #else lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */ if (lf.f == NULL) return compat53_errfile(L, "reopen", fnameindex); #endif compat53_skipcomment(&lf, &c); /* re-read initial portion */ } if (c != EOF) lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */ status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode); readstatus = ferror(lf.f); if (filename) fclose(lf.f); /* close file (even in case of errors) */ if (readstatus) { lua_settop(L, fnameindex); /* ignore results from 'lua_load' */ return compat53_errfile(L, "read", fnameindex); } lua_remove(L, fnameindex); return status; } COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode) { int status = LUA_OK; if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) { status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX); } else { status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX); } if (status != LUA_OK) return status; return luaL_loadbuffer(L, buff, sz, name); } #if !defined(l_inspectstat) && \ (defined(unix) || defined(__unix) || defined(__unix__) || \ defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || \ (defined(__APPLE__) && defined(__MACH__))) /* some form of unix; check feature macros in unistd.h for details */ # include <unistd.h> /* check posix version; the relevant include files and macros probably * were available before 2001, but I'm not sure */ # if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L # include <sys/wait.h> # define l_inspectstat(stat,what) \ if (WIFEXITED(stat)) { stat = WEXITSTATUS(stat); } \ else if (WIFSIGNALED(stat)) { stat = WTERMSIG(stat); what = "signal"; } # endif #endif /* provide default (no-op) version */ #if !defined(l_inspectstat) # define l_inspectstat(stat,what) ((void)0) #endif COMPAT53_API int luaL_execresult(lua_State *L, int stat) { const char *what = "exit"; if (stat == -1) return luaL_fileresult(L, 0, NULL); else { l_inspectstat(stat, what); if (*what == 'e' && stat == 0) lua_pushboolean(L, 1); else lua_pushnil(L); lua_pushstring(L, what); lua_pushinteger(L, stat); return 3; } } COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B) { /* make it crash if used via pointer to a 5.1-style luaL_Buffer */ B->b.p = NULL; B->b.L = NULL; B->b.lvl = 0; /* reuse the buffer from the 5.1-style luaL_Buffer though! */ B->ptr = B->b.buffer; B->capacity = LUAL_BUFFERSIZE; B->nelems = 0; B->L2 = L; } COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s) { if (B->capacity - B->nelems < s) { /* needs to grow */ char* newptr = NULL; size_t newcap = B->capacity * 2; if (newcap - B->nelems < s) newcap = B->nelems + s; if (newcap < B->capacity) /* overflow */ luaL_error(B->L2, "buffer too large"); newptr = (char*)lua_newuserdata(B->L2, newcap); memcpy(newptr, B->ptr, B->nelems); if (B->ptr != B->b.buffer) lua_replace(B->L2, -2); /* remove old buffer */ B->ptr = newptr; B->capacity = newcap; } return B->ptr + B->nelems; } COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l) { memcpy(luaL_prepbuffsize(B, l), s, l); luaL_addsize(B, l); } COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B) { size_t len = 0; const char *s = lua_tolstring(B->L2, -1, &len); if (!s) luaL_error(B->L2, "cannot convert value to string"); if (B->ptr != B->b.buffer) lua_insert(B->L2, -2); /* userdata buffer must be at stack top */ luaL_addlstring(B, s, len); lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1); } void luaL_pushresult(luaL_Buffer_53 *B) { lua_pushlstring(B->L2, B->ptr, B->nelems); if (B->ptr != B->b.buffer) lua_replace(B->L2, -2); /* remove userdata buffer */ } #endif /* Lua 5.1 */ /* definitions for Lua 5.1 and Lua 5.2 */ #if defined( LUA_VERSION_NUM ) && LUA_VERSION_NUM <= 502 COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i) { index = lua_absindex(L, index); lua_pushinteger(L, i); lua_gettable(L, index); return lua_type(L, -1); } COMPAT53_API int lua_isinteger(lua_State *L, int index) { if (lua_type(L, index) == LUA_TNUMBER) { lua_Number n = lua_tonumber(L, index); lua_Integer i = lua_tointeger(L, index); if (i == n) return 1; } return 0; } COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum) { int ok = 0; lua_Number n = lua_tonumberx(L, i, &ok); if (ok) { if (n == (lua_Integer)n) { if (isnum) *isnum = 1; return (lua_Integer)n; } } if (isnum) *isnum = 0; return 0; } static void compat53_reverse(lua_State *L, int a, int b) { for (; a < b; ++a, --b) { lua_pushvalue(L, a); lua_pushvalue(L, b); lua_replace(L, a); lua_replace(L, b); } } COMPAT53_API void lua_rotate(lua_State *L, int idx, int n) { int n_elems = 0; idx = lua_absindex(L, idx); n_elems = lua_gettop(L) - idx + 1; if (n < 0) n += n_elems; if (n > 0 && n < n_elems) { luaL_checkstack(L, 2, "not enough stack slots available"); n = n_elems - n; compat53_reverse(L, idx, idx + n - 1); compat53_reverse(L, idx + n, idx + n_elems - 1); compat53_reverse(L, idx, idx + n_elems - 1); } } COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i) { luaL_checkstack(L, 1, "not enough stack slots available"); index = lua_absindex(L, index); lua_pushinteger(L, i); lua_insert(L, -2); lua_settable(L, index); } #if !defined(lua_str2number) # define lua_str2number(s, p) strtod((s), (p)) #endif COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s) { char* endptr; lua_Number n = lua_str2number(s, &endptr); if (endptr != s) { while (*endptr != '\0' && isspace((unsigned char)*endptr)) ++endptr; if (*endptr == '\0') { lua_pushnumber(L, n); return endptr - s + 1; } } return 0; } COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len) { if (!luaL_callmeta(L, idx, "__tostring")) { int t = lua_type(L, idx), tt = 0; char const* name = NULL; switch (t) { case LUA_TNIL: lua_pushliteral(L, "nil"); break; case LUA_TSTRING: case LUA_TNUMBER: lua_pushvalue(L, idx); break; case LUA_TBOOLEAN: if (lua_toboolean(L, idx)) lua_pushliteral(L, "true"); else lua_pushliteral(L, "false"); break; default: tt = luaL_getmetafield(L, idx, "__name"); name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t); lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx)); if (tt != LUA_TNIL) lua_replace(L, -2); break; } } else { if (!lua_isstring(L, -1)) luaL_error(L, "'__tostring' must return a string"); } return lua_tolstring(L, -1, len); } COMPAT53_API void luaL_requiref(lua_State *L, const char *modname, lua_CFunction openf, int glb) { luaL_checkstack(L, 3, "not enough stack slots available"); luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED"); if (lua_getfield(L, -1, modname) == LUA_TNIL) { lua_pop(L, 1); lua_pushcfunction(L, openf); lua_pushstring(L, modname); lua_call(L, 1, 1); lua_pushvalue(L, -1); lua_setfield(L, -3, modname); } if (glb) { lua_pushvalue(L, -1); lua_setglobal(L, modname); } lua_replace(L, -2); } #endif /* Lua 5.1 and 5.2 */ #endif /* KEPLER_PROJECT_COMPAT53_C_ */ /********************************************************************* * This file contains parts of Lua 5.2's and Lua 5.3's source code: * * Copyright (C) 1994-2014 Lua.org, PUC-Rio. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *********************************************************************/ // end of sol/compatibility/compat-5.3.c.h #endif #endif /* KEPLER_PROJECT_COMPAT53_H_ */ // end of sol/compatibility/compat-5.3.h // beginning of sol/compatibility/compat-5.4.h #ifndef NOT_KEPLER_PROJECT_COMPAT54_H_ #define NOT_KEPLER_PROJECT_COMPAT54_H_ #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP) extern "C" { #endif #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP) } #endif #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 504 #if !defined(LUA_ERRGCMM) /* So Lua 5.4 actually removes this, which breaks sol2... man, this API is quite unstable...! */ # define LUA_ERRGCMM (LUA_ERRERR + 2) #endif /* LUA_ERRGCMM define */ #endif // Lua 5.4 only #endif // NOT_KEPLER_PROJECT_COMPAT54_H_// end of sol/compatibility/compat-5.4.h #endif // SOL_NO_COMPAT // end of sol/compatibility.hpp #include <vector> namespace sol { template <typename Allocator = std::allocator<std::byte>> class basic_bytecode : private std::vector<std::byte, Allocator> { private: using base_t = std::vector<std::byte, Allocator>; public: using typename base_t::allocator_type; using typename base_t::const_iterator; using typename base_t::const_pointer; using typename base_t::const_reference; using typename base_t::const_reverse_iterator; using typename base_t::difference_type; using typename base_t::iterator; using typename base_t::pointer; using typename base_t::reference; using typename base_t::reverse_iterator; using typename base_t::size_type; using typename base_t::value_type; using base_t::base_t; using base_t::operator=; using base_t::data; using base_t::empty; using base_t::max_size; using base_t::size; using base_t::at; using base_t::operator[]; using base_t::back; using base_t::front; using base_t::begin; using base_t::cbegin; using base_t::cend; using base_t::end; using base_t::crbegin; using base_t::crend; using base_t::rbegin; using base_t::rend; using base_t::get_allocator; using base_t::swap; using base_t::clear; using base_t::emplace; using base_t::emplace_back; using base_t::erase; using base_t::insert; using base_t::pop_back; using base_t::push_back; using base_t::reserve; using base_t::resize; using base_t::shrink_to_fit; string_view as_string_view() const { return string_view(reinterpret_cast<const char*>(this->data()), this->size()); } }; template <typename Container> inline int basic_insert_dump_writer(lua_State*, const void* memory, size_t memory_size, void* userdata) { using storage_t = Container; const std::byte* p_code = static_cast<const std::byte*>(memory); storage_t& bc = *static_cast<storage_t*>(userdata); try { bc.insert(bc.cend(), p_code, p_code + memory_size); } catch (...) { return -1; } return 0; } using bytecode = basic_bytecode<>; constexpr inline auto bytecode_dump_writer = &basic_insert_dump_writer<bytecode>; } // namespace sol // end of sol/bytecode.hpp // beginning of sol/stack.hpp // beginning of sol/trampoline.hpp // beginning of sol/types.hpp // beginning of sol/error.hpp #include <stdexcept> namespace sol { namespace detail { struct direct_error_tag {}; const auto direct_error = direct_error_tag{}; struct error_result { int results; const char* format_string; std::array<const char*, 4> args_strings; error_result() : results(0), format_string(nullptr) { } error_result(int results) : results(results), format_string(nullptr) { } error_result(const char* fmt, const char* msg) : results(0), format_string(fmt) { args_strings[0] = msg; } }; inline int handle_errors(lua_State* L, const error_result& er) { if (er.format_string == nullptr) { return er.results; } return luaL_error(L, er.format_string, er.args_strings[0], er.args_strings[1], er.args_strings[2], er.args_strings[3]); } } // namespace detail class error : public std::runtime_error { private: // Because VC++ is upsetting, most of the time! std::string what_reason; public: error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) { } error(std::string&& str) : error(detail::direct_error, "lua: error: " + std::move(str)) { } error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), what_reason(str) { } error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), what_reason(std::move(str)) { } error(const error& e) = default; error(error&& e) = default; error& operator=(const error& e) = default; error& operator=(error&& e) = default; virtual const char* what() const noexcept override { return what_reason.c_str(); } }; } // namespace sol // end of sol/error.hpp // beginning of sol/optional.hpp // beginning of sol/in_place.hpp namespace sol { #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES using in_place_t = std::in_place_t; constexpr std::in_place_t in_place{}; constexpr std::in_place_t in_place_of{}; template <typename T> using in_place_type_t = std::in_place_type_t<T>; template <typename T> constexpr std::in_place_type_t<T> in_place_type{}; template <size_t I> using in_place_index_t = std::in_place_index_t<I>; template <size_t I> constexpr in_place_index_t<I> in_place_index{}; #else namespace detail { struct in_place_of_tag {}; template <std::size_t I> struct in_place_of_i {}; template <typename T> struct in_place_of_t {}; } // namespace detail struct in_place_tag { constexpr in_place_tag() = default; }; constexpr inline in_place_tag in_place(detail::in_place_of_tag) { return in_place_tag(); } template <typename T> constexpr inline in_place_tag in_place(detail::in_place_of_t<T>) { return in_place_tag(); } template <std::size_t I> constexpr inline in_place_tag in_place(detail::in_place_of_i<I>) { return in_place_tag(); } constexpr inline in_place_tag in_place_of(detail::in_place_of_tag) { return in_place_tag(); } template <typename T> constexpr inline in_place_tag in_place_type(detail::in_place_of_t<T>) { return in_place_tag(); } template <std::size_t I> constexpr inline in_place_tag in_place_index(detail::in_place_of_i<I>) { return in_place_tag(); } using in_place_t = in_place_tag (&)(detail::in_place_of_tag); template <typename T> using in_place_type_t = in_place_tag (&)(detail::in_place_of_t<T>); template <std::size_t I> using in_place_index_t = in_place_tag (&)(detail::in_place_of_i<I>); #endif } // namespace sol // end of sol/in_place.hpp #if defined(SOL_USE_BOOST) && SOL_USE_BOOST #include <boost/optional.hpp> #else // beginning of sol/optional_implementation.hpp #define SOL_TL_OPTIONAL_VERSION_MAJOR 0 #define SOL_TL_OPTIONAL_VERSION_MINOR 5 #include <exception> #include <new> #if (defined(_MSC_VER) && _MSC_VER == 1900) #define SOL_TL_OPTIONAL_MSVC2015 #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__)) #define SOL_TL_OPTIONAL_GCC49 #endif #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && !defined(__clang__)) #define SOL_TL_OPTIONAL_GCC54 #endif #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && !defined(__clang__)) #define SOL_TL_OPTIONAL_GCC55 #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__)) #define SOL_TL_OPTIONAL_NO_CONSTRR #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::has_trivial_copy_constructor<T>::value #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::has_trivial_copy_assign<T>::value #define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value #elif (defined(__GNUC__) && __GNUC__ < 8 && !defined(__clang__)) #ifndef SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX #define SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX namespace sol { namespace detail { template <class T> struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T> {}; #ifdef _GLIBCXX_VECTOR template <class T, class A> struct is_trivially_copy_constructible<std::vector<T, A>> : std::is_trivially_copy_constructible<T> {}; #endif }} // namespace sol::detail #endif #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) sol::detail::is_trivially_copy_constructible<T>::value #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value #define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value #else #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::is_trivially_copy_constructible<T>::value #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value #define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value #endif #if __cplusplus > 201103L #define SOL_TL_OPTIONAL_CXX14 #endif #if (__cplusplus == 201103L || defined(SOL_TL_OPTIONAL_MSVC2015) || defined(SOL_TL_OPTIONAL_GCC49)) #define SOL_TL_OPTIONAL_11_CONSTEXPR #else #define SOL_TL_OPTIONAL_11_CONSTEXPR constexpr #endif namespace sol { #ifndef SOL_TL_MONOSTATE_INPLACE_MUTEX #define SOL_TL_MONOSTATE_INPLACE_MUTEX /// \brief Used to represent an optional with no data; essentially a bool class monostate {}; #endif template <class T> class optional; /// \exclude namespace detail { #ifndef SOL_TL_TRAITS_MUTEX #define SOL_TL_TRAITS_MUTEX // C++14-style aliases for brevity template <class T> using remove_const_t = typename std::remove_const<T>::type; template <class T> using remove_reference_t = typename std::remove_reference<T>::type; template <class T> using decay_t = typename std::decay<T>::type; template <bool E, class T = void> using enable_if_t = typename std::enable_if<E, T>::type; template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type; // std::conjunction from C++17 template <class...> struct conjunction : std::true_type {}; template <class B> struct conjunction<B> : B {}; template <class B, class... Bs> struct conjunction<B, Bs...> : std::conditional<bool(B::value), conjunction<Bs...>, B>::type {}; #if defined(_LIBCPP_VERSION) && __cplusplus == 201103L #define SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND #endif #ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND template <class T> struct is_pointer_to_non_const_member_func : std::false_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)&> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &&> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&&> : std::true_type {}; template <class T> struct is_const_or_const_ref : std::false_type {}; template <class T> struct is_const_or_const_ref<T const&> : std::true_type {}; template <class T> struct is_const_or_const_ref<T const> : std::true_type {}; #endif // std::invoke from C++17 // https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround template <typename Fn, typename... Args, #ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value && is_const_or_const_ref<Args...>::value)>, #endif typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>, int = 0> constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::mem_fn(f)(std::forward<Args>(args)...))) -> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) { return std::mem_fn(f)(std::forward<Args>(args)...); } template <typename Fn, typename... Args, typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>> constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...))) -> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) { return std::forward<Fn>(f)(std::forward<Args>(args)...); } // std::invoke_result from C++17 template <class F, class, class... Us> struct invoke_result_impl; template <class F, class... Us> struct invoke_result_impl<F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()), Us...> { using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...)); }; template <class F, class... Us> using invoke_result = invoke_result_impl<F, void, Us...>; template <class F, class... Us> using invoke_result_t = typename invoke_result<F, Us...>::type; #endif // std::void_t from C++17 template <class...> struct voider { using type = void; }; template <class... Ts> using void_t = typename voider<Ts...>::type; // Trait for checking if a type is a sol::optional template <class T> struct is_optional_impl : std::false_type {}; template <class T> struct is_optional_impl<optional<T>> : std::true_type {}; template <class T> using is_optional = is_optional_impl<decay_t<T>>; // Change void to sol::monostate template <class U> using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>; template <class F, class U, class = invoke_result_t<F, U>> using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>; // Check if invoking F for some Us returns void template <class F, class = void, class... U> struct returns_void_impl; template <class F, class... U> struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...> : std::is_void<invoke_result_t<F, U...>> {}; template <class F, class... U> using returns_void = returns_void_impl<F, void, U...>; template <class T, class... U> using enable_if_ret_void = enable_if_t<returns_void<T&&, U...>::value>; template <class T, class... U> using disable_if_ret_void = enable_if_t<!returns_void<T&&, U...>::value>; template <class T, class U> using enable_forward_value = detail::enable_if_t<std::is_constructible<T, U&&>::value && !std::is_same<detail::decay_t<U>, in_place_t>::value && !std::is_same<optional<T>, detail::decay_t<U>>::value>; template <class T, class U, class Other> using enable_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && !std::is_constructible<T, optional<U>&>::value && !std::is_constructible<T, optional<U>&&>::value && !std::is_constructible<T, const optional<U>&>::value && !std::is_constructible<T, const optional<U>&&>::value && !std::is_convertible<optional<U>&, T>::value && !std::is_convertible<optional<U>&&, T>::value && !std::is_convertible<const optional<U>&, T>::value && !std::is_convertible<const optional<U>&&, T>::value>; template <class T, class U> using enable_assign_forward = detail::enable_if_t<!std::is_same<optional<T>, detail::decay_t<U>>::value && !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value && std::is_constructible<T, U>::value && std::is_assignable<T&, U>::value>; template <class T, class U, class Other> using enable_assign_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && std::is_assignable<T&, Other>::value && !std::is_constructible<T, optional<U>&>::value && !std::is_constructible<T, optional<U>&&>::value && !std::is_constructible<T, const optional<U>&>::value && !std::is_constructible<T, const optional<U>&&>::value && !std::is_convertible<optional<U>&, T>::value && !std::is_convertible<optional<U>&&, T>::value && !std::is_convertible<const optional<U>&, T>::value && !std::is_convertible<const optional<U>&&, T>::value && !std::is_assignable<T&, optional<U>&>::value && !std::is_assignable<T&, optional<U>&&>::value && !std::is_assignable<T&, const optional<U>&>::value && !std::is_assignable<T&, const optional<U>&&>::value>; #ifdef _MSC_VER // TODO make a version which works with MSVC template <class T, class U = T> struct is_swappable : std::true_type {}; template <class T, class U = T> struct is_nothrow_swappable : std::true_type {}; #else // https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept namespace swap_adl_tests { // if swap ADL finds this then it would call std::swap otherwise (same // signature) struct tag {}; template <class T> tag swap(T&, T&); template <class T, std::size_t N> tag swap(T (&a)[N], T (&b)[N]); // helper functions to test if an unqualified swap is possible, and if it // becomes std::swap template <class, class> std::false_type can_swap(...) noexcept(false); template <class T, class U, class = decltype(swap(std::declval<T&>(), std::declval<U&>()))> std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T&>(), std::declval<U&>()))); template <class, class> std::false_type uses_std(...); template <class T, class U> std::is_same<decltype(swap(std::declval<T&>(), std::declval<U&>())), tag> uses_std(int); template <class T> struct is_std_swap_noexcept : std::integral_constant<bool, std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value> {}; template <class T, std::size_t N> struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> {}; template <class T, class U> struct is_adl_swap_noexcept : std::integral_constant<bool, noexcept(can_swap<T, U>(0))> {}; } // namespace swap_adl_tests template <class T, class U = T> struct is_swappable : std::integral_constant<bool, decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value && (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value || (std::is_move_assignable<T>::value && std::is_move_constructible<T>::value))> {}; template <class T, std::size_t N> struct is_swappable<T[N], T[N]> : std::integral_constant<bool, decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value && (!decltype(detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value || is_swappable<T, T>::value)> {}; template <class T, class U = T> struct is_nothrow_swappable : std::integral_constant<bool, is_swappable<T, U>::value && ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_std_swap_noexcept<T>::value) || (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_adl_swap_noexcept<T, U>::value))> {}; #endif // The storage base manages the actual storage, and correctly propagates // trivial destruction from T. This case is for when T is not trivially // destructible. template <class T, bool = ::std::is_trivially_destructible<T>::value> struct optional_storage_base { SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) { } template <class... U> SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) { } ~optional_storage_base() { if (m_has_value) { m_value.~T(); m_has_value = false; } } struct dummy {}; union { dummy m_dummy; T m_value; }; bool m_has_value; }; // This case is for when T is trivially destructible. template <class T> struct optional_storage_base<T, true> { SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) { } template <class... U> SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) { } // No destructor, so this class is trivially destructible struct dummy {}; union { dummy m_dummy; T m_value; }; bool m_has_value = false; }; // This base class provides some handy member functions which can be used in // further derived classes template <class T> struct optional_operations_base : optional_storage_base<T> { using optional_storage_base<T>::optional_storage_base; void hard_reset() noexcept { get().~T(); this->m_has_value = false; } template <class... Args> void construct(Args&&... args) noexcept { new (std::addressof(this->m_value)) T(std::forward<Args>(args)...); this->m_has_value = true; } template <class Opt> void assign(Opt&& rhs) { if (this->has_value()) { if (rhs.has_value()) { this->m_value = std::forward<Opt>(rhs).get(); } else { this->m_value.~T(); this->m_has_value = false; } } else if (rhs.has_value()) { construct(std::forward<Opt>(rhs).get()); } } bool has_value() const { return this->m_has_value; } SOL_TL_OPTIONAL_11_CONSTEXPR T& get() & { return this->m_value; } SOL_TL_OPTIONAL_11_CONSTEXPR const T& get() const& { return this->m_value; } SOL_TL_OPTIONAL_11_CONSTEXPR T&& get() && { return std::move(this->m_value); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR constexpr const T&& get() const&& { return std::move(this->m_value); } #endif }; // This class manages conditionally having a trivial copy constructor // This specialization is for when T is trivially copy constructible template <class T, bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)> struct optional_copy_base : optional_operations_base<T> { using optional_operations_base<T>::optional_operations_base; }; // This specialization is for when T is not trivially copy constructible template <class T> struct optional_copy_base<T, false> : optional_operations_base<T> { using optional_operations_base<T>::optional_operations_base; optional_copy_base() = default; optional_copy_base(const optional_copy_base& rhs) { if (rhs.has_value()) { this->construct(rhs.get()); } else { this->m_has_value = false; } } optional_copy_base(optional_copy_base&& rhs) = default; optional_copy_base& operator=(const optional_copy_base& rhs) = default; optional_copy_base& operator=(optional_copy_base&& rhs) = default; }; #ifndef SOL_TL_OPTIONAL_GCC49 template <class T, bool = std::is_trivially_move_constructible<T>::value> struct optional_move_base : optional_copy_base<T> { using optional_copy_base<T>::optional_copy_base; }; #else template <class T, bool = false> struct optional_move_base; #endif template <class T> struct optional_move_base<T, false> : optional_copy_base<T> { using optional_copy_base<T>::optional_copy_base; optional_move_base() = default; optional_move_base(const optional_move_base& rhs) = default; optional_move_base(optional_move_base&& rhs) noexcept(std::is_nothrow_move_constructible<T>::value) { if (rhs.has_value()) { this->construct(std::move(rhs.get())); } else { this->m_has_value = false; } } optional_move_base& operator=(const optional_move_base& rhs) = default; optional_move_base& operator=(optional_move_base&& rhs) = default; }; // This class manages conditionally having a trivial copy assignment operator template <class T, bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) && SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) && SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T)> struct optional_copy_assign_base : optional_move_base<T> { using optional_move_base<T>::optional_move_base; }; template <class T> struct optional_copy_assign_base<T, false> : optional_move_base<T> { using optional_move_base<T>::optional_move_base; optional_copy_assign_base() = default; optional_copy_assign_base(const optional_copy_assign_base& rhs) = default; optional_copy_assign_base(optional_copy_assign_base&& rhs) = default; optional_copy_assign_base& operator=(const optional_copy_assign_base& rhs) { this->assign(rhs); return *this; } optional_copy_assign_base& operator=(optional_copy_assign_base&& rhs) = default; }; #ifndef SOL_TL_OPTIONAL_GCC49 template <class T, bool = std::is_trivially_destructible<T>::value&& std::is_trivially_move_constructible<T>::value&& std::is_trivially_move_assignable<T>::value> struct optional_move_assign_base : optional_copy_assign_base<T> { using optional_copy_assign_base<T>::optional_copy_assign_base; }; #else template <class T, bool = false> struct optional_move_assign_base; #endif template <class T> struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> { using optional_copy_assign_base<T>::optional_copy_assign_base; optional_move_assign_base() = default; optional_move_assign_base(const optional_move_assign_base& rhs) = default; optional_move_assign_base(optional_move_assign_base&& rhs) = default; optional_move_assign_base& operator=(const optional_move_assign_base& rhs) = default; optional_move_assign_base& operator=(optional_move_assign_base&& rhs) noexcept( std::is_nothrow_move_constructible<T>::value&& std::is_nothrow_move_assignable<T>::value) { this->assign(std::move(rhs)); return *this; } }; // optional_delete_ctor_base will conditionally delete copy and move // constructors depending on whether T is copy/move constructible template <class T, bool EnableCopy = std::is_copy_constructible<T>::value, bool EnableMove = std::is_move_constructible<T>::value> struct optional_delete_ctor_base { optional_delete_ctor_base() = default; optional_delete_ctor_base(const optional_delete_ctor_base&) = default; optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default; optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; }; template <class T> struct optional_delete_ctor_base<T, true, false> { optional_delete_ctor_base() = default; optional_delete_ctor_base(const optional_delete_ctor_base&) = default; optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete; optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; }; template <class T> struct optional_delete_ctor_base<T, false, true> { optional_delete_ctor_base() = default; optional_delete_ctor_base(const optional_delete_ctor_base&) = delete; optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default; optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; }; template <class T> struct optional_delete_ctor_base<T, false, false> { optional_delete_ctor_base() = default; optional_delete_ctor_base(const optional_delete_ctor_base&) = delete; optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete; optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default; optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default; }; // optional_delete_assign_base will conditionally delete copy and move // constructors depending on whether T is copy/move constructible + assignable template <class T, bool EnableCopy = (std::is_copy_constructible<T>::value && std::is_copy_assignable<T>::value), bool EnableMove = (std::is_move_constructible<T>::value && std::is_move_assignable<T>::value)> struct optional_delete_assign_base { optional_delete_assign_base() = default; optional_delete_assign_base(const optional_delete_assign_base&) = default; optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default; optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default; }; template <class T> struct optional_delete_assign_base<T, true, false> { optional_delete_assign_base() = default; optional_delete_assign_base(const optional_delete_assign_base&) = default; optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default; optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete; }; template <class T> struct optional_delete_assign_base<T, false, true> { optional_delete_assign_base() = default; optional_delete_assign_base(const optional_delete_assign_base&) = default; optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete; optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default; }; template <class T> struct optional_delete_assign_base<T, false, false> { optional_delete_assign_base() = default; optional_delete_assign_base(const optional_delete_assign_base&) = default; optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default; optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete; optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete; }; } // namespace detail /// \brief A tag type to represent an empty optional struct nullopt_t { struct do_not_use {}; constexpr explicit nullopt_t(do_not_use, do_not_use) noexcept { } }; /// \brief Represents an empty optional /// \synopsis static constexpr nullopt_t nullopt; /// /// *Examples*: /// ``` /// sol::optional<int> a = sol::nullopt; /// void foo (sol::optional<int>); /// foo(sol::nullopt); //pass an empty optional /// ``` static constexpr nullopt_t nullopt{ nullopt_t::do_not_use{}, nullopt_t::do_not_use{} }; class bad_optional_access : public std::exception { public: bad_optional_access() = default; const char* what() const noexcept { return "Optional has no value"; } }; /// An optional object is an object that contains the storage for another /// object and manages the lifetime of this contained object, if any. The /// contained object may be initialized after the optional object has been /// initialized, and may be destroyed before the optional object has been /// destroyed. The initialization state of the contained object is tracked by /// the optional object. template <class T> class optional : private detail::optional_move_assign_base<T>, private detail::optional_delete_ctor_base<T>, private detail::optional_delete_assign_base<T> { using base = detail::optional_move_assign_base<T>; static_assert(!std::is_same<T, in_place_t>::value, "instantiation of optional with in_place_t is ill-formed"); static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value, "instantiation of optional with nullopt_t is ill-formed"); public: #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) /// \group and_then /// Carries out some operation which returns an optional on the stored /// object if there is one. \requires `std::invoke(std::forward<F>(f), /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a /// `std::optional<U>`. The return value is empty if `*this` is empty, /// otherwise the return value of `std::invoke(std::forward<F>(f), value())` /// is returned. /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & { using result = detail::invoke_result_t<F, T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && { using result = detail::invoke_result_t<F, T&&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; template <class F> constexpr auto and_then(F&& f) const& { using result = detail::invoke_result_t<F, const T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; template <class F> constexpr auto and_then(F&& f) const&& { using result = detail::invoke_result_t<F, const T&&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); } #endif #else /// \group and_then /// Carries out some operation which returns an optional on the stored /// object if there is one. \requires `std::invoke(std::forward<F>(f), /// value())` returns a `std::optional<U>` for some `U`. /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), /// value())`. Returns a `std::optional<U>`. The return value is empty if /// `*this` is empty, otherwise the return value of /// `std::invoke(std::forward<F>(f), value())` is returned. /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & { using result = detail::invoke_result_t<F, T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&&> and_then(F&& f) && { using result = detail::invoke_result_t<F, T&&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; template <class F> constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& { using result = detail::invoke_result_t<F, const T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; template <class F> constexpr detail::invoke_result_t<F, const T&&> and_then(F&& f) const&& { using result = detail::invoke_result_t<F, const T&&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt); } #endif #endif #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), /// value())`. Returns a `std::optional<U>`. The return value is empty if /// `*this` is empty, otherwise an `optional<U>` is constructed from the /// return value of `std::invoke(std::forward<F>(f), value())` and is /// returned. /// /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & { return optional_map_impl(*this, std::forward<F>(f)); } /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && { return optional_map_impl(std::move(*this), std::forward<F>(f)); } /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) const&; template <class F> constexpr auto map(F&& f) const& { return optional_map_impl(*this, std::forward<F>(f)); } /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) const&&; template <class F> constexpr auto map(F&& f) const&& { return optional_map_impl(std::move(*this), std::forward<F>(f)); } #else /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), /// value())`. Returns a `std::optional<U>`. The return value is empty if /// `*this` is empty, otherwise an `optional<U>` is constructed from the /// return value of `std::invoke(std::forward<F>(f), value())` and is /// returned. /// /// \group map /// \synopsis template <class F> auto map(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & { return optional_map_impl(*this, std::forward<F>(f)); } /// \group map /// \synopsis template <class F> auto map(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && { return optional_map_impl(std::move(*this), std::forward<F>(f)); } /// \group map /// \synopsis template <class F> auto map(F &&f) const&; template <class F> constexpr decltype(optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& { return optional_map_impl(*this, std::forward<F>(f)); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group map /// \synopsis template <class F> auto map(F &&f) const&&; template <class F> constexpr decltype(optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& { return optional_map_impl(std::move(*this), std::forward<F>(f)); } #endif #endif /// \brief Calls `f` if the optional is empty /// \requires `std::invoke_result_t<F>` must be void or convertible to /// `optional<T>`. /// \effects If `*this` has a value, returns `*this`. /// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns /// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`. /// /// \group or_else /// \synopsis template <class F> optional<T> or_else (F &&f) &; template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { if (has_value()) return *this; std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { return has_value() ? *this : std::forward<F>(f)(); } /// \group or_else /// \synopsis template <class F> optional<T> or_else (F &&f) &&; template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) && { if (has_value()) return std::move(*this); std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && { return has_value() ? std::move(*this) : std::forward<F>(f)(); } /// \group or_else /// \synopsis template <class F> optional<T> or_else (F &&f) const &; template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) const& { if (has_value()) return *this; std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& { return has_value() ? *this : std::forward<F>(f)(); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \exclude template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) const&& { if (has_value()) return std::move(*this); std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) const&& { return has_value() ? std::move(*this) : std::forward<F>(f)(); } #endif /// \brief Maps the stored value with `f` if there is one, otherwise returns /// `u`. /// /// \details If there is a value stored, then `f` is called with `**this` /// and the value is returned. Otherwise `u` is returned. /// /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) & { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); } /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) && { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); } /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) const& { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) const&& { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); } #endif /// \brief Maps the stored value with `f` if there is one, otherwise calls /// `u` and returns the result. /// /// \details If there is a value stored, then `f` is /// called with `**this` and the value is returned. Otherwise /// `std::forward<U>(u)()` is returned. /// /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); } /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) /// &&; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); } /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) /// const &; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) /// const &&; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); } #endif /// \returns `u` if `*this` has a value, otherwise an empty optional. template <class U> constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const { using result = optional<detail::decay_t<U>>; return has_value() ? result{ u } : result{ nullopt }; } /// \returns `rhs` if `*this` is empty, otherwise the current value. /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & { return has_value() ? *this : rhs; } /// \group disjunction constexpr optional disjunction(const optional& rhs) const& { return has_value() ? *this : rhs; } /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && { return has_value() ? std::move(*this) : rhs; } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group disjunction constexpr optional disjunction(const optional& rhs) const&& { return has_value() ? std::move(*this) : rhs; } #endif /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & { return has_value() ? *this : std::move(rhs); } /// \group disjunction constexpr optional disjunction(optional&& rhs) const& { return has_value() ? *this : std::move(rhs); } /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && { return has_value() ? std::move(*this) : std::move(rhs); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group disjunction constexpr optional disjunction(optional&& rhs) const&& { return has_value() ? std::move(*this) : std::move(rhs); } #endif /// Takes the value out of the optional, leaving it empty /// \group take optional take() & { optional ret = *this; reset(); return ret; } /// \group take optional take() const& { optional ret = *this; reset(); return ret; } /// \group take optional take() && { optional ret = std::move(*this); reset(); return ret; } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group take optional take() const&& { optional ret = std::move(*this); reset(); return ret; } #endif using value_type = T; /// Constructs an optional that does not contain a value. /// \group ctor_empty constexpr optional() noexcept = default; /// \group ctor_empty constexpr optional(nullopt_t) noexcept { } /// Copy constructor /// /// If `rhs` contains a value, the stored value is direct-initialized with /// it. Otherwise, the constructed optional is empty. SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) = default; /// Move constructor /// /// If `rhs` contains a value, the stored value is direct-initialized with /// it. Otherwise, the constructed optional is empty. SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default; /// Constructs the stored value in-place using the given arguments. /// \group in_place /// \synopsis template <class... Args> constexpr explicit optional(in_place_t, Args&&... args); template <class... Args> constexpr explicit optional(detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>, Args&&... args) : base(in_place, std::forward<Args>(args)...) { } /// \group in_place /// \synopsis template <class U, class... Args>\nconstexpr explicit optional(in_place_t, std::initializer_list<U>&, Args&&... args); template <class U, class... Args> SOL_TL_OPTIONAL_11_CONSTEXPR explicit optional(detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, in_place_t>, std::initializer_list<U> il, Args&&... args) { this->construct(il, std::forward<Args>(args)...); } #if 0 // SOL_MODIFICATION /// Constructs the stored value with `u`. /// \synopsis template <class U=T> constexpr optional(U &&u); template <class U = T, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr> constexpr optional(U&& u) : base(in_place, std::forward<U>(u)) { } /// \exclude template <class U = T, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr> constexpr explicit optional(U&& u) : base(in_place, std::forward<U>(u)) { } #else /// Constructs the stored value with `u`. /// \synopsis template <class U=T> constexpr optional(U &&u); constexpr optional(T&& u) : base(in_place, std::move(u)) { } /// \exclude constexpr optional(const T& u) : base(in_place, u) { } #endif // sol3 modification /// Converting copy constructor. /// \synopsis template <class U> optional(const optional<U> &rhs); template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<std::is_convertible<const U&, T>::value>* = nullptr> optional(const optional<U>& rhs) { if (rhs.has_value()) { this->construct(*rhs); } } /// \exclude template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<!std::is_convertible<const U&, T>::value>* = nullptr> explicit optional(const optional<U>& rhs) { if (rhs.has_value()) { this->construct(*rhs); } } /// Converting move constructor. /// \synopsis template <class U> optional(optional<U> &&rhs); template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr> optional(optional<U>&& rhs) { if (rhs.has_value()) { this->construct(std::move(*rhs)); } } /// \exclude template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr> explicit optional(optional<U>&& rhs) { this->construct(std::move(*rhs)); } /// Destroys the stored value if there is one. ~optional() = default; /// Assignment to empty. /// /// Destroys the current value if there is one. optional& operator=(nullopt_t) noexcept { if (has_value()) { this->m_value.~T(); this->m_has_value = false; } return *this; } /// Copy assignment. /// /// Copies the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. optional& operator=(const optional& rhs) = default; /// Move assignment. /// /// Moves the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. optional& operator=(optional&& rhs) = default; /// Assigns the stored value from `u`, destroying the old value if there was /// one. /// \synopsis optional &operator=(U &&u); template <class U = T, detail::enable_assign_forward<T, U>* = nullptr> optional& operator=(U&& u) { if (has_value()) { this->m_value = std::forward<U>(u); } else { this->construct(std::forward<U>(u)); } return *this; } /// Converting copy assignment operator. /// /// Copies the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. /// \synopsis optional &operator=(const optional<U> & rhs); template <class U, detail::enable_assign_from_other<T, U, const U&>* = nullptr> optional& operator=(const optional<U>& rhs) { if (has_value()) { if (rhs.has_value()) { this->m_value = *rhs; } else { this->hard_reset(); } } if (rhs.has_value()) { this->construct(*rhs); } return *this; } // TODO check exception guarantee /// Converting move assignment operator. /// /// Moves the value from `rhs` if there is one. Otherwise resets the stored /// value in `*this`. /// \synopsis optional &operator=(optional<U> && rhs); template <class U, detail::enable_assign_from_other<T, U, U>* = nullptr> optional& operator=(optional<U>&& rhs) { if (has_value()) { if (rhs.has_value()) { this->m_value = std::move(*rhs); } else { this->hard_reset(); } } if (rhs.has_value()) { this->construct(std::move(*rhs)); } return *this; } /// Constructs the value in-place, destroying the current one if there is /// one. /// \group emplace template <class... Args> T& emplace(Args&&... args) { static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args"); *this = nullopt; this->construct(std::forward<Args>(args)...); return value(); } /// \group emplace /// \synopsis template <class U, class... Args>\nT& emplace(std::initializer_list<U> il, Args &&... args); template <class U, class... Args> detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, T&> emplace(std::initializer_list<U> il, Args&&... args) { *this = nullopt; this->construct(il, std::forward<Args>(args)...); return value(); } /// Swaps this optional with the other. /// /// If neither optionals have a value, nothing happens. /// If both have a value, the values are swapped. /// If one has a value, it is moved to the other and the movee is left /// valueless. void swap(optional& rhs) noexcept(std::is_nothrow_move_constructible<T>::value&& detail::is_nothrow_swappable<T>::value) { if (has_value()) { if (rhs.has_value()) { using std::swap; swap(**this, *rhs); } else { new (std::addressof(rhs.m_value)) T(std::move(this->m_value)); this->m_value.T::~T(); } } else if (rhs.has_value()) { new (std::addressof(this->m_value)) T(std::move(rhs.m_value)); rhs.m_value.T::~T(); } } /// \returns a pointer to the stored value /// \requires a value is stored /// \group pointer /// \synopsis constexpr const T *operator->() const; constexpr const T* operator->() const { return std::addressof(this->m_value); } /// \group pointer /// \synopsis constexpr T *operator->(); SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() { return std::addressof(this->m_value); } /// \returns the stored value /// \requires a value is stored /// \group deref /// \synopsis constexpr T &operator*(); SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() & { return this->m_value; } /// \group deref /// \synopsis constexpr const T &operator*() const; constexpr const T& operator*() const& { return this->m_value; } /// \exclude SOL_TL_OPTIONAL_11_CONSTEXPR T&& operator*() && { return std::move(this->m_value); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \exclude constexpr const T&& operator*() const&& { return std::move(this->m_value); } #endif /// \returns whether or not the optional has a value /// \group has_value constexpr bool has_value() const noexcept { return this->m_has_value; } /// \group has_value constexpr explicit operator bool() const noexcept { return this->m_has_value; } /// \returns the contained value if there is one, otherwise throws /// [bad_optional_access] /// \group value /// \synopsis constexpr T &value(); SOL_TL_OPTIONAL_11_CONSTEXPR T& value() & { if (has_value()) return this->m_value; throw bad_optional_access(); } /// \group value /// \synopsis constexpr const T &value() const; SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const& { if (has_value()) return this->m_value; throw bad_optional_access(); } /// \exclude SOL_TL_OPTIONAL_11_CONSTEXPR T&& value() && { if (has_value()) return std::move(this->m_value); throw bad_optional_access(); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \exclude SOL_TL_OPTIONAL_11_CONSTEXPR const T&& value() const&& { if (has_value()) return std::move(this->m_value); throw bad_optional_access(); } #endif /// \returns the stored value if there is one, otherwise returns `u` /// \group value_or template <class U> constexpr T value_or(U&& u) const& { static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be copy constructible and convertible from U"); return has_value() ? **this : static_cast<T>(std::forward<U>(u)); } /// \group value_or template <class U> SOL_TL_OPTIONAL_11_CONSTEXPR T value_or(U&& u) && { static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be move constructible and convertible from U"); return has_value() ? **this : static_cast<T>(std::forward<U>(u)); } /// Destroys the stored value if one exists, making the optional empty void reset() noexcept { if (has_value()) { this->m_value.~T(); this->m_has_value = false; } } }; // namespace sol /// \group relop /// \brief Compares two optional objects /// \details If both optionals contain a value, they are compared with `T`s /// relational operators. Otherwise `lhs` and `rhs` are equal only if they are /// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs` /// is not. template <class T, class U> inline constexpr bool operator==(const optional<T>& lhs, const optional<U>& rhs) { return lhs.has_value() == rhs.has_value() && (!lhs.has_value() || *lhs == *rhs); } /// \group relop template <class T, class U> inline constexpr bool operator!=(const optional<T>& lhs, const optional<U>& rhs) { return lhs.has_value() != rhs.has_value() || (lhs.has_value() && *lhs != *rhs); } /// \group relop template <class T, class U> inline constexpr bool operator<(const optional<T>& lhs, const optional<U>& rhs) { return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs); } /// \group relop template <class T, class U> inline constexpr bool operator>(const optional<T>& lhs, const optional<U>& rhs) { return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs); } /// \group relop template <class T, class U> inline constexpr bool operator<=(const optional<T>& lhs, const optional<U>& rhs) { return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs); } /// \group relop template <class T, class U> inline constexpr bool operator>=(const optional<T>& lhs, const optional<U>& rhs) { return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs); } /// \group relop_nullopt /// \brief Compares an optional to a `nullopt` /// \details Equivalent to comparing the optional to an empty optional template <class T> inline constexpr bool operator==(const optional<T>& lhs, nullopt_t) noexcept { return !lhs.has_value(); } /// \group relop_nullopt template <class T> inline constexpr bool operator==(nullopt_t, const optional<T>& rhs) noexcept { return !rhs.has_value(); } /// \group relop_nullopt template <class T> inline constexpr bool operator!=(const optional<T>& lhs, nullopt_t) noexcept { return lhs.has_value(); } /// \group relop_nullopt template <class T> inline constexpr bool operator!=(nullopt_t, const optional<T>& rhs) noexcept { return rhs.has_value(); } /// \group relop_nullopt template <class T> inline constexpr bool operator<(const optional<T>&, nullopt_t) noexcept { return false; } /// \group relop_nullopt template <class T> inline constexpr bool operator<(nullopt_t, const optional<T>& rhs) noexcept { return rhs.has_value(); } /// \group relop_nullopt template <class T> inline constexpr bool operator<=(const optional<T>& lhs, nullopt_t) noexcept { return !lhs.has_value(); } /// \group relop_nullopt template <class T> inline constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept { return true; } /// \group relop_nullopt template <class T> inline constexpr bool operator>(const optional<T>& lhs, nullopt_t) noexcept { return lhs.has_value(); } /// \group relop_nullopt template <class T> inline constexpr bool operator>(nullopt_t, const optional<T>&) noexcept { return false; } /// \group relop_nullopt template <class T> inline constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept { return true; } /// \group relop_nullopt template <class T> inline constexpr bool operator>=(nullopt_t, const optional<T>& rhs) noexcept { return !rhs.has_value(); } /// \group relop_t /// \brief Compares the optional with a value. /// \details If the optional has a value, it is compared with the other value /// using `T`s relational operators. Otherwise, the optional is considered /// less than the value. template <class T, class U> inline constexpr bool operator==(const optional<T>& lhs, const U& rhs) { return lhs.has_value() ? *lhs == rhs : false; } /// \group relop_t template <class T, class U> inline constexpr bool operator==(const U& lhs, const optional<T>& rhs) { return rhs.has_value() ? lhs == *rhs : false; } /// \group relop_t template <class T, class U> inline constexpr bool operator!=(const optional<T>& lhs, const U& rhs) { return lhs.has_value() ? *lhs != rhs : true; } /// \group relop_t template <class T, class U> inline constexpr bool operator!=(const U& lhs, const optional<T>& rhs) { return rhs.has_value() ? lhs != *rhs : true; } /// \group relop_t template <class T, class U> inline constexpr bool operator<(const optional<T>& lhs, const U& rhs) { return lhs.has_value() ? *lhs < rhs : true; } /// \group relop_t template <class T, class U> inline constexpr bool operator<(const U& lhs, const optional<T>& rhs) { return rhs.has_value() ? lhs < *rhs : false; } /// \group relop_t template <class T, class U> inline constexpr bool operator<=(const optional<T>& lhs, const U& rhs) { return lhs.has_value() ? *lhs <= rhs : true; } /// \group relop_t template <class T, class U> inline constexpr bool operator<=(const U& lhs, const optional<T>& rhs) { return rhs.has_value() ? lhs <= *rhs : false; } /// \group relop_t template <class T, class U> inline constexpr bool operator>(const optional<T>& lhs, const U& rhs) { return lhs.has_value() ? *lhs > rhs : false; } /// \group relop_t template <class T, class U> inline constexpr bool operator>(const U& lhs, const optional<T>& rhs) { return rhs.has_value() ? lhs > *rhs : true; } /// \group relop_t template <class T, class U> inline constexpr bool operator>=(const optional<T>& lhs, const U& rhs) { return lhs.has_value() ? *lhs >= rhs : false; } /// \group relop_t template <class T, class U> inline constexpr bool operator>=(const U& lhs, const optional<T>& rhs) { return rhs.has_value() ? lhs >= *rhs : true; } /// \synopsis template <class T>\nvoid swap(optional<T> &lhs, optional<T> &rhs); template <class T, detail::enable_if_t<std::is_move_constructible<T>::value>* = nullptr, detail::enable_if_t<detail::is_swappable<T>::value>* = nullptr> void swap(optional<T>& lhs, optional<T>& rhs) noexcept(noexcept(lhs.swap(rhs))) { return lhs.swap(rhs); } namespace detail { struct i_am_secret {}; } // namespace detail template <class T = detail::i_am_secret, class U, class Ret = detail::conditional_t<std::is_same<T, detail::i_am_secret>::value, detail::decay_t<U>, T>> inline constexpr optional<Ret> make_optional(U&& v) { return optional<Ret>(std::forward<U>(v)); } template <class T, class... Args> inline constexpr optional<T> make_optional(Args&&... args) { return optional<T>(in_place, std::forward<Args>(args)...); } template <class T, class U, class... Args> inline constexpr optional<T> make_optional(std::initializer_list<U> il, Args&&... args) { return optional<T>(in_place, il, std::forward<Args>(args)...); } #if __cplusplus >= 201703L template <class T> optional(T)->optional<T>; #endif /// \exclude namespace detail { #ifdef SOL_TL_OPTIONAL_CXX14 template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr> constexpr auto optional_map_impl(Opt&& opt, F&& f) { return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt); } template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), detail::enable_if_t<std::is_void<Ret>::value>* = nullptr> auto optional_map_impl(Opt&& opt, F&& f) { if (opt.has_value()) { detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)); return make_optional(monostate{}); } return optional<monostate>(nullopt); } #else template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr> constexpr auto optional_map_impl(Opt&& opt, F&& f) -> optional<Ret> { return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt); } template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())), detail::enable_if_t<std::is_void<Ret>::value>* = nullptr> auto optional_map_impl(Opt&& opt, F&& f) -> optional<monostate> { if (opt.has_value()) { detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)); return monostate{}; } return nullopt; } #endif } // namespace detail /// Specialization for when `T` is a reference. `optional<T&>` acts similarly /// to a `T*`, but provides more operations and shows intent more clearly. /// /// *Examples*: /// /// ``` /// int i = 42; /// sol::optional<int&> o = i; /// *o == 42; //true /// i = 12; /// *o = 12; //true /// &*o == &i; //true /// ``` /// /// Assignment has rebind semantics rather than assign-through semantics: /// /// ``` /// int j = 8; /// o = j; /// /// &*o == &j; //true /// ``` template <class T> class optional<T&> { public: #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) /// \group and_then /// Carries out some operation which returns an optional on the stored /// object if there is one. \requires `std::invoke(std::forward<F>(f), /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a /// `std::optional<U>`. The return value is empty if `*this` is empty, /// otherwise the return value of `std::invoke(std::forward<F>(f), value())` /// is returned. /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & { using result = detail::invoke_result_t<F, T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && { using result = detail::invoke_result_t<F, T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; template <class F> constexpr auto and_then(F&& f) const& { using result = detail::invoke_result_t<F, const T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; template <class F> constexpr auto and_then(F&& f) const&& { using result = detail::invoke_result_t<F, const T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } #endif #else /// \group and_then /// Carries out some operation which returns an optional on the stored /// object if there is one. \requires `std::invoke(std::forward<F>(f), /// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be /// the result of `std::invoke(std::forward<F>(f), value())`. Returns a /// `std::optional<U>`. The return value is empty if `*this` is empty, /// otherwise the return value of `std::invoke(std::forward<F>(f), value())` /// is returned. /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & { using result = detail::invoke_result_t<F, T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) && { using result = detail::invoke_result_t<F, T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &; template <class F> constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& { using result = detail::invoke_result_t<F, const T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group and_then /// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&; template <class F> constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&& { using result = detail::invoke_result_t<F, const T&>; static_assert(detail::is_optional<result>::value, "F must return an optional"); return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt); } #endif #endif #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55) /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), /// value())`. Returns a `std::optional<U>`. The return value is empty if /// `*this` is empty, otherwise an `optional<U>` is constructed from the /// return value of `std::invoke(std::forward<F>(f), value())` and is /// returned. /// /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & { return detail::optional_map_impl(*this, std::forward<F>(f)); } /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && { return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); } /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) const&; template <class F> constexpr auto map(F&& f) const& { return detail::optional_map_impl(*this, std::forward<F>(f)); } /// \group map /// \synopsis template <class F> constexpr auto map(F &&f) const&&; template <class F> constexpr auto map(F&& f) const&& { return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); } #else /// \brief Carries out some operation on the stored object if there is one. /// \returns Let `U` be the result of `std::invoke(std::forward<F>(f), /// value())`. Returns a `std::optional<U>`. The return value is empty if /// `*this` is empty, otherwise an `optional<U>` is constructed from the /// return value of `std::invoke(std::forward<F>(f), value())` and is /// returned. /// /// \group map /// \synopsis template <class F> auto map(F &&f) &; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & { return detail::optional_map_impl(*this, std::forward<F>(f)); } /// \group map /// \synopsis template <class F> auto map(F &&f) &&; template <class F> SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && { return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); } /// \group map /// \synopsis template <class F> auto map(F &&f) const&; template <class F> constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& { return detail::optional_map_impl(*this, std::forward<F>(f)); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group map /// \synopsis template <class F> auto map(F &&f) const&&; template <class F> constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& { return detail::optional_map_impl(std::move(*this), std::forward<F>(f)); } #endif #endif /// \brief Calls `f` if the optional is empty /// \requires `std::invoke_result_t<F>` must be void or convertible to /// `optional<T>`. \effects If `*this` has a value, returns `*this`. /// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns /// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`. /// /// \group or_else /// \synopsis template <class F> optional<T> or_else (F &&f) &; template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { if (has_value()) return *this; std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & { return has_value() ? *this : std::forward<F>(f)(); } /// \group or_else /// \synopsis template <class F> optional<T> or_else (F &&f) &&; template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) && { if (has_value()) return std::move(*this); std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && { return has_value() ? std::move(*this) : std::forward<F>(f)(); } /// \group or_else /// \synopsis template <class F> optional<T> or_else (F &&f) const &; template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) const& { if (has_value()) return *this; std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& { return has_value() ? *this : std::forward<F>(f)(); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \exclude template <class F, detail::enable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) const&& { if (has_value()) return std::move(*this); std::forward<F>(f)(); return nullopt; } /// \exclude template <class F, detail::disable_if_ret_void<F>* = nullptr> optional<T> or_else(F&& f) const&& { return has_value() ? std::move(*this) : std::forward<F>(f)(); } #endif /// \brief Maps the stored value with `f` if there is one, otherwise returns /// `u`. /// /// \details If there is a value stored, then `f` is called with `**this` /// and the value is returned. Otherwise `u` is returned. /// /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) & { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); } /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) && { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); } /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) const& { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group map_or template <class F, class U> U map_or(F&& f, U&& u) const&& { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u); } #endif /// \brief Maps the stored value with `f` if there is one, otherwise calls /// `u` and returns the result. /// /// \details If there is a value stored, then `f` is /// called with `**this` and the value is returned. Otherwise /// `std::forward<U>(u)()` is returned. /// /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); } /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) /// &&; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); } /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) /// const &; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& { return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)(); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group map_or_else /// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) /// const &&; template <class F, class U> detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& { return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)(); } #endif /// \returns `u` if `*this` has a value, otherwise an empty optional. template <class U> constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const { using result = optional<detail::decay_t<U>>; return has_value() ? result{ u } : result{ nullopt }; } /// \returns `rhs` if `*this` is empty, otherwise the current value. /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & { return has_value() ? *this : rhs; } /// \group disjunction constexpr optional disjunction(const optional& rhs) const& { return has_value() ? *this : rhs; } /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && { return has_value() ? std::move(*this) : rhs; } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group disjunction constexpr optional disjunction(const optional& rhs) const&& { return has_value() ? std::move(*this) : rhs; } #endif /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & { return has_value() ? *this : std::move(rhs); } /// \group disjunction constexpr optional disjunction(optional&& rhs) const& { return has_value() ? *this : std::move(rhs); } /// \group disjunction SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && { return has_value() ? std::move(*this) : std::move(rhs); } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group disjunction constexpr optional disjunction(optional&& rhs) const&& { return has_value() ? std::move(*this) : std::move(rhs); } #endif /// Takes the value out of the optional, leaving it empty /// \group take optional take() & { optional ret = *this; reset(); return ret; } /// \group take optional take() const& { optional ret = *this; reset(); return ret; } /// \group take optional take() && { optional ret = std::move(*this); reset(); return ret; } #ifndef SOL_TL_OPTIONAL_NO_CONSTRR /// \group take optional take() const&& { optional ret = std::move(*this); reset(); return ret; } #endif using value_type = T&; /// Constructs an optional that does not contain a value. /// \group ctor_empty constexpr optional() noexcept : m_value(nullptr) { } /// \group ctor_empty constexpr optional(nullopt_t) noexcept : m_value(nullptr) { } /// Copy constructor /// /// If `rhs` contains a value, the stored value is direct-initialized with /// it. Otherwise, the constructed optional is empty. SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) noexcept = default; /// Move constructor /// /// If `rhs` contains a value, the stored value is direct-initialized with /// it. Otherwise, the constructed optional is empty. SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default; /// Constructs the stored value with `u`. /// \synopsis template <class U=T> constexpr optional(U &&u); template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr> constexpr optional(U&& u) : m_value(std::addressof(u)) { static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue"); } /// \exclude template <class U> constexpr explicit optional(const optional<U>& rhs) : optional(*rhs) { } /// No-op ~optional() = default; /// Assignment to empty. /// /// Destroys the current value if there is one. optional& operator=(nullopt_t) noexcept { m_value = nullptr; return *this; } /// Copy assignment. /// /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise /// resets the stored value in `*this`. optional& operator=(const optional& rhs) = default; /// Rebinds this optional to `u`. /// /// \requires `U` must be an lvalue reference. /// \synopsis optional &operator=(U &&u); template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr> optional& operator=(U&& u) { static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue"); m_value = std::addressof(u); return *this; } /// Converting copy assignment operator. /// /// Rebinds this optional to the referee of `rhs` if there is one. Otherwise /// resets the stored value in `*this`. template <class U> optional& operator=(const optional<U>& rhs) { m_value = std::addressof(rhs.value()); return *this; } /// Constructs the value in-place, destroying the current one if there is /// one. /// /// \group emplace template <class... Args> T& emplace(Args&&... args) noexcept { static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args"); *this = nullopt; this->construct(std::forward<Args>(args)...); } /// Swaps this optional with the other. /// /// If neither optionals have a value, nothing happens. /// If both have a value, the values are swapped. /// If one has a value, it is moved to the other and the movee is left /// valueless. void swap(optional& rhs) noexcept { std::swap(m_value, rhs.m_value); } /// \returns a pointer to the stored value /// \requires a value is stored /// \group pointer /// \synopsis constexpr const T *operator->() const; constexpr const T* operator->() const { return m_value; } /// \group pointer /// \synopsis constexpr T *operator->(); SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() { return m_value; } /// \returns the stored value /// \requires a value is stored /// \group deref /// \synopsis constexpr T &operator*(); SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() { return *m_value; } /// \group deref /// \synopsis constexpr const T &operator*() const; constexpr const T& operator*() const { return *m_value; } /// \returns whether or not the optional has a value /// \group has_value constexpr bool has_value() const noexcept { return m_value != nullptr; } /// \group has_value constexpr explicit operator bool() const noexcept { return m_value != nullptr; } /// \returns the contained value if there is one, otherwise throws /// [bad_optional_access] /// \group value /// synopsis constexpr T &value(); SOL_TL_OPTIONAL_11_CONSTEXPR T& value() { if (has_value()) return *m_value; throw bad_optional_access(); } /// \group value /// \synopsis constexpr const T &value() const; SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const { if (has_value()) return *m_value; throw bad_optional_access(); } /// \returns the stored value if there is one, otherwise returns `u` /// \group value_or template <class U> constexpr T& value_or(U&& u) const { static_assert(std::is_convertible<U&&, T&>::value, "T must be convertible from U"); return has_value() ? const_cast<T&>(**this) : static_cast<T&>(std::forward<U>(u)); } /// Destroys the stored value if one exists, making the optional empty void reset() noexcept { m_value = nullptr; } private: T* m_value; }; } // namespace sol namespace std { // TODO SFINAE template <class T> struct hash< ::sol::optional<T> > { ::std::size_t operator()(const ::sol::optional<T>& o) const { if (!o.has_value()) return 0; return ::std::hash< ::sol::detail::remove_const_t<T>>()(*o); } }; } // namespace std // end of sol/optional_implementation.hpp #endif // Boost vs. Better optional #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #include <optional> #endif namespace sol { #if defined(SOL_USE_BOOST) && SOL_USE_BOOST template <typename T> using optional = boost::optional<T>; using nullopt_t = boost::none_t; const nullopt_t nullopt = boost::none; #endif // Boost vs. Better optional namespace meta { template <typename T> using is_optional = any< is_specialization_of<T, optional> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES , is_specialization_of<T, std::optional> #endif >; template <typename T> constexpr inline bool is_optional_v = is_optional<T>::value; } // namespace meta } // namespace sol // end of sol/optional.hpp // beginning of sol/raii.hpp namespace sol { namespace detail { struct default_construct { template <typename T, typename... Args> static void construct(T&& obj, Args&&... args) { typedef meta::unqualified_t<T> Tu; std::allocator<Tu> alloc{}; std::allocator_traits<std::allocator<Tu>>::construct(alloc, std::forward<T>(obj), std::forward<Args>(args)...); } template <typename T, typename... Args> void operator()(T&& obj, Args&&... args) const { construct(std::forward<T>(obj), std::forward<Args>(args)...); } }; struct default_destruct { template <typename T> static void destroy(T&& obj) { std::allocator<meta::unqualified_t<T>> alloc{}; alloc.destroy(obj); } template <typename T> void operator()(T&& obj) const { destroy(std::forward<T>(obj)); } }; struct deleter { template <typename T> void operator()(T* p) const { delete p; } }; struct state_deleter { void operator()(lua_State* L) const { lua_close(L); } }; template <typename T, typename Dx, typename... Args> inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) { return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...)); } template <typename Tag, typename T> struct tagged { private: T value_; public: template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler> tagged(Arg&& arg, Args&&... args) : value_(std::forward<Arg>(arg), std::forward<Args>(args)...) { } T& value() & { return value_; } T const& value() const& { return value_; } T&& value() && { return std::move(value_); } }; } // namespace detail template <typename... Args> struct constructor_list {}; template <typename... Args> using constructors = constructor_list<Args...>; const auto default_constructor = constructors<types<>>{}; struct no_construction {}; const auto no_constructor = no_construction{}; struct call_construction {}; const auto call_constructor = call_construction{}; template <typename... Functions> struct constructor_wrapper { std::tuple<Functions...> functions; template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler> constructor_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { } }; template <typename... Functions> inline auto initializers(Functions&&... functions) { return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...); } template <typename... Functions> struct factory_wrapper { std::tuple<Functions...> functions; template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler> factory_wrapper(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { } }; template <typename... Functions> inline auto factories(Functions&&... functions) { return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...); } template <typename Function> struct destructor_wrapper { Function fx; destructor_wrapper(Function f) : fx(std::move(f)) { } }; template <> struct destructor_wrapper<void> {}; const destructor_wrapper<void> default_destructor{}; template <typename Fx> inline auto destructor(Fx&& fx) { return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx)); } } // namespace sol // end of sol/raii.hpp // beginning of sol/policies.hpp namespace sol { namespace detail { struct policy_base_tag {}; } // namespace detail template <int Target, int... In> struct static_stack_dependencies : detail::policy_base_tag {}; typedef static_stack_dependencies<-1, 1> self_dependency; template <int... In> struct returns_self_with : detail::policy_base_tag {}; typedef returns_self_with<> returns_self; struct stack_dependencies : detail::policy_base_tag { int target; std::array<int, 64> stack_indices; std::size_t len; template <typename... Args> stack_dependencies(int stack_target, Args&&... args) : target(stack_target), stack_indices(), len(sizeof...(Args)) { std::size_t i = 0; (void)detail::swallow{int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())...}; } int& operator[](std::size_t i) { return stack_indices[i]; } const int& operator[](std::size_t i) const { return stack_indices[i]; } std::size_t size() const { return len; } }; template <typename F, typename... Policies> struct policy_wrapper { typedef std::index_sequence_for<Policies...> indices; F value; std::tuple<Policies...> policies; template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, policy_wrapper>>> = meta::enabler> policy_wrapper(Fx&& fx, Args&&... args) : value(std::forward<Fx>(fx)), policies(std::forward<Args>(args)...) { } policy_wrapper(const policy_wrapper&) = default; policy_wrapper& operator=(const policy_wrapper&) = default; policy_wrapper(policy_wrapper&&) = default; policy_wrapper& operator=(policy_wrapper&&) = default; }; template <typename F, typename... Args> auto policies(F&& f, Args&&... args) { return policy_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...); } namespace detail { template <typename T> using is_policy = meta::is_specialization_of<T, policy_wrapper>; template <typename T> inline constexpr bool is_policy_v = is_policy<T>::value; } } // namespace sol // end of sol/policies.hpp // beginning of sol/ebco.hpp namespace sol { namespace detail { template <typename T, std::size_t tag = 0, typename = void> struct ebco { T value_; ebco() = default; ebco(const ebco&) = default; ebco(ebco&&) = default; ebco& operator=(const ebco&) = default; ebco& operator=(ebco&&) = default; ebco(const T& v) : value_(v){}; ebco(T&& v) : value_(std::move(v)){}; ebco& operator=(const T& v) { value_ = v; return *this; } ebco& operator=(T&& v) { value_ = std::move(v); return *this; }; template <typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>> ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...){} T& value() & { return value_; } T const& value() const & { return value_; } T&& value() && { return std::move(value_); } }; template <typename T, std::size_t tag> struct ebco<T, tag, std::enable_if_t<!std::is_reference_v<T> && std::is_class_v<T> && !std::is_final_v<T>>> : T { ebco() = default; ebco(const ebco&) = default; ebco(ebco&&) = default; ebco(const T& v) : T(v){}; ebco(T&& v) : T(std::move(v)){}; template <typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>> ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...) { } ebco& operator=(const ebco&) = default; ebco& operator=(ebco&&) = default; ebco& operator=(const T& v) { static_cast<T&>(*this) = v; return *this; } ebco& operator=(T&& v) { static_cast<T&>(*this) = std::move(v); return *this; }; T& value() & { return static_cast<T&>(*this); } T const& value() const & { return static_cast<T const&>(*this); } T&& value() && { return std::move(static_cast<T&>(*this)); } }; template <typename T, std::size_t tag> struct ebco<T&, tag> { T& ref; ebco() = default; ebco(const ebco&) = default; ebco(ebco&&) = default; ebco(T& v) : ref(v){}; ebco& operator=(const ebco&) = default; ebco& operator=(ebco&&) = default; ebco& operator=(T& v) { ref = v; return *this; } T& value() const { return const_cast<ebco<T&, tag>&>(*this).ref; } }; template <typename T, std::size_t tag> struct ebco<T&&, tag> { T&& ref; ebco() = default; ebco(const ebco&) = default; ebco(ebco&&) = default; ebco(T&& v) : ref(v){}; ebco& operator=(const ebco&) = default; ebco& operator=(ebco&&) = default; ebco& operator=(T&& v) { ref = std::move(v); return *this; } T& value() & { return ref; } const T& value() const & { return ref; } T&& value() && { return std::move(ref); } }; }} // namespace sol::detail // end of sol/ebco.hpp #include <initializer_list> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #ifdef SOL_STD_VARIANT #include <variant> #endif #endif // C++17 #ifdef SOL_USE_BOOST #include <boost/unordered_map.hpp> #else #include <unordered_map> #endif // Using Boost namespace sol { namespace usertype_detail { #if defined(SOL_USE_BOOST) #if defined(SOL_CXX17_FEATURES) template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> using map_t = boost::unordered_map<K, V, H, E>; #else template <typename K, typename V, typename H = boost::hash<K>, typename E = std::equal_to<>> using map_t = boost::unordered_map<K, V, H, E>; #endif // C++17 or not, WITH boost #else template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> using map_t = std::unordered_map<K, V, H, E>; #endif // Boost map target } // namespace usertype_detail namespace detail { #ifdef SOL_NOEXCEPT_FUNCTION_TYPE typedef int (*lua_CFunction_noexcept)(lua_State* L) noexcept; #else typedef int (*lua_CFunction_noexcept)(lua_State* L); #endif // noexcept function type for lua_CFunction template <typename T> struct unique_usertype {}; template <typename T> struct implicit_wrapper { T& item; implicit_wrapper(T* item) : item(*item) { } implicit_wrapper(T& item) : item(item) { } operator T&() { return item; } operator T*() { return std::addressof(item); } }; struct yield_tag_t {}; const yield_tag_t yield_tag = yield_tag_t{}; } // namespace detail struct lua_nil_t {}; inline constexpr lua_nil_t lua_nil{}; inline bool operator==(lua_nil_t, lua_nil_t) { return true; } inline bool operator!=(lua_nil_t, lua_nil_t) { return false; } #if !defined(SOL_NO_NIL) || (SOL_NO_NIL == 0) using nil_t = lua_nil_t; inline constexpr const nil_t& nil = lua_nil; #endif namespace detail { struct non_lua_nil_t {}; } // namespace detail struct metatable_key_t {}; const metatable_key_t metatable_key = {}; struct env_key_t {}; const env_key_t env_key = {}; struct no_metatable_t {}; const no_metatable_t no_metatable = {}; template <typename T> struct yielding_t { T func; yielding_t() = default; yielding_t(const yielding_t&) = default; yielding_t(yielding_t&&) = default; yielding_t& operator=(const yielding_t&) = default; yielding_t& operator=(yielding_t&&) = default; template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> yielding_t(Arg&& arg) : func(std::forward<Arg>(arg)) { } template <typename Arg0, typename Arg1, typename... Args> yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { } }; template <typename F> inline yielding_t<std::decay_t<F>> yielding(F&& f) { return yielding_t<std::decay_t<F>>(std::forward<F>(f)); } typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref; template <typename T> struct non_null {}; template <typename... Args> struct function_sig {}; struct upvalue_index { int index; upvalue_index(int idx) : index(lua_upvalueindex(idx)) { } operator int() const { return index; } }; struct raw_index { int index; raw_index(int i) : index(i) { } operator int() const { return index; } }; struct absolute_index { int index; absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) { } operator int() const { return index; } }; struct ref_index { int index; ref_index(int idx) : index(idx) { } operator int() const { return index; } }; struct stack_count { int count; stack_count(int cnt) : count(cnt) { } }; struct lightuserdata_value { void* value; lightuserdata_value(void* data) : value(data) { } operator void*() const { return value; } }; struct userdata_value { void* value; userdata_value(void* data) : value(data) { } operator void*() const { return value; } }; template <typename L> struct light { L* value; light(L& x) : value(std::addressof(x)) { } light(L* x) : value(x) { } light(void* x) : value(static_cast<L*>(x)) { } operator L*() const { return value; } operator L&() const { return *value; } }; template <typename T> auto make_light(T& l) { typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L; return light<L>(l); } template <typename U> struct user { U value; user(U&& x) : value(std::forward<U>(x)) { } operator std::add_pointer_t<std::remove_reference_t<U>>() { return std::addressof(value); } operator std::add_lvalue_reference_t<U>() { return value; } operator std::add_const_t<std::add_lvalue_reference_t<U>>&() const { return value; } }; template <typename T> auto make_user(T&& u) { typedef meta::unwrapped_t<meta::unqualified_t<T>> U; return user<U>(std::forward<T>(u)); } template <typename T> struct metatable_registry_key { T key; metatable_registry_key(T key) : key(std::forward<T>(key)) { } }; template <typename T> auto meta_registry_key(T&& key) { typedef meta::unqualified_t<T> K; return metatable_registry_key<K>(std::forward<T>(key)); } template <typename... Upvalues> struct closure { lua_CFunction c_function; std::tuple<Upvalues...> upvalues; closure(lua_CFunction f, Upvalues... targetupvalues) : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) { } }; template <> struct closure<> { lua_CFunction c_function; int upvalues; closure(lua_CFunction f, int upvalue_count = 0) : c_function(f), upvalues(upvalue_count) { } }; typedef closure<> c_closure; template <typename... Args> closure<Args...> make_closure(lua_CFunction f, Args&&... args) { return closure<Args...>(f, std::forward<Args>(args)...); } template <typename Sig, typename... Ps> struct function_arguments { std::tuple<Ps...> arguments; template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler> function_arguments(Arg&& arg, Args&&... args) : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) { } }; template <typename Sig = function_sig<>, typename... Args> auto as_function(Args&&... args) { return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...); } template <typename Sig = function_sig<>, typename... Args> auto as_function_reference(Args&&... args) { return function_arguments<Sig, Args...>(std::forward<Args>(args)...); } template <typename T> struct as_table_t { private: T value_; public: as_table_t() = default; as_table_t(const as_table_t&) = default; as_table_t(as_table_t&&) = default; as_table_t& operator=(const as_table_t&) = default; as_table_t& operator=(as_table_t&&) = default; template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> as_table_t(Arg&& arg) : value_(std::forward<Arg>(arg)) { } template <typename Arg0, typename Arg1, typename... Args> as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { } T& value() & { return value_; } T&& value() && { return std::move(value_); } const T& value() const& { return value_; } operator std::add_lvalue_reference_t<T>() { return value_; } }; template <typename T> struct nested { private: T value_; public: nested() = default; nested(const nested&) = default; nested(nested&&) = default; nested& operator=(const nested&) = default; nested& operator=(nested&&) = default; template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> nested(Arg&& arg) : value_(std::forward<Arg>(arg)) { } template <typename Arg0, typename Arg1, typename... Args> nested(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { } T& value() & { return value_; } T&& value() && { return std::move(value_); } const T& value() const& { return value_; } operator std::add_lvalue_reference_t<T>() { return value_; } }; struct nested_tag_t {}; constexpr inline nested_tag_t nested_tag{}; template <typename T> as_table_t<T> as_table_ref(T&& container) { return as_table_t<T>(std::forward<T>(container)); } template <typename T> as_table_t<meta::unqualified_t<T>> as_table(T&& container) { return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container)); } template <typename T> nested<T> as_nested_ref(T&& container) { return nested<T>(std::forward<T>(container)); } template <typename T> nested<meta::unqualified_t<T>> as_nested(T&& container) { return nested<meta::unqualified_t<T>>(std::forward<T>(container)); } template <typename T> struct as_container_t { private: T value_; public: using type = T; as_container_t() = default; as_container_t(const as_container_t&) = default; as_container_t(as_container_t&&) = default; as_container_t& operator=(const as_container_t&) = default; as_container_t& operator=(as_container_t&&) = default; template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_container_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> as_container_t(Arg&& arg) : value_(std::forward<Arg>(arg)) { } template <typename Arg0, typename Arg1, typename... Args> as_container_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { } T& value() & { return value_; } T&& value() && { return std::move(value_); } const T& value() const& { return value_; } }; template <typename T> struct as_container_t<T&> { private: std::reference_wrapper<T> value_; public: as_container_t(T& value) : value_(value) { } T& value() { return value_; } operator T&() { return value(); } }; template <typename T> auto as_container(T&& value) { return as_container_t<T>(std::forward<T>(value)); } template <typename T> struct push_invoke_t { private: T value_; public: push_invoke_t() = default; push_invoke_t(const push_invoke_t&) = default; push_invoke_t(push_invoke_t&&) = default; push_invoke_t& operator=(const push_invoke_t&) = default; push_invoke_t& operator=(push_invoke_t&&) = default; template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, push_invoke_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> push_invoke_t(Arg&& arg) : value_(std::forward<Arg>(arg)) { } template <typename Arg0, typename Arg1, typename... Args> push_invoke_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { } T& value() & { return value_; } T&& value() && { return std::move(value_); } const T& value() const & { return value_; } }; template <typename T> struct push_invoke_t<T&> { std::reference_wrapper<T> value_; push_invoke_t(T& value) : value_(value) { } T& value() { return value_; } }; template <typename Fx> auto push_invoke(Fx&& fx) { return push_invoke_t<Fx>(std::forward<Fx>(fx)); } struct override_value_t {}; constexpr inline override_value_t override_value = override_value_t(); struct update_if_empty_t {}; constexpr inline update_if_empty_t update_if_empty = update_if_empty_t(); struct create_if_nil_t {}; constexpr inline create_if_nil_t create_if_nil = create_if_nil_t(); namespace detail { enum insert_mode { none = 0x0, update_if_empty = 0x01, override_value = 0x02, create_if_nil = 0x04 }; template <typename T, typename...> using is_insert_mode = std::integral_constant<bool, std::is_same_v<T, override_value_t> || std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, create_if_nil_t>>; template <typename T, typename...> using is_not_insert_mode = meta::neg<is_insert_mode<T>>; } // namespace detail struct this_state { lua_State* L; this_state(lua_State* Ls) : L(Ls) { } operator lua_State*() const noexcept { return lua_state(); } lua_State* operator->() const noexcept { return lua_state(); } lua_State* lua_state() const noexcept { return L; } }; struct this_main_state { lua_State* L; this_main_state(lua_State* Ls) : L(Ls) { } operator lua_State*() const noexcept { return lua_state(); } lua_State* operator->() const noexcept { return lua_state(); } lua_State* lua_state() const noexcept { return L; } }; struct new_table { int sequence_hint = 0; int map_hint = 0; new_table() = default; new_table(const new_table&) = default; new_table(new_table&&) = default; new_table& operator=(const new_table&) = default; new_table& operator=(new_table&&) = default; new_table(int sequence_hint, int map_hint = 0) : sequence_hint(sequence_hint), map_hint(map_hint) { } }; const new_table create = {}; enum class lib : char { // print, assert, and other base functions base, // require and other package functions package, // coroutine functions and utilities coroutine, // string library string, // functionality from the OS os, // all things math math, // the table manipulator and observer functions table, // the debug library debug, // the bit library: different based on which you're using bit32, // input/output library io, // LuaJIT only ffi, // LuaJIT only jit, // library for handling utf8: new to Lua utf8, // do not use count }; enum class call_syntax { dot = 0, colon = 1 }; enum class load_mode { any = 0, text = 1, binary = 2, }; enum class call_status : int { ok = LUA_OK, yielded = LUA_YIELD, runtime = LUA_ERRRUN, memory = LUA_ERRMEM, handler = LUA_ERRERR, gc = LUA_ERRGCMM, syntax = LUA_ERRSYNTAX, file = LUA_ERRFILE, }; enum class thread_status : int { ok = LUA_OK, yielded = LUA_YIELD, runtime = LUA_ERRRUN, memory = LUA_ERRMEM, gc = LUA_ERRGCMM, handler = LUA_ERRERR, dead = -1, }; enum class load_status : int { ok = LUA_OK, syntax = LUA_ERRSYNTAX, memory = LUA_ERRMEM, gc = LUA_ERRGCMM, file = LUA_ERRFILE, }; enum class type : int { none = LUA_TNONE, lua_nil = LUA_TNIL, #if !defined(SOL_NO_NIL) nil = lua_nil, #endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect string = LUA_TSTRING, number = LUA_TNUMBER, thread = LUA_TTHREAD, boolean = LUA_TBOOLEAN, function = LUA_TFUNCTION, userdata = LUA_TUSERDATA, lightuserdata = LUA_TLIGHTUSERDATA, table = LUA_TTABLE, poly = -0xFFFF }; inline const std::string& to_string(call_status c) { static const std::array<std::string, 10> names{ { "ok", "yielded", "runtime", "memory", "handler", "gc", "syntax", "file", "CRITICAL_EXCEPTION_FAILURE", "CRITICAL_INDETERMINATE_STATE_FAILURE" } }; switch (c) { case call_status::ok: return names[0]; case call_status::yielded: return names[1]; case call_status::runtime: return names[2]; case call_status::memory: return names[3]; case call_status::handler: return names[4]; case call_status::gc: return names[5]; case call_status::syntax: return names[6]; case call_status::file: return names[7]; } if (static_cast<std::ptrdiff_t>(c) == -1) { // One of the many cases where a critical exception error has occurred return names[8]; } return names[9]; } inline bool is_indeterminate_call_failure(call_status c) { switch (c) { case call_status::ok: case call_status::yielded: case call_status::runtime: case call_status::memory: case call_status::handler: case call_status::gc: case call_status::syntax: case call_status::file: return false; } return true; } inline const std::string& to_string(load_status c) { static const std::array<std::string, 7> names{ { "ok", "memory", "gc", "syntax", "file", "CRITICAL_EXCEPTION_FAILURE", "CRITICAL_INDETERMINATE_STATE_FAILURE" } }; switch (c) { case load_status::ok: return names[0]; case load_status::memory: return names[1]; case load_status::gc: return names[2]; case load_status::syntax: return names[3]; case load_status::file: return names[4]; } if (static_cast<int>(c) == -1) { // One of the many cases where a critical exception error has occurred return names[5]; } return names[6]; } inline const std::string& to_string(load_mode c) { static const std::array<std::string, 3> names{ { "bt", "t", "b", } }; return names[static_cast<std::size_t>(c)]; } enum class meta_function { construct, index, new_index, mode, call, call_function = call, metatable, to_string, length, unary_minus, addition, subtraction, multiplication, division, modulus, power_of, involution = power_of, concatenation, equal_to, less_than, less_than_or_equal_to, garbage_collect, floor_division, bitwise_left_shift, bitwise_right_shift, bitwise_not, bitwise_and, bitwise_or, bitwise_xor, pairs, ipairs, next, type, type_info, call_construct, storage, gc_names, static_index, static_new_index, }; typedef meta_function meta_method; inline const std::array<std::string, 37>& meta_function_names() { static const std::array<std::string, 37> names = { { "new", "__index", "__newindex", "__mode", "__call", "__mt", "__tostring", "__len", "__unm", "__add", "__sub", "__mul", "__div", "__mod", "__pow", "__concat", "__eq", "__lt", "__le", "__gc", "__idiv", "__shl", "__shr", "__bnot", "__band", "__bor", "__bxor", "__pairs", "__ipairs", "next", "__type", "__typeinfo", "__sol.call_new", "__sol.storage", "__sol.gc_names", "__sol.static_index", "__sol.static_new_index" } }; return names; } inline const std::string& to_string(meta_function mf) { return meta_function_names()[static_cast<int>(mf)]; } inline type type_of(lua_State* L, int index) { return static_cast<type>(lua_type(L, index)); } inline std::string type_name(lua_State* L, type t) { return lua_typename(L, static_cast<int>(t)); } template <typename T> struct is_lua_reference : std::integral_constant<bool, std::is_base_of_v<reference, T> || std::is_base_of_v<main_reference, T> || std::is_base_of_v<stack_reference, T>> {}; template <typename T> inline constexpr bool is_lua_reference_v = is_lua_reference<T>::value; template <typename T> struct is_lua_reference_or_proxy : std::integral_constant<bool, is_lua_reference_v<T> || meta::is_specialization_of_v<T, proxy>> {}; template <typename T> inline constexpr bool is_lua_reference_or_proxy_v = is_lua_reference_or_proxy<T>::value; template <typename T> struct is_transparent_argument : std::false_type {}; template <typename T> constexpr inline bool is_transparent_argument_v = is_transparent_argument<T>::value; template <> struct is_transparent_argument<this_state> : std::true_type {}; template <> struct is_transparent_argument<this_main_state> : std::true_type {}; template <> struct is_transparent_argument<this_environment> : std::true_type {}; template <> struct is_transparent_argument<variadic_args> : std::true_type {}; template <typename T> struct is_variadic_arguments : std::is_same<T, variadic_args> {}; template <typename T> struct is_container : std::integral_constant<bool, !std::is_same_v<state_view, T> && !std::is_same_v<state, T> && !meta::is_initializer_list_v<T> && !meta::is_string_like_v<T> && !meta::is_string_literal_array_v<T> && !is_transparent_argument_v<T> && !is_lua_reference_v<T> && (meta::has_begin_end_v<T> || std::is_array_v<T>)> { }; template <typename T> constexpr inline bool is_container_v = is_container<T>::value; template <typename T> struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>, meta::supports_ostream_op<meta::unqualified_t<T>>> {}; namespace detail { template <typename T, typename = void> struct lua_type_of : std::integral_constant<type, type::userdata> {}; template <typename C, typename T, typename A> struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> {}; template <typename C, typename T> struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> {}; template <std::size_t N> struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {}; template <std::size_t N> struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {}; template <std::size_t N> struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {}; template <std::size_t N> struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<char> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<const char*> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {}; template <> struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {}; template <> struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> {}; template <> struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> {}; template <> struct lua_type_of<lua_value> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<detail::non_lua_nil_t> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> {}; template <> struct lua_type_of<error> : std::integral_constant<type, type::string> {}; template <bool b, typename Base> struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> {}; template <typename Base> struct lua_type_of<basic_lua_table<Base>> : std::integral_constant<type, type::table> {}; template <typename Base> struct lua_type_of<basic_metatable<Base>> : std::integral_constant<type, type::table> {}; template <typename T, typename Base> struct lua_type_of<basic_usertype<T, Base>> : std::integral_constant<type, type::table> {}; template <> struct lua_type_of<metatable_key_t> : std::integral_constant<type, type::table> {}; template <typename B> struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<env_key_t> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<new_table> : std::integral_constant<type, type::table> {}; template <typename T> struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> {}; template <typename T> struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> {}; template <bool b> struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {}; template <typename Base> struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {}; template <typename... Args> struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {}; template <typename A, typename B> struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {}; template <> struct lua_type_of<const void*> : std::integral_constant<type, type::lightuserdata> {}; template <> struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {}; template <> struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {}; template <typename T> struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {}; template <typename T> struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {}; template <typename Base> struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {}; template <typename Base> struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {}; template <> struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {}; template <> struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {}; template <typename Base, bool aligned> struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> {}; template <typename Base, bool aligned, typename Handler> struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> {}; template <typename Base> struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> {}; template <typename Base> struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> {}; template <typename Signature> struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {}; template <typename T> struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {}; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename T> struct lua_type_of<std::optional<T>> : std::integral_constant<type, type::poly> {}; #endif // std::optional template <> struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> {}; template <> struct lua_type_of<type> : std::integral_constant<type, type::poly> {}; template <typename T> struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {}; template <typename T> struct lua_type_of<T, std::enable_if_t<std::is_arithmetic_v<T> || std::is_same_v<T, lua_Number> || std::is_same_v<T, lua_Integer>>> : std::integral_constant<type, type::number> {}; template <typename T> struct lua_type_of<T, std::enable_if_t<std::is_enum_v<T>>> : std::integral_constant<type, type::number> {}; template <> struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {}; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT template <typename... Tn> struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> {}; #endif // SOL_STD_VARIANT #endif // SOL_CXX17_FEATURES template <typename T> struct lua_type_of<nested<T>> : meta::conditional_t<::sol::is_container_v<T>, std::integral_constant<type, type::table>, lua_type_of<T>> {}; template <typename C, C v, template <typename...> class V, typename... Args> struct accumulate : std::integral_constant<C, v> {}; template <typename C, C v, template <typename...> class V, typename T, typename... Args> struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {}; template <typename C, C v, template <typename...> class V, typename List> struct accumulate_list; template <typename C, C v, template <typename...> class V, typename... Args> struct accumulate_list<C, v, V, types<Args...>> : accumulate<C, v, V, Args...> {}; } // namespace detail template <typename T> struct lua_type_of : detail::lua_type_of<T> { typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_; }; template <typename T> inline constexpr type lua_type_of_v = lua_type_of<T>::value; template <typename T> struct lua_size : std::integral_constant<int, 1> { typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_; }; template <typename A, typename B> struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> {}; template <typename... Args> struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> {}; template <typename T> inline constexpr int lua_size_v = lua_size<T>::value; namespace detail { template <typename...> struct void_ { typedef void type; }; template <typename T, typename = void> struct has_internal_marker_impl : std::false_type {}; template <typename T> struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {}; template <typename T> using has_internal_marker = has_internal_marker_impl<T>; template <typename T> constexpr inline bool has_internal_marker_v = has_internal_marker<T>::value; } // namespace detail template <typename T> struct is_lua_primitive : std::integral_constant<bool, type::userdata != lua_type_of_v<T> || ((type::userdata == lua_type_of_v<T>) && detail::has_internal_marker_v<lua_type_of<T>> && !detail::has_internal_marker_v<lua_size<T>>) || is_lua_reference_v<T> || meta::is_specialization_of_v<T, std::tuple> || meta::is_specialization_of_v<T, std::pair>> {}; template <typename T> constexpr inline bool is_lua_primitive_v = is_lua_primitive<T>::value; template <typename T> struct is_main_threaded : std::is_base_of<main_reference, T> {}; template <typename T> struct is_stack_based : std::is_base_of<stack_reference, T> {}; template <> struct is_stack_based<variadic_args> : std::true_type {}; template <> struct is_stack_based<unsafe_function_result> : std::true_type {}; template <> struct is_stack_based<protected_function_result> : std::true_type {}; template <> struct is_stack_based<stack_proxy> : std::true_type {}; template <> struct is_stack_based<stack_proxy_base> : std::true_type {}; template <typename T> constexpr inline bool is_stack_based_v = is_stack_based<T>::value; template <typename T> struct is_lua_primitive<T*> : std::true_type {}; template <> struct is_lua_primitive<unsafe_function_result> : std::true_type {}; template <> struct is_lua_primitive<protected_function_result> : std::true_type {}; template <typename T> struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type {}; template <typename T> struct is_lua_primitive<user<T>> : std::true_type {}; template <typename T> struct is_lua_primitive<light<T>> : is_lua_primitive<T*> {}; template <typename T> struct is_lua_primitive<optional<T>> : std::true_type {}; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename T> struct is_lua_primitive<std::optional<T>> : std::true_type {}; #endif template <typename T> struct is_lua_primitive<as_table_t<T>> : std::true_type {}; template <typename T> struct is_lua_primitive<nested<T>> : std::true_type {}; template <> struct is_lua_primitive<userdata_value> : std::true_type {}; template <> struct is_lua_primitive<lightuserdata_value> : std::true_type {}; template <typename T> struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {}; template <typename T> struct is_lua_index : std::is_integral<T> {}; template <> struct is_lua_index<raw_index> : std::true_type {}; template <> struct is_lua_index<absolute_index> : std::true_type {}; template <> struct is_lua_index<ref_index> : std::true_type {}; template <> struct is_lua_index<upvalue_index> : std::true_type {}; template <typename Signature> struct lua_bind_traits : meta::bind_traits<Signature> { private: typedef meta::bind_traits<Signature> base_t; public: typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t; static const std::size_t true_arity = base_t::arity; static const std::size_t arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::args_list>::value - meta::count_for<is_transparent_argument, typename base_t::args_list>::value; static const std::size_t true_free_arity = base_t::free_arity; static const std::size_t free_arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::free_args_list>::value - meta::count_for<is_transparent_argument, typename base_t::args_list>::value; }; template <typename T> struct is_table : std::false_type {}; template <bool x, typename T> struct is_table<basic_table_core<x, T>> : std::true_type {}; template <typename T> struct is_table<basic_lua_table<T>> : std::true_type {}; template <typename T> inline constexpr bool is_table_v = is_table<T>::value; template <typename T> struct is_function : std::false_type {}; template <typename T, bool aligned> struct is_function<basic_function<T, aligned>> : std::true_type {}; template <typename T, bool aligned, typename Handler> struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type {}; template <typename T> using is_lightuserdata = meta::is_specialization_of<T, basic_lightuserdata>; template <typename T> inline constexpr bool is_lightuserdata_v = is_lightuserdata<T>::value; template <typename T> using is_userdata = meta::is_specialization_of<T, basic_userdata>; template <typename T> inline constexpr bool is_userdata_v = is_userdata<T>::value; template <typename T> using is_environment = std::integral_constant<bool, is_userdata_v<T> || is_table_v<T> || meta::is_specialization_of_v<T, basic_environment>>; template <typename T> inline constexpr bool is_environment_v = is_environment<T>::value; template <typename T> using is_table_like = std::integral_constant<bool, is_table_v<T> || is_environment_v<T> || is_userdata_v<T>>; template <typename T> inline constexpr bool is_table_like_v = is_table_like<T>::value; template <typename T> struct is_automagical : std::integral_constant<bool, std::is_array_v<meta::unqualified_t<T>> || !std::is_same_v<meta::unqualified_t<T>, state> || !std::is_same_v<meta::unqualified_t<T>, state_view>> {}; template <typename T> inline type type_of() { return lua_type_of<meta::unqualified_t<T>>::value; } namespace detail { template <typename T> struct is_non_factory_constructor : std::false_type {}; template <typename... Args> struct is_non_factory_constructor<constructors<Args...>> : std::true_type {}; template <typename... Args> struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {}; template <> struct is_non_factory_constructor<no_construction> : std::true_type {}; template <typename T> inline constexpr bool is_non_factory_constructor_v = is_non_factory_constructor<T>::value; template <typename T> struct is_constructor : is_non_factory_constructor<T> {}; template <typename... Args> struct is_constructor<factory_wrapper<Args...>> : std::true_type {}; template <typename T> struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> {}; template <typename F, typename... Policies> struct is_constructor<policy_wrapper<F, Policies...>> : is_constructor<meta::unqualified_t<F>> {}; template <typename T> inline constexpr bool is_constructor_v = is_constructor<T>::value; template <typename... Args> using any_is_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>; template <typename... Args> inline constexpr bool any_is_constructor_v = any_is_constructor<Args...>::value; template <typename T> struct is_destructor : std::false_type {}; template <typename Fx> struct is_destructor<destructor_wrapper<Fx>> : std::true_type {}; template <typename... Args> using any_is_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>; template <typename... Args> inline constexpr bool any_is_destructor_v = any_is_destructor<Args...>::value; } // namespace detail template <typename T> using is_lua_c_function = meta::any<std::is_same<lua_CFunction, T>, std::is_same<detail::lua_CFunction_noexcept, T>, std::is_same<lua_CFunction_ref, T>>; template <typename T> inline constexpr bool is_lua_c_function_v = is_lua_c_function<T>::value; struct automagic_enrollments { bool default_constructor = true; bool destructor = true; bool pairs_operator = true; bool to_string_operator = true; bool call_operator = true; bool less_than_operator = true; bool less_than_or_equal_to_operator = true; bool length_operator = true; bool equal_to_operator = true; }; } // namespace sol // end of sol/types.hpp #include <cstring> #if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS #include <iostream> #endif namespace sol { // must push a single object to be the error object // NOTE: the VAST MAJORITY of all Lua libraries -- C or otherwise -- expect a string for the type of error // break this convention at your own risk using exception_handler_function = int(*)(lua_State*, optional<const std::exception&>, string_view); namespace detail { inline const char(&default_exception_handler_name())[11]{ static const char name[11] = "sol.\xE2\x98\xA2\xE2\x98\xA2"; return name; } // must push at least 1 object on the stack inline int default_exception_handler(lua_State* L, optional<const std::exception&>, string_view what) { #if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS std::cerr << "[sol3] An exception occurred: "; std::cerr.write(what.data(), what.size()); std::cerr << std::endl; #endif lua_pushlstring(L, what.data(), what.size()); return 1; } inline int call_exception_handler(lua_State* L, optional<const std::exception&> maybe_ex, string_view what) { lua_getglobal(L, default_exception_handler_name()); type t = static_cast<type>(lua_type(L, -1)); if (t != type::lightuserdata) { lua_pop(L, 1); return default_exception_handler(L, std::move(maybe_ex), std::move(what)); } void* vfunc = lua_touserdata(L, -1); lua_pop(L, 1); if (vfunc == nullptr) { return default_exception_handler(L, std::move(maybe_ex), std::move(what)); } exception_handler_function exfunc = reinterpret_cast<exception_handler_function>(vfunc); return exfunc(L, std::move(maybe_ex), std::move(what)); } #ifdef SOL_NO_EXCEPTIONS template <lua_CFunction f> int static_trampoline(lua_State* L) noexcept { return f(L); } #ifdef SOL_NOEXCEPT_FUNCTION_TYPE template <lua_CFunction_noexcept f> int static_trampoline_noexcept(lua_State* L) noexcept { return f(L); } #else template <lua_CFunction f> int static_trampoline_noexcept(lua_State* L) noexcept { return f(L); } #endif template <typename Fx, typename... Args> int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept { return f(L, std::forward<Args>(args)...); } inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept { return trampoline(L, f); } #else template <lua_CFunction f> int static_trampoline(lua_State* L) { #if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT) return f(L); #else try { return f(L); } catch (const char* cs) { call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs)); } catch (const std::string& s) { call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size())); } catch (const std::exception& e) { call_exception_handler(L, optional<const std::exception&>(e), e.what()); } #if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) // LuaJIT cannot have the catchall when the safe propagation is on // but LuaJIT will swallow all C++ errors // if we don't at least catch std::exception ones catch (...) { call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception"); } #endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it return lua_error(L); #endif // Safe exceptions } #ifdef SOL_NOEXCEPT_FUNCTION_TYPE #if 0 // impossible: g++/clang++ choke as they think this function is ambiguous: // to fix, wait for template <auto X> and then switch on no-exceptness of the function template <lua_CFunction_noexcept f> int static_trampoline(lua_State* L) noexcept { return f(L); } #else template <lua_CFunction_noexcept f> int static_trampoline_noexcept(lua_State* L) noexcept { return f(L); } #endif // impossible #else template <lua_CFunction f> int static_trampoline_noexcept(lua_State* L) noexcept { return f(L); } #endif // noexcept lua_CFunction type template <typename Fx, typename... Args> int trampoline(lua_State* L, Fx&& f, Args&&... args) { if (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) { return f(L, std::forward<Args>(args)...); } #if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT) return f(L, std::forward<Args>(args)...); #else try { return f(L, std::forward<Args>(args)...); } catch (const char* cs) { call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs)); } catch (const std::string& s) { call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size())); } catch (const std::exception& e) { call_exception_handler(L, optional<const std::exception&>(e), e.what()); } #if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) // LuaJIT cannot have the catchall when the safe propagation is on // but LuaJIT will swallow all C++ errors // if we don't at least catch std::exception ones catch (...) { call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception"); } #endif return lua_error(L); #endif } inline int c_trampoline(lua_State* L, lua_CFunction f) { return trampoline(L, f); } #endif // Exceptions vs. No Exceptions template <typename F, F fx> inline int typed_static_trampoline_raw(std::true_type, lua_State* L) { return static_trampoline_noexcept<fx>(L); } template <typename F, F fx> inline int typed_static_trampoline_raw(std::false_type, lua_State* L) { return static_trampoline<fx>(L); } template <typename F, F fx> inline int typed_static_trampoline(lua_State* L) { return typed_static_trampoline_raw<F, fx>(std::integral_constant<bool, meta::bind_traits<F>::is_noexcept>(), L); } } // namespace detail inline void set_default_exception_handler(lua_State* L, exception_handler_function exf = &detail::default_exception_handler) { static_assert(sizeof(void*) >= sizeof(exception_handler_function), "void* storage is too small to transport the exception handler: please file a bug on the issue tracker"); void* storage; std::memcpy(&storage, &exf, sizeof(exception_handler_function)); lua_pushlightuserdata(L, storage); lua_setglobal(L, detail::default_exception_handler_name()); } } // sol // end of sol/trampoline.hpp // beginning of sol/stack_core.hpp // beginning of sol/inheritance.hpp // beginning of sol/usertype_traits.hpp // beginning of sol/demangle.hpp #include <cctype> #if defined(__GNUC__) && defined(__MINGW32__) && (__GNUC__ < 6) extern "C" { } #endif // MinGW is on some stuff #include <locale> namespace sol { namespace detail { inline constexpr std::array<string_view, 9> removals{ { "{anonymous}", "(anonymous namespace)", "public:", "private:", "protected:", "struct ", "class ", "`anonymous-namespace'", "`anonymous namespace'" } }; #if defined(__GNUC__) || defined(__clang__) template <typename T, class seperator_mark = int> inline std::string ctti_get_type_name() { // cardinal sins from MINGW using namespace std; std::string name = __PRETTY_FUNCTION__; std::size_t start = name.find_first_of('['); start = name.find_first_of('=', start); std::size_t end = name.find_last_of(']'); if (end == std::string::npos) end = name.size(); if (start == std::string::npos) start = 0; if (start < name.size() - 1) start += 1; name = name.substr(start, end - start); start = name.rfind("seperator_mark"); if (start != std::string::npos) { name.erase(start - 2, name.length()); } while (!name.empty() && isblank(name.front())) name.erase(name.begin()); while (!name.empty() && isblank(name.back())) name.pop_back(); for (std::size_t r = 0; r < removals.size(); ++r) { auto found = name.find(removals[r]); while (found != std::string::npos) { name.erase(found, removals[r].size()); found = name.find(removals[r]); } } return name; } #elif defined(_MSC_VER) template <typename T> std::string ctti_get_type_name() { std::string name = __FUNCSIG__; std::size_t start = name.find("get_type_name"); if (start == std::string::npos) start = 0; else start += 13; if (start < name.size() - 1) start += 1; std::size_t end = name.find_last_of('>'); if (end == std::string::npos) end = name.size(); name = name.substr(start, end - start); if (name.find("struct", 0) == 0) name.replace(0, 6, "", 0); if (name.find("class", 0) == 0) name.replace(0, 5, "", 0); while (!name.empty() && isblank(name.front())) name.erase(name.begin()); while (!name.empty() && isblank(name.back())) name.pop_back(); for (std::size_t r = 0; r < removals.size(); ++r) { auto found = name.find(removals[r]); while (found != std::string::npos) { name.erase(found, removals[r].size()); found = name.find(removals[r]); } } return name; } #else #error Compiler not supported for demangling #endif // compilers template <typename T> std::string demangle_once() { std::string realname = ctti_get_type_name<T>(); return realname; } template <typename T> std::string short_demangle_once() { std::string realname = ctti_get_type_name<T>(); // This isn't the most complete but it'll do for now...? static const std::array<std::string, 10> ops = {{"operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*"}}; int level = 0; std::ptrdiff_t idx = 0; for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) { if (level == 0 && realname[idx] == ':') { break; } bool isleft = realname[idx] == '<'; bool isright = realname[idx] == '>'; if (!isleft && !isright) continue; bool earlybreak = false; for (const auto& op : ops) { std::size_t nisop = realname.rfind(op, idx); if (nisop == std::string::npos) continue; std::size_t nisopidx = idx - op.size() + 1; if (nisop == nisopidx) { idx = static_cast<std::ptrdiff_t>(nisopidx); earlybreak = true; } break; } if (earlybreak) { continue; } level += isleft ? -1 : 1; } if (idx > 0) { realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1); } return realname; } template <typename T> const std::string& demangle() { static const std::string d = demangle_once<T>(); return d; } template <typename T> const std::string& short_demangle() { static const std::string d = short_demangle_once<T>(); return d; } } } // namespace sol::detail // end of sol/demangle.hpp namespace sol { template <typename T> struct usertype_traits { static const std::string& name() { static const std::string& n = detail::short_demangle<T>(); return n; } static const std::string& qualified_name() { static const std::string& q_n = detail::demangle<T>(); return q_n; } static const std::string& metatable() { static const std::string m = std::string("sol.").append(detail::demangle<T>()); return m; } static const std::string& user_metatable() { static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user"); return u_m; } static const std::string& user_gc_metatable() { static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB"); return u_g_m; } static const std::string& gc_table() { static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB"); return g_t; } }; } // namespace sol // end of sol/usertype_traits.hpp // beginning of sol/unique_usertype_traits.hpp namespace sol { template <typename T> struct unique_usertype_traits { typedef T type; typedef T actual_type; template <typename X> using rebind_base = void; static const bool value = false; template <typename U> static bool is_null(U&&) { return false; } template <typename U> static auto get(U&& value) { return std::addressof(detail::deref(value)); } }; template <typename T> struct unique_usertype_traits<std::shared_ptr<T>> { typedef T type; typedef std::shared_ptr<T> actual_type; // rebind is non-void // if and only if unique usertype // is cast-capable template <typename X> using rebind_base = std::shared_ptr<X>; static const bool value = true; static bool is_null(const actual_type& p) { return p == nullptr; } static type* get(const actual_type& p) { return p.get(); } }; template <typename T, typename D> struct unique_usertype_traits<std::unique_ptr<T, D>> { using type = T; using actual_type = std::unique_ptr<T, D>; static const bool value = true; static bool is_null(const actual_type& p) { return p == nullptr; } static type* get(const actual_type& p) { return p.get(); } }; template <typename T> struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {}; template <typename T> inline constexpr bool is_unique_usertype_v = is_unique_usertype<T>::value; namespace detail { template <typename T> using is_base_rebindable_test = decltype(T::rebind_base); } template <typename T> using is_base_rebindable = meta::is_detected<detail::is_base_rebindable_test, T>; template <typename T> inline constexpr bool is_base_rebindable_v = is_base_rebindable<T>::value; namespace detail { template <typename T, typename> struct is_base_rebindable_non_void_sfinae : std::false_type {}; template <typename T> struct is_base_rebindable_non_void_sfinae<T, std::enable_if_t<is_base_rebindable_v<T>>> : std::integral_constant<bool, !std::is_void_v<typename T::template rebind_base<void>>> {}; } // namespace detail template <typename T> using is_base_rebindable_non_void = meta::is_detected<detail::is_base_rebindable_test, T>; template <typename T> inline constexpr bool is_base_rebindable_non_void_v = is_base_rebindable_non_void<T>::value; } // namespace sol // end of sol/unique_usertype_traits.hpp namespace sol { template <typename... Args> struct base_list {}; template <typename... Args> using bases = base_list<Args...>; typedef bases<> base_classes_tag; const auto base_classes = base_classes_tag(); template <typename... Args> struct is_to_stringable<base_list<Args...>> : std::false_type {}; namespace detail { inline decltype(auto) base_class_check_key() { static const auto& key = "class_check"; return key; } inline decltype(auto) base_class_cast_key() { static const auto& key = "class_cast"; return key; } inline decltype(auto) base_class_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.index"; return key; } inline decltype(auto) base_class_new_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index"; return key; } template <typename T> struct inheritance { typedef typename base<T>::type bases_t; static bool type_check_bases(types<>, const string_view&) { return false; } template <typename Base, typename... Args> static bool type_check_bases(types<Base, Args...>, const string_view& ti) { return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti); } static bool type_check(const string_view& ti) { return ti == usertype_traits<T>::qualified_name() || type_check_bases(bases_t(), ti); } template <typename ...Bases> static bool type_check_with(const string_view& ti) { return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti); } static void* type_cast_bases(types<>, T*, const string_view&) { return nullptr; } template <typename Base, typename... Args> static void* type_cast_bases(types<Base, Args...>, T* data, const string_view& ti) { // Make sure to convert to T first, and then dynamic cast to the proper type return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data)); } static void* type_cast(void* voiddata, const string_view& ti) { T* data = static_cast<T*>(voiddata); return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(bases_t(), data, ti) : data); } template <typename... Bases> static void* type_cast_with(void* voiddata, const string_view& ti) { T* data = static_cast<T*>(voiddata); return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data); } template <typename U> static bool type_unique_cast_bases(types<>, void*, void*, const string_view&) { return 0; } template <typename U, typename Base, typename... Args> static int type_unique_cast_bases(types<Base, Args...>, void* source_data, void* target_data, const string_view& ti) { using uu_traits = unique_usertype_traits<U>; using base_ptr = typename uu_traits::template rebind_base<Base>; string_view base_ti = usertype_traits<Base>::qualified_name(); if (base_ti == ti) { if (target_data != nullptr) { U* source = static_cast<U*>(source_data); base_ptr* target = static_cast<base_ptr*>(target_data); // perform proper derived -> base conversion *target = *source; } return 2; } return type_unique_cast_bases<U>(types<Args...>(), source_data, target_data, ti); } template <typename U> static int type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) { typedef unique_usertype_traits<U> uu_traits; if constexpr (is_base_rebindable_v<uu_traits>) { typedef typename uu_traits::template rebind_base<void> rebind_t; typedef meta::conditional_t<std::is_void<rebind_t>::value, types<>, bases_t> cond_bases_t; string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name(); if (rebind_ti != this_rebind_ti) { // this is not even of the same unique type return 0; } string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti); } else { (void)rebind_ti; string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti); } } template <typename U, typename... Bases> static int type_unique_cast_with(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) { using uc_bases_t = types<Bases...>; typedef unique_usertype_traits<U> uu_traits; if constexpr (is_base_rebindable_v<uu_traits>) { using rebind_t = typename uu_traits::template rebind_base<void>; using cond_bases_t = meta::conditional_t<std::is_void<rebind_t>::value, types<>, uc_bases_t>; string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name(); if (rebind_ti != this_rebind_ti) { // this is not even of the same unique type return 0; } string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti); } else { (void)rebind_ti; string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti); } } }; using inheritance_check_function = decltype(&inheritance<void>::type_check); using inheritance_cast_function = decltype(&inheritance<void>::type_cast); using inheritance_unique_cast_function = decltype(&inheritance<void>::type_unique_cast<void>); } // namespace detail } // namespace sol // end of sol/inheritance.hpp // beginning of sol/error_handler.hpp namespace sol { namespace detail { constexpr const char* not_a_number = "not a numeric type"; constexpr const char* not_a_number_or_number_string = "not a numeric type or numeric string"; constexpr const char* not_a_number_integral = "not a numeric type that fits exactly an integer (has significant decimals)"; constexpr const char* not_a_number_or_number_string_integral = "not a numeric type or a numeric string that fits exactly an integer (has significant decimals)"; constexpr const char* not_enough_stack_space = "not enough space left on Lua stack"; constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number"; constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number"; constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string"; constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function"; constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata"; constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees"; constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment"; constexpr const char* protected_function_error = "caught (...) unknown error during protected_function call"; inline void accumulate_and_mark(const std::string& n, std::string& addendum, int& marker) { if (marker > 0) { addendum += ", "; } addendum += n; ++marker; } } inline std::string associated_type_name(lua_State* L, int index, type t) { switch (t) { case type::poly: return "anything"; case type::userdata: { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 2, "not enough space to push get the type name"); #endif // make sure stack doesn't overflow if (lua_getmetatable(L, index) == 0) { break; } lua_pushlstring(L, "__name", 6); lua_rawget(L, -2); size_t sz; const char* name = lua_tolstring(L, -1, &sz); std::string tn(name, static_cast<std::string::size_type>(sz)); lua_pop(L, 2); return tn; } default: break; } return lua_typename(L, static_cast<int>(t)); } inline int type_panic_string(lua_State* L, int index, type expected, type actual, const std::string& message = "") noexcept(false) { const char* err = message.empty() ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s"; std::string actualname = associated_type_name(L, index, actual); return luaL_error(L, err, index, expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)), actualname.c_str(), message.c_str()); } inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false) { const char* err = message == nullptr || (std::char_traits<char>::length(message) == 0) ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s"; std::string actualname = associated_type_name(L, index, actual); return luaL_error(L, err, index, expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)), actualname.c_str(), message); } struct type_panic_t { int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false) { return type_panic_c_str(L, index, expected, actual, nullptr); } int operator()(lua_State* L, int index, type expected, type actual, const char* message) const noexcept(false) { return type_panic_c_str(L, index, expected, actual, message); } int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { return type_panic_string(L, index, expected, actual, message); } }; const type_panic_t type_panic = {}; struct constructor_handler { int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { std::string str = "(type check failed in constructor)"; return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str); } }; template <typename F = void> struct argument_handler { int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { std::string str = "(bad argument to variable or function call)"; return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str ); } }; template <typename R, typename... Args> struct argument_handler<types<R, Args...>> { int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { std::string addendum = "(bad argument into '"; addendum += detail::demangle<R>(); addendum += "("; int marker = 0; (void)detail::swallow{int(), (detail::accumulate_and_mark(detail::demangle<Args>(), addendum, marker), int())...}; addendum += ")')"; return type_panic_string(L, index, expected, actual, message.empty() ? addendum : message + " " + addendum); } }; // Specify this function as the handler for lua::check if you know there's nothing wrong inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept { return 0; } inline void type_error(lua_State* L, int expected, int actual) noexcept(false) { luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual)); } inline void type_error(lua_State* L, type expected, type actual) noexcept(false) { type_error(L, static_cast<int>(expected), static_cast<int>(actual)); } inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false) { if (expected != type::poly && expected != actual) { type_panic_c_str(L, index, expected, actual, nullptr); } } inline void type_assert(lua_State* L, int index, type expected) { type actual = type_of(L, index); type_assert(L, index, expected, actual); } } // namespace sol // end of sol/error_handler.hpp // beginning of sol/reference.hpp // beginning of sol/stack_reference.hpp namespace sol { namespace detail { inline bool xmovable(lua_State* leftL, lua_State* rightL) { if (rightL == nullptr || leftL == nullptr || leftL == rightL) { return false; } const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX); const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX); return leftregistry == rightregistry; } } // namespace detail class stateless_stack_reference { private: friend class stack_reference; int index = 0; int registry_index() const noexcept { return LUA_NOREF; } public: stateless_stack_reference() noexcept = default; stateless_stack_reference(lua_nil_t) noexcept : stateless_stack_reference(){}; stateless_stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(absolute_index(L, i)) { } stateless_stack_reference(lua_State*, absolute_index i) noexcept : stateless_stack_reference(i) { } stateless_stack_reference(lua_State*, raw_index i) noexcept : stateless_stack_reference(i) { } stateless_stack_reference(absolute_index i) noexcept : index(i) { } stateless_stack_reference(raw_index i) noexcept : index(i) { } stateless_stack_reference(lua_State*, ref_index) noexcept = delete; stateless_stack_reference(ref_index) noexcept = delete; stateless_stack_reference(const reference&) noexcept = delete; stateless_stack_reference(const stateless_stack_reference&) noexcept = default; stateless_stack_reference(stateless_stack_reference&& o) noexcept = default; stateless_stack_reference& operator=(stateless_stack_reference&&) noexcept = default; stateless_stack_reference& operator=(const stateless_stack_reference&) noexcept = default; int push(lua_State* L) const noexcept { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value"); #endif // make sure stack doesn't overflow lua_pushvalue(L, index); return 1; } void pop(lua_State* L, int n = 1) const noexcept { lua_pop(L, n); } int stack_index() const noexcept { return index; } const void* pointer(lua_State* L) const noexcept { const void* vp = lua_topointer(L, stack_index()); return vp; } type get_type(lua_State* L) const noexcept { int result = lua_type(L, index); return static_cast<type>(result); } bool valid(lua_State* L) const noexcept { type t = get_type(L); return t != type::lua_nil && t != type::none; } void abandon(lua_State* = nullptr) { index = 0; } }; class stack_reference : public stateless_stack_reference { private: lua_State* luastate = nullptr; public: stack_reference() noexcept = default; stack_reference(lua_nil_t) noexcept : stack_reference() {}; stack_reference(lua_State* L, lua_nil_t) noexcept : stateless_stack_reference(L, 0), luastate(L) { } stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(L, i), luastate(L) { } stack_reference(lua_State* L, absolute_index i) noexcept : stateless_stack_reference(L, i), luastate(L) { } stack_reference(lua_State* L, raw_index i) noexcept : stateless_stack_reference(L, i), luastate(L) { } stack_reference(lua_State* L, ref_index i) noexcept = delete; stack_reference(lua_State* L, const reference& r) noexcept = delete; stack_reference(lua_State* L, const stack_reference& r) noexcept : luastate(L) { if (!r.valid()) { index = 0; return; } int i = r.stack_index(); if (detail::xmovable(lua_state(), r.lua_state())) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value"); #endif // make sure stack doesn't overflow lua_pushvalue(r.lua_state(), r.index); lua_xmove(r.lua_state(), luastate, 1); i = absolute_index(luastate, -1); } index = i; } stack_reference(stack_reference&& o) noexcept = default; stack_reference& operator=(stack_reference&&) noexcept = default; stack_reference(const stack_reference&) noexcept = default; stack_reference& operator=(const stack_reference&) noexcept = default; int push() const noexcept { return push(lua_state()); } int push(lua_State* Ls) const noexcept { return stateless_stack_reference::push(Ls); } void pop() const noexcept { pop(lua_state()); } void pop(lua_State* Ls, int n = 1) const noexcept { stateless_stack_reference::pop(Ls, n); } const void* pointer() const noexcept { return stateless_stack_reference::pointer(lua_state()); } type get_type() const noexcept { return stateless_stack_reference::get_type(lua_state()); } lua_State* lua_state() const noexcept { return luastate; } bool valid() const noexcept { return stateless_stack_reference::valid(lua_state()); } void abandon () { stateless_stack_reference::abandon(lua_state()); } }; inline bool operator==(const stack_reference& l, const stack_reference& r) { return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0; } inline bool operator!=(const stack_reference& l, const stack_reference& r) { return !operator==(l, r); } inline bool operator==(const stack_reference& lhs, const lua_nil_t&) { return !lhs.valid(); } inline bool operator==(const lua_nil_t&, const stack_reference& rhs) { return !rhs.valid(); } inline bool operator!=(const stack_reference& lhs, const lua_nil_t&) { return lhs.valid(); } inline bool operator!=(const lua_nil_t&, const stack_reference& rhs) { return rhs.valid(); } struct stack_reference_equals { bool operator()(const lua_nil_t& lhs, const stack_reference& rhs) const { return lhs == rhs; } bool operator()(const stack_reference& lhs, const lua_nil_t& rhs) const { return lhs == rhs; } bool operator()(const stack_reference& lhs, const stack_reference& rhs) const { return lhs == rhs; } }; struct stack_reference_hash { typedef stack_reference argument_type; typedef std::size_t result_type; result_type operator()(const argument_type& lhs) const { std::hash<const void*> h; return h(lhs.pointer()); } }; } // namespace sol // end of sol/stack_reference.hpp namespace sol { namespace detail { inline const char (&default_main_thread_name())[9] { static const char name[9] = "sol.\xF0\x9F\x93\x8C"; return name; } } // namespace detail namespace stack { inline void remove(lua_State* L, int rawindex, int count) { if (count < 1) return; int top = lua_gettop(L); if (top < 1) { return; } if (rawindex == -count || top == rawindex) { // Slice them right off the top lua_pop(L, static_cast<int>(count)); return; } // Remove each item one at a time using stack operations // Probably slower, maybe, haven't benchmarked, // but necessary int index = lua_absindex(L, rawindex); if (index < 0) { index = lua_gettop(L) + (index + 1); } int last = index + count; for (int i = index; i < last; ++i) { lua_remove(L, index); } } struct push_popper_at { lua_State* L; int index; int count; push_popper_at(lua_State* luastate, int index = -1, int count = 1) : L(luastate), index(index), count(count) { } ~push_popper_at() { remove(L, index, count); } }; template <bool top_level> struct push_popper_n { lua_State* L; int t; push_popper_n(lua_State* luastate, int x) : L(luastate), t(x) { } push_popper_n(const push_popper_n&) = delete; push_popper_n(push_popper_n&&) = default; push_popper_n& operator=(const push_popper_n&) = delete; push_popper_n& operator=(push_popper_n&&) = default; ~push_popper_n() { lua_pop(L, t); } }; template <> struct push_popper_n<true> { push_popper_n(lua_State*, int) { } }; template <bool, typename T, typename = void> struct push_popper { using Tu = meta::unqualified_t<T>; T t; int idx; push_popper(T x) : t(x), idx(lua_absindex(t.lua_state(), -t.push())) { } int index_of(const Tu&) { return idx; } ~push_popper() { t.pop(); } }; template <typename T, typename C> struct push_popper<true, T, C> { using Tu = meta::unqualified_t<T>; push_popper(T) { } int index_of(const Tu&) { return -1; } ~push_popper() { } }; template <typename T> struct push_popper<false, T, std::enable_if_t<is_stack_based_v<meta::unqualified_t<T>>>> { using Tu = meta::unqualified_t<T>; push_popper(T) { } int index_of(const Tu& r) { return r.stack_index(); } ~push_popper() { } }; template <bool top_level = false, typename T> push_popper<top_level, T> push_pop(T&& x) { return push_popper<top_level, T>(std::forward<T>(x)); } template <typename T> push_popper_at push_pop_at(T&& x) { int c = x.push(); lua_State* L = x.lua_state(); return push_popper_at(L, lua_absindex(L, -c), c); } template <bool top_level = false> push_popper_n<top_level> pop_n(lua_State* L, int x) { return push_popper_n<top_level>(L, x); } } // namespace stack inline lua_State* main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) { #if SOL_LUA_VERSION < 502 if (L == nullptr) return backup_if_unsupported; lua_getglobal(L, detail::default_main_thread_name()); auto pp = stack::pop_n(L, 1); if (type_of(L, -1) == type::thread) { return lua_tothread(L, -1); } return backup_if_unsupported; #else if (L == nullptr) return backup_if_unsupported; lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD); lua_State* Lmain = lua_tothread(L, -1); lua_pop(L, 1); return Lmain; #endif // Lua 5.2+ has the main thread unqualified_getter } namespace detail { struct global_tag { } const global_ {}; struct no_safety_tag { } const no_safety {}; template <bool b> inline lua_State* pick_main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) { (void)L; (void)backup_if_unsupported; if (b) { return main_thread(L, backup_if_unsupported); } return L; } } // namespace detail class stateless_reference { private: template <bool o_main_only> friend class basic_reference; int ref = LUA_NOREF; int copy(lua_State* L) const noexcept { if (ref == LUA_NOREF) return LUA_NOREF; push(L); return luaL_ref(L, LUA_REGISTRYINDEX); } lua_State* copy_assign(lua_State* L, lua_State* rL, const stateless_reference& r) { if (valid(L)) { deref(L); } ref = r.copy(L); return rL; } lua_State* move_assign(lua_State* L, lua_State* rL, stateless_reference&& r) { if (valid(L)) { deref(L); } ref = r.ref; r.ref = LUA_NOREF; return rL; } protected: int stack_index () const noexcept { return -1; } stateless_reference(lua_State* L, detail::global_tag) noexcept { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); #endif // make sure stack doesn't overflow lua_pushglobaltable(L); ref = luaL_ref(L, LUA_REGISTRYINDEX); } stateless_reference(int raw_ref_index) noexcept : ref(raw_ref_index) { } public: stateless_reference() noexcept = default; stateless_reference(lua_nil_t) noexcept : stateless_reference() { } stateless_reference(const stack_reference& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) { } stateless_reference(stack_reference&& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) { } stateless_reference(lua_State* L, const stateless_reference& r) noexcept { if (r.ref == LUA_REFNIL) { ref = LUA_REFNIL; return; } if (r.ref == LUA_NOREF || L == nullptr) { ref = LUA_NOREF; return; } ref = r.copy(L); } stateless_reference(lua_State* L, stateless_reference&& r) noexcept { if (r.ref == LUA_REFNIL) { ref = LUA_REFNIL; return; } if (r.ref == LUA_NOREF || L == nullptr) { ref = LUA_NOREF; return; } ref = r.ref; r.ref = LUA_NOREF; } stateless_reference(lua_State* L, const stack_reference& r) noexcept { if (L == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) { ref = LUA_NOREF; return; } if (r.get_type() == type::lua_nil) { ref = LUA_REFNIL; return; } if (L != r.lua_state() && !detail::xmovable(L, r.lua_state())) { return; } r.push(L); ref = luaL_ref(L, LUA_REGISTRYINDEX); } stateless_reference(lua_State* L, int index = -1) noexcept { // use L to stick with that state's execution stack #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); #endif // make sure stack doesn't overflow lua_pushvalue(L, index); ref = luaL_ref(L, LUA_REGISTRYINDEX); } stateless_reference(lua_State* L, ref_index index) noexcept { lua_rawgeti(L, LUA_REGISTRYINDEX, index.index); ref = luaL_ref(L, LUA_REGISTRYINDEX); } stateless_reference(lua_State*, lua_nil_t) noexcept { } ~stateless_reference() noexcept = default; stateless_reference(const stateless_reference& o) noexcept = delete; stateless_reference& operator=(const stateless_reference& r) noexcept = delete; stateless_reference(stateless_reference&& o) noexcept : ref(o.ref) { o.ref = LUA_NOREF; } stateless_reference& operator=(stateless_reference&& o) noexcept { ref = o.ref; o.ref = LUA_NOREF; return *this; } int push(lua_State* L) const noexcept { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); #endif // make sure stack doesn't overflow lua_rawgeti(L, LUA_REGISTRYINDEX, ref); return 1; } void pop(lua_State* L, int n = 1) const noexcept { lua_pop(L, n); } int registry_index() const noexcept { return ref; } bool valid(lua_State*) const noexcept { return !(ref == LUA_NOREF || ref == LUA_REFNIL); } const void* pointer(lua_State* L) const noexcept { int si = push(L); const void* vp = lua_topointer(L, -si); lua_pop(L, si); return vp; } type get_type(lua_State* L) const noexcept { int p = push(L); int result = lua_type(L, -1); pop(L, p); return static_cast<type>(result); } void abandon(lua_State* = nullptr) { ref = LUA_NOREF; } void deref(lua_State* L) const noexcept { luaL_unref(L, LUA_REGISTRYINDEX, ref); } }; template <bool main_only = false> class basic_reference : public stateless_reference { private: template <bool o_main_only> friend class basic_reference; lua_State* luastate = nullptr; // non-owning template <bool r_main_only> void copy_assign(const basic_reference<r_main_only>& r) { if (valid()) { deref(); } if (r.ref == LUA_REFNIL) { luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); ref = LUA_REFNIL; return; } if (r.ref == LUA_NOREF) { luastate = r.luastate; ref = LUA_NOREF; return; } if (detail::xmovable(lua_state(), r.lua_state())) { r.push(lua_state()); ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); return; } luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); ref = r.copy(); } template <bool r_main_only> void move_assign(basic_reference<r_main_only>&& r) { if (valid()) { deref(); } if (r.ref == LUA_REFNIL) { luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); ref = LUA_REFNIL; return; } if (r.ref == LUA_NOREF) { luastate = r.luastate; ref = LUA_NOREF; return; } if (detail::xmovable(lua_state(), r.lua_state())) { r.push(lua_state()); ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); return; } luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); ref = r.ref; r.ref = LUA_NOREF; r.luastate = nullptr; } protected: basic_reference(lua_State* L, detail::global_tag) noexcept : basic_reference(detail::pick_main_thread<main_only>(L, L), detail::global_, detail::global_) { } basic_reference(lua_State* L, detail::global_tag, detail::global_tag) noexcept : stateless_reference(L, detail::global_), luastate(L) { } basic_reference(lua_State* oL, const basic_reference<!main_only>& o) noexcept : stateless_reference(oL, o), luastate(oL) { } void deref() const noexcept { return stateless_reference::deref(lua_state()); } int copy() const noexcept { return copy(lua_state()); } int copy(lua_State* L) const noexcept { return stateless_reference::copy(L); } public: basic_reference() noexcept = default; basic_reference(lua_nil_t) noexcept : basic_reference() { } basic_reference(const stack_reference& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) { } basic_reference(stack_reference&& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) { } template <bool r_main_only> basic_reference(lua_State* L, const basic_reference<r_main_only>& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) { if (r.ref == LUA_REFNIL) { ref = LUA_REFNIL; return; } if (r.ref == LUA_NOREF || lua_state() == nullptr) { ref = LUA_NOREF; return; } if (detail::xmovable(lua_state(), r.lua_state())) { r.push(lua_state()); ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); return; } ref = r.copy(); } template <bool r_main_only> basic_reference(lua_State* L, basic_reference<r_main_only>&& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) { if (r.ref == LUA_REFNIL) { ref = LUA_REFNIL; return; } if (r.ref == LUA_NOREF || lua_state() == nullptr) { ref = LUA_NOREF; return; } if (detail::xmovable(lua_state(), r.lua_state())) { r.push(lua_state()); ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); return; } ref = r.ref; r.ref = LUA_NOREF; r.luastate = nullptr; } basic_reference(lua_State* L, const stack_reference& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) { if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) { ref = LUA_NOREF; return; } if (r.get_type() == type::lua_nil) { ref = LUA_REFNIL; return; } if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) { return; } r.push(lua_state()); ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); } basic_reference(lua_State* L, int index = -1) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) { // use L to stick with that state's execution stack #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); #endif // make sure stack doesn't overflow lua_pushvalue(L, index); ref = luaL_ref(L, LUA_REGISTRYINDEX); } basic_reference(lua_State* L, ref_index index) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) { lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index); ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); } basic_reference(lua_State* L, lua_nil_t) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) { } ~basic_reference() noexcept { if (lua_state() == nullptr || ref == LUA_NOREF) return; deref(); } basic_reference(const basic_reference& o) noexcept : stateless_reference(o.copy()), luastate(o.lua_state()) { } basic_reference(basic_reference&& o) noexcept : stateless_reference(std::move(o)), luastate(o.lua_state()) { o.luastate = nullptr; } basic_reference(const basic_reference<!main_only>& o) noexcept : basic_reference(detail::pick_main_thread < main_only && !main_only > (o.lua_state(), o.lua_state()), o) { } basic_reference(basic_reference<!main_only>&& o) noexcept : stateless_reference(std::move(o)), luastate(detail::pick_main_thread<main_only && !main_only>(o.lua_state(), o.lua_state())) { o.luastate = nullptr; o.ref = LUA_NOREF; } basic_reference& operator=(basic_reference&& r) noexcept { move_assign(std::move(r)); return *this; } basic_reference& operator=(const basic_reference& r) noexcept { copy_assign(r); return *this; } basic_reference& operator=(basic_reference<!main_only>&& r) noexcept { move_assign(std::move(r)); return *this; } basic_reference& operator=(const basic_reference<!main_only>& r) noexcept { copy_assign(r); return *this; } basic_reference& operator=(const lua_nil_t&) noexcept { if (valid()) { deref(); } luastate = nullptr; ref = LUA_NOREF; return *this; } template <typename Super> basic_reference& operator=(proxy_base<Super>&& r); template <typename Super> basic_reference& operator=(const proxy_base<Super>& r); int push() const noexcept { return push(lua_state()); } int push(lua_State* L) const noexcept { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value"); #endif // make sure stack doesn't overflow if (lua_state() == nullptr) { lua_pushnil(L); return 1; } lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref); if (L != lua_state()) { lua_xmove(lua_state(), L, 1); } return 1; } void pop() const noexcept { pop(lua_state()); } void pop(lua_State* L, int n = 1) const noexcept { stateless_reference::pop(L, n); } int registry_index() const noexcept { return stateless_reference::registry_index(); } bool valid() const noexcept { return stateless_reference::valid(lua_state()); } const void* pointer() const noexcept { return stateless_reference::pointer(lua_state()); } explicit operator bool() const noexcept { return valid(); } type get_type() const noexcept { return stateless_reference::get_type(lua_state()); } lua_State* lua_state() const noexcept { return luastate; } }; template <bool lb, bool rb> inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r) { auto ppl = stack::push_pop(l); auto ppr = stack::push_pop(r); return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1; } template <bool lb, bool rb> inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r) { return !operator==(l, r); } template <bool lb> inline bool operator==(const basic_reference<lb>& l, const stack_reference& r) { auto ppl = stack::push_pop(l); return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1; } template <bool lb> inline bool operator!=(const basic_reference<lb>& l, const stack_reference& r) { return !operator==(l, r); } template <bool rb> inline bool operator==(const stack_reference& l, const basic_reference<rb>& r) { auto ppr = stack::push_pop(r); return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1; } template <bool rb> inline bool operator!=(const stack_reference& l, const basic_reference<rb>& r) { return !operator==(l, r); } template <bool lb> inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&) { return !lhs.valid(); } template <bool rb> inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs) { return !rhs.valid(); } template <bool lb> inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&) { return lhs.valid(); } template <bool rb> inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs) { return rhs.valid(); } struct reference_equals : public stack_reference_equals { template <bool rb> bool operator()(const lua_nil_t& lhs, const basic_reference<rb>& rhs) const { return lhs == rhs; } template <bool lb> bool operator()(const basic_reference<lb>& lhs, const lua_nil_t& rhs) const { return lhs == rhs; } template <bool lb, bool rb> bool operator()(const basic_reference<lb>& lhs, const basic_reference<rb>& rhs) const { return lhs == rhs; } template <bool lb> bool operator()(const basic_reference<lb>& lhs, const stack_reference& rhs) const { return lhs == rhs; } template <bool rb> bool operator()(const stack_reference& lhs, const basic_reference<rb>& rhs) const { return lhs == rhs; } }; struct reference_hash : public stack_reference_hash { typedef reference argument_type; typedef std::size_t result_type; template <bool lb> result_type operator()(const basic_reference<lb>& lhs) const { std::hash<const void*> h; return h(lhs.pointer()); } }; } // namespace sol // end of sol/reference.hpp // beginning of sol/tie.hpp namespace sol { namespace detail { template <typename T> struct is_speshul : std::false_type {}; } // namespace detail template <typename T> struct tie_size : std::tuple_size<T> {}; template <typename T> struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {}; template <typename... Tn> struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> { private: typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t; template <typename T> void set(std::false_type, T&& target) { std::get<0>(*this) = std::forward<T>(target); } template <typename T> void set(std::true_type, T&& target) { typedef tie_size<meta::unqualified_t<T>> value_size; typedef tie_size<std::tuple<Tn...>> tie_size; typedef meta::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size; typedef std::make_index_sequence<indices_size::value> indices; set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target)); } template <std::size_t... I, typename T> void set_extra(std::true_type, std::index_sequence<I...>, T&& target) { using std::get; (void)detail::swallow{0, (get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0}; } template <std::size_t... I, typename T> void set_extra(std::false_type, std::index_sequence<I...>, T&& target) { using std::get; (void)detail::swallow{0, (get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0}; } public: using base_t::base_t; template <typename T> tie_t& operator=(T&& value) { typedef is_tieable<meta::unqualified_t<T>> tieable; set(tieable(), std::forward<T>(value)); return *this; } }; template <typename... Tn> struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> {}; namespace adl_barrier_detail { template <typename... Tn> inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) { return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...); } } // namespace adl_barrier_detail using namespace adl_barrier_detail; } // namespace sol // end of sol/tie.hpp // beginning of sol/stack_guard.hpp namespace sol { namespace detail { inline void stack_fail(int, int) { #if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) throw error(detail::direct_error, "imbalanced stack after operation finish"); #else // Lol, what do you want, an error printout? :3c // There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so // hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard. #endif // No Exceptions } } // namespace detail struct stack_guard { lua_State* L; int top; std::function<void(int, int)> on_mismatch; stack_guard(lua_State* L) : stack_guard(L, lua_gettop(L)) { } stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) : L(L), top(top), on_mismatch(std::move(fx)) { } bool check_stack(int modification = 0) const { int bottom = lua_gettop(L) + modification; if (top == bottom) { return true; } on_mismatch(top, bottom); return false; } ~stack_guard() { check_stack(); } }; } // namespace sol // end of sol/stack_guard.hpp #include <bitset> #include <forward_list> #include <algorithm> #include <sstream> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #endif // C++17 namespace sol { namespace detail { struct with_function_tag {}; struct as_reference_tag {}; template <typename T> struct as_pointer_tag {}; template <typename T> struct as_value_tag {}; template <typename T> struct as_table_tag {}; using lua_reg_table = luaL_Reg[64]; using unique_destructor = void (*)(void*); using unique_tag = detail::inheritance_unique_cast_function; inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) { // this handels arbitrary alignments... // make this into a power-of-2-only? // actually can't: this is a C++14-compatible framework, // power of 2 alignment is C++17 std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr); std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment); std::uintptr_t padding = (alignment - offby) % alignment; required_space += size + padding; if (space < required_space) { return nullptr; } ptr = static_cast<void*>(static_cast<char*>(ptr) + padding); space -= padding; return ptr; } inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) { std::size_t required_space = 0; return align(alignment, size, ptr, space, required_space); } inline void align_one(std::size_t a, std::size_t s, void*& target_alignment) { std::size_t space = (std::numeric_limits<std::size_t>::max)(); target_alignment = align(a, s, target_alignment, space); target_alignment = static_cast<void*>(static_cast<char*>(target_alignment) + s); } template <typename... Args> std::size_t aligned_space_for(void* alignment = nullptr) { char* start = static_cast<char*>(alignment); (void)detail::swallow{ int{}, (align_one(std::alignment_of_v<Args>, sizeof(Args), alignment), int{})... }; return static_cast<char*>(alignment) - start; } inline void* align_usertype_pointer(void* ptr) { using use_align = std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<void*>::value > 1) #endif >; if (!use_align::value) { return ptr; } std::size_t space = (std::numeric_limits<std::size_t>::max)(); return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space); } template <bool pre_aligned = false, bool pre_shifted = false> void* align_usertype_unique_destructor(void* ptr) { using use_align = std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<unique_destructor>::value > 1) #endif >; if (!pre_aligned) { ptr = align_usertype_pointer(ptr); } if (!pre_shifted) { ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*)); } if (!use_align::value) { return static_cast<void*>(static_cast<void**>(ptr) + 1); } std::size_t space = (std::numeric_limits<std::size_t>::max)(); return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space); } template <bool pre_aligned = false, bool pre_shifted = false> void* align_usertype_unique_tag(void* ptr) { using use_align = std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<unique_tag>::value > 1) #endif >; if (!pre_aligned) { ptr = align_usertype_unique_destructor(ptr); } if (!pre_shifted) { ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor)); } if (!use_align::value) { return ptr; } std::size_t space = (std::numeric_limits<std::size_t>::max)(); return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space); } template <typename T, bool pre_aligned = false, bool pre_shifted = false> void* align_usertype_unique(void* ptr) { typedef std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<T>::value > 1) #endif > use_align; if (!pre_aligned) { ptr = align_usertype_unique_tag(ptr); } if (!pre_shifted) { ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag)); } if (!use_align::value) { return ptr; } std::size_t space = (std::numeric_limits<std::size_t>::max)(); return align(std::alignment_of<T>::value, sizeof(T), ptr, space); } template <typename T> void* align_user(void* ptr) { typedef std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<T>::value > 1) #endif > use_align; if (!use_align::value) { return ptr; } std::size_t space = (std::numeric_limits<std::size_t>::max)(); return align(std::alignment_of<T>::value, sizeof(T), ptr, space); } template <typename T> T** usertype_allocate_pointer(lua_State* L) { typedef std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<T*>::value > 1) #endif > use_align; if (!use_align::value) { T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*))); return pointerpointer; } static const std::size_t initial_size = aligned_space_for<T*>(nullptr); static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1)); std::size_t allocated_size = initial_size; void* unadjusted = lua_newuserdata(L, initial_size); void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size); if (adjusted == nullptr) { lua_pop(L, 1); // what kind of absolute garbage trash allocator are we dealing with? // whatever, add some padding in the case of MAXIMAL alignment waste... allocated_size = misaligned_size; unadjusted = lua_newuserdata(L, allocated_size); adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size); if (adjusted == nullptr) { // trash allocator can burn in hell lua_pop(L, 1); // luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a // worse job than malloc/realloc and should go read some books, yeah?"); luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data()); } } return static_cast<T**>(adjusted); } inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align, std::size_t value_size, std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) { void* adjusted = lua_newuserdata(L, allocated_size); pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size); if (pointer_adjusted == nullptr) { lua_pop(L, 1); return false; } // subtract size of what we're going to allocate there allocated_size -= ptr_size; adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size); data_adjusted = align(value_align, value_size, adjusted, allocated_size); if (data_adjusted == nullptr) { lua_pop(L, 1); return false; } return true; } inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align, std::size_t real_size, std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) { void* adjusted = lua_newuserdata(L, allocated_size); pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size); if (pointer_adjusted == nullptr) { lua_pop(L, 1); return false; } allocated_size -= ptr_size; adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size); dx_adjusted = align(std::alignment_of_v<unique_destructor>, sizeof(unique_destructor), adjusted, allocated_size); if (dx_adjusted == nullptr) { lua_pop(L, 1); return false; } allocated_size -= sizeof(unique_destructor); adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor)); id_adjusted = align(std::alignment_of_v<unique_tag>, sizeof(unique_tag), adjusted, allocated_size); if (id_adjusted == nullptr) { lua_pop(L, 1); return false; } allocated_size -= sizeof(unique_tag); adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag)); data_adjusted = align(real_align, real_size, adjusted, allocated_size); if (data_adjusted == nullptr) { lua_pop(L, 1); return false; } return true; } template <typename T> T* usertype_allocate(lua_State* L) { typedef std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1) #endif > use_align; if (!use_align::value) { T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T))); T*& pointerreference = *pointerpointer; T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1); pointerreference = allocationtarget; return allocationtarget; } /* the assumption is that `lua_newuserdata` -- unless someone passes a specific lua_Alloc that gives us bogus, un-aligned pointers -- uses malloc, which tends to hand out more or less aligned pointers to memory (most of the time, anyhow) but it's not guaranteed, so we have to do a post-adjustment check and increase padding we do this preliminarily with compile-time stuff, to see if we strike lucky with the allocator and alignment values otherwise, we have to re-allocate the userdata and over-allocate some space for additional padding because compilers are optimized for aligned reads/writes (and clang will barf UBsan errors on us for not being aligned) */ static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr); static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1)); void* pointer_adjusted; void* data_adjusted; bool result = attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), initial_size, pointer_adjusted, data_adjusted); if (!result) { // we're likely to get something that fails to perform the proper allocation a second time, // so we use the suggested_new_size bump to help us out here pointer_adjusted = nullptr; data_adjusted = nullptr; result = attempt_alloc( L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), misaligned_size, pointer_adjusted, data_adjusted); if (!result) { if (pointer_adjusted == nullptr) { luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str()); } else { luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str()); } return nullptr; } } T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted); T*& pointerreference = *pointerpointer; T* allocationtarget = reinterpret_cast<T*>(data_adjusted); pointerreference = allocationtarget; return allocationtarget; } template <typename T, typename Real> Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) { typedef std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1 || std::alignment_of<Real>::value > 1) #endif > use_align; if (!use_align::value) { pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real))); dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1)); id = static_cast<unique_tag*>(static_cast<void*>(dx + 1)); Real* mem = static_cast<Real*>(static_cast<void*>(id + 1)); return mem; } static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr); static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1)); void* pointer_adjusted; void* dx_adjusted; void* id_adjusted; void* data_adjusted; bool result = attempt_alloc_unique(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<Real>, sizeof(Real), initial_size, pointer_adjusted, dx_adjusted, id_adjusted, data_adjusted); if (!result) { // we're likely to get something that fails to perform the proper allocation a second time, // so we use the suggested_new_size bump to help us out here pointer_adjusted = nullptr; dx_adjusted = nullptr; id_adjusted = nullptr; data_adjusted = nullptr; result = attempt_alloc_unique(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<Real>, sizeof(Real), misaligned_size, pointer_adjusted, dx_adjusted, id_adjusted, data_adjusted); if (!result) { if (pointer_adjusted == nullptr) { luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str()); } else if (dx_adjusted == nullptr) { luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str()); } else { luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str()); } return nullptr; } } pref = static_cast<T**>(pointer_adjusted); dx = static_cast<detail::unique_destructor*>(dx_adjusted); id = static_cast<unique_tag*>(id_adjusted); Real* mem = static_cast<Real*>(data_adjusted); return mem; } template <typename T> T* user_allocate(lua_State* L) { typedef std::integral_constant<bool, #if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT false #else (std::alignment_of<T>::value > 1) #endif > use_align; if (!use_align::value) { T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T))); return pointer; } static const std::size_t initial_size = aligned_space_for<T>(nullptr); static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1)); std::size_t allocated_size = initial_size; void* unadjusted = lua_newuserdata(L, allocated_size); void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size); if (adjusted == nullptr) { lua_pop(L, 1); // try again, add extra space for alignment padding allocated_size = misaligned_size; unadjusted = lua_newuserdata(L, allocated_size); adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size); if (adjusted == nullptr) { lua_pop(L, 1); luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data()); } } return static_cast<T*>(adjusted); } template <typename T> int usertype_alloc_destruct(lua_State* L) { void* memory = lua_touserdata(L, 1); memory = align_usertype_pointer(memory); T** pdata = static_cast<T**>(memory); T* data = *pdata; std::allocator<T> alloc{}; std::allocator_traits<std::allocator<T>>::destroy(alloc, data); return 0; } template <typename T> int unique_destruct(lua_State* L) { void* memory = lua_touserdata(L, 1); memory = align_usertype_unique_destructor(memory); unique_destructor& dx = *static_cast<unique_destructor*>(memory); memory = align_usertype_unique_tag<true>(memory); (dx)(memory); return 0; } template <typename T> int user_alloc_destruct(lua_State* L) { void* memory = lua_touserdata(L, 1); memory = align_user<T>(memory); T* data = static_cast<T*>(memory); std::allocator<T> alloc; std::allocator_traits<std::allocator<T>>::destroy(alloc, data); return 0; } template <typename T, typename Real> void usertype_unique_alloc_destroy(void* memory) { memory = align_usertype_unique<Real, true>(memory); Real* target = static_cast<Real*>(memory); std::allocator<Real> alloc; std::allocator_traits<std::allocator<Real>>::destroy(alloc, target); } template <typename T> int cannot_destruct(lua_State* L) { return luaL_error(L, "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= " "delete' and thusly this type is being destroyed without properly destructing, invoking undefined " "behavior: please bind a usertype and specify a custom destructor to define the behavior properly", detail::demangle<T>().data()); } template <typename T> void reserve(T&, std::size_t) { } template <typename T, typename Al> void reserve(std::vector<T, Al>& vec, std::size_t hint) { vec.reserve(hint); } template <typename T, typename Tr, typename Al> void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) { str.reserve(hint); } inline bool property_always_true(meta_function) { return true; } struct properties_enrollment_allowed { int& times_through; std::bitset<64>& properties; automagic_enrollments& enrollments; properties_enrollment_allowed(int& times, std::bitset<64>& props, automagic_enrollments& enroll) : times_through(times), properties(props), enrollments(enroll) { } bool operator()(meta_function mf) const { bool p = properties[static_cast<int>(mf)]; if (times_through > 0) { return p; } switch (mf) { case meta_function::length: return enrollments.length_operator && !p; case meta_function::pairs: return enrollments.pairs_operator && !p; case meta_function::call: return enrollments.call_operator && !p; case meta_function::less_than: return enrollments.less_than_operator && !p; case meta_function::less_than_or_equal_to: return enrollments.less_than_or_equal_to_operator && !p; case meta_function::equal_to: return enrollments.equal_to_operator && !p; default: break; } return !p; } }; struct indexed_insert { lua_reg_table& l; int& index; indexed_insert(lua_reg_table& cont, int& idx) : l(cont), index(idx) { } void operator()(meta_function mf, lua_CFunction f) { l[index] = luaL_Reg{ to_string(mf).c_str(), f }; ++index; } }; } // namespace detail namespace stack { template <typename T, bool global = false, bool raw = false, typename = void> struct field_getter; template <typename T, typename P, bool global = false, bool raw = false, typename = void> struct probe_field_getter; template <typename T, bool global = false, bool raw = false, typename = void> struct field_setter; template <typename T, typename = void> struct unqualified_getter; template <typename T, typename = void> struct qualified_getter; template <typename T, typename = void> struct qualified_interop_getter; template <typename T, typename = void> struct unqualified_interop_getter; template <typename T, typename = void> struct popper; template <typename T, typename = void> struct unqualified_pusher; template <typename T, type t, typename = void> struct unqualified_checker; template <typename T, type t, typename = void> struct qualified_checker; template <typename T, typename = void> struct unqualified_check_getter; template <typename T, typename = void> struct qualified_check_getter; struct probe { bool success; int levels; probe(bool s, int l) : success(s), levels(l) { } operator bool() const { return success; }; }; struct record { int last; int used; record() : last(), used() { } void use(int count) { last = count; used += count; } }; } // namespace stack namespace meta { namespace meta_detail { template <typename T> using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>())); template <typename T> using adl_sol_lua_interop_get_test_t = decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>())); template <typename T> using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>())); template <typename T> using adl_sol_lua_interop_check_test_t = decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, no_panic, std::declval<stack::record&>())); template <typename T> using adl_sol_lua_check_get_test_t = decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>())); template <typename... Args> using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...)); template <typename T, typename... Args> using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...)); template <typename T> inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>; template <typename T> inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>; template <typename T> inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>; template <typename T> inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>; template <typename T> inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>; template <typename... Args> inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>; template <typename T, typename... Args> inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>; }} // namespace meta::meta_detail namespace stack { namespace stack_detail { constexpr const char* not_enough_stack_space = "not enough space left on Lua stack"; constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number"; constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number"; constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string"; constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function"; constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata"; constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees"; constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment"; template <typename T> struct strip { typedef T type; }; template <typename T> struct strip<std::reference_wrapper<T>> { typedef T& type; }; template <typename T> struct strip<user<T>> { typedef T& type; }; template <typename T> struct strip<non_null<T>> { typedef T type; }; template <typename T> using strip_t = typename strip<T>::type; template <typename C> static int get_size_hint(C& c) { return static_cast<int>(c.size()); } template <typename V, typename Al> static int get_size_hint(const std::forward_list<V, Al>&) { // forward_list makes me sad return static_cast<int>(32); } template <typename T> decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) { using Tu = meta::unqualified_t<T>; if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) { return sol_lua_get(types<Tu>(), L, index, tracking); } else { unqualified_getter<Tu> g{}; (void)g; return g.get(L, index, tracking); } } template <typename T> decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) { if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) { return sol_lua_get(types<T>(), L, index, tracking); } else { qualified_getter<T> g{}; (void)g; return g.get(L, index, tracking); } } template <typename T> decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) { using Tu = meta::unqualified_t<T>; if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) { return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking); } else { (void)L; (void)index; (void)unadjusted_pointer; (void)tracking; using Ti = stack_detail::strip_t<Tu>; return std::pair<bool, Ti*>{ false, nullptr }; } } template <typename T> decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) { if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) { return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking); } else { return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking); } } template <typename T, typename Handler> bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) { using Tu = meta::unqualified_t<T>; if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) { return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking); } else { (void)L; (void)index; (void)index_type; (void)handler; (void)tracking; return false; } } template <typename T, typename Handler> bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) { if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) { return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking); } else { return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking); } } using undefined_method_func = void (*)(stack_reference); struct undefined_metatable { lua_State* L; const char* key; undefined_method_func on_new_table; undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) { } void operator()() const { if (luaL_newmetatable(L, key) == 1) { on_new_table(stack_reference(L, -1)); } lua_setmetatable(L, -2); } }; } // namespace stack_detail inline bool maybe_indexable(lua_State* L, int index = -1) { type t = type_of(L, index); return t == type::userdata || t == type::table; } inline int top(lua_State* L) { return lua_gettop(L); } inline bool is_main_thread(lua_State* L) { int ismainthread = lua_pushthread(L); lua_pop(L, 1); return ismainthread == 1; } inline void coroutine_create_guard(lua_State* L) { if (is_main_thread(L)) { return; } int stacksize = lua_gettop(L); if (stacksize < 1) { return; } if (type_of(L, 1) != type::function) { return; } // well now we're screwed... // we can clean the stack and pray it doesn't destroy anything? lua_pop(L, stacksize); } inline void clear(lua_State* L, int table_index) { lua_pushnil(L); while (lua_next(L, table_index) != 0) { // remove value lua_pop(L, 1); // duplicate key to protect form rawset lua_pushvalue(L, -1); // push new value lua_pushnil(L); // table_index%[key] = nil lua_rawset(L, table_index); } } inline void clear(reference& r) { auto pp = push_pop<false>(r); int stack_index = pp.index_of(r); clear(r.lua_state(), stack_index); } inline void clear(stack_reference& r) { clear(r.lua_state(), r.stack_index()); } template <typename T, typename... Args> int push(lua_State* L, T&& t, Args&&... args) { using Tu = meta::unqualified_t<T>; if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) { return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...); } else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) { return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...); } else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) { return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...); } else { unqualified_pusher<Tu> p{}; (void)p; return p.push(L, std::forward<T>(t), std::forward<Args>(args)...); } } // overload allows to use a pusher of a specific type, but pass in any kind of args template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>> int push(lua_State* L, Arg&& arg, Args&&... args) { using Tu = meta::unqualified_t<T>; if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) { return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...); } else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) { return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...); } else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...>) { return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...); } else { unqualified_pusher<Tu> p{}; (void)p; return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...); } } namespace stack_detail { template <typename T, typename Arg, typename... Args> int push_reference(lua_State* L, Arg&& arg, Args&&... args) { using use_reference_tag = meta::all<std::is_lvalue_reference<T>, meta::neg<std::is_const<T>>, meta::neg<is_lua_primitive<meta::unqualified_t<T>>>, meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>; using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>; return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...); } } // namespace stack_detail template <typename T, typename... Args> int push_reference(lua_State* L, T&& t, Args&&... args) { return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...); } template <typename T, typename Arg, typename... Args> int push_reference(lua_State* L, Arg&& arg, Args&&... args) { return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...); } inline int multi_push(lua_State*) { // do nothing return 0; } template <typename T, typename... Args> int multi_push(lua_State* L, T&& t, Args&&... args) { int pushcount = push(L, std::forward<T>(t)); void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... }); return pushcount; } inline int multi_push_reference(lua_State*) { // do nothing return 0; } template <typename T, typename... Args> int multi_push_reference(lua_State* L, T&& t, Args&&... args) { int pushcount = push_reference(L, std::forward<T>(t)); void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... }); return pushcount; } template <typename T, typename Handler> bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) { using Tu = meta::unqualified_t<T>; if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) { return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking); } else { unqualified_checker<Tu, lua_type_of_v<Tu>> c; // VC++ has a bad warning here: shut it up (void)c; return c.check(L, index, std::forward<Handler>(handler), tracking); } } template <typename T, typename Handler> bool unqualified_check(lua_State* L, int index, Handler&& handler) { record tracking{}; return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking); } template <typename T> bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { auto handler = no_panic; return unqualified_check<T>(L, index, handler); } template <typename T, typename Handler> bool check(lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) { return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking); } else { using Tu = meta::unqualified_t<T>; qualified_checker<T, lua_type_of_v<Tu>> c; // VC++ has a bad warning here: shut it up (void)c; return c.check(L, index, std::forward<Handler>(handler), tracking); } } template <typename T, typename Handler> bool check(lua_State* L, int index, Handler&& handler) { record tracking{}; return check<T>(L, index, std::forward<Handler>(handler), tracking); } template <typename T> bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { auto handler = no_panic; return check<T>(L, index, handler); } template <typename T, typename Handler> bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) { using Tu = meta::unqualified_t<T>; using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>; return check<detail_t>(L, index, std::forward<Handler>(handler), tracking); } template <typename T, typename Handler> bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) { using Tu = meta::unqualified_t<T>; using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>; return check<detail_t>(L, index, std::forward<Handler>(handler), tracking); } template <typename T, typename Handler> bool check_usertype(lua_State* L, int index, Handler&& handler) { record tracking{}; return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); } template <typename T> bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { auto handler = no_panic; return check_usertype<T>(L, index, handler); } template <typename T, typename Handler> decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) { using Tu = meta::unqualified_t<T>; if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) { return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking); } else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) { return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking); } else { unqualified_check_getter<Tu> cg{}; (void)cg; return cg.get(L, index, std::forward<Handler>(handler), tracking); } } template <typename T, typename Handler> decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) { record tracking{}; return unqualified_check_get<T>(L, index, handler, tracking); } template <typename T> decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { auto handler = no_panic; return unqualified_check_get<T>(L, index, handler); } template <typename T, typename Handler> decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) { return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking); } else { qualified_check_getter<T> cg{}; (void)cg; return cg.get(L, index, std::forward<Handler>(handler), tracking); } } template <typename T, typename Handler> decltype(auto) check_get(lua_State* L, int index, Handler&& handler) { record tracking{}; return check_get<T>(L, index, handler, tracking); } template <typename T> decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { auto handler = no_panic; return check_get<T>(L, index, handler); } namespace stack_detail { template <typename Handler> bool check_types(lua_State*, int, Handler&&, record&) { return true; } template <typename T, typename... Args, typename Handler> bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) { if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking)) return false; return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking); } template <typename... Args, typename Handler> bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) { return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking); } } // namespace stack_detail template <typename... Args, typename Handler> bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking); } template <typename... Args, typename Handler> bool multi_check(lua_State* L, int index, Handler&& handler) { record tracking{}; return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking); } template <typename... Args> bool multi_check(lua_State* L, int index) { return multi_check<Args...>(L, index); } template <typename T> auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) { #if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER static constexpr bool is_op = meta::is_specialization_of_v<T, optional> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES || meta::is_specialization_of_v<T, std::optional> #endif ; if constexpr (is_op) { return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); } else { if (is_lua_reference<T>::value) { return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); } auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking); return *std::move(op); } #else return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); #endif } template <typename T> decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { record tracking{}; return unqualified_get<T>(L, index, tracking); } template <typename T> auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) { #if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER static constexpr bool is_op = meta::is_specialization_of_v<T, optional> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES || meta::is_specialization_of_v<T, std::optional> #endif ; if constexpr (is_op) { return stack_detail::unchecked_get<T>(L, index, tracking); } else { if (is_lua_reference<T>::value) { return stack_detail::unchecked_get<T>(L, index, tracking); } auto op = check_get<T>(L, index, type_panic_c_str, tracking); return *std::move(op); } #else return stack_detail::unchecked_get<T>(L, index, tracking); #endif } template <typename T> decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { record tracking{}; return get<T>(L, index, tracking); } template <typename T> decltype(auto) get_usertype(lua_State* L, int index, record& tracking) { using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>; return get<UT>(L, index, tracking); } template <typename T> decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { record tracking{}; return get_usertype<T>(L, index, tracking); } template <typename T> decltype(auto) pop(lua_State* L) { return popper<meta::unqualified_t<T>>{}.pop(L); } template <bool global = false, bool raw = false, typename Key> void get_field(lua_State* L, Key&& key) { field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key)); } template <bool global = false, bool raw = false, typename Key> void get_field(lua_State* L, Key&& key, int tableindex) { field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex); } template <bool global = false, typename Key> void raw_get_field(lua_State* L, Key&& key) { get_field<global, true>(L, std::forward<Key>(key)); } template <bool global = false, typename Key> void raw_get_field(lua_State* L, Key&& key, int tableindex) { get_field<global, true>(L, std::forward<Key>(key), tableindex); } template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key> probe probe_get_field(lua_State* L, Key&& key) { return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key)); } template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key> probe probe_get_field(lua_State* L, Key&& key, int tableindex) { return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key), tableindex); } template <bool global = false, typename C = detail::non_lua_nil_t, typename Key> probe probe_raw_get_field(lua_State* L, Key&& key) { return probe_get_field<global, true, C>(L, std::forward<Key>(key)); } template <bool global = false, typename C = detail::non_lua_nil_t, typename Key> probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) { return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex); } template <bool global = false, bool raw = false, typename Key, typename Value> void set_field(lua_State* L, Key&& key, Value&& value) { field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value)); } template <bool global = false, bool raw = false, typename Key, typename Value> void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex); } template <bool global = false, typename Key, typename Value> void raw_set_field(lua_State* L, Key&& key, Value&& value) { set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value)); } template <bool global = false, typename Key, typename Value> void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex); } template <typename T, typename F> void modify_unique_usertype_as(const stack_reference& obj, F&& f) { using u_traits = unique_usertype_traits<T>; void* raw = lua_touserdata(obj.lua_state(), obj.stack_index()); void* ptr_memory = detail::align_usertype_pointer(raw); void* uu_memory = detail::align_usertype_unique<T>(raw); T& uu = *static_cast<T*>(uu_memory); f(uu); *static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu)); } template <typename F> void modify_unique_usertype(const stack_reference& obj, F&& f) { using bt = meta::bind_traits<meta::unqualified_t<F>>; using T = typename bt::template arg_at<0>; using Tu = meta::unqualified_t<T>; modify_unique_usertype_as<Tu>(obj, std::forward<F>(f)); } } // namespace stack namespace detail { template <typename T> lua_CFunction make_destructor(std::true_type) { if constexpr (is_unique_usertype_v<T>) { return &unique_destruct<T>; } else if constexpr (!std::is_pointer_v<T>) { return &usertype_alloc_destruct<T>; } else { return &cannot_destruct<T>; } } template <typename T> lua_CFunction make_destructor(std::false_type) { return &cannot_destruct<T>; } template <typename T> lua_CFunction make_destructor() { return make_destructor<T>(std::is_destructible<T>()); } struct no_comp { template <typename A, typename B> bool operator()(A&&, B&&) const { return false; } }; template <typename T> int is_check(lua_State* L) { return stack::push(L, stack::check<T>(L, 1, &no_panic)); } template <typename T> int member_default_to_string(std::true_type, lua_State* L) { decltype(auto) ts = stack::get<T>(L, 1).to_string(); return stack::push(L, std::forward<decltype(ts)>(ts)); } template <typename T> int member_default_to_string(std::false_type, lua_State* L) { return luaL_error(L, "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member " "function, or operator<<(ostream&, ...) present", detail::demangle<T>().data()); } template <typename T> int adl_default_to_string(std::true_type, lua_State* L) { using namespace std; decltype(auto) ts = to_string(stack::get<T>(L, 1)); return stack::push(L, std::forward<decltype(ts)>(ts)); } template <typename T> int adl_default_to_string(std::false_type, lua_State* L) { return member_default_to_string<T>(meta::supports_to_string_member<T>(), L); } template <typename T> int oss_default_to_string(std::true_type, lua_State* L) { std::ostringstream oss; oss << stack::unqualified_get<T>(L, 1); return stack::push(L, oss.str()); } template <typename T> int oss_default_to_string(std::false_type, lua_State* L) { return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L); } template <typename T> int default_to_string(lua_State* L) { return oss_default_to_string<T>(meta::supports_ostream_op<T>(), L); } template <typename T> int default_size(lua_State* L) { decltype(auto) self = stack::unqualified_get<T>(L, 1); return stack::push(L, self.size()); } template <typename T, typename Op> int comparsion_operator_wrap(lua_State* L) { if constexpr (std::is_void_v<T>) { return stack::push(L, false); } else { auto maybel = stack::unqualified_check_get<T>(L, 1); if (!maybel) { return stack::push(L, false); } auto mayber = stack::unqualified_check_get<T>(L, 2); if (!mayber) { return stack::push(L, false); } decltype(auto) l = *maybel; decltype(auto) r = *mayber; if constexpr (std::is_same_v<no_comp, Op>) { std::equal_to<> op; return stack::push(L, op(detail::ptr(l), detail::ptr(r))); } else { if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack || std::is_same_v<std::less_equal<>, Op> // || std::is_same_v<std::less_equal<>, Op>) { // if (detail::ptr(l) == detail::ptr(r)) { return stack::push(L, true); } } Op op; return stack::push(L, op(detail::deref(l), detail::deref(r))); } } } template <typename T, typename IFx, typename Fx> void insert_default_registrations(IFx&& ifx, Fx&& fx); template <typename T, bool, bool> struct get_is_primitive : is_lua_primitive<T> {}; template <typename T> struct get_is_primitive<T, true, false> : meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> {}; template <typename T> struct get_is_primitive<T, false, true> : meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> {}; template <typename T> struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> {}; } // namespace detail template <typename T> struct is_proxy_primitive : detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> {}; } // namespace sol // end of sol/stack_core.hpp // beginning of sol/stack_check.hpp // beginning of sol/stack_check_unqualified.hpp #include <cmath> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT #endif // SOL_STD_VARIANT #endif // SOL_CXX17_FEATURES namespace sol { namespace stack { namespace stack_detail { template <typename T, bool poptable = true> inline bool check_metatable(lua_State* L, int index = -2) { const auto& metakey = usertype_traits<T>::metatable(); luaL_getmetatable(L, &metakey[0]); const type expectedmetatabletype = static_cast<type>(lua_type(L, -1)); if (expectedmetatabletype != type::lua_nil) { if (lua_rawequal(L, -1, index) == 1) { lua_pop(L, 1 + static_cast<int>(poptable)); return true; } } lua_pop(L, 1); return false; } template <type expected, int (*check_func)(lua_State*, int)> struct basic_check { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { tracking.use(1); bool success = check_func(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } }; } // namespace stack_detail template <typename T, typename> struct unqualified_interop_checker { template <typename Handler> static bool check(lua_State*, int, type, Handler&&, record&) { return false; } }; template <typename T, typename> struct qualified_interop_checker { template <typename Handler> static bool check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) { return stack_detail::unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking); } }; template <typename T, type expected, typename> struct unqualified_checker { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (std::is_same_v<T, bool>) { tracking.use(1); bool success = lua_isboolean(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } else if constexpr (meta::any_same_v<T, char /* , char8_t*/, char16_t, char32_t>) { return stack::check<std::basic_string<T>>(L, index, std::forward<Handler>(handler), tracking); } else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) { tracking.use(1); #if SOL_LUA_VERSION >= 503 #if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS int isnum = 0; lua_tointegerx(L, index, &isnum); const bool success = isnum != 0; if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string_integral); } #elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) // this check is precise, does not convert if (lua_isinteger(L, index) == 1) { return true; } const bool success = false; if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number_integral); } #else type t = type_of(L, index); const bool success = t == type::number; #endif // If numbers are enabled, use the imprecise check if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number); } return success; #else #if !defined(SOL_STRINGS_ARE_NUMBERS) || !SOL_STRINGS_ARE_NUMBERS // must pre-check, because it will convert type t = type_of(L, index); if (t != type::number) { // expected type, actual type handler(L, index, type::number, t, detail::not_a_number); return false; } #endif // Do not allow strings to be numbers #if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) int isnum = 0; const lua_Number v = lua_tonumberx(L, index, &isnum); const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v; #else const bool success = true; #endif // Safe numerics and number precision checking if (!success) { // expected type, actual type #if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string); #elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) handler(L, index, type::number, t, detail::not_a_number_or_number_string); #else handler(L, index, type::number, t, detail::not_a_number); #endif } return success; #endif // Lua Version 5.3 versus others } else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) { tracking.use(1); #if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS bool success = lua_isnumber(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string); } return success; #else type t = type_of(L, index); bool success = t == type::number; if (!success) { // expected type, actual type handler(L, index, type::number, t, detail::not_a_number); } return success; #endif // Strings are Numbers } else if constexpr(meta::any_same_v<T, type, this_state, this_main_state, this_environment, variadic_args>) { (void)L; (void)index; (void)handler; tracking.use(0); return true; } else if constexpr (is_unique_usertype_v<T>) { using proper_T = typename unique_usertype_traits<T>::type; const type indextype = type_of(L, index); tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype, "value is not a userdata"); return false; } if (lua_getmetatable(L, index) == 0) { return true; } int metatableindex = lua_gettop(L); if (stack_detail::check_metatable<detail::unique_usertype<proper_T>>(L, metatableindex)) { void* memory = lua_touserdata(L, index); memory = detail::align_usertype_unique_destructor(memory); detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); bool success = &detail::usertype_unique_alloc_destroy<proper_T, T> == pdx; if (!success) { memory = detail::align_usertype_unique_tag<true>(memory); #if 0 // New version #else const char*& name_tag = *static_cast<const char**>(memory); success = usertype_traits<T>::qualified_name() == name_tag; #endif if (!success) { handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype"); } } return success; } lua_pop(L, 1); handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)"); return false; } else if constexpr (meta::any_same_v<T, lua_nil_t, #if defined(SOL_CXX_17_FEATURES) && SOL_CXX_17_FEATURES std::nullopt_t, #endif nullopt_t>) { bool success = lua_isnil(L, index); if (success) { tracking.use(1); return success; } tracking.use(0); success = lua_isnone(L, index); if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } else if constexpr (std::is_same_v<T, env_key_t>) { tracking.use(1); type t = type_of(L, index); if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) { return true; } handler(L, index, type::table, t, "value cannot not have a valid environment"); return true; } else if constexpr (std::is_same_v<T, detail::non_lua_nil_t>) { return !stack::unqualified_check<lua_nil_t>(L, index, std::forward<Handler>(handler), tracking); } else if constexpr (meta::is_specialization_of_v<T, basic_lua_table>) { tracking.use(1); type t = type_of(L, index); if (t != type::table) { handler(L, index, type::table, t, "value is not a table"); return false; } return true; } else if constexpr (meta::is_specialization_of_v<T, basic_bytecode>) { tracking.use(1); type t = type_of(L, index); if (t != type::function) { handler(L, index, type::function, t, "value is not a function that can be dumped"); return false; } return true; } else if constexpr(meta::is_specialization_of_v<T, basic_environment>) { tracking.use(1); if (lua_getmetatable(L, index) == 0) { return true; } type t = type_of(L, -1); if (t == type::table || t == type::none || t == type::lua_nil) { lua_pop(L, 1); return true; } if (t != type::userdata) { lua_pop(L, 1); handler(L, index, type::table, t, "value does not have a valid metatable"); return false; } return true; } else if constexpr (std::is_same_v<T, metatable_key_t>) { tracking.use(1); if (lua_getmetatable(L, index) == 0) { return true; } type t = type_of(L, -1); if (t == type::table || t == type::none || t == type::lua_nil) { lua_pop(L, 1); return true; } if (t != type::userdata) { lua_pop(L, 1); handler(L, index, expected, t, "value does not have a valid metatable"); return false; } return true; } else if constexpr (expected == type::userdata) { if constexpr (meta::any_same_v<T, userdata_value> || meta::is_specialization_of_v<T, basic_userdata>) { tracking.use(1); type t = type_of(L, index); bool success = t == type::userdata; if (!success) { // expected type, actual type handler(L, index, type::userdata, t, ""); } return success; } else if constexpr (meta::is_specialization_of_v<T, user>) { unqualified_checker<lightuserdata_value, type::userdata> c; (void)c; return c.check(L, index, std::forward<Handler>(handler), tracking); } else { if constexpr (std::is_pointer_v<T>) { return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); } else if constexpr (meta::is_specialization_of_v<T, std::reference_wrapper>) { using T_internal = typename T::type; return stack::check<T_internal>(L, index, std::forward<Handler>(handler), tracking); } else { return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); } } } else if constexpr (expected == type::poly) { tracking.use(1); bool success = is_lua_reference_v<T> || !lua_isnone(L, index); if (!success) { // expected type, actual type handler(L, index, type::poly, type_of(L, index), ""); } return success; } else if constexpr (expected == type::lightuserdata) { tracking.use(1); type t = type_of(L, index); bool success = t == type::userdata || t == type::lightuserdata; if (!success) { // expected type, actual type handler(L, index, type::lightuserdata, t, ""); } return success; } else if constexpr (expected == type::function) { if constexpr (meta::any_same_v<T, lua_CFunction, std::remove_pointer_t<lua_CFunction>, c_closure>) { tracking.use(1); bool success = lua_iscfunction(L, index) == 1; if (!success) { // expected type, actual type handler(L, index, expected, type_of(L, index), ""); } return success; } else { tracking.use(1); type t = type_of(L, index); if (t == type::lua_nil || t == type::none || t == type::function) { // allow for lua_nil to be returned return true; } if (t != type::userdata && t != type::table) { handler(L, index, type::function, t, "must be a function or table or a userdata"); return false; } // Do advanced check for call-style userdata? static const auto& callkey = to_string(meta_function::call); if (lua_getmetatable(L, index) == 0) { // No metatable, no __call key possible handler(L, index, type::function, t, "value is not a function and does not have overriden metatable"); return false; } if (lua_isnoneornil(L, -1)) { lua_pop(L, 1); handler(L, index, type::function, t, "value is not a function and does not have valid metatable"); return false; } lua_getfield(L, -1, &callkey[0]); if (lua_isnoneornil(L, -1)) { lua_pop(L, 2); handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type"); return false; } // has call, is definitely a function lua_pop(L, 2); return true; } } else if constexpr (expected == type::table) { tracking.use(1); type t = type_of(L, index); if (t == type::table) { return true; } if (t != type::userdata) { handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one"); return false; } return true; } else { tracking.use(1); const type indextype = type_of(L, index); bool success = expected == indextype; if (!success) { // expected type, actual type, message handler(L, index, expected, indextype, ""); } return success; } } }; template <typename T> struct unqualified_checker<non_null<T>, type::userdata> : unqualified_checker<T, lua_type_of_v<T>> {}; template <typename T> struct unqualified_checker<detail::as_value_tag<T>, type::userdata> { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { const type indextype = type_of(L, index); return check(types<T>(), L, index, indextype, std::forward<Handler>(handler), tracking); } template <typename U, typename Handler> static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { if constexpr (std::is_same_v<T, lightuserdata_value> || std::is_same_v<T, userdata_value> || std::is_same_v<T, userdata> || std::is_same_v<T, lightuserdata>) { tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype, "value is not a valid userdata"); return false; } return true; } else { #if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP if (stack_detail::interop_check<U>(L, index, indextype, handler, tracking)) { return true; } #endif // interop extensibility tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype, "value is not a valid userdata"); return false; } if (lua_getmetatable(L, index) == 0) { return true; } int metatableindex = lua_gettop(L); if (stack_detail::check_metatable<U>(L, metatableindex)) return true; if (stack_detail::check_metatable<U*>(L, metatableindex)) return true; if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex)) return true; if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex)) return true; bool success = false; bool has_derived = derive<T>::value || weak_derive<T>::value; if (has_derived) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow auto pn = stack::pop_n(L, 1); lua_pushstring(L, &detail::base_class_check_key()[0]); lua_rawget(L, metatableindex); if (type_of(L, -1) != type::lua_nil) { void* basecastdata = lua_touserdata(L, -1); detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata); success = ic(usertype_traits<T>::qualified_name()); } } lua_pop(L, 1); if (!success) { handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type"); return false; } return true; } } }; template <typename T> struct unqualified_checker<detail::as_pointer_tag<T>, type::userdata> { template <typename Handler> static bool check(lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { if (indextype == type::lua_nil) { tracking.use(1); return true; } return check_usertype<std::remove_pointer_t<T>>(L, index, std::forward<Handler>(handler), tracking); } template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { const type indextype = type_of(L, index); return check(L, index, indextype, std::forward<Handler>(handler), tracking); } }; template <typename... Args> struct unqualified_checker<std::tuple<Args...>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking); } }; template <typename A, typename B> struct unqualified_checker<std::pair<A, B>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking); } }; template <typename T> struct unqualified_checker<optional<T>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&&, record& tracking) { type t = type_of(L, index); if (t == type::none) { tracking.use(0); return true; } if (t == type::lua_nil) { tracking.use(1); return true; } return stack::unqualified_check<T>(L, index, no_panic, tracking); } }; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename T> struct unqualified_checker<std::optional<T>, type::poly> { template <typename Handler> static bool check(lua_State* L, int index, Handler&&, record& tracking) { type t = type_of(L, index); if (t == type::none) { tracking.use(0); return true; } if (t == type::lua_nil) { tracking.use(1); return true; } return stack::check<T>(L, index, no_panic, tracking); } }; #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT template <typename... Tn> struct unqualified_checker<std::variant<Tn...>, type::poly> { typedef std::variant<Tn...> V; typedef std::variant_size<V> V_size; typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; template <typename Handler> static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (V_is_empty::value) { if (lua_isnone(L, index)) { return true; } } tracking.use(1); handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant"); return false; } template <std::size_t I, typename Handler> static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) { typedef std::variant_alternative_t<I - 1, V> T; record temp_tracking = tracking; if (stack::check<T>(L, index, no_panic, temp_tracking)) { tracking = temp_tracking; return true; } return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking); } template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking); } }; #endif // SOL_STD_VARIANT #endif // SOL_CXX17_FEATURES }} // namespace sol::stack // end of sol/stack_check_unqualified.hpp // beginning of sol/stack_check_qualified.hpp namespace sol { namespace stack { template <typename X, type expected, typename> struct qualified_checker { template <typename Handler> static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<X>) { using u_traits = unique_usertype_traits<meta::unqualified_t<X>>; using T = typename u_traits::type; if constexpr (is_base_rebindable_non_void_v<u_traits>) { using rebind_t = typename u_traits::template rebind_base<void>; // we have a unique pointer type that can be // rebound to a base/derived type const type indextype = type_of(L, index); tracking.use(1); if (indextype != type::userdata) { handler(L, index, type::userdata, indextype, "value is not a userdata"); return false; } void* memory = lua_touserdata(L, index); memory = detail::align_usertype_unique_destructor(memory); detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) { return true; } if constexpr (derive<T>::value) { memory = detail::align_usertype_unique_tag<true, false>(memory); detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory); string_view ti = usertype_traits<T>::qualified_name(); string_view rebind_ti = usertype_traits<rebind_t>::qualified_name(); if (ic(nullptr, nullptr, ti, rebind_ti) != 0) { return true; } } handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype"); return false; } else { return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); } } else if constexpr (!std::is_reference_v<X> && is_container_v<X>) { if (type_of(L, index) == type::userdata) { return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); } else { return stack::unqualified_check<nested<X>>(L, index, std::forward<Handler>(handler), tracking); } } else { return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); } } }; } } // namespace sol::stack // end of sol/stack_check_qualified.hpp // end of sol/stack_check.hpp // beginning of sol/stack_get.hpp // beginning of sol/stack_get_unqualified.hpp // beginning of sol/overload.hpp namespace sol { template <typename... Functions> struct overload_set { std::tuple<Functions...> functions; template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler> overload_set(Arg&& arg, Args&&... args) : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { } overload_set(const overload_set&) = default; overload_set(overload_set&&) = default; overload_set& operator=(const overload_set&) = default; overload_set& operator=(overload_set&&) = default; }; template <typename... Args> decltype(auto) overload(Args&&... args) { return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...); } } // namespace sol // end of sol/overload.hpp // beginning of sol/unicode.hpp namespace sol { // Everything here was lifted pretty much straight out of // ogonek, because fuck figuring it out= namespace unicode { enum class error_code { ok = 0, invalid_code_point, invalid_code_unit, invalid_leading_surrogate, invalid_trailing_surrogate, sequence_too_short, overlong_sequence, }; inline const string_view& to_string(error_code ec) { static const string_view storage[7] = { "ok", "invalid code points", "invalid code unit", "invalid leading surrogate", "invalid trailing surrogate", "sequence too short", "overlong sequence" }; return storage[static_cast<std::size_t>(ec)]; } template <typename It> struct decoded_result { error_code error; char32_t codepoint; It next; }; template <typename C> struct encoded_result { error_code error; std::size_t code_units_size; std::array<C, 4> code_units; }; struct unicode_detail { // codepoint related static constexpr char32_t last_code_point = 0x10FFFF; static constexpr char32_t first_lead_surrogate = 0xD800; static constexpr char32_t last_lead_surrogate = 0xDBFF; static constexpr char32_t first_trail_surrogate = 0xDC00; static constexpr char32_t last_trail_surrogate = 0xDFFF; static constexpr char32_t first_surrogate = first_lead_surrogate; static constexpr char32_t last_surrogate = last_trail_surrogate; static constexpr bool is_lead_surrogate(char32_t u) { return u >= first_lead_surrogate && u <= last_lead_surrogate; } static constexpr bool is_trail_surrogate(char32_t u) { return u >= first_trail_surrogate && u <= last_trail_surrogate; } static constexpr bool is_surrogate(char32_t u) { return u >= first_surrogate && u <= last_surrogate; } // utf8 related static constexpr auto last_1byte_value = 0x7Fu; static constexpr auto last_2byte_value = 0x7FFu; static constexpr auto last_3byte_value = 0xFFFFu; static constexpr auto start_2byte_mask = 0x80u; static constexpr auto start_3byte_mask = 0xE0u; static constexpr auto start_4byte_mask = 0xF0u; static constexpr auto continuation_mask = 0xC0u; static constexpr auto continuation_signature = 0x80u; static constexpr bool is_invalid(unsigned char b) { return b == 0xC0 || b == 0xC1 || b > 0xF4; } static constexpr bool is_continuation(unsigned char b) { return (b & unicode_detail::continuation_mask) == unicode_detail::continuation_signature; } static constexpr bool is_overlong(char32_t u, std::size_t bytes) { return u <= unicode_detail::last_1byte_value || (u <= unicode_detail::last_2byte_value && bytes > 2) || (u <= unicode_detail::last_3byte_value && bytes > 3); } static constexpr int sequence_length(unsigned char b) { return (b & start_2byte_mask) == 0 ? 1 : (b & start_3byte_mask) != start_3byte_mask ? 2 : (b & start_4byte_mask) != start_4byte_mask ? 3 : 4; } static constexpr char32_t decode(unsigned char b0, unsigned char b1) { return ((b0 & 0x1F) << 6) | (b1 & 0x3F); } static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2) { return ((b0 & 0x0F) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F); } static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2, unsigned char b3) { return ((b0 & 0x07) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F); } // utf16 related static constexpr char32_t last_bmp_value = 0xFFFF; static constexpr char32_t normalizing_value = 0x10000; static constexpr int lead_surrogate_bitmask = 0xFFC00; static constexpr int trail_surrogate_bitmask = 0x3FF; static constexpr int lead_shifted_bits = 10; static constexpr char32_t replacement = 0xFFFD; static char32_t combine_surrogates(char16_t lead, char16_t trail) { auto hi = lead - first_lead_surrogate; auto lo = trail - first_trail_surrogate; return normalizing_value + ((hi << lead_shifted_bits) | lo); } }; inline encoded_result<char> code_point_to_utf8(char32_t codepoint) { encoded_result<char> er; er.error = error_code::ok; if (codepoint <= unicode_detail::last_1byte_value) { er.code_units_size = 1; er.code_units = std::array<char, 4>{ { static_cast<char>(codepoint) } }; } else if (codepoint <= unicode_detail::last_2byte_value) { er.code_units_size = 2; er.code_units = std::array<char, 4>{{ static_cast<char>(0xC0 | ((codepoint & 0x7C0) >> 6)), static_cast<char>(0x80 | (codepoint & 0x3F)), }}; } else if (codepoint <= unicode_detail::last_3byte_value) { er.code_units_size = 3; er.code_units = std::array<char, 4>{{ static_cast<char>(0xE0 | ((codepoint & 0xF000) >> 12)), static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)), static_cast<char>(0x80 | (codepoint & 0x3F)), }}; } else { er.code_units_size = 4; er.code_units = std::array<char, 4>{ { static_cast<char>(0xF0 | ((codepoint & 0x1C0000) >> 18)), static_cast<char>(0x80 | ((codepoint & 0x3F000) >> 12)), static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)), static_cast<char>(0x80 | (codepoint & 0x3F)), } }; } return er; } inline encoded_result<char16_t> code_point_to_utf16(char32_t codepoint) { encoded_result<char16_t> er; if (codepoint <= unicode_detail::last_bmp_value) { er.code_units_size = 1; er.code_units = std::array<char16_t, 4>{ { static_cast<char16_t>(codepoint) } }; er.error = error_code::ok; } else { auto normal = codepoint - unicode_detail::normalizing_value; auto lead = unicode_detail::first_lead_surrogate + ((normal & unicode_detail::lead_surrogate_bitmask) >> unicode_detail::lead_shifted_bits); auto trail = unicode_detail::first_trail_surrogate + (normal & unicode_detail::trail_surrogate_bitmask); er.code_units = std::array<char16_t, 4>{ { static_cast<char16_t>(lead), static_cast<char16_t>(trail) } }; er.code_units_size = 2; er.error = error_code::ok; } return er; } inline encoded_result<char32_t> code_point_to_utf32(char32_t codepoint) { encoded_result<char32_t> er; er.code_units_size = 1; er.code_units[0] = codepoint; er.error = error_code::ok; return er; } template <typename It> inline decoded_result<It> utf8_to_code_point(It it, It last) { decoded_result<It> dr; if (it == last) { dr.next = it; dr.error = error_code::sequence_too_short; return dr; } unsigned char b0 = *it; std::size_t length = unicode_detail::sequence_length(b0); if (length == 1) { dr.codepoint = static_cast<char32_t>(b0); dr.error = error_code::ok; ++it; dr.next = it; return dr; } if (unicode_detail::is_invalid(b0) || unicode_detail::is_continuation(b0)) { dr.error = error_code::invalid_code_unit; dr.next = it; return dr; } ++it; std::array<unsigned char, 4> b; b[0] = b0; for (std::size_t i = 1; i < length; ++i) { b[i] = *it; if (!unicode_detail::is_continuation(b[i])) { dr.error = error_code::invalid_code_unit; dr.next = it; return dr; } ++it; } char32_t decoded; switch (length) { case 2: decoded = unicode_detail::decode(b[0], b[1]); break; case 3: decoded = unicode_detail::decode(b[0], b[1], b[2]); break; default: decoded = unicode_detail::decode(b[0], b[1], b[2], b[3]); break; } if (unicode_detail::is_overlong(decoded, length)) { dr.error = error_code::overlong_sequence; return dr; } if (unicode_detail::is_surrogate(decoded) || decoded > unicode_detail::last_code_point) { dr.error = error_code::invalid_code_point; return dr; } // then everything is fine dr.codepoint = decoded; dr.error = error_code::ok; dr.next = it; return dr; } template <typename It> inline decoded_result<It> utf16_to_code_point(It it, It last) { decoded_result<It> dr; if (it == last) { dr.next = it; dr.error = error_code::sequence_too_short; return dr; } char16_t lead = static_cast<char16_t>(*it); if (!unicode_detail::is_surrogate(lead)) { ++it; dr.codepoint = static_cast<char32_t>(lead); dr.next = it; dr.error = error_code::ok; return dr; } if (!unicode_detail::is_lead_surrogate(lead)) { dr.error = error_code::invalid_leading_surrogate; dr.next = it; return dr; } ++it; auto trail = *it; if (!unicode_detail::is_trail_surrogate(trail)) { dr.error = error_code::invalid_trailing_surrogate; dr.next = it; return dr; } dr.codepoint = unicode_detail::combine_surrogates(lead, trail); dr.next = ++it; dr.error = error_code::ok; return dr; } template <typename It> inline decoded_result<It> utf32_to_code_point(It it, It last) { decoded_result<It> dr; if (it == last) { dr.next = it; dr.error = error_code::sequence_too_short; return dr; } dr.codepoint = static_cast<char32_t>(*it); dr.next = ++it; dr.error = error_code::ok; return dr; } } } // end of sol/unicode.hpp #include <cstdlib> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT #endif // Apple clang screwed up #endif // C++17 namespace sol { namespace stack { namespace stack_detail { template <typename Ch> struct count_code_units_utf { std::size_t needed_size; count_code_units_utf() : needed_size(0) { } void operator()(const unicode::encoded_result<Ch> er) { needed_size += er.code_units_size; } }; template <typename Ch, typename ErCh> struct copy_code_units_utf { Ch* target_; copy_code_units_utf(Ch* target) : target_(target) { } void operator()(const unicode::encoded_result<ErCh> er) { std::memcpy(target_, er.code_units.data(), er.code_units_size * sizeof(ErCh)); target_ += er.code_units_size; } }; template <typename Ch, typename F> inline void convert(const char* strb, const char* stre, F&& f) { char32_t cp = 0; for (const char* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf8_to_code_point(strtarget, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; ++strtarget; } else { cp = dr.codepoint; strtarget = dr.next; } if constexpr(std::is_same_v<Ch, char32_t>) { auto er = unicode::code_point_to_utf32(cp); f(er); } else { auto er = unicode::code_point_to_utf16(cp); f(er); } } } template <typename BaseCh, typename S> inline S get_into(lua_State* L, int index, record& tracking) { using Ch = typename S::value_type; tracking.use(1); size_t len; auto utf8p = lua_tolstring(L, index, &len); if (len < 1) return S(); const char* strb = utf8p; const char* stre = utf8p + len; stack_detail::count_code_units_utf<BaseCh> count_units; convert<BaseCh>(strb, stre, count_units); S r(count_units.needed_size, static_cast<Ch>(0)); r.resize(count_units.needed_size); Ch* target = &r[0]; stack_detail::copy_code_units_utf<Ch, BaseCh> copy_units(target); convert<BaseCh>(strb, stre, copy_units); return r; } } // namespace stack_detail template <typename T, typename> struct unqualified_getter { static decltype(auto) get(lua_State* L, int index, record& tracking) { if constexpr (std::is_same_v<T, bool>) { tracking.use(1); return lua_toboolean(L, index) != 0; } else if constexpr (std::is_enum_v<T>) { tracking.use(1); return static_cast<T>(lua_tointegerx(L, index, nullptr)); } else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) { tracking.use(1); #if SOL_LUA_VERSION >= 503 if (lua_isinteger(L, index) != 0) { return static_cast<T>(lua_tointeger(L, index)); } #endif return static_cast<T>(llround(lua_tonumber(L, index))); } else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) { tracking.use(1); return static_cast<T>(lua_tonumber(L, index)); } else if constexpr (is_lua_reference_v<T>) { tracking.use(1); return T(L, index); } else if constexpr (is_unique_usertype_v<T>) { using Real = typename unique_usertype_traits<T>::actual_type; tracking.use(1); void* memory = lua_touserdata(L, index); memory = detail::align_usertype_unique<Real>(memory); Real* mem = static_cast<Real*>(memory); return *mem; } else { return stack_detail::unchecked_unqualified_get<detail::as_value_tag<T>>(L, index, tracking); } } }; template <typename X, typename> struct qualified_getter { static decltype(auto) get(lua_State* L, int index, record& tracking) { using Tu = meta::unqualified_t<X>; static constexpr bool is_userdata_of_some_kind = !std::is_reference_v<X> && is_container_v<Tu> && std::is_default_constructible_v<Tu> && !is_lua_primitive_v<Tu> && !is_transparent_argument_v<Tu>; if constexpr (is_userdata_of_some_kind) { if (type_of(L, index) == type::userdata) { return static_cast<Tu>(stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking)); } else { return stack_detail::unchecked_unqualified_get<sol::nested<Tu>>(L, index, tracking); } } else if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<Tu> && !is_base_rebindable_non_void_v<unique_usertype_traits<Tu>>) { using u_traits = unique_usertype_traits<Tu>; using T = typename u_traits::type; using Real = typename u_traits::actual_type; tracking.use(1); void* memory = lua_touserdata(L, index); memory = detail::align_usertype_unique_destructor(memory); detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) { memory = detail::align_usertype_unique_tag<true, false>(memory); memory = detail::align_usertype_unique<Real, true, false>(memory); Real* mem = static_cast<Real*>(memory); return static_cast<Real>(*mem); } Real r(nullptr); if constexpr (!derive<T>::value) { // TODO: abort / terminate, maybe only in debug modes? return static_cast<Real>(std::move(r)); } else { memory = detail::align_usertype_unique_tag<true, false>(memory); detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory); memory = detail::align_usertype_unique<Real, true, false>(memory); string_view ti = usertype_traits<T>::qualified_name(); int cast_operation; if constexpr (is_base_rebindable_v<u_traits>) { using rebind_t = typename u_traits::template rebind_base<void>; string_view rebind_ti = usertype_traits<rebind_t>::qualified_name(); cast_operation = ic(memory, &r, ti, rebind_ti); } else { string_view rebind_ti(""); cast_operation = ic(memory, &r, ti, rebind_ti); } switch (cast_operation) { case 1: { // it's a perfect match, // alias memory directly Real* mem = static_cast<Real*>(memory); return static_cast<Real>(*mem); } case 2: // it's a base match, return the // aliased creation return static_cast<Real>(std::move(r)); default: // uh oh.. break; } // TODO: abort / terminate, maybe only in debug modes? return static_cast<Real>(r); } } else { return stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking); } } }; template <typename T> struct unqualified_getter<as_table_t<T>> { using Tu = meta::unqualified_t<T>; template <typename V> static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) { cont.push_back(stack::get<V>(L, -lua_size<V>::value)); } template <typename V> static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& cont, std::size_t idx) { insert_at_end(meta::has_insert<Tu>(), t, L, cont, idx); } template <typename V> static void insert_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) { using std::cend; cont.insert(cend(cont), stack::get<V>(L, -lua_size<V>::value)); } template <typename V> static void insert_at_end(std::false_type, types<V>, lua_State* L, T& cont, std::size_t idx) { cont[idx] = stack::get<V>(L, -lua_size<V>::value); } static bool max_size_check(std::false_type, T&, std::size_t) { return false; } static bool max_size_check(std::true_type, T& cont, std::size_t idx) { return idx >= cont.max_size(); } static T get(lua_State* L, int relindex, record& tracking) { return get(meta::is_associative<Tu>(), L, relindex, tracking); } static T get(std::false_type, lua_State* L, int relindex, record& tracking) { typedef typename Tu::value_type V; return get(types<V>(), L, relindex, tracking); } template <typename V> static T get(types<V> t, lua_State* L, int relindex, record& tracking) { tracking.use(1); // the W4 flag is really great, // so great that it can tell my for loops (twice nested) // below never actually terminate // without hitting where the gotos have infested // so now I would get the error W4XXX unreachable // me that the return cont at the end of this function // which is fair until other compilers complain // that there isn't a return and that based on // SOME MAGICAL FORCE // control flow falls off the end of a non-void function // so it needs to be there for the compilers that are // too flimsy to analyze the basic blocks... // (I'm sure I should file a bug but those compilers are already // in the wild; it doesn't matter if I fix them, // someone else is still going to get some old-ass compiler // and then bother me about the unclean build for the 30th // time) // "Why not an IIFE?" // Because additional lambdas / functions which serve as // capture-all-and-then-invoke bloat binary sizes // by an actually detectable amount // (one user uses sol2 pretty heavily and 22 MB of binary size // was saved by reducing reliance on lambdas in templates) // This would really be solved by having break N; // be a real, proper thing... // but instead, we have to use labels and gotos // and earn the universal vitriol of the dogmatic // programming community // all in all: W4 is great!~ int index = lua_absindex(L, relindex); T cont; std::size_t idx = 0; #if SOL_LUA_VERSION >= 503 // This method is HIGHLY performant over regular table iteration // thanks to the Lua API changes in 5.3 // Questionable in 5.4 for (lua_Integer i = 0;; i += lua_size<V>::value) { if (max_size_check(meta::has_max_size<Tu>(), cont, idx)) { // see above comment goto done; } bool isnil = false; for (int vi = 0; vi < lua_size<V>::value; ++vi) { #if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VERSION >= 600 #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushinteger(L, static_cast<lua_Integer>(i + vi)); if (lua_keyin(L, index) == 0) { // it's time to stop isnil = true; } else { // we have a key, have to get the value lua_geti(L, index, i + vi); } #else type vt = static_cast<type>(lua_geti(L, index, i + vi)); isnil = vt == type::none || vt == type::lua_nil; #endif if (isnil) { if (i == 0) { break; } #if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VERSION >= 600 lua_pop(L, vi); #else lua_pop(L, (vi + 1)); #endif // see above comment goto done; } } if (isnil) { #if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VERSION >= 600 #else lua_pop(L, lua_size<V>::value); #endif continue; } push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx); ++idx; lua_pop(L, lua_size<V>::value); } #else // Zzzz slower but necessary thanks to the lower version API and missing functions qq for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { if (idx >= cont.max_size()) { // see above comment goto done; } #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 2, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow bool isnil = false; for (int vi = 0; vi < lua_size<V>::value; ++vi) { lua_pushinteger(L, i); lua_gettable(L, index); type vt = type_of(L, -1); isnil = vt == type::lua_nil; if (isnil) { if (i == 0) { break; } lua_pop(L, (vi + 1)); // see above comment goto done; } } if (isnil) continue; push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx); ++idx; } #endif done: return cont; } static T get(std::true_type, lua_State* L, int index, record& tracking) { typedef typename Tu::value_type P; typedef typename P::first_type K; typedef typename P::second_type V; return get(types<K, V>(), L, index, tracking); } template <typename K, typename V> static T get(types<K, V>, lua_State* L, int relindex, record& tracking) { tracking.use(1); #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 3, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow T associative; int index = lua_absindex(L, relindex); lua_pushnil(L); while (lua_next(L, index) != 0) { decltype(auto) key = stack::check_get<K>(L, -2); if (!key) { lua_pop(L, 1); continue; } associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1)); lua_pop(L, 1); } return associative; } }; template <typename T, typename Al> struct unqualified_getter<as_table_t<std::forward_list<T, Al>>> { typedef std::forward_list<T, Al> C; static C get(lua_State* L, int relindex, record& tracking) { return get(meta::has_key_value_pair<C>(), L, relindex, tracking); } static C get(std::true_type, lua_State* L, int index, record& tracking) { typedef typename T::value_type P; typedef typename P::first_type K; typedef typename P::second_type V; return get(types<K, V>(), L, index, tracking); } static C get(std::false_type, lua_State* L, int relindex, record& tracking) { typedef typename C::value_type V; return get(types<V>(), L, relindex, tracking); } template <typename V> static C get(types<V>, lua_State* L, int relindex, record& tracking) { tracking.use(1); #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 3, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow int index = lua_absindex(L, relindex); C cont; auto at = cont.cbefore_begin(); std::size_t idx = 0; #if SOL_LUA_VERSION >= 503 // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3 for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { if (idx >= cont.max_size()) { goto done; } bool isnil = false; for (int vi = 0; vi < lua_size<V>::value; ++vi) { type t = static_cast<type>(lua_geti(L, index, i + vi)); isnil = t == type::lua_nil; if (isnil) { if (i == 0) { break; } lua_pop(L, (vi + 1)); goto done; } } if (isnil) continue; at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value)); ++idx; } #else // Zzzz slower but necessary thanks to the lower version API and missing functions qq for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { if (idx >= cont.max_size()) { goto done; } bool isnil = false; for (int vi = 0; vi < lua_size<V>::value; ++vi) { lua_pushinteger(L, i); lua_gettable(L, index); type t = type_of(L, -1); isnil = t == type::lua_nil; if (isnil) { if (i == 0) { break; } lua_pop(L, (vi + 1)); goto done; } } if (isnil) continue; at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value)); ++idx; } #endif done: return cont; } template <typename K, typename V> static C get(types<K, V>, lua_State* L, int relindex, record& tracking) { tracking.use(1); #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 3, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow C associative; auto at = associative.cbefore_begin(); int index = lua_absindex(L, relindex); lua_pushnil(L); while (lua_next(L, index) != 0) { decltype(auto) key = stack::check_get<K>(L, -2); if (!key) { lua_pop(L, 1); continue; } at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1)); lua_pop(L, 1); } return associative; } }; template <typename T> struct unqualified_getter<nested<T>> { static T get(lua_State* L, int index, record& tracking) { using Tu = meta::unqualified_t<T>; if constexpr (is_container_v<Tu>) { if constexpr (meta::is_associative<Tu>::value) { typedef typename T::value_type P; typedef typename P::first_type K; typedef typename P::second_type V; unqualified_getter<as_table_t<T>> g; // VC++ has a bad warning here: shut it up (void)g; return g.get(types<K, nested<V>>(), L, index, tracking); } else { typedef typename T::value_type V; unqualified_getter<as_table_t<T>> g; // VC++ has a bad warning here: shut it up (void)g; return g.get(types<nested<V>>(), L, index, tracking); } } else { unqualified_getter<Tu> g; // VC++ has a bad warning here: shut it up (void)g; return g.get(L, index, tracking); } } }; template <typename T> struct unqualified_getter<as_container_t<T>> { static decltype(auto) get(lua_State* L, int index, record& tracking) { return stack::unqualified_get<T>(L, index, tracking); } }; template <typename T> struct unqualified_getter<as_container_t<T>*> { static decltype(auto) get(lua_State* L, int index, record& tracking) { return stack::unqualified_get<T*>(L, index, tracking); } }; template <> struct unqualified_getter<userdata_value> { static userdata_value get(lua_State* L, int index, record& tracking) { tracking.use(1); return userdata_value(lua_touserdata(L, index)); } }; template <> struct unqualified_getter<lightuserdata_value> { static lightuserdata_value get(lua_State* L, int index, record& tracking) { tracking.use(1); return lightuserdata_value(lua_touserdata(L, index)); } }; template <typename T> struct unqualified_getter<light<T>> { static light<T> get(lua_State* L, int index, record& tracking) { tracking.use(1); void* memory = lua_touserdata(L, index); return light<T>(static_cast<T*>(memory)); } }; template <typename T> struct unqualified_getter<user<T>> { static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking) { tracking.use(1); void* memory = lua_touserdata(L, index); memory = detail::align_user<T>(memory); return *static_cast<std::remove_reference_t<T>*>(memory); } }; template <typename T> struct unqualified_getter<user<T*>> { static T* get(lua_State* L, int index, record& tracking) { tracking.use(1); void* memory = lua_touserdata(L, index); memory = detail::align_user<T*>(memory); return static_cast<T*>(memory); } }; template <> struct unqualified_getter<type> { static type get(lua_State* L, int index, record& tracking) { tracking.use(1); return static_cast<type>(lua_type(L, index)); } }; template <> struct unqualified_getter<std::string> { static std::string get(lua_State* L, int index, record& tracking) { tracking.use(1); std::size_t len; auto str = lua_tolstring(L, index, &len); return std::string(str, len); } }; template <> struct unqualified_getter<const char*> { static const char* get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t sz; return lua_tolstring(L, index, &sz); } }; template <> struct unqualified_getter<char> { static char get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t len; auto str = lua_tolstring(L, index, &len); return len > 0 ? str[0] : '\0'; } }; template <typename Traits> struct unqualified_getter<basic_string_view<char, Traits>> { static string_view get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t sz; const char* str = lua_tolstring(L, index, &sz); return basic_string_view<char, Traits>(str, sz); } }; template <typename Traits, typename Al> struct unqualified_getter<std::basic_string<wchar_t, Traits, Al>> { using S = std::basic_string<wchar_t, Traits, Al>; static S get(lua_State* L, int index, record& tracking) { using Ch = meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t>; return stack_detail::get_into<Ch, S>(L, index, tracking); } }; template <typename Traits, typename Al> struct unqualified_getter<std::basic_string<char16_t, Traits, Al>> { static std::basic_string<char16_t, Traits, Al> get(lua_State* L, int index, record& tracking) { return stack_detail::get_into<char16_t, std::basic_string<char16_t, Traits, Al>>(L, index, tracking); } }; template <typename Traits, typename Al> struct unqualified_getter<std::basic_string<char32_t, Traits, Al>> { static std::basic_string<char32_t, Traits, Al> get(lua_State* L, int index, record& tracking) { return stack_detail::get_into<char32_t, std::basic_string<char32_t, Traits, Al>>(L, index, tracking); } }; template <> struct unqualified_getter<char16_t> { static char16_t get(lua_State* L, int index, record& tracking) { string_view utf8 = stack::get<string_view>(L, index, tracking); const char* strb = utf8.data(); const char* stre = utf8.data() + utf8.size(); char32_t cp = 0; auto dr = unicode::utf8_to_code_point(strb, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf16(cp); return er.code_units[0]; } }; template <> struct unqualified_getter<char32_t> { static char32_t get(lua_State* L, int index, record& tracking) { string_view utf8 = stack::get<string_view>(L, index, tracking); const char* strb = utf8.data(); const char* stre = utf8.data() + utf8.size(); char32_t cp = 0; auto dr = unicode::utf8_to_code_point(strb, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf32(cp); return er.code_units[0]; } }; template <> struct unqualified_getter<wchar_t> { static wchar_t get(lua_State* L, int index, record& tracking) { typedef meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch; unqualified_getter<Ch> g; (void)g; auto c = g.get(L, index, tracking); return static_cast<wchar_t>(c); } }; template <> struct unqualified_getter<meta_function> { static meta_function get(lua_State* L, int index, record& tracking) { tracking.use(1); const char* name = unqualified_getter<const char*>{}.get(L, index, tracking); const auto& mfnames = meta_function_names(); for (std::size_t i = 0; i < mfnames.size(); ++i) if (mfnames[i] == name) return static_cast<meta_function>(i); return meta_function::construct; } }; template <> struct unqualified_getter<lua_nil_t> { static lua_nil_t get(lua_State*, int, record& tracking) { tracking.use(1); return lua_nil; } }; template <> struct unqualified_getter<std::nullptr_t> { static std::nullptr_t get(lua_State*, int, record& tracking) { tracking.use(1); return nullptr; } }; template <> struct unqualified_getter<nullopt_t> { static nullopt_t get(lua_State*, int, record& tracking) { tracking.use(1); return nullopt; } }; template <> struct unqualified_getter<this_state> { static this_state get(lua_State* L, int, record& tracking) { tracking.use(0); return this_state(L); } }; template <> struct unqualified_getter<this_main_state> { static this_main_state get(lua_State* L, int, record& tracking) { tracking.use(0); return this_main_state(main_thread(L, L)); } }; template <> struct unqualified_getter<lua_CFunction> { static lua_CFunction get(lua_State* L, int index, record& tracking) { tracking.use(1); return lua_tocfunction(L, index); } }; template <> struct unqualified_getter<c_closure> { static c_closure get(lua_State* L, int index, record& tracking) { tracking.use(1); return c_closure(lua_tocfunction(L, index), -1); } }; template <> struct unqualified_getter<error> { static error get(lua_State* L, int index, record& tracking) { tracking.use(1); size_t sz = 0; const char* err = lua_tolstring(L, index, &sz); if (err == nullptr) { return error(detail::direct_error, ""); } return error(detail::direct_error, std::string(err, sz)); } }; template <> struct unqualified_getter<void*> { static void* get(lua_State* L, int index, record& tracking) { tracking.use(1); return lua_touserdata(L, index); } }; template <> struct unqualified_getter<const void*> { static const void* get(lua_State* L, int index, record& tracking) { tracking.use(1); return lua_touserdata(L, index); } }; template <typename T> struct unqualified_getter<detail::as_value_tag<T>> { static T* get_no_lua_nil(lua_State* L, int index, record& tracking) { void* memory = lua_touserdata(L, index); #if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP auto ugr = stack_detail::interop_get<T>(L, index, memory, tracking); if (ugr.first) { return ugr.second; } #endif // interop extensibility tracking.use(1); void* rawdata = detail::align_usertype_pointer(memory); void** pudata = static_cast<void**>(rawdata); void* udata = *pudata; return get_no_lua_nil_from(L, udata, index, tracking); } static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) { bool has_derived = derive<T>::value || weak_derive<T>::value; if (has_derived) { if (lua_getmetatable(L, index) == 1) { lua_getfield(L, -1, &detail::base_class_cast_key()[0]); if (type_of(L, -1) != type::lua_nil) { void* basecastdata = lua_touserdata(L, -1); detail::inheritance_cast_function ic = reinterpret_cast<detail::inheritance_cast_function>(basecastdata); // use the casting function to properly adjust the pointer for the desired T udata = ic(udata, usertype_traits<T>::qualified_name()); } lua_pop(L, 2); } } T* obj = static_cast<T*>(udata); return obj; } static T& get(lua_State* L, int index, record& tracking) { return *get_no_lua_nil(L, index, tracking); } }; template <typename T> struct unqualified_getter<detail::as_pointer_tag<T>> { static T* get(lua_State* L, int index, record& tracking) { type t = type_of(L, index); if (t == type::lua_nil) { tracking.use(1); return nullptr; } unqualified_getter<detail::as_value_tag<T>> g; // Avoid VC++ warning (void)g; return g.get_no_lua_nil(L, index, tracking); } }; template <typename T> struct unqualified_getter<non_null<T*>> { static T* get(lua_State* L, int index, record& tracking) { unqualified_getter<detail::as_value_tag<T>> g; // Avoid VC++ warning (void)g; return g.get_no_lua_nil(L, index, tracking); } }; template <typename T> struct unqualified_getter<T&> { static T& get(lua_State* L, int index, record& tracking) { unqualified_getter<detail::as_value_tag<T>> g; // Avoid VC++ warning (void)g; return g.get(L, index, tracking); } }; template <typename T> struct unqualified_getter<std::reference_wrapper<T>> { static T& get(lua_State* L, int index, record& tracking) { unqualified_getter<T&> g; // Avoid VC++ warning (void)g; return g.get(L, index, tracking); } }; template <typename T> struct unqualified_getter<T*> { static T* get(lua_State* L, int index, record& tracking) { unqualified_getter<detail::as_pointer_tag<T>> g; // Avoid VC++ warning (void)g; return g.get(L, index, tracking); } }; template <typename... Tn> struct unqualified_getter<std::tuple<Tn...>> { typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R; template <typename... Args> static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args) { // Fuck you too, VC++ return R{ std::forward<Args>(args)... }; } template <std::size_t I, std::size_t... Ix, typename... Args> static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args) { // Fuck you too, VC++ typedef std::tuple_element_t<I, std::tuple<Tn...>> T; return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., stack::get<T>(L, index + tracking.used, tracking)); } static R get(lua_State* L, int index, record& tracking) { return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking); } }; template <typename A, typename B> struct unqualified_getter<std::pair<A, B>> { static decltype(auto) get(lua_State* L, int index, record& tracking) { return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))>{ stack::get<A>(L, index, tracking), stack::get<B>(L, index + tracking.used, tracking) }; } }; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT template <typename... Tn> struct unqualified_getter<std::variant<Tn...>> { using V = std::variant<Tn...>; static V get_one(std::integral_constant<std::size_t, std::variant_size_v<V>>, lua_State* L, int index, record& tracking) { (void)L; (void)index; (void)tracking; if constexpr (std::variant_size_v<V> == 0) { return V(); } else { //using T = std::variant_alternative_t<0, V>; std::abort(); //return V(std::in_place_index<0>, stack::get<T>(L, index, tracking)); } } template <std::size_t I> static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking) { typedef std::variant_alternative_t<I, V> T; record temp_tracking = tracking; if (stack::check<T>(L, index, no_panic, temp_tracking)) { tracking = temp_tracking; return V(std::in_place_index<I>, stack::get<T>(L, index)); } return get_one(std::integral_constant<std::size_t, I + 1>(), L, index, tracking); } static V get(lua_State* L, int index, record& tracking) { return get_one(std::integral_constant<std::size_t, 0>(), L, index, tracking); } }; #endif // SOL_STD_VARIANT #endif // SOL_CXX17_FEATURES }} // namespace sol::stack // end of sol/stack_get_unqualified.hpp // beginning of sol/stack_get_qualified.hpp namespace sol { namespace stack { // There are no more enable_ifs that can be used here, // so this is just for posterity, I guess? // maybe I'll fill this file in later. } } // namespace sol::stack // end of sol/stack_get_qualified.hpp // end of sol/stack_get.hpp // beginning of sol/stack_check_get.hpp // beginning of sol/stack_check_get_unqualified.hpp #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT #endif // variant #endif // C++17 namespace sol { namespace stack { template <typename T, typename> struct unqualified_check_getter { typedef decltype(stack_detail::unchecked_unqualified_get<T>(nullptr, -1, std::declval<record&>())) R; template <typename Handler> static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (!meta::meta_detail::is_adl_sol_lua_check_v<T> && !meta::meta_detail::is_adl_sol_lua_get_v<T>) { if constexpr (is_lua_reference_v<T>) { // actually check if it's none here, otherwise // we'll have a none object inside an optional! bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic); if (!success) { // expected type, actual type tracking.use(static_cast<int>(success)); handler(L, index, type::poly, type_of(L, index), ""); return nullopt; } return stack_detail::unchecked_get<T>(L, index, tracking); } else if constexpr ((std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) && !std::is_same_v<T, bool>) { #if SOL_LUA_VERSION >= 503 if (lua_isinteger(L, index) != 0) { tracking.use(1); return static_cast<T>(lua_tointeger(L, index)); } #endif int isnum = 0; const lua_Number value = lua_tonumberx(L, index, &isnum); if (isnum != 0) { #if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) const auto integer_value = llround(value); if (static_cast<lua_Number>(integer_value) == value) { tracking.use(1); return static_cast<T>(integer_value); } #else tracking.use(1); return static_cast<T>(value); #endif } const type t = type_of(L, index); tracking.use(static_cast<int>(t != type::none)); handler(L, index, type::number, t, "not an integer"); return nullopt; } else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) { int isnum = 0; lua_Number value = lua_tonumberx(L, index, &isnum); if (isnum == 0) { type t = type_of(L, index); tracking.use(static_cast<int>(t != type::none)); handler(L, index, type::number, t, "not a valid floating point number"); return nullopt; } tracking.use(1); return static_cast<T>(value); } else if constexpr (std::is_enum_v<T> && !meta::any_same_v<T, meta_function, type>) { int isnum = 0; lua_Integer value = lua_tointegerx(L, index, &isnum); if (isnum == 0) { type t = type_of(L, index); tracking.use(static_cast<int>(t != type::none)); handler(L, index, type::number, t, "not a valid enumeration value"); return nullopt; } tracking.use(1); return static_cast<T>(value); } else { if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) { tracking.use(static_cast<int>(!lua_isnone(L, index))); return nullopt; } return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); } } else { if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) { tracking.use(static_cast<int>(!lua_isnone(L, index))); return nullopt; } return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); } } }; template <typename T> struct unqualified_getter<optional<T>> { static decltype(auto) get(lua_State* L, int index, record& tracking) { return stack::unqualified_check_get<T>(L, index, no_panic, tracking); } }; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename T> struct unqualified_getter<std::optional<T>> { static std::optional<T> get(lua_State* L, int index, record& tracking) { if (!unqualified_check<T>(L, index, no_panic)) { tracking.use(static_cast<int>(!lua_isnone(L, index))); return std::nullopt; } return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); } }; #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT template <typename... Tn, typename C> struct unqualified_check_getter<std::variant<Tn...>, C> { typedef std::variant<Tn...> V; typedef std::variant_size<V> V_size; typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; template <typename Handler> static optional<V> get_empty(std::true_type, lua_State*, int, Handler&&, record&) { return nullopt; } template <typename Handler> static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record&) { // This should never be reached... // please check your code and understand what you did to bring yourself here // maybe file a bug report, or 5 handler(L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong"); return nullopt; } template <typename Handler> static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) { return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking); } template <std::size_t I, typename Handler> static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) { typedef std::variant_alternative_t<I - 1, V> T; if (stack::check<T>(L, index, no_panic, tracking)) { return V(std::in_place_index<I - 1>, stack::get<T>(L, index)); } return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking); } template <typename Handler> static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking) { return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking); } }; #endif // SOL_STD_VARIANT #endif // SOL_CXX17_FEATURES } } // namespace sol::stack // end of sol/stack_check_get_unqualified.hpp // beginning of sol/stack_check_get_qualified.hpp namespace sol { namespace stack { template <typename T, typename C> struct qualified_check_getter { typedef decltype(stack_detail::unchecked_get<T>(nullptr, -1, std::declval<record&>())) R; template <typename Handler> static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) { if constexpr (is_lua_reference_v<T>) { // actually check if it's none here, otherwise // we'll have a none object inside an optional! bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic); if (!success) { // expected type, actual type tracking.use(static_cast<int>(success)); handler(L, index, type::poly, type_of(L, index), ""); return nullopt; } return stack_detail::unchecked_get<T>(L, index, tracking); } else { if (!check<T>(L, index, std::forward<Handler>(handler))) { tracking.use(static_cast<int>(!lua_isnone(L, index))); return nullopt; } return stack_detail::unchecked_get<T>(L, index, tracking); } } }; template <typename T> struct qualified_getter<optional<T>> { static decltype(auto) get(lua_State* L, int index, record& tracking) { return check_get<T>(L, index, no_panic, tracking); } }; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename T> struct qualified_getter<std::optional<T>> { static std::optional<T> get(lua_State* L, int index, record& tracking) { if (!check<T>(L, index, no_panic)) { tracking.use(static_cast<int>(!lua_isnone(L, index))); return std::nullopt; } return stack_detail::unchecked_get<T>(L, index, tracking); } }; #endif // C++17 features }} // namespace sol::stack // end of sol/stack_check_get_qualified.hpp // end of sol/stack_check_get.hpp // beginning of sol/stack_push.hpp #include <cassert> #include <limits> #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT #endif // Can use variant #endif // C++17 namespace sol { namespace stack { namespace stack_detail { template <typename T> inline bool integer_value_fits(const T& value) { if constexpr (sizeof(T) < sizeof(lua_Integer) || (std::is_signed_v<T> && sizeof(T) == sizeof(lua_Integer))) { (void)value; return true; } else { auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)()); auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)()); auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)()); auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)()); return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max)); } } template <typename T> int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) { if constexpr (meta::any_same_v<std::underlying_type_t<T>, char/*, char8_t*/, char16_t, char32_t>) { if constexpr (std::is_signed_v<T>) { return stack::push(L, static_cast<std::int_least32_t>(value)); } else { return stack::push(L, static_cast<std::uint_least32_t>(value)); } } else { return stack::push(L, static_cast<std::underlying_type_t<T>>(value)); } } template <typename T> int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) { return 0; } } inline int push_environment_of(lua_State* L, int index = -1) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_environment); #endif // make sure stack doesn't overflow #if SOL_LUA_VERSION < 502 // Use lua_getfenv lua_getfenv(L, index); #else // Use upvalues as explained in Lua 5.2 and beyond's manual if (lua_getupvalue(L, index, 1) == nullptr) { push(L, lua_nil); return 1; } #endif return 1; } template <typename T> int push_environment_of(const T& target) { target.push(); return push_environment_of(target.lua_state(), -1) + 1; } template <typename T> struct unqualified_pusher<detail::as_value_tag<T>> { template <typename F, typename... Args> static int push_fx(lua_State* L, F&& f, Args&&... args) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow // Basically, we store all user-data like this: // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new // data in the first sizeof(T*) bytes, and then however many bytes it takes to // do the actual object. Things that are std::ref or plain T* are stored as // just the sizeof(T*), and nothing else. T* obj = detail::usertype_allocate<T>(L); f(); std::allocator<T> alloc{}; std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...); return 1; } template <typename K, typename... Args> static int push_keyed(lua_State* L, K&& k, Args&&... args) { stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<T>); return push_fx(L, fx, std::forward<Args>(args)...); } template <typename Arg, typename... Args> static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) { (void)arg; return push_fx(L, std::forward<Args>(args)...); } else { return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...); } } static int push(lua_State* L) { return push_keyed(L, usertype_traits<T>::metatable()); } }; template <typename T> struct unqualified_pusher<detail::as_pointer_tag<T>> { typedef meta::unqualified_t<T> U; template <typename F> static int push_fx(lua_State* L, F&& f, T* obj) { if (obj == nullptr) return stack::push(L, lua_nil); #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow T** pref = detail::usertype_allocate_pointer<T>(L); f(); *pref = obj; return 1; } template <typename K> static int push_keyed(lua_State* L, K&& k, T* obj) { stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<U*>); return push_fx(L, fx, obj); } template <typename Arg, typename... Args> static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) { (void)arg; return push_fx(L, std::forward<Args>(args)...); } else { return push_keyed(L, usertype_traits<U*>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...); } } }; template <> struct unqualified_pusher<detail::as_reference_tag> { template <typename T> static int push(lua_State* L, T&& obj) { return stack::push(L, detail::ptr(obj)); } }; namespace stack_detail { template <typename T> struct uu_pusher { using u_traits = unique_usertype_traits<T>; using P = typename u_traits::type; using Real = typename u_traits::actual_type; template <typename Arg, typename... Args> static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_base_of_v<Real, meta::unqualified_t<Arg>>) { if (u_traits::is_null(arg)) { return stack::push(L, lua_nil); } return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...); } else { return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...); } } template <typename... Args> static int push_deep(lua_State* L, Args&&... args) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow P** pref = nullptr; detail::unique_destructor* fx = nullptr; detail::unique_tag* id = nullptr; Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx, id); if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<std::remove_cv_t<P>>>::metatable()[0]) == 1) { detail::lua_reg_table l{}; int index = 0; detail::indexed_insert insert_fx(l, index); detail::insert_default_registrations<P>(insert_fx, detail::property_always_true); l[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() }; luaL_setfuncs(L, l, 0); } lua_setmetatable(L, -2); *fx = detail::usertype_unique_alloc_destroy<P, Real>; *id = &detail::inheritance<P>::template type_unique_cast<Real>; detail::default_construct::construct(mem, std::forward<Args>(args)...); *pref = unique_usertype_traits<T>::get(*mem); return 1; } }; } // namespace stack_detail template <typename T, typename> struct unqualified_pusher { template <typename... Args> static int push(lua_State* L, Args&&... args) { using Tu = meta::unqualified_t<T>; if constexpr (is_lua_reference_v<Tu>) { using int_arr = int[]; int_arr p{ (std::forward<Args>(args).push(L))... }; return p[0]; } else if constexpr (std::is_same_v<Tu, bool>) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushboolean(L, std::forward<Args>(args)...); return 1; } else if constexpr (std::is_integral_v<Tu> || std::is_same_v<Tu, lua_Integer>) { const Tu& value(std::forward<Args>(args)...); #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_integral); #endif // make sure stack doesn't overflow #if SOL_LUA_VERSION >= 503 if (stack_detail::integer_value_fits<Tu>(value)) { lua_pushinteger(L, static_cast<lua_Integer>(value)); return 1; } #endif // Lua 5.3 and above #if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) { #if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS // Is this really worth it? assert(false && "integer value will be misrepresented in lua"); lua_pushnumber(L, static_cast<lua_Number>(std::forward<Args>(args)...)); return 1; #else throw error(detail::direct_error, "integer value will be misrepresented in lua"); #endif // No Exceptions } #endif // Safe Numerics and Number Precision Check lua_pushnumber(L, static_cast<lua_Number>(value)); return 1; } else if constexpr (std::is_floating_point_v<Tu> || std::is_same_v<Tu, lua_Number>) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_floating); #endif // make sure stack doesn't overflow lua_pushnumber(L, std::forward<Args>(args)...); return 1; } else if constexpr (std::is_enum_v<Tu>) { return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward<Args>(args)...); } else if constexpr (std::is_pointer_v<Tu>) { return stack::push<detail::as_pointer_tag<std::remove_pointer_t<T>>>(L, std::forward<Args>(args)...); } else if constexpr (is_unique_usertype_v<Tu>) { stack_detail::uu_pusher<T> p; (void)p; return p.push(L, std::forward<Args>(args)...); } else { return stack::push<detail::as_value_tag<T>>(L, std::forward<Args>(args)...); } } }; template <typename T> struct unqualified_pusher<std::reference_wrapper<T>> { static int push(lua_State* L, const std::reference_wrapper<T>& t) { return stack::push(L, std::addressof(detail::deref(t.get()))); } }; template <typename T> struct unqualified_pusher<detail::as_table_tag<T>> { using has_kvp = meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>; static int push(lua_State* L, const T& tablecont) { return push(has_kvp(), std::false_type(), L, tablecont); } static int push(lua_State* L, const T& tablecont, nested_tag_t) { return push(has_kvp(), std::true_type(), L, tablecont); } static int push(std::true_type, lua_State* L, const T& tablecont) { return push(has_kvp(), std::true_type(), L, tablecont); } static int push(std::false_type, lua_State* L, const T& tablecont) { return push(has_kvp(), std::false_type(), L, tablecont); } template <bool is_nested> static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont)); lua_createtable(L, static_cast<int>(cont.size()), 0); int tableindex = lua_gettop(L); for (const auto& pair : cont) { if (is_nested) { set_field(L, pair.first, as_nested_ref(pair.second), tableindex); } else { set_field(L, pair.first, pair.second, tableindex); } } return 1; } template <bool is_nested> static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { auto& cont = detail::deref(detail::unwrap(tablecont)); lua_createtable(L, stack_detail::get_size_hint(cont), 0); int tableindex = lua_gettop(L); std::size_t index = 1; for (const auto& i : cont) { #if SOL_LUA_VERSION >= 503 int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); for (int pi = 0; pi < p; ++pi) { lua_seti(L, tableindex, static_cast<lua_Integer>(index++)); } #else #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushinteger(L, static_cast<lua_Integer>(index)); int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); if (p == 1) { ++index; lua_settable(L, tableindex); } else { int firstindex = tableindex + 1 + 1; for (int pi = 0; pi < p; ++pi) { stack::push(L, index); #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushvalue(L, firstindex); lua_settable(L, tableindex); ++index; ++firstindex; } lua_pop(L, 1 + p); } #endif // Lua Version 5.3 and others } // TODO: figure out a better way to do this...? // set_field(L, -1, cont.size()); return 1; } }; template <typename T> struct unqualified_pusher<as_table_t<T>> { static int push(lua_State* L, const T& v) { using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>; if constexpr (is_container_v<inner_t>) { return stack::push<detail::as_table_tag<T>>(L, v); } else { return stack::push(L, v); } } }; template <typename T> struct unqualified_pusher<nested<T>> { static int push(lua_State* L, const T& tablecont) { using Tu = meta::unwrap_unqualified_t<T>; using inner_t = std::remove_pointer_t<Tu>; if constexpr (is_container_v<inner_t>) { return stack::push<detail::as_table_tag<T>>(L, tablecont, nested_tag); } else { return stack::push<Tu>(L, tablecont); } } }; template <typename T> struct unqualified_pusher<std::initializer_list<T>> { static int push(lua_State* L, const std::initializer_list<T>& il) { unqualified_pusher<detail::as_table_tag<std::initializer_list<T>>> p{}; // silence annoying VC++ warning (void)p; return p.push(L, il); } }; template <> struct unqualified_pusher<lua_nil_t> { static int push(lua_State* L, lua_nil_t) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushnil(L); return 1; } }; template <> struct unqualified_pusher<stack_count> { static int push(lua_State*, stack_count st) { return st.count; } }; template <> struct unqualified_pusher<metatable_key_t> { static int push(lua_State* L, metatable_key_t) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlstring(L, "__mt", 4); return 1; } }; template <> struct unqualified_pusher<std::remove_pointer_t<lua_CFunction>> { static int push(lua_State* L, lua_CFunction func, int n = 0) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; template <> struct unqualified_pusher<lua_CFunction> { static int push(lua_State* L, lua_CFunction func, int n = 0) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE template <> struct unqualified_pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> { static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; template <> struct unqualified_pusher<detail::lua_CFunction_noexcept> { static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, func, n); return 1; } }; #endif // noexcept function type template <> struct unqualified_pusher<c_closure> { static int push(lua_State* L, c_closure cc) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushcclosure(L, cc.c_function, cc.upvalues); return 1; } }; template <typename Arg, typename... Args> struct unqualified_pusher<closure<Arg, Args...>> { template <std::size_t... I, typename T> static int push(std::index_sequence<I...>, lua_State* L, T&& c) { using f_tuple = decltype(std::forward<T>(c).upvalues); int pushcount = multi_push(L, std::get<I>(std::forward<f_tuple>(std::forward<T>(c).upvalues))...); return stack::push(L, c_closure(c.c_function, pushcount)); } template <typename T> static int push(lua_State* L, T&& c) { return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c)); } }; template <> struct unqualified_pusher<void*> { static int push(lua_State* L, void* userdata) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, userdata); return 1; } }; template <> struct unqualified_pusher<const void*> { static int push(lua_State* L, const void* userdata) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, const_cast<void*>(userdata)); return 1; } }; template <> struct unqualified_pusher<lightuserdata_value> { static int push(lua_State* L, lightuserdata_value userdata) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, userdata); return 1; } }; template <typename T> struct unqualified_pusher<light<T>> { static int push(lua_State* L, light<T> l) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, static_cast<void*>(l.value)); return 1; } }; template <typename T> struct unqualified_pusher<user<T>> { template <bool with_meta = true, typename Key, typename... Args> static int push_with(lua_State* L, Key&& name, Args&&... args) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow // A dumb pusher T* data = detail::user_allocate<T>(L); if (with_meta) { // Make sure we have a plain GC set for this data #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow if (luaL_newmetatable(L, name) != 0) { lua_CFunction cdel = detail::user_alloc_destruct<T>; lua_pushcclosure(L, cdel, 0); lua_setfield(L, -2, "__gc"); } lua_setmetatable(L, -2); } std::allocator<T> alloc{}; std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...); return 1; } template <typename Arg, typename... Args> static int push(lua_State* L, Arg&& arg, Args&&... args) { if constexpr (std::is_same_v<meta::unqualified_t<Arg>, metatable_key_t>) { const auto name = &arg[0]; return push_with<true>(L, name, std::forward<Args>(args)...); } else if constexpr (std::is_same_v<meta::unqualified_t<Arg>, no_metatable_t>) { (void)arg; const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; return push_with<false>(L, name, std::forward<Args>(args)...); } else { const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...); } } static int push(lua_State* L, const user<T>& u) { const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; return push_with(L, name, u.value); } static int push(lua_State* L, user<T>&& u) { const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; return push_with(L, name, std::move(u.value)); } static int push(lua_State* L, no_metatable_t, const user<T>& u) { const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; return push_with<false>(L, name, u.value); } static int push(lua_State* L, no_metatable_t, user<T>&& u) { const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; return push_with<false>(L, name, std::move(u.value)); } }; template <> struct unqualified_pusher<userdata_value> { static int push(lua_State* L, userdata_value data) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); #endif // make sure stack doesn't overflow void** ud = detail::usertype_allocate_pointer<void>(L); *ud = data.value; return 1; } }; template <> struct unqualified_pusher<const char*> { static int push_sized(lua_State* L, const char* str, std::size_t len) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str, len); return 1; } static int push(lua_State* L, const char* str) { if (str == nullptr) return stack::push(L, lua_nil); return push_sized(L, str, std::char_traits<char>::length(str)); } static int push(lua_State* L, const char* strb, const char* stre) { return push_sized(L, strb, stre - strb); } static int push(lua_State* L, const char* str, std::size_t len) { return push_sized(L, str, len); } }; template <> struct unqualified_pusher<char*> { static int push_sized(lua_State* L, const char* str, std::size_t len) { unqualified_pusher<const char*> p{}; (void)p; return p.push_sized(L, str, len); } static int push(lua_State* L, const char* str) { unqualified_pusher<const char*> p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char* strb, const char* stre) { unqualified_pusher<const char*> p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char* str, std::size_t len) { unqualified_pusher<const char*> p{}; (void)p; return p.push(L, str, len); } }; template <size_t N> struct unqualified_pusher<char[N]> { static int push(lua_State* L, const char (&str)[N]) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str, std::char_traits<char>::length(str)); return 1; } static int push(lua_State* L, const char (&str)[N], std::size_t sz) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str, sz); return 1; } }; template <> struct unqualified_pusher<char> { static int push(lua_State* L, char c) { const char str[2] = { c, '\0' }; return stack::push(L, str, 1); } }; template <typename Ch, typename Traits, typename Al> struct unqualified_pusher<std::basic_string<Ch, Traits, Al>> { static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str) { if constexpr (!std::is_same_v<Ch, char>) { return stack::push(L, str.data(), str.size()); } else { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str.c_str(), str.size()); return 1; } } static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str, std::size_t sz) { if constexpr (!std::is_same_v<Ch, char>) { return stack::push(L, str.data(), sz); } else { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_string); #endif // make sure stack doesn't overflow lua_pushlstring(L, str.c_str(), sz); return 1; } } }; template <typename Ch, typename Traits> struct unqualified_pusher<basic_string_view<Ch, Traits>> { static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) { return stack::push(L, sv.data(), sv.length()); } static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) { return stack::push(L, sv.data(), n); } }; template <> struct unqualified_pusher<meta_function> { static int push(lua_State* L, meta_function m) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name); #endif // make sure stack doesn't overflow const std::string& str = to_string(m); lua_pushlstring(L, str.c_str(), str.size()); return 1; } }; template <> struct unqualified_pusher<absolute_index> { static int push(lua_State* L, absolute_index ai) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushvalue(L, ai); return 1; } }; template <> struct unqualified_pusher<raw_index> { static int push(lua_State* L, raw_index ri) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushvalue(L, ri); return 1; } }; template <> struct unqualified_pusher<ref_index> { static int push(lua_State* L, ref_index ri) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_rawgeti(L, LUA_REGISTRYINDEX, ri); return 1; } }; template <> struct unqualified_pusher<const wchar_t*> { static int push(lua_State* L, const wchar_t* wstr) { return push(L, wstr, std::char_traits<wchar_t>::length(wstr)); } static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) { return push(L, wstr, wstr + sz); } static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { if constexpr (sizeof(wchar_t) == 2) { const char16_t* sb = reinterpret_cast<const char16_t*>(strb); const char16_t* se = reinterpret_cast<const char16_t*>(stre); return stack::push(L, sb, se); } else { const char32_t* sb = reinterpret_cast<const char32_t*>(strb); const char32_t* se = reinterpret_cast<const char32_t*>(stre); return stack::push(L, sb, se); } } }; template <> struct unqualified_pusher<wchar_t*> { static int push(lua_State* L, const wchar_t* str) { unqualified_pusher<const wchar_t*> p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { unqualified_pusher<const wchar_t*> p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const wchar_t* str, std::size_t len) { unqualified_pusher<const wchar_t*> p{}; (void)p; return p.push(L, str, len); } }; template <> struct unqualified_pusher<const char16_t*> { static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) { char* target = start; char32_t cp = 0; for (const char16_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf16_to_code_point(strtarget, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf8(cp); const char* utf8data = er.code_units.data(); std::memcpy(target, utf8data, er.code_units_size); target += er.code_units_size; strtarget = dr.next; } return stack::push(L, start, target); } static int push(lua_State* L, const char16_t* u16str) { return push(L, u16str, std::char_traits<char16_t>::length(u16str)); } static int push(lua_State* L, const char16_t* u16str, std::size_t sz) { return push(L, u16str, u16str + sz); } static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; // if our max string space is small enough, use SBO // right off the bat std::size_t max_possible_code_units = (stre - strb) * 4; if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, max_possible_code_units, strb, stre); } // otherwise, we must manually count/check size std::size_t needed_size = 0; for (const char16_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf16_to_code_point(strtarget, stre); auto er = unicode::code_point_to_utf8(dr.codepoint); needed_size += er.code_units_size; strtarget = dr.next; } if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, needed_size, strb, stre); } std::string u8str("", 0); u8str.resize(needed_size); char* target = &u8str[0]; return convert_into(L, target, needed_size, strb, stre); } }; template <> struct unqualified_pusher<char16_t*> { static int push(lua_State* L, const char16_t* str) { unqualified_pusher<const char16_t*> p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { unqualified_pusher<const char16_t*> p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char16_t* str, std::size_t len) { unqualified_pusher<const char16_t*> p{}; (void)p; return p.push(L, str, len); } }; template <> struct unqualified_pusher<const char32_t*> { static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) { char* target = start; char32_t cp = 0; for (const char32_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf32_to_code_point(strtarget, stre); if (dr.error != unicode::error_code::ok) { cp = unicode::unicode_detail::replacement; } else { cp = dr.codepoint; } auto er = unicode::code_point_to_utf8(cp); const char* data = er.code_units.data(); std::memcpy(target, data, er.code_units_size); target += er.code_units_size; strtarget = dr.next; } return stack::push(L, start, target); } static int push(lua_State* L, const char32_t* u32str) { return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str)); } static int push(lua_State* L, const char32_t* u32str, std::size_t sz) { return push(L, u32str, u32str + sz); } static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; // if our max string space is small enough, use SBO // right off the bat std::size_t max_possible_code_units = (stre - strb) * 4; if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, max_possible_code_units, strb, stre); } // otherwise, we must manually count/check size std::size_t needed_size = 0; for (const char32_t* strtarget = strb; strtarget < stre;) { auto dr = unicode::utf32_to_code_point(strtarget, stre); auto er = unicode::code_point_to_utf8(dr.codepoint); needed_size += er.code_units_size; strtarget = dr.next; } if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { return convert_into(L, sbo, needed_size, strb, stre); } std::string u8str("", 0); u8str.resize(needed_size); char* target = &u8str[0]; return convert_into(L, target, needed_size, strb, stre); } }; template <> struct unqualified_pusher<char32_t*> { static int push(lua_State* L, const char32_t* str) { unqualified_pusher<const char32_t*> p{}; (void)p; return p.push(L, str); } static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { unqualified_pusher<const char32_t*> p{}; (void)p; return p.push(L, strb, stre); } static int push(lua_State* L, const char32_t* str, std::size_t len) { unqualified_pusher<const char32_t*> p{}; (void)p; return p.push(L, str, len); } }; template <size_t N> struct unqualified_pusher<wchar_t[N]> { static int push(lua_State* L, const wchar_t (&str)[N]) { return push(L, str, std::char_traits<wchar_t>::length(str)); } static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) { return stack::push<const wchar_t*>(L, str, str + sz); } }; template <size_t N> struct unqualified_pusher<char16_t[N]> { static int push(lua_State* L, const char16_t (&str)[N]) { return push(L, str, std::char_traits<char16_t>::length(str)); } static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) { return stack::push<const char16_t*>(L, str, str + sz); } }; template <size_t N> struct unqualified_pusher<char32_t[N]> { static int push(lua_State* L, const char32_t (&str)[N]) { return push(L, str, std::char_traits<char32_t>::length(str)); } static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) { return stack::push<const char32_t*>(L, str, str + sz); } }; template <> struct unqualified_pusher<wchar_t> { static int push(lua_State* L, wchar_t c) { const wchar_t str[2] = { c, '\0' }; return stack::push(L, &str[0], 1); } }; template <> struct unqualified_pusher<char16_t> { static int push(lua_State* L, char16_t c) { const char16_t str[2] = { c, '\0' }; return stack::push(L, &str[0], 1); } }; template <> struct unqualified_pusher<char32_t> { static int push(lua_State* L, char32_t c) { const char32_t str[2] = { c, '\0' }; return stack::push(L, &str[0], 1); } }; template <typename... Args> struct unqualified_pusher<std::tuple<Args...>> { template <std::size_t... I, typename T> static int push(std::index_sequence<I...>, lua_State* L, T&& t) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, static_cast<int>(sizeof...(I)), detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow int pushcount = 0; (void)detail::swallow{ 0, (pushcount += stack::push(L, std::get<I>(std::forward<T>(t))), 0)... }; return pushcount; } template <typename T> static int push(lua_State* L, T&& t) { return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t)); } }; template <typename A, typename B> struct unqualified_pusher<std::pair<A, B>> { template <typename T> static int push(lua_State* L, T&& t) { int pushcount = stack::push(L, std::get<0>(std::forward<T>(t))); pushcount += stack::push(L, std::get<1>(std::forward<T>(t))); return pushcount; } }; template <typename O> struct unqualified_pusher<optional<O>> { template <typename T> static int push(lua_State* L, T&& t) { if (t == nullopt) { return stack::push(L, nullopt); } return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); } }; template <> struct unqualified_pusher<nullopt_t> { static int push(lua_State* L, nullopt_t) { return stack::push(L, lua_nil); } }; template <> struct unqualified_pusher<std::nullptr_t> { static int push(lua_State* L, std::nullptr_t) { return stack::push(L, lua_nil); } }; template <> struct unqualified_pusher<this_state> { static int push(lua_State*, const this_state&) { return 0; } }; template <> struct unqualified_pusher<this_main_state> { static int push(lua_State*, const this_main_state&) { return 0; } }; template <> struct unqualified_pusher<new_table> { static int push(lua_State* L, const new_table& nt) { lua_createtable(L, nt.sequence_hint, nt.map_hint); return 1; } }; template <typename Allocator> struct unqualified_pusher<basic_bytecode<Allocator>> { template <typename T> static int push(lua_State* L, T&& bc, const char* bytecode_name) { const auto first = bc.data(); const auto bcsize = bc.size(); // pushes either the function, or an error // if it errors, shit goes south, and people can test that upstream (void)luaL_loadbuffer(L, reinterpret_cast<const char*>(first), static_cast<std::size_t>(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name); return 1; } template <typename T> static int push(lua_State* L, T&& bc) { return push(L, std::forward<bc>(bc), "bytecode"); } }; #if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES template <typename O> struct unqualified_pusher<std::optional<O>> { template <typename T> static int push(lua_State* L, T&& t) { if (t == std::nullopt) { return stack::push(L, nullopt); } return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); } }; #if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT namespace stack_detail { struct push_function { lua_State* L; push_function(lua_State* L) : L(L) { } template <typename T> int operator()(T&& value) const { return stack::push<T>(L, std::forward<T>(value)); } }; } // namespace stack_detail template <typename... Tn> struct unqualified_pusher<std::variant<Tn...>> { static int push(lua_State* L, const std::variant<Tn...>& v) { return std::visit(stack_detail::push_function(L), v); } static int push(lua_State* L, std::variant<Tn...>&& v) { return std::visit(stack_detail::push_function(L), std::move(v)); } }; #endif // Variant because Clang is terrible #endif // C++17 Support } } // namespace sol::stack // end of sol/stack_push.hpp // beginning of sol/stack_pop.hpp namespace sol { namespace stack { template <typename T, typename> struct popper { inline static decltype(auto) pop(lua_State* L) { if constexpr (is_stack_based_v<meta::unqualified_t<T>>) { static_assert(!is_stack_based_v<meta::unqualified_t<T>>, "You cannot pop something that lives solely on the stack: it will not remain on the stack when popped and thusly will go out of " "scope!"); } else { record tracking{}; decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking); lua_pop(L, tracking.used); return r; } } }; } } // namespace sol::stack // end of sol/stack_pop.hpp // beginning of sol/stack_field.hpp namespace sol { namespace stack { template <typename T, bool global, bool raw, typename> struct field_getter { static constexpr int default_table_index = meta::conditional_t<meta::is_c_str_v<T> || (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (raw && std::is_void_v<std::remove_pointer_t<T>>), std::integral_constant<int, -1>, std::integral_constant<int, -2>> ::value; template <typename Key> void get(lua_State* L, Key&& key, int tableindex = default_table_index) { if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t> || std::is_same_v<T, create_if_nil_t>) { (void)L; (void)key; (void)tableindex; } else if constexpr (std::is_same_v<T, env_key_t>) { (void)key; #if SOL_LUA_VERSION < 502 // Use lua_setfenv lua_getfenv(L, tableindex); #else // Use upvalues as explained in Lua 5.2 and beyond's manual if (lua_getupvalue(L, tableindex, 1) == nullptr) { push(L, lua_nil); } #endif } else if constexpr (std::is_same_v<T, metatable_key_t>) { (void)key; if (lua_getmetatable(L, tableindex) == 0) push(L, lua_nil); } else if constexpr(raw) { if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) { lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key)); } #if SOL_LUA_VERSION >= 502 else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) { lua_rawgetp(L, tableindex, key); } #endif // Lua 5.3.x else { push(L, std::forward<Key>(key)); lua_rawget(L, tableindex); } } else { if constexpr (meta::is_c_str_v<T>) { if constexpr (global) { (void)tableindex; lua_getglobal(L, &key[0]); } else { lua_getfield(L, tableindex, &key[0]); } } #if SOL_LUA_VERSION >= 503 else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) { lua_geti(L, tableindex, static_cast<lua_Integer>(key)); } #endif // Lua 5.3.x else { push(L, std::forward<Key>(key)); lua_gettable(L, tableindex); } } } }; template <typename... Args, bool b, bool raw, typename C> struct field_getter<std::tuple<Args...>, b, raw, C> { template <std::size_t... I, typename Keys> void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) { get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex); void(detail::swallow { (get_field<false, raw>(L, std::get<I>(std::forward<Keys>(keys))), 0)... }); reference saved(L, -1); lua_pop(L, static_cast<int>(sizeof...(I))); saved.push(); } template <typename Keys> void get(lua_State* L, Keys&& keys) { apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1)); } template <typename Keys> void get(lua_State* L, Keys&& keys, int tableindex) { apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex); } }; template <typename A, typename B, bool b, bool raw, typename C> struct field_getter<std::pair<A, B>, b, raw, C> { template <typename Keys> void get(lua_State* L, Keys&& keys, int tableindex) { get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex); get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys))); reference saved(L, -1); lua_pop(L, static_cast<int>(2)); saved.push(); } template <typename Keys> void get(lua_State* L, Keys&& keys) { get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys))); get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys))); reference saved(L, -1); lua_pop(L, static_cast<int>(2)); saved.push(); } }; template <typename T, bool global, bool raw, typename> struct field_setter { static constexpr int default_table_index = meta::conditional_t<(meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) || (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (raw && std::is_void_v<std::remove_pointer_t<T>>), std::integral_constant<int, -2>, std::integral_constant<int, -3>> ::value; template <typename Key, typename Value> void set(lua_State* L, Key&& key, Value&& value, int tableindex = default_table_index) { if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t>) { (void)L; (void)key; (void)value; (void)tableindex; } else if constexpr (std::is_same_v<T, metatable_key_t>) { (void)key; push(L, std::forward<Value>(value)); lua_setmetatable(L, tableindex); } else if constexpr (raw) { if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) { push(L, std::forward<Value>(value)); lua_rawseti(L, tableindex, static_cast<lua_Integer>(key)); } #if SOL_LUA_VERSION >= 502 else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) { push(L, std::forward<Value>(value)); lua_rawsetp(L, tableindex, std::forward<Key>(key)); } #endif // Lua 5.2.x else { push(L, std::forward<Key>(key)); push(L, std::forward<Value>(value)); lua_rawset(L, tableindex); } } else { if constexpr (meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) { if constexpr (global) { push(L, std::forward<Value>(value)); lua_setglobal(L, &key[0]); (void)tableindex; } else { push(L, std::forward<Value>(value)); lua_setfield(L, tableindex, &key[0]); } } #if SOL_LUA_VERSION >= 503 else if constexpr(std::is_integral_v<T> && !std::is_same_v<bool, T>) { push(L, std::forward<Value>(value)); lua_seti(L, tableindex, static_cast<lua_Integer>(key)); } #endif // Lua 5.3.x else { push(L, std::forward<Key>(key)); push(L, std::forward<Value>(value)); lua_settable(L, tableindex); } } } }; template <typename... Args, bool b, bool raw, typename C> struct field_setter<std::tuple<Args...>, b, raw, C> { template <bool g, std::size_t I, typename Keys, typename Value> void apply(std::index_sequence<I>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { I < 1 ? set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value), tableindex) : set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value)); } template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value> void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { I0 < 1 ? get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), tableindex) : get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), -1); apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1); } template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value> void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex); lua_pop(L, static_cast<int>(sizeof...(I))); } template <typename Keys, typename Value> void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) { top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex); } }; template <typename A, typename B, bool b, bool raw, typename C> struct field_setter<std::pair<A, B>, b, raw, C> { template <typename Keys, typename Value> void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) { get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex); set_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)), std::forward<Value>(value), lua_gettop(L)); lua_pop(L, 1); } }; } } // namespace sol::stack // end of sol/stack_field.hpp // beginning of sol/stack_probe.hpp namespace sol { namespace stack { template <typename T, typename P, bool b, bool raw, typename> struct probe_field_getter { template <typename Key> probe get(lua_State* L, Key&& key, int tableindex = -2) { if constexpr(!b) { if (!maybe_indexable(L, tableindex)) { return probe(false, 0); } } get_field<b, raw>(L, std::forward<Key>(key), tableindex); return probe(check<P>(L), 1); } }; template <typename A, typename B, typename P, bool b, bool raw, typename C> struct probe_field_getter<std::pair<A, B>, P, b, raw, C> { template <typename Keys> probe get(lua_State* L, Keys&& keys, int tableindex = -2) { if (!b && !maybe_indexable(L, tableindex)) { return probe(false, 0); } get_field<b, raw>(L, std::get<0>(keys), tableindex); if (!maybe_indexable(L)) { return probe(false, 1); } get_field<false, raw>(L, std::get<1>(keys), tableindex); return probe(check<P>(L), 2); } }; template <typename... Args, typename P, bool b, bool raw, typename C> struct probe_field_getter<std::tuple<Args...>, P, b, raw, C> { template <std::size_t I, typename Keys> probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) { get_field<(I<1) && b, raw>(L, std::get<I>(keys), tableindex); return probe(check<P>(L), sofar); } template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys> probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) { get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex); if (!maybe_indexable(L)) { return probe(false, sofar); } return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1); } template <typename Keys> probe get(lua_State* L, Keys&& keys, int tableindex = -2) { if constexpr (!b) { if (!maybe_indexable(L, tableindex)) { return probe(false, 0); } return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex); } else { return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex); } } }; } } // namespace sol::stack // end of sol/stack_probe.hpp namespace sol { namespace detail { using typical_chunk_name_t = char[32]; inline const std::string& default_chunk_name() { static const std::string name = ""; return name; } template <std::size_t N> const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) { if (chunkname.empty()) { auto it = code.cbegin(); auto e = code.cend(); std::size_t i = 0; static const std::size_t n = N - 4; for (i = 0; i < n && it != e; ++i, ++it) { basechunkname[i] = *it; } if (it != e) { for (std::size_t c = 0; c < 3; ++i, ++c) { basechunkname[i] = '.'; } } basechunkname[i] = '\0'; return &basechunkname[0]; } else { return chunkname.c_str(); } } inline void clear_entries(stack_reference r) { stack::push(r.lua_state(), lua_nil); while (lua_next(r.lua_state(), -2)) { absolute_index key(r.lua_state(), -2); auto pn = stack::pop_n(r.lua_state(), 1); stack::set_field<false, true>(r.lua_state(), key, lua_nil, r.stack_index()); } } inline void clear_entries(const reference& registry_reference) { auto pp = stack::push_pop(registry_reference); stack_reference ref(registry_reference.lua_state(), -1); clear_entries(ref); } } // namespace detail namespace stack { namespace stack_detail { template <typename T> inline int push_as_upvalues(lua_State* L, T& item) { typedef std::decay_t<T> TValue; static const std::size_t itemsize = sizeof(TValue); static const std::size_t voidsize = sizeof(void*); static const std::size_t voidsizem1 = voidsize - 1; static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize; typedef std::array<void*, data_t_count> data_t; data_t data{ {} }; std::memcpy(&data[0], std::addressof(item), itemsize); int pushcount = 0; for (auto&& v : data) { pushcount += push(L, lightuserdata_value(v)); } return pushcount; } template <typename T> inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) { static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*); typedef std::array<void*, data_t_count> data_t; data_t voiddata{ {} }; for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) { voiddata[i] = get<lightuserdata_value>(L, upvalue_index(index++)); } return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index); } template <typename Fx, typename... Args> static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) { return std::forward<Fx>(fx)(std::forward<Args>(args)...); } template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs> static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) { return eval(types<Args...>(), std::index_sequence<Is...>(), L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)..., stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking)); } template <bool checkargs = detail::default_safe_function_calls , std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs> inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention."); if constexpr (checkargs) { argument_handler<types<R, Args...>> handler{}; multi_check<Args...>(L, start, handler); } record tracking{}; if constexpr (std::is_void_v<R>) { eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } else { return eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } } } // namespace stack_detail template <typename T> int set_ref(lua_State* L, T&& arg, int tableindex = -2) { push(L, std::forward<T>(arg)); return luaL_ref(L, tableindex); } template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs> inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { using args_indices = std::make_index_sequence<sizeof...(Args)>; if constexpr (std::is_void_v<R>) { stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } else { return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } } template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs> inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) { if constexpr(std::is_void_v<R>) { call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } else { return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } } template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs> inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) { using expected_count_t = meta::count_for_pack<lua_size, Args...>; if constexpr (std::is_void_v<R>) { call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } else { return call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...); } } template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs> inline int call_into_lua(types<Ret0, Ret...> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { if constexpr (std::is_void_v<Ret0>) { call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...); if constexpr (clean_stack) { lua_settop(L, 0); } return 0; } else { (void)tr; decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...); using R = meta::unqualified_t<decltype(r)>; using is_stack = meta::any<is_stack_based<R>, std::is_same<R, absolute_index>, std::is_same<R, ref_index>, std::is_same<R, raw_index>>; if constexpr (clean_stack && !is_stack::value) { lua_settop(L, 0); } return push_reference(L, std::forward<decltype(r)>(r)); } } template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs> inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { using traits_type = lua_bind_traits<meta::unqualified_t<Fx>>; using args_list = typename traits_type::args_list; using returns_list = typename traits_type::returns_list; return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...); } inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) { if (lua_gettop(L) < 1) { return call_syntax::dot; } luaL_getmetatable(L, key.data()); auto pn = pop_n(L, 1); if (lua_compare(L, -1, index, LUA_OPEQ) != 1) { return call_syntax::dot; } return call_syntax::colon; } inline void script(lua_State* L, lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) { lua_error(L); } } inline void script(lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) { lua_error(L); } } inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) { if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) { lua_error(L); } } inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) { #if defined(SOL_LUAJIT) && (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !(SOL_EXCEPTIONS_SAFE_PROPAGATION)) if (L == nullptr) { return; } #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushlightuserdata(L, (void*)handler); auto pn = pop_n(L, 1); luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON); #else (void)L; (void)handler; #endif } inline void luajit_exception_off(lua_State* L) { #if defined(SOL_LUAJIT) if (L == nullptr) { return; } luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF); #else (void)L; #endif } } // namespace stack } // namespace sol // end of sol/stack.hpp // beginning of sol/object.hpp // beginning of sol/make_reference.hpp namespace sol { template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T> R make_reference(lua_State* L, T&& value) { int backpedal = stack::push(L, std::forward<T>(value)); R r = stack::get<R>(L, -backpedal); if (should_pop) { lua_pop(L, backpedal); } return r; } template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args> R make_reference(lua_State* L, Args&&... args) { int backpedal = stack::push<T>(L, std::forward<Args>(args)...); R r = stack::get<R>(L, -backpedal); if (should_pop) { lua_pop(L, backpedal); } return r; } } // namespace sol // end of sol/make_reference.hpp // beginning of sol/object_base.hpp namespace sol { template <typename ref_t> class basic_object_base : public ref_t { private: using base_t = ref_t; template <typename T> decltype(auto) as_stack(std::true_type) const { return stack::get<T>(base_t::lua_state(), base_t::stack_index()); } template <typename T> decltype(auto) as_stack(std::false_type) const { base_t::push(); return stack::pop<T>(base_t::lua_state()); } template <typename T> bool is_stack(std::true_type) const { return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic); } template <typename T> bool is_stack(std::false_type) const { int r = base_t::registry_index(); if (r == LUA_REFNIL) return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false; if (r == LUA_NOREF) return false; auto pp = stack::push_pop(*this); return stack::check<T>(base_t::lua_state(), -1, no_panic); } public: basic_object_base() noexcept = default; basic_object_base(const basic_object_base&) = default; basic_object_base(basic_object_base&&) = default; basic_object_base& operator=(const basic_object_base&) = default; basic_object_base& operator=(basic_object_base&&) = default; template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler> basic_object_base(T&& arg, Args&&... args) : base_t(std::forward<T>(arg), std::forward<Args>(args)...) { } template <typename T> decltype(auto) as() const { return as_stack<T>(is_stack_based<base_t>()); } template <typename T> bool is() const { return is_stack<T>(is_stack_based<base_t>()); } }; } // namespace sol // end of sol/object_base.hpp namespace sol { template <typename base_type> class basic_object : public basic_object_base<base_type> { private: typedef basic_object_base<base_type> base_t; template <bool invert_and_pop = false> basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept : base_t(L, index) { if (invert_and_pop) { lua_pop(L, -index); } } protected: basic_object(detail::no_safety_tag, lua_nil_t n) : base_t(n) { } basic_object(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) { } basic_object(lua_State* L, detail::global_tag t) : base_t(L, t) { } basic_object(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) { } template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_object(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_object(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) { } public: basic_object() noexcept = default; template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_object(T&& r) : base_t(std::forward<T>(r)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_object(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { } basic_object(lua_nil_t r) : base_t(r) { } basic_object(const basic_object&) = default; basic_object(basic_object&&) = default; basic_object(const stack_reference& r) noexcept : basic_object(r.lua_state(), r.stack_index()) { } basic_object(stack_reference&& r) noexcept : basic_object(r.lua_state(), r.stack_index()) { } template <typename Super> basic_object(const proxy_base<Super>& r) noexcept : basic_object(r.operator basic_object()) { } template <typename Super> basic_object(proxy_base<Super>&& r) noexcept : basic_object(r.operator basic_object()) { } basic_object(lua_State* L, lua_nil_t r) noexcept : base_t(L, r) { } basic_object(lua_State* L, int index = -1) noexcept : base_t(L, index) { } basic_object(lua_State* L, absolute_index index) noexcept : base_t(L, index) { } basic_object(lua_State* L, raw_index index) noexcept : base_t(L, index) { } basic_object(lua_State* L, ref_index index) noexcept : base_t(L, index) { } template <typename T, typename... Args> basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept : basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) { } template <typename T, typename... Args> basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept : basic_object(L, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...) { } basic_object& operator=(const basic_object&) = default; basic_object& operator=(basic_object&&) = default; basic_object& operator=(const base_type& b) { base_t::operator=(b); return *this; } basic_object& operator=(base_type&& b) { base_t::operator=(std::move(b)); return *this; } template <typename Super> basic_object& operator=(const proxy_base<Super>& r) { this->operator=(r.operator basic_object()); return *this; } template <typename Super> basic_object& operator=(proxy_base<Super>&& r) { this->operator=(r.operator basic_object()); return *this; } }; template <typename T> object make_object(lua_State* L, T&& value) { return make_reference<object, true>(L, std::forward<T>(value)); } template <typename T, typename... Args> object make_object(lua_State* L, Args&&... args) { return make_reference<T, object, true>(L, std::forward<Args>(args)...); } } // namespace sol // end of sol/object.hpp // beginning of sol/function.hpp // beginning of sol/unsafe_function.hpp // beginning of sol/function_result.hpp // beginning of sol/protected_function_result.hpp // beginning of sol/proxy_base.hpp namespace sol { struct proxy_base_tag {}; namespace detail { template <typename T> using proxy_key_t = meta::conditional_t<meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>, T, std::tuple<meta::conditional_t<std::is_array_v<meta::unqualified_t<T>>, std::remove_reference_t<T>&, meta::unqualified_t<T>>>>; } template <typename Super> struct proxy_base : proxy_base_tag { operator std::string() const { const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); return super.template get<std::string>(); } template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler> operator T() const { const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); return super.template get<T>(); } template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler> operator T&() const { const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); return super.template get<T&>(); } lua_State* lua_state() const { const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); return super.lua_state(); } }; } // namespace sol // end of sol/proxy_base.hpp // beginning of sol/stack_iterator.hpp namespace sol { template <typename proxy_t, bool is_const> struct stack_iterator { typedef meta::conditional_t<is_const, const proxy_t, proxy_t> reference; typedef meta::conditional_t<is_const, const proxy_t*, proxy_t*> pointer; typedef proxy_t value_type; typedef std::ptrdiff_t difference_type; typedef std::random_access_iterator_tag iterator_category; lua_State* L; int index; int stacktop; proxy_t sp; stack_iterator() : L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()), sp() { } stack_iterator(const stack_iterator<proxy_t, true>& r) : L(r.L), index(r.index), stacktop(r.stacktop), sp(r.sp) { } stack_iterator(lua_State* luastate, int idx, int topidx) : L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) { } reference operator*() { return proxy_t(L, index); } reference operator*() const { return proxy_t(L, index); } pointer operator->() { sp = proxy_t(L, index); return &sp; } pointer operator->() const { const_cast<proxy_t&>(sp) = proxy_t(L, index); return &sp; } stack_iterator& operator++() { ++index; return *this; } stack_iterator operator++(int) { auto r = *this; this->operator++(); return r; } stack_iterator& operator--() { --index; return *this; } stack_iterator operator--(int) { auto r = *this; this->operator--(); return r; } stack_iterator& operator+=(difference_type idx) { index += static_cast<int>(idx); return *this; } stack_iterator& operator-=(difference_type idx) { index -= static_cast<int>(idx); return *this; } difference_type operator-(const stack_iterator& r) const { return index - r.index; } stack_iterator operator+(difference_type idx) const { stack_iterator r = *this; r += idx; return r; } reference operator[](difference_type idx) const { return proxy_t(L, index + static_cast<int>(idx)); } bool operator==(const stack_iterator& r) const { if (stacktop == (std::numeric_limits<int>::max)()) { return r.index == r.stacktop; } else if (r.stacktop == (std::numeric_limits<int>::max)()) { return index == stacktop; } return index == r.index; } bool operator!=(const stack_iterator& r) const { return !(this->operator==(r)); } bool operator<(const stack_iterator& r) const { return index < r.index; } bool operator>(const stack_iterator& r) const { return index > r.index; } bool operator<=(const stack_iterator& r) const { return index <= r.index; } bool operator>=(const stack_iterator& r) const { return index >= r.index; } }; template <typename proxy_t, bool is_const> inline stack_iterator<proxy_t, is_const> operator+(typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r) { return r + n; } } // namespace sol // end of sol/stack_iterator.hpp // beginning of sol/stack_proxy.hpp // beginning of sol/stack_proxy_base.hpp namespace sol { struct stack_proxy_base : public proxy_base<stack_proxy_base> { private: lua_State* L; int index; public: stack_proxy_base() : L(nullptr), index(0) { } stack_proxy_base(lua_State* L, int index) : L(L), index(index) { } template <typename T> decltype(auto) get() const { return stack::get<T>(L, stack_index()); } template <typename T> bool is() const { return stack::check<T>(L, stack_index()); } template <typename T> decltype(auto) as() const { return get<T>(); } type get_type() const noexcept { return type_of(lua_state(), stack_index()); } int push() const { return push(L); } int push(lua_State* Ls) const { lua_pushvalue(Ls, index); return 1; } lua_State* lua_state() const { return L; } int stack_index() const { return index; } }; namespace stack { template <> struct unqualified_getter<stack_proxy_base> { static stack_proxy_base get(lua_State* L, int index = -1) { return stack_proxy_base(L, index); } }; template <> struct unqualified_pusher<stack_proxy_base> { static int push(lua_State*, const stack_proxy_base& ref) { return ref.push(); } }; } // namespace stack } // namespace sol // end of sol/stack_proxy_base.hpp namespace sol { struct stack_proxy : public stack_proxy_base { public: stack_proxy() : stack_proxy_base() { } stack_proxy(lua_State* L, int index) : stack_proxy_base(L, index) { } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args); template <typename... Args> decltype(auto) operator()(Args&&... args) { return call<>(std::forward<Args>(args)...); } }; namespace stack { template <> struct unqualified_getter<stack_proxy> { static stack_proxy get(lua_State* L, int index = -1) { return stack_proxy(L, index); } }; template <> struct unqualified_pusher<stack_proxy> { static int push(lua_State*, const stack_proxy& ref) { return ref.push(); } }; } // namespace stack } // namespace sol // end of sol/stack_proxy.hpp namespace sol { struct protected_function_result : public proxy_base<protected_function_result> { private: lua_State* L; int index; int returncount; int popcount; call_status err; template <typename T> decltype(auto) tagged_get(types<optional<T>>, int index_offset) const { typedef decltype(stack::get<optional<T>>(L, index)) ret_t; int target = index + index_offset; if (!valid()) { return ret_t(nullopt); } return stack::get<optional<T>>(L, target); } template <typename T> decltype(auto) tagged_get(types<T>, int index_offset) const { int target = index + index_offset; #if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES if (!valid()) { type t = type_of(L, target); type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)"); } #endif // Check Argument Safety return stack::get<T>(L, target); } optional<error> tagged_get(types<optional<error>>, int index_offset) const { int target = index + index_offset; if (valid()) { return nullopt; } return error(detail::direct_error, stack::get<std::string>(L, target)); } error tagged_get(types<error>, int index_offset) const { int target = index + index_offset; #if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES if (valid()) { type t = type_of(L, target); type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)"); } #endif // Check Argument Safety return error(detail::direct_error, stack::get<std::string>(L, target)); } public: typedef stack_proxy reference_type; typedef stack_proxy value_type; typedef stack_proxy* pointer; typedef std::ptrdiff_t difference_type; typedef std::size_t size_type; typedef stack_iterator<stack_proxy, false> iterator; typedef stack_iterator<stack_proxy, true> const_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; protected_function_result() = default; protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept : L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) { } protected_function_result(const protected_function_result&) = default; protected_function_result& operator=(const protected_function_result&) = default; protected_function_result(protected_function_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.abandon(); } protected_function_result& operator=(protected_function_result&& o) noexcept { L = o.L; index = o.index; returncount = o.returncount; popcount = o.popcount; err = o.err; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.abandon(); return *this; } protected_function_result(const unsafe_function_result& o) = delete; protected_function_result& operator=(const unsafe_function_result& o) = delete; protected_function_result(unsafe_function_result&& o) noexcept; protected_function_result& operator=(unsafe_function_result&& o) noexcept; call_status status() const noexcept { return err; } bool valid() const noexcept { return status() == call_status::ok || status() == call_status::yielded; } template <typename T> decltype(auto) get(int index_offset = 0) const { return tagged_get(types<meta::unqualified_t<T>>(), index_offset); } type get_type(difference_type index_offset = 0) const noexcept { return type_of(L, index + static_cast<int>(index_offset)); } stack_proxy operator[](difference_type index_offset) const { return stack_proxy(L, index + static_cast<int>(index_offset)); } iterator begin() { return iterator(L, index, stack_index() + return_count()); } iterator end() { return iterator(L, stack_index() + return_count(), stack_index() + return_count()); } const_iterator begin() const { return const_iterator(L, index, stack_index() + return_count()); } const_iterator end() const { return const_iterator(L, stack_index() + return_count(), stack_index() + return_count()); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } reverse_iterator rbegin() { return std::reverse_iterator<iterator>(begin()); } reverse_iterator rend() { return std::reverse_iterator<iterator>(end()); } const_reverse_iterator rbegin() const { return std::reverse_iterator<const_iterator>(begin()); } const_reverse_iterator rend() const { return std::reverse_iterator<const_iterator>(end()); } const_reverse_iterator crbegin() const { return std::reverse_iterator<const_iterator>(cbegin()); } const_reverse_iterator crend() const { return std::reverse_iterator<const_iterator>(cend()); } lua_State* lua_state() const noexcept { return L; }; int stack_index() const noexcept { return index; }; int return_count() const noexcept { return returncount; }; int pop_count() const noexcept { return popcount; }; void abandon() noexcept { //L = nullptr; index = 0; returncount = 0; popcount = 0; err = call_status::runtime; } ~protected_function_result() { stack::remove(L, index, popcount); } }; namespace stack { template <> struct unqualified_pusher<protected_function_result> { static int push(lua_State* L, const protected_function_result& pfr) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, static_cast<int>(pfr.pop_count()), detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow int p = 0; for (int i = 0; i < pfr.pop_count(); ++i) { lua_pushvalue(L, i + pfr.stack_index()); ++p; } return p; } }; } // namespace stack } // namespace sol // end of sol/protected_function_result.hpp // beginning of sol/unsafe_function_result.hpp namespace sol { struct unsafe_function_result : public proxy_base<unsafe_function_result> { private: lua_State* L; int index; int returncount; public: typedef stack_proxy reference_type; typedef stack_proxy value_type; typedef stack_proxy* pointer; typedef std::ptrdiff_t difference_type; typedef std::size_t size_type; typedef stack_iterator<stack_proxy, false> iterator; typedef stack_iterator<stack_proxy, true> const_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; unsafe_function_result() = default; unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0) : L(Ls), index(idx), returncount(retnum) { } unsafe_function_result(const unsafe_function_result&) = default; unsafe_function_result& operator=(const unsafe_function_result&) = default; unsafe_function_result(unsafe_function_result&& o) : L(o.L), index(o.index), returncount(o.returncount) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.abandon(); } unsafe_function_result& operator=(unsafe_function_result&& o) { L = o.L; index = o.index; returncount = o.returncount; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.abandon(); return *this; } unsafe_function_result(const protected_function_result& o) = delete; unsafe_function_result& operator=(const protected_function_result& o) = delete; unsafe_function_result(protected_function_result&& o) noexcept; unsafe_function_result& operator=(protected_function_result&& o) noexcept; template <typename T> decltype(auto) get(difference_type index_offset = 0) const { return stack::get<T>(L, index + static_cast<int>(index_offset)); } type get_type(difference_type index_offset = 0) const noexcept { return type_of(L, index + static_cast<int>(index_offset)); } stack_proxy operator[](difference_type index_offset) const { return stack_proxy(L, index + static_cast<int>(index_offset)); } iterator begin() { return iterator(L, index, stack_index() + return_count()); } iterator end() { return iterator(L, stack_index() + return_count(), stack_index() + return_count()); } const_iterator begin() const { return const_iterator(L, index, stack_index() + return_count()); } const_iterator end() const { return const_iterator(L, stack_index() + return_count(), stack_index() + return_count()); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } reverse_iterator rbegin() { return std::reverse_iterator<iterator>(begin()); } reverse_iterator rend() { return std::reverse_iterator<iterator>(end()); } const_reverse_iterator rbegin() const { return std::reverse_iterator<const_iterator>(begin()); } const_reverse_iterator rend() const { return std::reverse_iterator<const_iterator>(end()); } const_reverse_iterator crbegin() const { return std::reverse_iterator<const_iterator>(cbegin()); } const_reverse_iterator crend() const { return std::reverse_iterator<const_iterator>(cend()); } call_status status() const noexcept { return call_status::ok; } bool valid() const noexcept { return status() == call_status::ok || status() == call_status::yielded; } lua_State* lua_state() const { return L; }; int stack_index() const { return index; }; int return_count() const { return returncount; }; void abandon() noexcept { //L = nullptr; index = 0; returncount = 0; } ~unsafe_function_result() { lua_pop(L, returncount); } }; namespace stack { template <> struct unqualified_pusher<unsafe_function_result> { static int push(lua_State* L, const unsafe_function_result& fr) { int p = 0; for (int i = 0; i < fr.return_count(); ++i) { lua_pushvalue(L, i + fr.stack_index()); ++p; } return p; } }; } // namespace stack } // namespace sol // end of sol/unsafe_function_result.hpp namespace sol { namespace detail { template <> struct is_speshul<unsafe_function_result> : std::true_type {}; template <> struct is_speshul<protected_function_result> : std::true_type {}; template <std::size_t I, typename... Args, typename T> stack_proxy get(types<Args...>, meta::index_value<0>, meta::index_value<I>, const T& fr) { return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); } template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler> stack_proxy get(types<Arg, Args...>, meta::index_value<N>, meta::index_value<I>, const T& fr) { return get(types<Args...>(), meta::index_value<N - 1>(), meta::index_value<I + lua_size<Arg>::value>(), fr); } } // namespace detail template <> struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {}; template <> struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {}; template <std::size_t I> stack_proxy get(const unsafe_function_result& fr) { return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); } template <std::size_t I, typename... Args> stack_proxy get(types<Args...> t, const unsafe_function_result& fr) { return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr); } template <std::size_t I> stack_proxy get(const protected_function_result& fr) { return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); } template <std::size_t I, typename... Args> stack_proxy get(types<Args...> t, const protected_function_result& fr) { return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr); } } // namespace sol // end of sol/function_result.hpp // beginning of sol/function_types.hpp // beginning of sol/function_types_core.hpp // beginning of sol/wrapper.hpp namespace sol { namespace detail { template <typename T> using array_return_type = meta::conditional_t<std::is_array<T>::value, std::add_lvalue_reference_t<T>, T>; } template <typename F, typename = void> struct wrapper { typedef lua_bind_traits<meta::unqualified_t<F>> traits_type; typedef typename traits_type::args_list args_list; typedef typename traits_type::args_list free_args_list; typedef typename traits_type::returns_list returns_list; template <typename... Args> static decltype(auto) call(F& f, Args&&... args) { return f(std::forward<Args>(args)...); } struct caller { template <typename... Args> decltype(auto) operator()(F& fx, Args&&... args) const { return call(fx, std::forward<Args>(args)...); } }; }; template <typename F> struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> { typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type; typedef typename traits_type::args_list args_list; typedef typename traits_type::args_list free_args_list; typedef typename traits_type::returns_list returns_list; template <F fx, typename... Args> static decltype(auto) invoke(Args&&... args) { return fx(std::forward<Args>(args)...); } template <typename... Args> static decltype(auto) call(F& fx, Args&&... args) { return fx(std::forward<Args>(args)...); } struct caller { template <typename... Args> decltype(auto) operator()(F& fx, Args&&... args) const { return call(fx, std::forward<Args>(args)...); } }; template <F fx> struct invoker { template <typename... Args> decltype(auto) operator()(Args&&... args) const { return invoke<fx>(std::forward<Args>(args)...); } }; }; template <typename F> struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> { typedef lua_bind_traits<meta::unqualified_t<F>> traits_type; typedef typename traits_type::object_type object_type; typedef typename traits_type::return_type return_type; typedef typename traits_type::args_list args_list; typedef types<object_type&, return_type> free_args_list; typedef typename traits_type::returns_list returns_list; template <F fx> static auto call(object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> { return mem.*fx; } template <F fx, typename Arg, typename... Args> static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...) { return mem.*fx = std::forward<Arg>(arg); } template <typename Fx> static auto call(Fx&& fx, object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> { return mem.*fx; } template <typename Fx, typename Arg, typename... Args> static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) { using actual_type = meta::unqualified_t<detail::array_return_type<decltype(mem.*fx)>>; if constexpr (std::is_array_v<actual_type>) { using std::cend; using std::cbegin; auto first = cbegin(arg); auto last = cend(arg); for (std::size_t i = 0; first != last; ++i, ++first) { (mem.*fx)[i] = *first; } } else { (mem.*fx) = std::forward<Arg>(arg); } } struct caller { template <typename Fx, typename... Args> decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const { return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...); } }; template <F fx> struct invoker { template <typename... Args> decltype(auto) operator()(Args&&... args) const { return invoke<fx>(std::forward<Args>(args)...); } }; }; template <typename F, typename R, typename O, typename... FArgs> struct member_function_wrapper { typedef O object_type; typedef lua_bind_traits<F> traits_type; typedef typename traits_type::args_list args_list; typedef types<object_type&, FArgs...> free_args_list; typedef meta::tuple_types<R> returns_list; template <F fx, typename... Args> static R invoke(O& mem, Args&&... args) { return (mem.*fx)(std::forward<Args>(args)...); } template <typename Fx, typename... Args> static R call(Fx&& fx, O& mem, Args&&... args) { return (mem.*fx)(std::forward<Args>(args)...); } struct caller { template <typename Fx, typename... Args> decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const { return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...); } }; template <F fx> struct invoker { template <typename... Args> decltype(auto) operator()(O& mem, Args&&... args) const { return invoke<fx>(mem, std::forward<Args>(args)...); } }; }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { }; #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE //noexcept has become a part of a function's type template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) & noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) & noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) && noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) && noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { }; template <typename R, typename O, typename... Args> struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { }; #endif // noexcept is part of a function's type } // namespace sol // end of sol/wrapper.hpp namespace sol { namespace function_detail { template <typename Fx, int start = 1, bool is_yielding = false> int call(lua_State* L) { Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start)); int nr = fx(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } } } // namespace sol::function_detail // end of sol/function_types_core.hpp // beginning of sol/function_types_templated.hpp // beginning of sol/call.hpp // beginning of sol/property.hpp namespace sol { namespace detail { struct no_prop {}; } template <typename R, typename W> struct property_wrapper : detail::ebco<R, 0>, detail::ebco<W, 1> { private: using read_base_t = detail::ebco<R, 0>; using write_base_t = detail::ebco<W, 1>; public: template <typename Rx, typename Wx> property_wrapper(Rx&& r, Wx&& w) : read_base_t(std::forward<Rx>(r)), write_base_t(std::forward<Wx>(w)) { } W& write() { return write_base_t::value(); } const W& write() const { return write_base_t::value(); } R& read() { return read_base_t::value(); } const R& read() const { return read_base_t::value(); } }; template <typename F, typename G> inline decltype(auto) property(F&& f, G&& g) { typedef lua_bind_traits<meta::unqualified_t<F>> left_traits; typedef lua_bind_traits<meta::unqualified_t<G>> right_traits; if constexpr (left_traits::free_arity < right_traits::free_arity) { return property_wrapper<std::decay_t<F>, std::decay_t<G>>(std::forward<F>(f), std::forward<G>(g)); } else { return property_wrapper<std::decay_t<G>, std::decay_t<F>>(std::forward<G>(g), std::forward<F>(f)); } } template <typename F> inline decltype(auto) property(F&& f) { typedef lua_bind_traits<meta::unqualified_t<F>> left_traits; if constexpr (left_traits::free_arity < 2) { return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop()); } else { return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f)); } } template <typename F> inline decltype(auto) readonly_property(F&& f) { return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop()); } template <typename F> inline decltype(auto) writeonly_property(F&& f) { return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f)); } template <typename T> struct readonly_wrapper : detail::ebco<T> { private: using base_t = detail::ebco<T>; public: using base_t::base_t; operator T&() { return base_t::value(); } operator const T&() const { return base_t::value(); } }; // Allow someone to make a member variable readonly (const) template <typename R, typename T> inline auto readonly(R T::*v) { return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v); } template <typename T> struct var_wrapper : detail::ebco<T> { private: using base_t = detail::ebco<T>; public: using base_t::base_t; }; template <typename V> inline auto var(V&& v) { typedef std::decay_t<V> T; return var_wrapper<T>(std::forward<V>(v)); } namespace meta { template <typename T> struct is_member_object : std::is_member_object_pointer<T> {}; template <typename T> struct is_member_object<readonly_wrapper<T>> : std::true_type {}; template <typename T> inline constexpr bool is_member_object_v = is_member_object<T>::value; } // namespace meta } // namespace sol // end of sol/property.hpp // beginning of sol/protect.hpp namespace sol { template <typename T> struct protect_t { T value; template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler> protect_t(Arg&& arg, Args&&... args) : value(std::forward<Arg>(arg), std::forward<Args>(args)...) { } protect_t(const protect_t&) = default; protect_t(protect_t&&) = default; protect_t& operator=(const protect_t&) = default; protect_t& operator=(protect_t&&) = default; }; template <typename T> auto protect(T&& value) { return protect_t<std::decay_t<T>>(std::forward<T>(value)); } } // namespace sol // end of sol/protect.hpp namespace sol { namespace u_detail { } // namespace u_detail namespace policy_detail { template <int I, int... In> inline void handle_policy(static_stack_dependencies<I, In...>, lua_State* L, int&) { if constexpr (sizeof...(In) == 0) { (void)L; return; } else { absolute_index ai(L, I); if (type_of(L, ai) != type::userdata) { return; } lua_createtable(L, static_cast<int>(sizeof...(In)), 0); stack_reference deps(L, -1); auto per_dep = [&L, &deps](int i) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushvalue(L, i); luaL_ref(L, deps.stack_index()); }; (void)per_dep; (void)detail::swallow{ int(), (per_dep(In), int())... }; lua_setuservalue(L, ai); } } template <int... In> inline void handle_policy(returns_self_with<In...>, lua_State* L, int& pushed) { pushed = stack::push(L, raw_index(1)); handle_policy(static_stack_dependencies<-1, In...>(), L, pushed); } inline void handle_policy(const stack_dependencies& sdeps, lua_State* L, int&) { absolute_index ai(L, sdeps.target); if (type_of(L, ai) != type::userdata) { return; } lua_createtable(L, static_cast<int>(sdeps.size()), 0); stack_reference deps(L, -1); #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, static_cast<int>(sdeps.size()), detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow for (std::size_t i = 0; i < sdeps.size(); ++i) { lua_pushvalue(L, sdeps.stack_indices[i]); luaL_ref(L, deps.stack_index()); } lua_setuservalue(L, ai); } template <typename P, meta::disable<std::is_base_of<detail::policy_base_tag, meta::unqualified_t<P>>> = meta::enabler> inline void handle_policy(P&& p, lua_State* L, int& pushed) { pushed = std::forward<P>(p)(L, pushed); } } // namespace policy_detail namespace function_detail { inline int no_construction_error(lua_State* L) { return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)"); } } // namespace function_detail namespace call_detail { template <typename R, typename W> inline auto& pick(std::true_type, property_wrapper<R, W>& f) { return f.read(); } template <typename R, typename W> inline auto& pick(std::false_type, property_wrapper<R, W>& f) { return f.write(); } template <typename T, typename List> struct void_call : void_call<T, meta::function_args_t<List>> {}; template <typename T, typename... Args> struct void_call<T, types<Args...>> { static void call(Args...) { } }; template <typename T, bool checked, bool clean_stack> struct constructor_match { T* obj_; constructor_match(T* o) : obj_(o) { } template <typename Fx, std::size_t I, typename... R, typename... Args> int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const { detail::default_construct func{}; return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj_); } }; namespace overload_detail { template <std::size_t... M, typename Match, typename... Args> inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) { return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types"); } template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args> inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; typedef meta::tuple_types<typename traits::return_type> return_types; typedef typename traits::free_args_list args_list; // compile-time eliminate any functions that we know ahead of time are of improper arity if constexpr (!traits::runtime_variadics_t::value && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) { return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } else { if constexpr (!traits::runtime_variadics_t::value) { if (traits::free_arity != fxarity) { return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } } stack::record tracking{}; if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) { return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); } } template <std::size_t... M, typename Match, typename... Args> inline int overload_match_arity_single( types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args> inline int overload_match_arity_single( types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; typedef meta::tuple_types<typename traits::return_type> return_types; typedef typename traits::free_args_list args_list; // compile-time eliminate any functions that we know ahead of time are of improper arity if constexpr (!traits::runtime_variadics_t::value && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) { return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) { return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); } template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match, typename... Args> inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; typedef meta::tuple_types<typename traits::return_type> return_types; typedef typename traits::free_args_list args_list; // compile-time eliminate any functions that we know ahead of time are of improper arity if constexpr (!traits::runtime_variadics_t::value && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) { return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } else { if constexpr (!traits::runtime_variadics_t::value) { if (traits::free_arity != fxarity) { return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } } stack::record tracking{}; if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) { return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); } } } // namespace overload_detail template <typename... Functions, typename Match, typename... Args> inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { return overload_detail::overload_match_arity_single(types<Functions...>(), std::make_index_sequence<sizeof...(Functions)>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } template <typename... Functions, typename Match, typename... Args> inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) { int fxarity = lua_gettop(L) - (start - 1); return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } template <typename T, typename... TypeLists, typename Match, typename... Args> inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { // use same overload resolution matching as all other parts of the framework return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>( std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); } template <typename T, bool checked, bool clean_stack, typename... TypeLists> inline int construct_trampolined(lua_State* L) { static const auto& meta = usertype_traits<T>::metatable(); int argcount = lua_gettop(L); call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot; argcount -= static_cast<int>(syntax); T* obj = detail::usertype_allocate<T>(L); reference userdataref(L, -1); stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>); umf(); construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax)); userdataref.push(); return 1; } template <typename T, bool checked, bool clean_stack, typename... TypeLists> inline int construct(lua_State* L) { return detail::static_trampoline<&construct_trampolined<T, checked, clean_stack, TypeLists...>>(L); } template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void> struct agnostic_lua_call_wrapper { using wrap = wrapper<meta::unqualified_t<F>>; template <typename Fx, typename... Args> static int call(lua_State* L, Fx&& f, Args&&... args) { if constexpr(is_lua_reference_v<meta::unqualified_t<Fx>>) { if constexpr (is_index) { return stack::push(L, std::forward<Fx>(f), std::forward<Args>(args)...); } else { std::forward<Fx>(f) = stack::unqualified_get<F>(L, boost + (is_variable ? 3 : 1)); return 0; } } else { using traits_type = typename wrap::traits_type; using fp_t = typename traits_type::function_pointer_type; constexpr bool is_function_pointer_convertible = std::is_class_v<meta::unqualified_t<F>> && std::is_convertible_v<std::decay_t<Fx>, fp_t>; if constexpr (is_function_pointer_convertible) { fp_t fx = f; return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call( L, fx, std::forward<Args>(args)...); } else { using returns_list = typename wrap::returns_list; using args_list = typename wrap::free_args_list; using caller = typename wrap::caller; return stack::call_into_lua<checked, clean_stack>( returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...); } } } }; template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<var_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> { template <typename F> static int call(lua_State* L, F&& f) { if constexpr (is_index) { constexpr bool is_stack = is_stack_based_v<meta::unqualified_t<decltype(detail::unwrap(f.value()))>>; if constexpr (clean_stack && !is_stack) { lua_settop(L, 0); } return stack::push_reference(L, detail::unwrap(f.value())); } else { if constexpr (std::is_const_v<meta::unwrapped_t<T>>) { return luaL_error(L, "sol: cannot write to a readonly (const) variable"); } else { using R = meta::unwrapped_t<T>; if constexpr (std::is_assignable_v<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>) { detail::unwrap(f.value()) = stack::unqualified_get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1)); if (clean_stack) { lua_settop(L, 0); } return 0; } else { return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); } } } } }; template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State* L, lua_CFunction_ref f) { return f(L); } }; template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State* L, lua_CFunction f) { return f(L); } }; #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State* L, detail::lua_CFunction_noexcept f) { return f(L); } }; #endif // noexcept function types template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<detail::no_prop, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State* L, const detail::no_prop&) { return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property"); } }; template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State* L, const no_construction&) { return function_detail::no_construction_error(L); } }; template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State*, const bases<Args...>&) { // Uh. How did you even call this, lul return 0; } }; template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State* L, std::reference_wrapper<T> f) { agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack> alcw{}; return alcw.call(L, f.get()); } }; template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0, bool clean_stack = true, typename = void> struct lua_call_wrapper { template <typename Fx, typename... Args> static int call(lua_State* L, Fx&& fx, Args&&... args) { if constexpr (std::is_member_function_pointer_v<F>) { using wrap = wrapper<F>; using object_type = typename wrap::object_type; if constexpr (sizeof...(Args) < 1) { using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>; #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE auto maybeo = stack::check_get<Ta*>(L, 1); if (!maybeo || maybeo.value() == nullptr) { return luaL_error(L, "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are " "preceeded by the " "actual object with '.' syntax)"); } object_type* o = static_cast<object_type*>(maybeo.value()); return call(L, std::forward<Fx>(fx), *o); #else object_type& o = static_cast<object_type&>(*stack::unqualified_get<non_null<Ta*>>(L, 1)); return call(L, std::forward<Fx>(fx), o); #endif // Safety } else { using returns_list = typename wrap::returns_list; using args_list = typename wrap::args_list; using caller = typename wrap::caller; return stack::call_into_lua<checked, clean_stack>( returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...); } } else if constexpr (std::is_member_object_pointer_v<F>) { using wrap = wrapper<F>; using object_type = typename wrap::object_type; if constexpr (is_index) { if constexpr (sizeof...(Args) < 1) { using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>; #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE auto maybeo = stack::check_get<Ta*>(L, 1); if (!maybeo || maybeo.value() == nullptr) { if (is_variable) { return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)"); } return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)"); } object_type* o = static_cast<object_type*>(maybeo.value()); return call(L, std::forward<Fx>(fx), *o); #else object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1)); return call(L, std::forward<Fx>(fx), o); #endif // Safety } else { using returns_list = typename wrap::returns_list; using caller = typename wrap::caller; return stack::call_into_lua<checked, clean_stack>( returns_list(), types<>(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...); } } else { using traits_type = lua_bind_traits<F>; using return_type = typename traits_type::return_type; constexpr bool is_const = std::is_const_v<std::remove_reference_t<return_type>>; if constexpr (is_const) { (void)fx; (void)detail::swallow{ 0, (static_cast<void>(args), 0)... }; return luaL_error(L, "sol: cannot write to a readonly (const) variable"); } else { using u_return_type = meta::unqualified_t<return_type>; constexpr bool is_assignable = std::is_copy_assignable_v<u_return_type> || std::is_array_v<u_return_type>; if constexpr (!is_assignable) { (void)fx; (void)detail::swallow{ 0, ((void)args, 0)... }; return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); } else { using args_list = typename wrap::args_list; using caller = typename wrap::caller; if constexpr (sizeof...(Args) > 0) { return stack::call_into_lua<checked, clean_stack>(types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...); } else { using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>; #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE auto maybeo = stack::check_get<Ta*>(L, 1); if (!maybeo || maybeo.value() == nullptr) { if (is_variable) { return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)"); } return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)"); } object_type* po = static_cast<object_type*>(maybeo.value()); object_type& o = *po; #else object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1)); #endif // Safety return stack::call_into_lua<checked, clean_stack>( types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), o); } } } } } else { agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> alcw{}; return alcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } } }; template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, readonly_wrapper<F>, is_index, is_variable, checked, boost, clean_stack, C> { using traits_type = lua_bind_traits<F>; using wrap = wrapper<F>; using object_type = typename wrap::object_type; static int call(lua_State* L, readonly_wrapper<F>&& rw) { if constexpr (!is_index) { (void)rw; return luaL_error(L, "sol: cannot write to a sol::readonly variable"); } else { lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; return lcw.call(L, std::move(rw.value())); } } static int call(lua_State* L, readonly_wrapper<F>&& rw, object_type& o) { if constexpr (!is_index) { (void)o; return call(L, std::move(rw)); } else { lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; return lcw.call(L, rw.value(), o); } } static int call(lua_State* L, const readonly_wrapper<F>& rw) { if constexpr (!is_index) { (void)rw; return luaL_error(L, "sol: cannot write to a sol::readonly variable"); } else { lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; return lcw.call(L, rw.value()); } } static int call(lua_State* L, const readonly_wrapper<F>& rw, object_type& o) { if constexpr (!is_index) { (void)o; return call(L, rw); } else { lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw; return lcw.call(L, rw.value(), o); } } }; template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> { typedef constructor_list<Args...> F; static int call(lua_State* L, F&) { const auto& meta = usertype_traits<T>::metatable(); int argcount = lua_gettop(L); call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot; argcount -= static_cast<int>(syntax); T* obj = detail::usertype_allocate<T>(L); reference userdataref(L, -1); stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>); umf(); construct_match<T, Args...>(constructor_match<T, false, clean_stack>(obj), L, argcount, boost + 1 + static_cast<int>(syntax)); userdataref.push(); return 1; } }; template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> { typedef constructor_wrapper<Cxs...> F; struct onmatch { template <typename Fx, std::size_t I, typename... R, typename... Args> int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) { const auto& meta = usertype_traits<T>::metatable(); T* obj = detail::usertype_allocate<T>(L); reference userdataref(L, -1); stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>); umf(); auto& func = std::get<I>(f.functions); stack::call_into_lua<checked, clean_stack>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj)); userdataref.push(); return 1; } }; static int call(lua_State* L, F& f) { call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1); int syntaxval = static_cast<int>(syntax); int argcount = lua_gettop(L) - syntaxval; return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f); } }; template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, C> { template <typename F> static int call(lua_State* L, F&& f) { if constexpr (std::is_void_v<Fx>) { return detail::usertype_alloc_destruct<T>(L); } else { using uFx = meta::unqualified_t<Fx>; lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{}; return lcw.call(L, std::forward<F>(f).fx); } } }; template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> { typedef overload_set<Fs...> F; struct on_match { template <typename Fx, std::size_t I, typename... R, typename... Args> int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) { auto& f = std::get<I>(fx.functions); return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f); } }; static int call(lua_State* L, F& fx) { return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx); } }; template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> { typedef factory_wrapper<Fs...> F; struct on_match { template <typename Fx, std::size_t I, typename... R, typename... Args> int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) { auto& f = std::get<I>(fx.functions); return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f); } }; static int call(lua_State* L, F& fx) { return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx); } }; template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> { typedef meta::conditional_t<is_index, R, W> P; typedef meta::unqualified_t<P> U; typedef wrapper<U> wrap; typedef lua_bind_traits<U> traits_type; typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type; template <typename F, typename... Args> static int call(lua_State* L, F&& f, Args&&... args) { constexpr bool is_specialized = meta::any< std::is_same<U, detail::no_prop>, meta::is_specialization_of<U, var_wrapper>, meta::is_specialization_of<U, constructor_wrapper>, meta::is_specialization_of<U, constructor_list>, std::is_member_pointer<U>>::value; if constexpr (is_specialized) { if constexpr (is_index) { decltype(auto) p = f.read(); lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{}; return lcw.call(L, p, std::forward<Args>(args)...); } else { decltype(auto) p = f.write(); lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{}; return lcw.call(L, p, std::forward<Args>(args)...); } } else { constexpr bool non_class_object_type = meta::any<std::is_void<object_type>, meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>::value; if constexpr (non_class_object_type) { // The type being void means we don't have any arguments, so it might be a free functions? using args_list = typename traits_type::free_args_list; using returns_list = typename wrap::returns_list; using caller = typename wrap::caller; if constexpr (is_index) { decltype(auto) pf = f.read(); return stack::call_into_lua<checked, clean_stack>( returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf); } else { decltype(auto) pf = f.write(); return stack::call_into_lua<checked, clean_stack>( returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf); } } else { using args_list = meta::pop_front_type_t<typename traits_type::free_args_list>; using Ta = T; using Oa = std::remove_pointer_t<object_type>; #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE auto maybeo = stack::check_get<Ta*>(L, 1); if (!maybeo || maybeo.value() == nullptr) { if (is_variable) { return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)"); } return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)"); } Oa* o = static_cast<Oa*>(maybeo.value()); #else Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1)); #endif // Safety using returns_list = typename wrap::returns_list; using caller = typename wrap::caller; if constexpr (is_index) { decltype(auto) pf = f.read(); return stack::call_into_lua<checked, clean_stack>( returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o)); } else { decltype(auto) pf = f.write(); return stack::call_into_lua<checked, clean_stack>( returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o)); } } } } }; template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> { typedef protect_t<V> F; template <typename... Args> static int call(lua_State* L, F& fx, Args&&... args) { return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...); } }; template <typename T, typename F, typename... Policies, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, policy_wrapper<F, Policies...>, is_index, is_variable, checked, boost, clean_stack, C> { typedef policy_wrapper<F, Policies...> P; template <std::size_t... In> static int call(std::index_sequence<In...>, lua_State* L, P& fx) { int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value); (void)detail::swallow{ int(), (policy_detail::handle_policy(std::get<In>(fx.policies), L, pushed), int())... }; return pushed; } static int call(lua_State* L, P& fx) { typedef typename P::indices indices; return call(indices(), L, fx); } }; template <typename T, typename Y, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, yielding_t<Y>, is_index, is_variable, checked, boost, clean_stack, C> { template <typename F> static int call(lua_State* L, F&& f) { return lua_call_wrapper<T, meta::unqualified_t<Y>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.func); } }; template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> { static int call(lua_State* L, const function_arguments<Sig, P>& f) { lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{}; return lcw.call(L, std::get<0>(f.arguments)); } static int call(lua_State* L, function_arguments<Sig, P>&& f) { lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{}; return lcw.call(L, std::get<0>(std::move(f.arguments))); } }; template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... Args> inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) { using uFx = meta::unqualified_t<Fx>; if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) { using real_fx = meta::unqualified_t<decltype(std::forward<Fx>(fx).func)>; lua_call_wrapper<T, real_fx, is_index, is_variable, checked, boost, clean_stack> lcw{}; int nr = lcw.call(L, std::forward<Fx>(fx).func, std::forward<Args>(args)...); return lua_yield(L, nr); } else { lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{}; return lcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } } template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls, bool clean_stack = true> inline int call_user(lua_State* L) { auto& fx = stack::unqualified_get<user<F>>(L, upvalue_index(start)); return call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx); } template <typename T, typename = void> struct is_var_bind : std::false_type {}; template <typename T> struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {}; template <typename T> struct is_var_bind<T, std::enable_if_t<is_lua_reference_or_proxy<T>::value>> : std::true_type {}; template <> struct is_var_bind<detail::no_prop> : std::true_type {}; template <typename R, typename W> struct is_var_bind<property_wrapper<R, W>> : std::true_type {}; template <typename T> struct is_var_bind<var_wrapper<T>> : std::true_type {}; template <typename T> struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {}; template <typename F, typename... Policies> struct is_var_bind<policy_wrapper<F, Policies...>> : is_var_bind<meta::unqualified_t<F>> {}; } // namespace call_detail template <typename T> struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {}; template <typename T> using is_var_wrapper = meta::is_specialization_of<T, var_wrapper>; template <typename T> struct is_function_binding : meta::neg<is_variable_binding<T>> {}; } // namespace sol // end of sol/call.hpp namespace sol { namespace function_detail { template <typename F, F fx> inline int call_wrapper_variable(std::false_type, lua_State* L) { typedef meta::bind_traits<meta::unqualified_t<F>> traits_type; typedef typename traits_type::args_list args_list; typedef meta::tuple_types<typename traits_type::return_type> return_type; return stack::call_into_lua(return_type(), args_list(), L, 1, fx); } template <typename R, typename V, V, typename T> inline int call_set_assignable(std::false_type, T&&, lua_State* L) { return luaL_error(L, "cannot write to this type: copy assignment/constructor not available"); } template <typename R, typename V, V variable, typename T> inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) { (mem.*variable) = stack::get<R>(L, 2); return 0; } template <typename R, typename V, V, typename T> inline int call_set_variable(std::false_type, lua_State* L, T&&) { return luaL_error(L, "cannot write to a const variable"); } template <typename R, typename V, V variable, typename T> inline int call_set_variable(std::true_type, lua_State* L, T&& mem) { return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem)); } template <typename V, V variable> inline int call_wrapper_variable(std::true_type, lua_State* L) { typedef meta::bind_traits<meta::unqualified_t<V>> traits_type; typedef typename traits_type::object_type T; typedef typename traits_type::return_type R; auto& mem = stack::get<T>(L, 1); switch (lua_gettop(L)) { case 1: { decltype(auto) r = (mem.*variable); stack::push_reference(L, std::forward<decltype(r)>(r)); return 1; } case 2: return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem); default: return luaL_error(L, "incorrect number of arguments to member variable function call"); } } template <typename F, F fx> inline int call_wrapper_function(std::false_type, lua_State* L) { return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L); } template <typename F, F fx> inline int call_wrapper_function(std::true_type, lua_State* L) { return call_detail::call_wrapped<void, false, false>(L, fx); } template <typename F, F fx> int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept) { return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L); } template <typename... Fxs> struct c_call_matcher { template <typename Fx, std::size_t I, typename R, typename... Args> int operator()(types<Fx>, meta::index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const { typedef meta::at_in_pack_t<I, Fxs...> target; return target::call(L); } }; template <typename F, F fx> inline int c_call_raw(std::true_type, lua_State* L) { return fx(L); } template <typename F, F fx> inline int c_call_raw(std::false_type, lua_State* L) { #ifdef __clang__ return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>); #else return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L); #endif // fuck you clang :c } } // namespace function_detail template <typename F, F fx> inline int c_call(lua_State* L) { typedef meta::unqualified_t<F> Fu; typedef std::integral_constant<bool, std::is_same<Fu, lua_CFunction>::value #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE || std::is_same<Fu, detail::lua_CFunction_noexcept>::value #endif > is_raw; return function_detail::c_call_raw<F, fx>(is_raw(), L); } template <typename F, F f> struct wrap { typedef F type; static int call(lua_State* L) { return c_call<type, f>(L); } }; template <typename... Fxs> inline int c_call(lua_State* L) { if constexpr (sizeof...(Fxs) < 2) { using target = meta::at_in_pack_t<0, Fxs...>; return target::call(L); } else { return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1); } } } // namespace sol // end of sol/function_types_templated.hpp // beginning of sol/function_types_stateless.hpp namespace sol { namespace function_detail { template <typename Function, bool is_yielding> struct upvalue_free_function { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef meta::bind_traits<function_type> traits_type; static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L); function_type* fx = udata.first; return call_detail::call_wrapped<void, true, false>(L, fx); } static int call(lua_State* L) { int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { return call(L); } }; template <typename T, typename Function, bool is_yielding> struct upvalue_member_function { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef lua_bind_traits<function_type> traits_type; static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { // Layout: // idx 1...n: verbatim data of member function pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2)); auto& item = *static_cast<T*>(stack::get<void*>(L, upvalue_index(3))); return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item); } static int call(lua_State* L) noexcept(traits_type::is_noexcept) { int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { return call(L); } }; template <typename T, typename Function, bool is_yielding> struct upvalue_member_variable { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef lua_bind_traits<function_type> traits_type; static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { // Layout: // idx 1...n: verbatim data of member variable pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second); auto& mem = *objdata.first; function_type& var = memberdata.first; switch (lua_gettop(L)) { case 0: return call_detail::call_wrapped<T, true, false, -1>(L, var, mem); case 1: return call_detail::call_wrapped<T, false, false, -1>(L, var, mem); default: return luaL_error(L, "sol: incorrect number of arguments to member variable function"); } } static int call(lua_State* L) noexcept(traits_type::is_noexcept) { int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { return call(L); } }; template <typename T, typename Function, bool is_yielding> struct upvalue_member_variable<T, readonly_wrapper<Function>, is_yielding> { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef lua_bind_traits<function_type> traits_type; static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { // Layout: // idx 1...n: verbatim data of member variable pointer // idx n + 1: is the object's void pointer // We don't need to store the size, because the other side is templated // with the same member function pointer type auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second); auto& mem = *objdata.first; function_type& var = memberdata.first; switch (lua_gettop(L)) { case 0: return call_detail::call_wrapped<T, true, false, -1>(L, var, mem); default: return luaL_error(L, "sol: incorrect number of arguments to member variable function"); } } static int call(lua_State* L) { int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { return call(L); } }; template <typename T, typename Function, bool is_yielding> struct upvalue_this_member_function { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef lua_bind_traits<function_type> traits_type; static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { // Layout: // idx 1...n: verbatim data of member variable pointer function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2)); return call_detail::call_wrapped<T, false, false>(L, memfx); } static int call(lua_State* L) { int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { return call(L); } }; template <typename T, typename Function, bool is_yielding> struct upvalue_this_member_variable { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; static int real_call(lua_State* L) noexcept(false) { // Layout: // idx 1...n: verbatim data of member variable pointer auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); function_type& var = memberdata.first; switch (lua_gettop(L)) { case 1: return call_detail::call_wrapped<T, true, false>(L, var); case 2: return call_detail::call_wrapped<T, false, false>(L, var); default: return luaL_error(L, "sol: incorrect number of arguments to member variable function"); } } static int call(lua_State* L) { int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { return call(L); } }; template <typename T, typename Function, bool is_yielding> struct upvalue_this_member_variable<T, readonly_wrapper<Function>, is_yielding> { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef lua_bind_traits<function_type> traits_type; static int real_call(lua_State* L) noexcept(false) { // Layout: // idx 1...n: verbatim data of member variable pointer auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); function_type& var = memberdata.first; switch (lua_gettop(L)) { case 1: return call_detail::call_wrapped<T, true, false>(L, var); default: return luaL_error(L, "sol: incorrect number of arguments to member variable function"); } } static int call(lua_State* L) { int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { return call(L); } }; } } // namespace sol::function_detail // end of sol/function_types_stateless.hpp // beginning of sol/function_types_stateful.hpp namespace sol { namespace function_detail { template <typename Func, bool is_yielding, bool no_trampoline> struct functor_function { typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type; function_type fx; template <typename... Args> functor_function(function_type f, Args&&... args) : fx(std::move(f), std::forward<Args>(args)...) { } int call(lua_State* L) { int nr = call_detail::call_wrapped<void, true, false>(L, fx); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { if (!no_trampoline) { auto f = [&](lua_State*) -> int { return this->call(L); }; return detail::trampoline(L, f); } else { return call(L); } } }; template <typename T, typename Function, bool is_yielding> struct member_function { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef meta::function_return_t<function_type> return_type; typedef meta::function_args_t<function_type> args_lists; function_type invocation; T member; template <typename... Args> member_function(function_type f, Args&&... args) : invocation(std::move(f)), member(std::forward<Args>(args)...) { } int call(lua_State* L) { int nr = call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member))); if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { auto f = [&](lua_State*) -> int { return this->call(L); }; return detail::trampoline(L, f); } }; template <typename T, typename Function, bool is_yielding> struct member_variable { typedef std::remove_pointer_t<std::decay_t<Function>> function_type; typedef typename meta::bind_traits<function_type>::return_type return_type; typedef typename meta::bind_traits<function_type>::args_list args_lists; function_type var; T member; typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M; template <typename... Args> member_variable(function_type v, Args&&... args) : var(std::move(v)), member(std::forward<Args>(args)...) { } int call(lua_State* L) { int nr; { M mem = detail::unwrap(detail::deref(member)); switch (lua_gettop(L)) { case 0: nr = call_detail::call_wrapped<T, true, false, -1>(L, var, mem); break; case 1: nr = call_detail::call_wrapped<T, false, false, -1>(L, var, mem); break; default: nr = luaL_error(L, "sol: incorrect number of arguments to member variable function"); break; } } if (is_yielding) { return lua_yield(L, nr); } else { return nr; } } int operator()(lua_State* L) { auto f = [&](lua_State*) -> int { return this->call(L); }; return detail::trampoline(L, f); } }; } } // namespace sol::function_detail // end of sol/function_types_stateful.hpp // beginning of sol/function_types_overloaded.hpp namespace sol { namespace function_detail { template <int start_skew, typename... Functions> struct overloaded_function { typedef std::tuple<Functions...> overload_list; typedef std::make_index_sequence<sizeof...(Functions)> indices; overload_list overloads; overloaded_function(overload_list set) : overloads(std::move(set)) { } overloaded_function(Functions... fxs) : overloads(fxs...) { } template <typename Fx, std::size_t I, typename... R, typename... Args> static int call(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, overload_list& ol) { auto& func = std::get<I>(ol); int nr = call_detail::call_wrapped<void, true, false, start_skew>(L, func); return nr; } int operator()(lua_State* L) { auto mfx = [](auto&&... args) { return call(std::forward<decltype(args)>(args)...); }; return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew, overloads); } }; } } // namespace sol::function_detail // end of sol/function_types_overloaded.hpp // beginning of sol/resolve.hpp namespace sol { #ifndef __clang__ // constexpr is fine for not-clang namespace detail { template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>> inline constexpr auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) { using Sig = R(Args...); typedef meta::unqualified_t<F> Fu; return static_cast<Sig Fu::*>(&Fu::operator()); } template <typename F, typename U = meta::unqualified_t<F>> inline constexpr auto resolve_f(std::true_type, F&& f) -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) { return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)); } template <typename F> inline constexpr void resolve_f(std::false_type, F&&) { static_assert(meta::has_deducible_signature<F>::value, "Cannot use no-template-parameter call with an overloaded functor: specify the signature"); } template <typename F, typename U = meta::unqualified_t<F>> inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) { return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f)); } template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>> inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) { return resolve_i(types<R(Args...)>(), std::forward<F>(f)); } template <typename Sig, typename C> inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) { return mem_func_ptr; } template <typename Sig, typename C> inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) { return mem_variable_ptr; } } // namespace detail template <typename... Args, typename R> inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) { return fun_ptr; } template <typename Sig> inline constexpr Sig* resolve(Sig* fun_ptr) { return fun_ptr; } template <typename... Args, typename R, typename C> inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) { return mem_ptr; } template <typename Sig, typename C> inline constexpr Sig C::*resolve(Sig C::*mem_ptr) { return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr); } template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler> inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) { return detail::resolve_i(types<Sig...>(), std::forward<F>(f)); } #else // Clang has distinct problems with constexpr arguments, // so don't use the constexpr versions inside of clang. namespace detail { template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>> inline auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) { using Sig = R(Args...); typedef meta::unqualified_t<F> Fu; return static_cast<Sig Fu::*>(&Fu::operator()); } template <typename F, typename U = meta::unqualified_t<F>> inline auto resolve_f(std::true_type, F&& f) -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) { return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)); } template <typename F> inline void resolve_f(std::false_type, F&&) { static_assert(meta::has_deducible_signature<F>::value, "Cannot use no-template-parameter call with an overloaded functor: specify the signature"); } template <typename F, typename U = meta::unqualified_t<F>> inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) { return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f)); } template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>> inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) { return resolve_i(types<R(Args...)>(), std::forward<F>(f)); } template <typename Sig, typename C> inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) { return mem_func_ptr; } template <typename Sig, typename C> inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) { return mem_variable_ptr; } } // namespace detail template <typename... Args, typename R> inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) { return fun_ptr; } template <typename Sig> inline Sig* resolve(Sig* fun_ptr) { return fun_ptr; } template <typename... Args, typename R, typename C> inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) { return mem_ptr; } template <typename Sig, typename C> inline Sig C::*resolve(Sig C::*mem_ptr) { return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr); } template <typename... Sig, typename F> inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) { return detail::resolve_i(types<Sig...>(), std::forward<F>(f)); } #endif } // namespace sol // end of sol/resolve.hpp namespace sol { namespace function_detail { template <typename T> struct class_indicator { using type = T; }; struct call_indicator {}; template <bool yielding> int lua_c_wrapper(lua_State* L) { lua_CFunction cf = lua_tocfunction(L, lua_upvalueindex(2)); int nr = cf(L); if constexpr (yielding) { return lua_yield(L, nr); } else { return nr; } } template <bool yielding> int lua_c_noexcept_wrapper(lua_State* L) noexcept { detail::lua_CFunction_noexcept cf = reinterpret_cast<detail::lua_CFunction_noexcept>(lua_tocfunction(L, lua_upvalueindex(2))); int nr = cf(L); if constexpr (yielding) { return lua_yield(L, nr); } else { return nr; } } struct c_function_invocation {}; template <bool is_yielding, typename Fx, typename... Args> void select(lua_State* L, Fx&& fx, Args&&... args); template <bool is_yielding, typename Fx, typename... Args> void select_set_fx(lua_State* L, Args&&... args) { lua_CFunction freefunc = detail::static_trampoline<function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...); stack::push(L, c_closure(freefunc, upvalues)); } template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args> void select_convertible(types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) { using dFx = std::decay_t<meta::unwrap_unqualified_t<Fx>>; using fx_ptr_t = R (*)(A...); constexpr bool is_convertible = std::is_convertible_v<dFx, fx_ptr_t>; if constexpr (is_convertible) { fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx)); select<is_yielding>(L, std::move(fxptr), std::forward<Args>(args)...); } else { using F = function_detail::functor_function<dFx, is_yielding, true>; select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } } template <bool is_yielding, typename Fx, typename... Args> void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) { typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig; select_convertible<is_yielding>(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); } template <bool is_yielding, typename Fx, typename... Args> void select_member_variable(lua_State* L, Fx&& fx, Args&&... args) { using uFx = meta::unqualified_t<Fx>; if constexpr (sizeof...(Args) < 1) { using C = typename meta::bind_traits<uFx>::object_type; lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::stack_detail::push_as_upvalues(L, fx); stack::push(L, c_closure(freefunc, upvalues)); } else if constexpr (sizeof...(Args) < 2) { using Tu = typename meta::meta_detail::unqualified_non_alias<Args...>::type; constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>; if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) { lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<typename Tu::type, Fx, is_yielding>::call; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::stack_detail::push_as_upvalues(L, fx); stack::push(L, c_closure(freefunc, upvalues)); } else if constexpr (is_reference) { typedef std::decay_t<Fx> dFx; dFx memfxptr(std::forward<Fx>(fx)); auto userptr = detail::ptr(std::forward<Args>(args)...); lua_CFunction freefunc = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr); upvalues += stack::push(L, static_cast<void const*>(userptr)); stack::push(L, c_closure(freefunc, upvalues)); } else { using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>; using F = function_detail::member_variable<Tu, clean_fx, is_yielding>; select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } } else { using C = typename meta::bind_traits<uFx>::object_type; using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>; using F = function_detail::member_variable<C, clean_fx, is_yielding>; select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } } template <bool is_yielding, typename Fx, typename T, typename... Args> void select_member_function_with(lua_State* L, Fx&& fx, T&& obj, Args&&... args) { using dFx = std::decay_t<Fx>; using Tu = meta::unqualified_t<T>; if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) { (void)obj; using C = typename Tu::type; lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); stack::push(L, c_closure(freefunc, upvalues)); } else { constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>; if constexpr (is_reference) { auto userptr = detail::ptr(std::forward<T>(obj)); lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, dFx, is_yielding>::call; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr))); stack::push(L, c_closure(freefunc, upvalues)); } else { using F = function_detail::member_function<Tu, dFx, is_yielding>; select_set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...); } } } template <bool is_yielding, typename Fx, typename... Args> void select_member_function(lua_State* L, Fx&& fx, Args&&... args) { using dFx = std::decay_t<Fx>; if constexpr (sizeof...(Args) < 1) { using C = typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type; lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx)); stack::push(L, c_closure(freefunc, upvalues)); } else { select_member_function_with<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } } template <bool is_yielding, typename Fx, typename... Args> void select(lua_State* L, Fx&& fx, Args&&... args) { using uFx = meta::unqualified_t<Fx>; if constexpr (is_lua_reference_v<uFx>) { // TODO: hoist into lambda in this case for yielding??? stack::push(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } else if constexpr (is_lua_c_function_v<uFx>) { int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push(L, std::forward<Fx>(fx)); #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE if constexpr (std::is_nothrow_invocable_r_v<int, uFx, lua_State*>) { detail::lua_CFunction_noexcept cf = &lua_c_noexcept_wrapper<is_yielding>; lua_pushcclosure(L, reinterpret_cast<lua_CFunction>(cf), 2); } else { lua_CFunction cf = &lua_c_wrapper<is_yielding>; lua_pushcclosure(L, cf, 2); } #else lua_CFunction cf = &function_detail::lua_c_wrapper<is_yielding>; lua_pushcclosure(L, cf, 2); #endif } else if constexpr (std::is_function_v<std::remove_pointer_t<uFx>>) { std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...); lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx, is_yielding>::call; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::stack_detail::push_as_upvalues(L, target); stack::push(L, c_closure(freefunc, upvalues)); } else if constexpr (std::is_member_function_pointer_v<uFx>) { select_member_function<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } else if constexpr (meta::is_member_object_v<uFx>) { select_member_variable<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); } else { select_convertible<is_yielding>(types<>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); } } } // namespace function_detail namespace stack { template <typename... Sigs> struct unqualified_pusher<function_sig<Sigs...>> { template <bool is_yielding, typename Arg0, typename... Args> static int push(lua_State* L, Arg0&& arg0, Args&&... args) { if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, std::function>) { if constexpr (is_yielding) { return stack::push<meta::unqualified_t<Arg0>>(L, detail::yield_tag, std::forward<Arg0>(arg0), std::forward<Args>(args)...); } else { return stack::push(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...); } } else { function_detail::select<is_yielding>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...); return 1; } } template <typename Arg0, typename... Args> static int push(lua_State* L, Arg0&& arg0, Args&&... args) { if constexpr (std::is_same_v<meta::unqualified_t<Arg0>, detail::yield_tag_t>) { push<true>(L, std::forward<Args>(args)...); } else { push<false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...); } return 1; } }; template <typename T> struct unqualified_pusher<yielding_t<T>> { template <typename... Args> static int push(lua_State* L, const yielding_t<T>& f, Args&&... args) { if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) { return stack::push<T>(L, detail::yield_tag, f.func, std::forward<Args>(args)...); } else { function_detail::select<true>(L, f.func, std::forward<Args>(args)...); return 1; } } template <typename... Args> static int push(lua_State* L, yielding_t<T>&& f, Args&&... args) { if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) { return stack::push<T>(L, detail::yield_tag, std::move(f.func), std::forward<Args>(args)...); } else { function_detail::select<true>(L, std::move(f.func), std::forward<Args>(args)...); return 1; } } }; template <typename T, typename... Args> struct unqualified_pusher<function_arguments<T, Args...>> { template <std::size_t... I, typename FP> static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) { return stack::push<T>(L, std::get<I>(std::forward<FP>(fp).arguments)...); } static int push(lua_State* L, const function_arguments<T, Args...>& fp) { return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp); } static int push(lua_State* L, function_arguments<T, Args...>&& fp) { return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp)); } }; template <typename Signature> struct unqualified_pusher<std::function<Signature>> { static int push(lua_State* L, detail::yield_tag_t, const std::function<Signature>& fx) { if (fx) { function_detail::select<true>(L, fx); return 1; } return stack::push(L, lua_nil); } static int push(lua_State* L, detail::yield_tag_t, std::function<Signature>&& fx) { if (fx) { function_detail::select<true>(L, std::move(fx)); return 1; } return stack::push(L, lua_nil); } static int push(lua_State* L, const std::function<Signature>& fx) { if (fx) { function_detail::select<false>(L, fx); return 1; } return stack::push(L, lua_nil); } static int push(lua_State* L, std::function<Signature>&& fx) { if (fx) { function_detail::select<false>(L, std::move(fx)); return 1; } return stack::push(L, lua_nil); } }; template <typename Signature> struct unqualified_pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> { template <typename... Args> static int push(lua_State* L, Args&&... args) { function_detail::select<false>(L, std::forward<Args>(args)...); return 1; } }; template <typename Signature> struct unqualified_pusher<Signature, std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>> #if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE , meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>> #endif // noexcept function types >::value>> { template <typename F> static int push(lua_State* L, F&& f) { function_detail::select<false>(L, std::forward<F>(f)); return 1; } }; template <typename... Functions> struct unqualified_pusher<overload_set<Functions...>> { static int push(lua_State* L, overload_set<Functions...>&& set) { using F = function_detail::overloaded_function<0, Functions...>; function_detail::select_set_fx<false, F>(L, std::move(set.functions)); return 1; } static int push(lua_State* L, const overload_set<Functions...>& set) { using F = function_detail::overloaded_function<0, Functions...>; function_detail::select_set_fx<false, F>(L, set.functions); return 1; } }; template <typename T> struct unqualified_pusher<protect_t<T>> { static int push(lua_State* L, protect_t<T>&& pw) { lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value)); return stack::push(L, c_closure(cf, upvalues)); } static int push(lua_State* L, const protect_t<T>& pw) { lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<protect_t<T>>>(L, pw.value); return stack::push(L, c_closure(cf, upvalues)); } }; template <typename F, typename G> struct unqualified_pusher<property_wrapper<F, G>> { static int push(lua_State* L, property_wrapper<F, G>&& pw) { if constexpr (std::is_void_v<F>) { return stack::push(L, std::move(pw.write())); } else if constexpr (std::is_void_v<G>) { return stack::push(L, std::move(pw.read())); } else { return stack::push(L, overload(std::move(pw.read()), std::move(pw.write()))); } } static int push(lua_State* L, const property_wrapper<F, G>& pw) { if constexpr (std::is_void_v<F>) { return stack::push(L, pw.write); } else if constexpr (std::is_void_v<G>) { return stack::push(L, pw.read); } else { return stack::push(L, overload(pw.read, pw.write)); } } }; template <typename T> struct unqualified_pusher<var_wrapper<T>> { static int push(lua_State* L, var_wrapper<T>&& vw) { return stack::push(L, std::move(vw.value())); } static int push(lua_State* L, const var_wrapper<T>& vw) { return stack::push(L, vw.value()); } }; template <typename... Functions> struct unqualified_pusher<factory_wrapper<Functions...>> { static int push(lua_State* L, const factory_wrapper<Functions...>& fw) { using F = function_detail::overloaded_function<0, Functions...>; function_detail::select_set_fx<false, F>(L, fw.functions); return 1; } static int push(lua_State* L, factory_wrapper<Functions...>&& fw) { using F = function_detail::overloaded_function<0, Functions...>; function_detail::select_set_fx<false, F>(L, std::move(fw.functions)); return 1; } static int push(lua_State* L, const factory_wrapper<Functions...>& fw, function_detail::call_indicator) { using F = function_detail::overloaded_function<1, Functions...>; function_detail::select_set_fx<false, F>(L, fw.functions); return 1; } static int push(lua_State* L, factory_wrapper<Functions...>&& fw, function_detail::call_indicator) { using F = function_detail::overloaded_function<1, Functions...>; function_detail::select_set_fx<false, F>(L, std::move(fw.functions)); return 1; } }; template <> struct unqualified_pusher<no_construction> { static int push(lua_State* L, no_construction) { lua_CFunction cf = &function_detail::no_construction_error; return stack::push(L, cf); } static int push(lua_State* L, no_construction c, function_detail::call_indicator) { return push(L, c); } }; template <typename T> struct unqualified_pusher<detail::tagged<T, no_construction>> { static int push(lua_State* L, no_construction) { lua_CFunction cf = &function_detail::no_construction_error; return stack::push(L, cf); } static int push(lua_State* L, no_construction c, function_detail::call_indicator) { return push(L, c); } }; template <typename T, typename... Lists> struct unqualified_pusher<detail::tagged<T, constructor_list<Lists...>>> { static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) { lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>; return stack::push(L, cf); } static int push(lua_State* L, constructor_list<Lists...>) { lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>; return stack::push(L, cf); } }; template <typename L0, typename... Lists> struct unqualified_pusher<constructor_list<L0, Lists...>> { typedef constructor_list<L0, Lists...> cl_t; static int push(lua_State* L, cl_t cl) { typedef typename meta::bind_traits<L0>::return_type T; return stack::push<detail::tagged<T, cl_t>>(L, cl); } }; template <typename T, typename... Fxs> struct unqualified_pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> { static int push(lua_State* L, detail::tagged<T, constructor_wrapper<Fxs...>>&& c) { return push(L, std::move(c.value())); } static int push(lua_State* L, const detail::tagged<T, const constructor_wrapper<Fxs...>>& c) { return push(L, c.value()); } static int push(lua_State* L, constructor_wrapper<Fxs...>&& c) { lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::move(c)); return stack::push(L, c_closure(cf, upvalues)); } static int push(lua_State* L, const constructor_wrapper<Fxs...>& c) { lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, c); return stack::push(L, c_closure(cf, upvalues)); } }; template <typename F, typename... Fxs> struct unqualified_pusher<constructor_wrapper<F, Fxs...>> { static int push(lua_State* L, const constructor_wrapper<F, Fxs...>& c) { typedef typename meta::bind_traits<F>::template arg_at<0> arg0; typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T; return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, c); } static int push(lua_State* L, constructor_wrapper<F, Fxs...>&& c) { typedef typename meta::bind_traits<F>::template arg_at<0> arg0; typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T; return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, std::move(c)); } }; template <typename T> struct unqualified_pusher<detail::tagged<T, destructor_wrapper<void>>> { static int push(lua_State* L, destructor_wrapper<void>) { lua_CFunction cf = detail::usertype_alloc_destruct<T>; return stack::push(L, cf); } }; template <typename T, typename Fx> struct unqualified_pusher<detail::tagged<T, destructor_wrapper<Fx>>> { static int push(lua_State* L, destructor_wrapper<Fx>&& c) { lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c)); return stack::push(L, c_closure(cf, upvalues)); } static int push(lua_State* L, const destructor_wrapper<Fx>& c) { lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c); return stack::push(L, c_closure(cf, upvalues)); } }; template <typename Fx> struct unqualified_pusher<destructor_wrapper<Fx>> { static int push(lua_State* L, destructor_wrapper<Fx>&& c) { lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c)); return stack::push(L, c_closure(cf, upvalues)); } static int push(lua_State* L, const destructor_wrapper<Fx>& c) { lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c); return stack::push(L, c_closure(cf, upvalues)); } }; template <typename F, typename... Policies> struct unqualified_pusher<policy_wrapper<F, Policies...>> { using P = policy_wrapper<F, Policies...>; static int push(lua_State* L, const P& p) { lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<P>>(L, p); return stack::push(L, c_closure(cf, upvalues)); } static int push(lua_State* L, P&& p) { lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<P>>(L, std::move(p)); return stack::push(L, c_closure(cf, upvalues)); } }; template <typename T, typename F, typename... Policies> struct unqualified_pusher<detail::tagged<T, policy_wrapper<F, Policies...>>> { using P = policy_wrapper<F, Policies...>; using Tagged = detail::tagged<T, P>; static int push(lua_State* L, const Tagged& p) { lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<P>>(L, p.value()); return stack::push(L, c_closure(cf, upvalues)); } static int push(lua_State* L, Tagged&& p) { lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>; int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push<user<P>>(L, std::move(p.value())); return stack::push(L, c_closure(cf, upvalues)); } }; template <typename T> struct unqualified_pusher<push_invoke_t<T>> { static int push(lua_State* L, push_invoke_t<T>&& pi) { if constexpr (std::is_invocable_v<std::add_rvalue_reference_t<T>, lua_State*>) { return stack::push(L, std::move(pi.value())(L)); } else { return stack::push(L, std::move(pi.value())()); } } static int push(lua_State* L, const push_invoke_t<T>& pi) { if constexpr (std::is_invocable_v<const T, lua_State*>) { return stack::push(L, pi.value()(L)); } else { return stack::push(L, pi.value()()); } } }; } // namespace stack } // namespace sol // end of sol/function_types.hpp // beginning of sol/dump_handler.hpp namespace sol { class dump_error : public error { private: int ec_; public: dump_error(int error_code_) : error("dump returned non-zero error of " + std::to_string(error_code_)), ec_(error_code_) { } int error_code () const { return ec_; } }; inline int dump_pass_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) { (void)L; (void)writer_function; (void)userdata; (void)strip; return result_code; } inline int dump_throw_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) { (void)L; (void)writer_function; (void)userdata; (void)strip; throw dump_error(result_code); } inline int dump_panic_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) { (void)L; (void)writer_function; (void)userdata; (void)strip; return luaL_error(L, "a non-zero error code (%d) was returned by the lua_Writer for the dump function", result_code); } } // namespace sol // end of sol/dump_handler.hpp namespace sol { template <typename ref_t, bool aligned = false> class basic_function : public basic_object<ref_t> { private: using base_t = basic_object<ref_t>; void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const { lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount)); } template <std::size_t... I, typename... Ret> auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const { luacall(n, lua_size<std::tuple<Ret...>>::value); return stack::pop<std::tuple<Ret...>>(lua_state()); } template <std::size_t I, typename Ret, meta::enable<meta::neg<std::is_void<Ret>>> = meta::enabler> Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const { luacall(n, lua_size<Ret>::value); return stack::pop<Ret>(lua_state()); } template <std::size_t I> void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const { luacall(n, 0); } unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const { int stacksize = lua_gettop(lua_state()); int firstreturn = (std::max)(1, stacksize - static_cast<int>(n)); luacall(n, LUA_MULTRET); int poststacksize = lua_gettop(lua_state()); int returncount = poststacksize - (firstreturn - 1); return unsafe_function_result(lua_state(), firstreturn, returncount); } public: using base_t::lua_state; basic_function() = default; template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_function(T&& r) noexcept : base_t(std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_function<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_function>(lua_state(), -1, handler); } #endif // Safety } basic_function(const basic_function&) = default; basic_function& operator=(const basic_function&) = default; basic_function(basic_function&&) = default; basic_function& operator=(basic_function&&) = default; basic_function(const stack_reference& r) : basic_function(r.lua_state(), r.stack_index()) { } basic_function(stack_reference&& r) : basic_function(r.lua_state(), r.stack_index()) { } basic_function(lua_nil_t n) : base_t(n) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_function(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_function>(lua_state(), -1, handler); #endif // Safety } basic_function(lua_State* L, int index = -1) : base_t(L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_function>(L, index, handler); #endif // Safety } basic_function(lua_State* L, ref_index index) : base_t(L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_function>(lua_state(), -1, handler); #endif // Safety } template <typename Fx> int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const { this->push(); auto ppn = stack::push_popper_n<false>(this->lua_state(), 1); int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0); if (r != 0) { return on_error(this->lua_state(), r, writer, userdata, strip); } return r; } int dump(lua_Writer writer, void* userdata, bool strip = false) const { return dump(writer, userdata, strip, &dump_throw_on_error); } template <typename Container = bytecode> Container dump() const { Container bc; (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_panic_on_error); return bc; } template <typename Container = bytecode, typename Fx> Container dump(Fx&& on_error) const { Container bc; (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error)); return bc; } template <typename... Args> unsafe_function_result operator()(Args&&... args) const { return call<>(std::forward<Args>(args)...); } template <typename... Ret, typename... Args> decltype(auto) operator()(types<Ret...>, Args&&... args) const { return call<Ret...>(std::forward<Args>(args)...); } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args) const { if (!aligned) { base_t::push(); } int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), static_cast<std::ptrdiff_t>(pushcount)); } }; } // namespace sol // end of sol/unsafe_function.hpp // beginning of sol/protected_function.hpp // beginning of sol/protected_handler.hpp namespace sol { namespace detail { inline const char(&default_handler_name())[9]{ static const char name[9] = "sol.\xF0\x9F\x94\xA9"; return name; } template <bool b, typename target_t = reference> struct protected_handler { typedef is_stack_based<target_t> is_stack; const target_t& target; int stackindex; protected_handler(std::false_type, const target_t& target) : target(target), stackindex(0) { if (b) { stackindex = lua_gettop(target.lua_state()) + 1; target.push(); } } protected_handler(std::true_type, const target_t& target) : target(target), stackindex(0) { if (b) { stackindex = target.stack_index(); } } protected_handler(const target_t& target) : protected_handler(is_stack(), target) { } bool valid() const noexcept { return b; } ~protected_handler() { if constexpr (!is_stack::value) { if (stackindex != 0) { lua_remove(target.lua_state(), stackindex); } } } }; template <typename base_t, typename T> basic_function<base_t> force_cast(T& p) { return p; } template <typename Reference, bool is_main_ref = false> static Reference get_default_handler(lua_State* L) { if (is_stack_based<Reference>::value || L == nullptr) return Reference(L, lua_nil); L = is_main_ref ? main_thread(L, L) : L; lua_getglobal(L, default_handler_name()); auto pp = stack::pop_n(L, 1); return Reference(L, -1); } template <typename T> static void set_default_handler(lua_State* L, const T& ref) { if (L == nullptr) { return; } if (!ref.valid()) { #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); #endif // make sure stack doesn't overflow lua_pushnil(L); lua_setglobal(L, default_handler_name()); } else { ref.push(L); lua_setglobal(L, default_handler_name()); } } } // namespace detail } // namespace sol // end of sol/protected_handler.hpp namespace sol { namespace detail { template <bool b, typename handler_t> inline void handle_protected_exception(lua_State* L, optional<const std::exception&> maybe_ex, const char* error, detail::protected_handler<b, handler_t>& h) { h.stackindex = 0; if (b) { h.target.push(); detail::call_exception_handler(L, maybe_ex, error); lua_call(L, 1, 1); } else { detail::call_exception_handler(L, maybe_ex, error); } } } template <typename ref_t, bool aligned = false, typename handler_t = reference> class basic_protected_function : public basic_object<ref_t> { private: using base_t = basic_object<ref_t>; public: using is_stack_handler = is_stack_based<handler_t>; static handler_t get_default_handler(lua_State* L) { return detail::get_default_handler<handler_t, is_main_threaded<base_t>::value>(L); } template <typename T> static void set_default_handler(const T& ref) { detail::set_default_handler(ref.lua_state(), ref); } private: template <bool b> call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::protected_handler<b, handler_t>& h) const { return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex)); } template <std::size_t... I, bool b, typename... Ret> auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { luacall(n, sizeof...(Ret), h); return stack::pop<std::tuple<Ret...>>(lua_state()); } template <std::size_t I, bool b, typename Ret> Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { luacall(n, 1, h); return stack::pop<Ret>(lua_state()); } template <std::size_t I, bool b> void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { luacall(n, 0, h); } template <bool b> protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { int stacksize = lua_gettop(lua_state()); int poststacksize = stacksize; int firstreturn = 1; int returncount = 0; call_status code = call_status::ok; #if !defined(SOL_NO_EXCEPTIONS) || !SOL_NO_EXCEPTIONS #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT) try { #endif // Safe Exception Propagation #endif // No Exceptions firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid() && !is_stack_handler::value))); code = luacall(n, LUA_MULTRET, h); poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid() && !is_stack_handler::value); returncount = poststacksize - (firstreturn - 1); #ifndef SOL_NO_EXCEPTIONS #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT) } // Handle C++ errors thrown from C++ functions bound inside of lua catch (const char* error) { detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error, h); firstreturn = lua_gettop(lua_state()); return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); } catch (const std::string& error) { detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error.c_str(), h); firstreturn = lua_gettop(lua_state()); return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); } catch (const std::exception& error) { detail::handle_protected_exception(lua_state(), optional<const std::exception&>(error), error.what(), h); firstreturn = lua_gettop(lua_state()); return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); } #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) // LuaJIT cannot have the catchall when the safe propagation is on // but LuaJIT will swallow all C++ errors // if we don't at least catch std::exception ones catch (...) { detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), detail::protected_function_error, h); firstreturn = lua_gettop(lua_state()); return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); } #endif // LuaJIT #else // do not handle exceptions: they can be propogated into C++ and keep all type information / rich information #endif // Safe Exception Propagation #endif // Exceptions vs. No Exceptions return protected_function_result(lua_state(), firstreturn, returncount, returncount, code); } public: using base_t::lua_state; handler_t error_handler; basic_protected_function() = default; template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_protected_function(T&& r) noexcept : base_t(std::forward<T>(r)), error_handler(get_default_handler(r.lua_state())) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_function<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_protected_function>(lua_state(), -1, handler); } #endif // Safety } basic_protected_function(const basic_protected_function&) = default; basic_protected_function& operator=(const basic_protected_function&) = default; basic_protected_function(basic_protected_function&&) = default; basic_protected_function& operator=(basic_protected_function&&) = default; basic_protected_function(const basic_function<base_t>& b) : basic_protected_function(b, get_default_handler(b.lua_state())) { } basic_protected_function(basic_function<base_t>&& b) : basic_protected_function(std::move(b), get_default_handler(b.lua_state())) { } basic_protected_function(const basic_function<base_t>& b, handler_t eh) : base_t(b), error_handler(std::move(eh)) { } basic_protected_function(basic_function<base_t>&& b, handler_t eh) : base_t(std::move(b)), error_handler(std::move(eh)) { } basic_protected_function(const stack_reference& r) : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) { } basic_protected_function(stack_reference&& r) : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) { } basic_protected_function(const stack_reference& r, handler_t eh) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) { } basic_protected_function(stack_reference&& r, handler_t eh) : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) { } template <typename Super> basic_protected_function(const proxy_base<Super>& p) : basic_protected_function(p, get_default_handler(p.lua_state())) { } template <typename Super> basic_protected_function(proxy_base<Super>&& p) : basic_protected_function(std::move(p), get_default_handler(p.lua_state())) { } template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler> basic_protected_function(Proxy&& p, Handler&& eh) : basic_protected_function(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_protected_function(lua_State* L, T&& r) : basic_protected_function(L, std::forward<T>(r), get_default_handler(L)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_protected_function(lua_State* L, T&& r, handler_t eh) : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_protected_function>(lua_state(), -1, handler); #endif // Safety } basic_protected_function(lua_nil_t n) : base_t(n), error_handler(n) { } basic_protected_function(lua_State* L, int index = -1) : basic_protected_function(L, index, get_default_handler(L)) { } basic_protected_function(lua_State* L, int index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_protected_function>(L, index, handler); #endif // Safety } basic_protected_function(lua_State* L, absolute_index index) : basic_protected_function(L, index, get_default_handler(L)) { } basic_protected_function(lua_State* L, absolute_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_protected_function>(L, index, handler); #endif // Safety } basic_protected_function(lua_State* L, raw_index index) : basic_protected_function(L, index, get_default_handler(L)) { } basic_protected_function(lua_State* L, raw_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_protected_function>(L, index, handler); #endif // Safety } basic_protected_function(lua_State* L, ref_index index) : basic_protected_function(L, index, get_default_handler(L)) { } basic_protected_function(lua_State* L, ref_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_protected_function>(lua_state(), -1, handler); #endif // Safety } template <typename Fx> int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const { this->push(); auto ppn = stack::push_popper_n<false>(this->lua_state(), 1); int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0); if (r != 0) { return on_error(this->lua_state(), r, writer, userdata, strip); } return r; } int dump(lua_Writer writer, void* userdata, bool strip = false) const { return dump(writer, userdata, strip, &dump_pass_on_error); } template <typename Container = bytecode> Container dump() const { Container bc; (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_throw_on_error); return bc; } template <typename Container = bytecode, typename Fx> Container dump(Fx&& on_error) const { Container bc; (void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error)); return bc; } template <typename... Args> protected_function_result operator()(Args&&... args) const { return call<>(std::forward<Args>(args)...); } template <typename... Ret, typename... Args> decltype(auto) operator()(types<Ret...>, Args&&... args) const { return call<Ret...>(std::forward<Args>(args)...); } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args) const { if constexpr (!aligned) { // we do not expect the function to already be on the stack: push it if (error_handler.valid()) { detail::protected_handler<true, handler_t> h(error_handler); base_t::push(); int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); } else { detail::protected_handler<false, handler_t> h(error_handler); base_t::push(); int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); } } else { // the function is already on the stack at the right location if (error_handler.valid()) { // the handler will be pushed onto the stack manually, // since it's not already on the stack this means we need to push our own // function on the stack too and swap things to be in-place if constexpr (!is_stack_handler::value) { // so, we need to remove the function at the top and then dump the handler out ourselves base_t::push(); } detail::protected_handler<true, handler_t> h(error_handler); if constexpr (!is_stack_handler::value) { lua_replace(lua_state(), -3); h.stackindex = lua_absindex(lua_state(), -2); } int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); } else { detail::protected_handler<false, handler_t> h(error_handler); int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); } } } }; } // namespace sol // end of sol/protected_function.hpp namespace sol { template <typename... Ret, typename... Args> decltype(auto) stack_proxy::call(Args&&... args) { stack_function sf(this->lua_state(), this->stack_index()); return sf.template call<Ret...>(std::forward<Args>(args)...); } inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()), popcount(o.return_count()), err(o.status()) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.abandon(); } inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept { L = o.lua_state(); index = o.stack_index(); returncount = o.return_count(); popcount = o.return_count(); err = o.status(); // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.abandon(); return *this; } inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.abandon(); } inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept { L = o.lua_state(); index = o.stack_index(); returncount = o.return_count(); // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.abandon(); return *this; } namespace detail { template <typename... R> struct std_shim { unsafe_function lua_func_; std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) { } template <typename... Args> meta::return_type_t<R...> operator()(Args&&... args) { return lua_func_.call<R...>(std::forward<Args>(args)...); } }; template <> struct std_shim<void> { unsafe_function lua_func_; std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) { } template <typename... Args> void operator()(Args&&... args) { lua_func_.call<void>(std::forward<Args>(args)...); } }; } // namespace detail namespace stack { template <typename Signature> struct unqualified_getter<std::function<Signature>> { typedef meta::bind_traits<Signature> fx_t; typedef typename fx_t::args_list args_lists; typedef meta::tuple_types<typename fx_t::return_type> return_types; template <typename... R> static std::function<Signature> get_std_func(types<R...>, lua_State* L, int index) { detail::std_shim<R...> fx(unsafe_function(L, index)); return std::move(fx); } static std::function<Signature> get(lua_State* L, int index, record& tracking) { tracking.use(1); type t = type_of(L, index); if (t == type::none || t == type::lua_nil) { return nullptr; } return get_std_func(return_types(), L, index); } }; template <typename Allocator> struct unqualified_getter<basic_bytecode<Allocator>> { static basic_bytecode<Allocator> get(lua_State* L, int index, record& tracking) { tracking.use(1); stack_function sf(L, index); return sf.dump(&dump_panic_on_error); } }; } // namespace stack } // namespace sol // end of sol/function.hpp // beginning of sol/usertype.hpp // beginning of sol/usertype_core.hpp // beginning of sol/deprecate.hpp #ifndef SOL_DEPRECATED #ifdef _MSC_VER #define SOL_DEPRECATED __declspec(deprecated) #elif __GNUC__ #define SOL_DEPRECATED __attribute__((deprecated)) #else #define SOL_DEPRECATED [[deprecated]] #endif // compilers #endif // SOL_DEPRECATED namespace sol { namespace detail { template <typename T> struct SOL_DEPRECATED deprecate_type { using type = T; }; } } // namespace sol::detail // end of sol/deprecate.hpp // beginning of sol/usertype_container_launch.hpp // beginning of sol/usertype_container.hpp // beginning of sol/map.hpp #if defined(SOL_USE_BOOST) #endif // SOL_USE_BOOST namespace sol { namespace detail { #if defined(SOL_USE_BOOST) #if defined(SOL_CXX17_FEATURES) template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> using unordered_map = boost::unordered_map<K, V, H, E>; #else template <typename K, typename V, typename H = boost::hash<K>, typename E = std::equal_to<>> using unordered_map = boost::unordered_map<K, V, H, E>; #endif // C++17 or not, WITH boost #else template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> using unordered_map = std::unordered_map<K, V, H, E>; #endif // Boost map target } } // namespace sol::detail // end of sol/map.hpp namespace sol { template <typename T> struct usertype_container; namespace container_detail { template <typename T> struct has_clear_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::clear)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_empty_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::empty)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_erase_after_test { private: template <typename C> static meta::sfinae_yes_t test( decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T, typename = void> struct has_find_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> { private: template <typename C> static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_erase_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_find_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::find)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_index_of_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::index_of)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_insert_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::insert)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_erase_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::erase)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_index_set_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::index_set)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_index_get_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::index_get)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_set_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::set)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_get_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::get)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_at_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::at)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_pairs_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::pairs)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_ipairs_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::ipairs)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_next_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::next)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_add_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::add)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> struct has_traits_size_test { private: template <typename C> static meta::sfinae_yes_t test(decltype(&C::size)); template <typename C> static meta::sfinae_no_t test(...); public: static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>; }; template <typename T> using has_clear = meta::boolean<has_clear_test<T>::value>; template <typename T> using has_empty = meta::boolean<has_empty_test<T>::value>; template <typename T> using has_find = meta::boolean<has_find_test<T>::value>; template <typename T> using has_erase = meta::boolean<has_erase_test<T>::value>; template <typename T> using has_erase_after = meta::boolean<has_erase_after_test<T>::value>; template <typename T> using has_traits_get = meta::boolean<has_traits_get_test<T>::value>; template <typename T> using has_traits_at = meta::boolean<has_traits_at_test<T>::value>; template <typename T> using has_traits_set = meta::boolean<has_traits_set_test<T>::value>; template <typename T> using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>; template <typename T> using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>; template <typename T> using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>; template <typename T> using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>; template <typename T> using has_traits_next = meta::boolean<has_traits_next_test<T>::value>; template <typename T> using has_traits_add = meta::boolean<has_traits_add_test<T>::value>; template <typename T> using has_traits_size = meta::boolean<has_traits_size_test<T>::value>; template <typename T> using has_traits_clear = has_clear<T>; template <typename T> using has_traits_empty = has_empty<T>; template <typename T> using has_traits_find = meta::boolean<has_traits_find_test<T>::value>; template <typename T> using has_traits_index_of = meta::boolean<has_traits_index_of_test<T>::value>; template <typename T> using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>; template <typename T> using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>; template <typename T> struct is_forced_container : is_container<T> {}; template <typename T> struct is_forced_container<as_container_t<T>> : std::true_type {}; template <typename T> struct container_decay { typedef T type; }; template <typename T> struct container_decay<as_container_t<T>> { typedef T type; }; template <typename T> using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type; template <typename T> decltype(auto) get_key(std::false_type, T&& t) { return std::forward<T>(t); } template <typename T> decltype(auto) get_key(std::true_type, T&& t) { return t.first; } template <typename T> decltype(auto) get_value(std::false_type, T&& t) { return std::forward<T>(t); } template <typename T> decltype(auto) get_value(std::true_type, T&& t) { return t.second; } template <typename X, typename = void> struct usertype_container_default { private: typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T; public: typedef lua_nil_t iterator; typedef lua_nil_t value_type; static int at(lua_State* L) { return luaL_error(L, "sol: cannot call 'at(index)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int get(lua_State* L) { return luaL_error(L, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int index_get(lua_State* L) { return luaL_error(L, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int set(lua_State* L) { return luaL_error(L, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int index_set(lua_State* L) { return luaL_error( L, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int add(lua_State* L) { return luaL_error(L, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int insert(lua_State* L) { return luaL_error(L, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int find(lua_State* L) { return luaL_error(L, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int index_of(lua_State* L) { return luaL_error(L, "sol: cannot call 'index_of' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int size(lua_State* L) { return luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int clear(lua_State* L) { return luaL_error(L, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int empty(lua_State* L) { return luaL_error(L, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int erase(lua_State* L) { return luaL_error(L, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int next(lua_State* L) { return luaL_error(L, "sol: cannot call 'next' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int pairs(lua_State* L) { return luaL_error(L, "sol: cannot call '__pairs/pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static int ipairs(lua_State* L) { return luaL_error(L, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); } static iterator begin(lua_State* L, T&) { luaL_error(L, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); return lua_nil; } static iterator end(lua_State* L, T&) { luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); return lua_nil; } }; template <typename X> struct usertype_container_default<X, std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>, meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> { private: using T = std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>>; private: using deferred_uc = usertype_container<X>; using is_associative = meta::is_associative<T>; using is_lookup = meta::is_lookup<T>; using is_ordered = meta::is_ordered<T>; using is_matched_lookup = meta::is_matched_lookup<T>; using iterator = typename T::iterator; using value_type = typename T::value_type; typedef meta::conditional_t<is_matched_lookup::value, std::pair<value_type, value_type>, meta::conditional_t<is_associative::value || is_lookup::value, value_type, std::pair<std::ptrdiff_t, value_type>>> KV; typedef typename KV::first_type K; typedef typename KV::second_type V; typedef meta::conditional_t<is_matched_lookup::value, std::ptrdiff_t, K> next_K; typedef decltype(*std::declval<iterator&>()) iterator_return; typedef meta::conditional_t<is_associative::value || is_matched_lookup::value, std::add_lvalue_reference_t<V>, meta::conditional_t<is_lookup::value, V, iterator_return>> captured_type; typedef typename meta::iterator_tag<iterator>::type iterator_category; typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator; typedef meta::conditional_t<is_input_iterator::value, V, decltype(detail::deref_non_pointer(std::declval<captured_type>()))> push_type; typedef std::is_copy_assignable<V> is_copyable; typedef meta::neg<meta::any<std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable>>> is_writable; typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type; typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral; struct iter { T& source; iterator it; std::size_t i; iter(T& source, iterator it) : source(source), it(std::move(it)), i(0) { } ~iter() { } }; static auto& get_src(lua_State* L) { #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE auto p = stack::unqualified_check_get<T*>(L, 1); if (!p) { luaL_error(L, "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str()); } if (p.value() == nullptr) { luaL_error( L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str()); } return *p.value(); #else return stack::unqualified_get<T>(L, 1); #endif // Safe getting with error } static detail::error_result at_category(std::input_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) { pos += deferred_uc::index_adjustment(L, self); if (pos < 0) { return stack::push(L, lua_nil); } auto it = deferred_uc::begin(L, self); auto e = deferred_uc::end(L, self); if (it == e) { return stack::push(L, lua_nil); } while (pos > 0) { --pos; ++it; if (it == e) { return stack::push(L, lua_nil); } } return get_associative(is_associative(), L, it); } static detail::error_result at_category(std::random_access_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) { std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); pos += deferred_uc::index_adjustment(L, self); if (pos < 0 || pos >= len) { return stack::push(L, lua_nil); } auto it = std::next(deferred_uc::begin(L, self), pos); return get_associative(is_associative(), L, it); } static detail::error_result at_start(lua_State* L, T& self, std::ptrdiff_t pos) { return at_category(iterator_category(), L, self, pos); } template <typename Iter> static detail::error_result get_associative(std::true_type, lua_State* L, Iter& it) { decltype(auto) v = *it; return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(v.second)); } template <typename Iter> static detail::error_result get_associative(std::false_type, lua_State* L, Iter& it) { return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it)); } static detail::error_result get_category(std::input_iterator_tag, lua_State* L, T& self, K& key) { key += deferred_uc::index_adjustment(L, self); if (key < 0) { return stack::push(L, lua_nil); } auto it = deferred_uc::begin(L, self); auto e = deferred_uc::end(L, self); if (it == e) { return stack::push(L, lua_nil); } while (key > 0) { --key; ++it; if (it == e) { return stack::push(L, lua_nil); } } return get_associative(is_associative(), L, it); } static detail::error_result get_category(std::random_access_iterator_tag, lua_State* L, T& self, K& key) { std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); key += deferred_uc::index_adjustment(L, self); if (key < 0 || key >= len) { return stack::push(L, lua_nil); } auto it = std::next(deferred_uc::begin(L, self), key); return get_associative(is_associative(), L, it); } static detail::error_result get_it(std::true_type, lua_State* L, T& self, K& key) { return get_category(iterator_category(), L, self, key); } static detail::error_result get_comparative(std::true_type, lua_State* L, T& self, K& key) { auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); }; auto e = deferred_uc::end(L, self); auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx)); if (it == e) { return stack::push(L, lua_nil); } return get_associative(is_associative(), L, it); } static detail::error_result get_comparative(std::false_type, lua_State*, T&, K&) { return detail::error_result("cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'", detail::demangle<T>().data(), detail::demangle<K>().data()); } static detail::error_result get_it(std::false_type, lua_State* L, T& self, K& key) { return get_comparative(meta::supports_op_equal<K, key_type>(), L, self, key); } static detail::error_result set_associative(std::true_type, iterator& it, stack_object value) { decltype(auto) v = *it; v.second = value.as<V>(); return {}; } static detail::error_result set_associative(std::false_type, iterator& it, stack_object value) { decltype(auto) v = *it; v = value.as<V>(); return {}; } static detail::error_result set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value) { return set_associative(is_associative(), it, std::move(value)); } static detail::error_result set_writable(std::false_type, lua_State*, T&, iterator&, stack_object) { return detail::error_result( "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data()); } static detail::error_result set_category(std::input_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) { decltype(auto) key = okey.as<K>(); key += deferred_uc::index_adjustment(L, self); auto e = deferred_uc::end(L, self); auto it = deferred_uc::begin(L, self); auto backit = it; for (; key > 0 && it != e; --key, ++it) { backit = it; } if (it == e) { if (key == 0) { return add_copyable(is_copyable(), L, self, std::move(value), meta::has_insert_after<T>::value ? backit : it); } return detail::error_result("out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); } return set_writable(is_writable(), L, self, it, std::move(value)); } static detail::error_result set_category(std::random_access_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) { decltype(auto) key = okey.as<K>(); if (key <= 0) { return detail::error_result("sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str()); } key += deferred_uc::index_adjustment(L, self); std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); if (key == len) { return add_copyable(is_copyable(), L, self, std::move(value)); } else if (key > len) { return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); } auto it = std::next(deferred_uc::begin(L, self), key); return set_writable(is_writable(), L, self, it, std::move(value)); } static detail::error_result set_comparative(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) { decltype(auto) key = okey.as<K>(); if (!is_writable::value) { return detail::error_result( "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data()); } auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); }; auto e = deferred_uc::end(L, self); auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx)); if (it == e) { return {}; } return set_writable(is_writable(), L, self, it, std::move(value)); } static detail::error_result set_comparative(std::false_type, lua_State*, T&, stack_object, stack_object) { return detail::error_result("cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key", detail::demangle<T>().data(), detail::demangle<K>().data()); } template <typename Iter> static detail::error_result set_associative_insert(std::true_type, lua_State*, T& self, Iter& it, K& key, stack_object value) { if constexpr (meta::has_insert<T>::value) { self.insert(it, value_type(key, value.as<V>())); return {}; } else { (void)self; (void)it; (void)key; return detail::error_result( "cannot call 'set' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str()); } } template <typename Iter> static detail::error_result set_associative_insert(std::false_type, lua_State*, T& self, Iter& it, K& key, stack_object) { if constexpr (meta::has_insert<T>::value) { self.insert(it, key); return {}; } else { (void)self; (void)it; (void)key; return detail::error_result( "cannot call 'set' on '%s': there is no 'insert' function on this non-associative type", detail::demangle<T>().c_str()); } } static detail::error_result set_associative_find(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) { decltype(auto) key = okey.as<K>(); auto it = self.find(key); if (it == deferred_uc::end(L, self)) { return set_associative_insert(is_associative(), L, self, it, key, std::move(value)); } return set_writable(is_writable(), L, self, it, std::move(value)); } static detail::error_result set_associative_find(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) { return set_comparative(meta::supports_op_equal<K, key_type>(), L, self, std::move(key), std::move(value)); } static detail::error_result set_it(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { return set_category(iterator_category(), L, self, std::move(key), std::move(value)); } static detail::error_result set_it(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) { return set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L, self, std::move(key), std::move(value)); } template <bool idx_of = false> static detail::error_result find_has_associative_lookup(std::true_type, lua_State* L, T& self) { if constexpr (!is_ordered::value && idx_of) { (void)L; (void)self; return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data()); } else { decltype(auto) key = stack::unqualified_get<K>(L, 2); auto it = self.find(key); if (it == deferred_uc::end(L, self)) { return stack::push(L, lua_nil); } if constexpr (idx_of) { auto dist = std::distance(deferred_uc::begin(L, self), it); dist -= deferred_uc::index_adjustment(L, self); return stack::push(L, dist); } else { return get_associative(is_associative(), L, it); } } } template <bool idx_of = false> static detail::error_result find_has_associative_lookup(std::false_type, lua_State* L, T& self) { if constexpr (!is_ordered::value && idx_of) { (void)L; (void)self; return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data()); } else { decltype(auto) value = stack::unqualified_get<V>(L, 2); auto it = self.find(value); if (it == deferred_uc::end(L, self)) { return stack::push(L, lua_nil); } if constexpr (idx_of) { auto dist = std::distance(deferred_uc::begin(L, self), it); dist -= deferred_uc::index_adjustment(L, self); return stack::push(L, dist); } else { return get_associative(is_associative(), L, it); } } } template <bool idx_of = false> static detail::error_result find_has(std::true_type, lua_State* L, T& self) { return find_has_associative_lookup<idx_of>(meta::any<is_lookup, is_associative>(), L, self); } template <typename Iter> static detail::error_result find_associative_lookup(std::true_type, lua_State* L, T&, Iter& it, std::size_t) { return get_associative(is_associative(), L, it); } template <typename Iter> static detail::error_result find_associative_lookup(std::false_type, lua_State* L, T& self, Iter&, std::size_t idx) { idx -= deferred_uc::index_adjustment(L, self); return stack::push(L, idx); } template <bool = false> static detail::error_result find_comparative(std::false_type, lua_State*, T&) { return detail::error_result("cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable", detail::demangle<T>().c_str()); } template <bool idx_of = false> static detail::error_result find_comparative(std::true_type, lua_State* L, T& self) { decltype(auto) value = stack::unqualified_get<V>(L, 2); auto it = deferred_uc::begin(L, self); auto e = deferred_uc::end(L, self); std::size_t idx = 0; for (;; ++it, ++idx) { if (it == e) { return stack::push(L, lua_nil); } if (value == get_value(is_associative(), *it)) { break; } } return find_associative_lookup(meta::all<meta::boolean<!idx_of>, meta::any<is_lookup, is_associative>>(), L, self, it, idx); } template <bool idx_of = false> static detail::error_result find_has(std::false_type, lua_State* L, T& self) { return find_comparative<idx_of>(meta::supports_op_equal<V>(), L, self); } template <typename Iter> static detail::error_result add_insert_after(std::false_type, lua_State* L, T& self, stack_object value, Iter&) { return add_insert_after(std::false_type(), L, self, value); } static detail::error_result add_insert_after(std::false_type, lua_State*, T&, stack_object) { return detail::error_result("cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data()); } template <typename Iter> static detail::error_result add_insert_after(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) { self.insert_after(pos, value.as<V>()); return {}; } static detail::error_result add_insert_after(std::true_type, lua_State* L, T& self, stack_object value) { auto backit = self.before_begin(); { auto e = deferred_uc::end(L, self); for (auto it = deferred_uc::begin(L, self); it != e; ++backit, ++it) { } } return add_insert_after(std::true_type(), L, self, value, backit); } template <typename Iter> static detail::error_result add_insert(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) { self.insert(pos, value.as<V>()); return {}; } static detail::error_result add_insert(std::true_type, lua_State* L, T& self, stack_object value) { auto pos = deferred_uc::end(L, self); return add_insert(std::true_type(), L, self, value, pos); } template <typename Iter> static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) { return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value), pos); } static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value) { return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value)); } template <typename Iter> static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value, Iter&) { self.push_back(value.as<V>()); return {}; } static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value) { self.push_back(value.as<V>()); return {}; } template <typename Iter> static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) { return add_insert(meta::has_insert<T>(), L, self, value, pos); } static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value) { return add_insert(meta::has_insert<T>(), L, self, value); } template <typename Iter> static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key, Iter& pos) { if constexpr (meta::has_insert<T>::value) { self.insert(pos, value_type(key.as<K>(), stack::unqualified_get<V>(L, 3))); return {}; } else { (void)L; (void)self; (void)key; (void)pos; return detail::error_result( "cannot call 'insert' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str()); } } static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key) { auto pos = deferred_uc::end(L, self); return add_associative(std::true_type(), L, self, std::move(key), pos); } template <typename Iter> static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) { return add_push_back(meta::has_push_back<T>(), L, self, value, pos); } static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value) { return add_push_back(meta::has_push_back<T>(), L, self, value); } template <typename Iter> static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value, Iter& pos) { return add_associative(is_associative(), L, self, std::move(value), pos); } static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value) { return add_associative(is_associative(), L, self, value); } template <typename Iter> static detail::error_result add_copyable(std::false_type, lua_State* L, T& self, stack_object value, Iter&) { return add_copyable(std::false_type(), L, self, std::move(value)); } static detail::error_result add_copyable(std::false_type, lua_State*, T&, stack_object) { return detail::error_result("cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data()); } static detail::error_result insert_lookup(std::true_type, lua_State* L, T& self, stack_object, stack_object value) { // TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity? return add_copyable(std::true_type(), L, self, std::move(value)); } static detail::error_result insert_lookup(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) { auto it = deferred_uc::begin(L, self); auto key = where.as<K>(); key += deferred_uc::index_adjustment(L, self); std::advance(it, key); self.insert(it, value.as<V>()); return {}; } static detail::error_result insert_after_has(std::true_type, lua_State* L, T& self, stack_object where, stack_object value) { auto key = where.as<K>(); auto backit = self.before_begin(); { key += deferred_uc::index_adjustment(L, self); auto e = deferred_uc::end(L, self); for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) { if (backit == e) { return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); } } } self.insert_after(backit, value.as<V>()); return {}; } static detail::error_result insert_after_has(std::false_type, lua_State*, T&, stack_object, stack_object) { return detail::error_result( "cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data()); } static detail::error_result insert_has(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { return insert_lookup(meta::any<is_associative, is_lookup>(), L, self, std::move(key), std::move(value)); } static detail::error_result insert_has(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) { return insert_after_has(meta::has_insert_after<T>(), L, self, where, value); } static detail::error_result insert_copyable(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { return insert_has(meta::has_insert<T>(), L, self, std::move(key), std::move(value)); } static detail::error_result insert_copyable(std::false_type, lua_State*, T&, stack_object, stack_object) { return detail::error_result("cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data()); } static detail::error_result erase_integral(std::true_type, lua_State* L, T& self, K& key) { auto it = deferred_uc::begin(L, self); key += deferred_uc::index_adjustment(L, self); std::advance(it, key); self.erase(it); return {}; } static detail::error_result erase_integral(std::false_type, lua_State* L, T& self, const K& key) { auto fx = [&](const value_type& r) -> bool { return key == r; }; auto e = deferred_uc::end(L, self); auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx)); if (it == e) { return {}; } self.erase(it); return {}; } static detail::error_result erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key) { self.erase(key); return {}; } static detail::error_result erase_associative_lookup(std::false_type, lua_State* L, T& self, K& key) { return erase_integral(std::is_integral<K>(), L, self, key); } static detail::error_result erase_after_has(std::true_type, lua_State* L, T& self, K& key) { auto backit = self.before_begin(); { key += deferred_uc::index_adjustment(L, self); auto e = deferred_uc::end(L, self); for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) { if (backit == e) { return detail::error_result("sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str()); } } } self.erase_after(backit); return {}; } static detail::error_result erase_after_has(std::false_type, lua_State*, T&, const K&) { return detail::error_result("sol: cannot call erase on '%s'", detail::demangle<T>().c_str()); } static detail::error_result erase_has(std::true_type, lua_State* L, T& self, K& key) { return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key); } static detail::error_result erase_has(std::false_type, lua_State* L, T& self, K& key) { return erase_after_has(has_erase_after<T>(), L, self, key); } static auto size_has(std::false_type, lua_State* L, T& self) { return std::distance(deferred_uc::begin(L, self), deferred_uc::end(L, self)); } static auto size_has(std::true_type, lua_State*, T& self) { return self.size(); } static void clear_has(std::true_type, lua_State*, T& self) { self.clear(); } static void clear_has(std::false_type, lua_State* L, T&) { luaL_error(L, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str()); } static bool empty_has(std::true_type, lua_State*, T& self) { return self.empty(); } static bool empty_has(std::false_type, lua_State* L, T& self) { return deferred_uc::begin(L, self) == deferred_uc::end(L, self); } static detail::error_result get_associative_find(std::true_type, lua_State* L, T& self, K& key) { auto it = self.find(key); if (it == deferred_uc::end(L, self)) { stack::push(L, lua_nil); return {}; } return get_associative(std::true_type(), L, it); } static detail::error_result get_associative_find(std::false_type, lua_State* L, T& self, K& key) { return get_it(is_linear_integral(), L, self, key); } static detail::error_result get_start(lua_State* L, T& self, K& key) { return get_associative_find(std::integral_constant < bool, is_associative::value&& has_find<T>::value > (), L, self, key); } static detail::error_result set_start(lua_State* L, T& self, stack_object key, stack_object value) { return set_it(is_linear_integral(), L, self, std::move(key), std::move(value)); } static std::size_t size_start(lua_State* L, T& self) { return size_has(meta::has_size<T>(), L, self); } static void clear_start(lua_State* L, T& self) { clear_has(has_clear<T>(), L, self); } static bool empty_start(lua_State* L, T& self) { return empty_has(has_empty<T>(), L, self); } static detail::error_result erase_start(lua_State* L, T& self, K& key) { return erase_has(has_erase<T>(), L, self, key); } template <bool ip> static int next_associative(std::true_type, lua_State* L) { iter& i = stack::unqualified_get<user<iter>>(L, 1); auto& source = i.source; auto& it = i.it; if (it == deferred_uc::end(L, source)) { return stack::push(L, lua_nil); } int p; if constexpr (ip) { ++i.i; p = stack::push_reference(L, i.i); } else { p = stack::push_reference(L, it->first); } p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(it->second)); std::advance(it, 1); return p; } template <bool> static int next_associative(std::false_type, lua_State* L) { iter& i = stack::unqualified_get<user<iter>>(L, 1); auto& source = i.source; auto& it = i.it; next_K k = stack::unqualified_get<next_K>(L, 2); if (it == deferred_uc::end(L, source)) { return stack::push(L, lua_nil); } int p; if constexpr (std::is_integral_v<next_K>) { p = stack::push_reference(L, k + 1); } else { p = stack::stack_detail::push_reference(L, k + 1); } p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it)); std::advance(it, 1); return p; } template <bool ip> static int next_iter(lua_State* L) { typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; return next_associative<ip>(is_assoc(), L); } template <bool ip> static int pairs_associative(std::true_type, lua_State* L) { auto& src = get_src(L); stack::push(L, next_iter<ip>); stack::push<user<iter>>(L, src, deferred_uc::begin(L, src)); stack::push(L, lua_nil); return 3; } template <bool ip> static int pairs_associative(std::false_type, lua_State* L) { auto& src = get_src(L); stack::push(L, next_iter<ip>); stack::push<user<iter>>(L, src, deferred_uc::begin(L, src)); stack::push(L, 0); return 3; } public: static int at(lua_State* L) { auto& self = get_src(L); detail::error_result er; { std::ptrdiff_t pos = stack::unqualified_get<std::ptrdiff_t>(L, 2); er = at_start(L, self, pos); } return handle_errors(L, er); } static int get(lua_State* L) { auto& self = get_src(L); detail::error_result er; { decltype(auto) key = stack::unqualified_get<K>(L); er = get_start(L, self, key); } return handle_errors(L, er); } static int index_get(lua_State* L) { return get(L); } static int set(lua_State* L) { stack_object value = stack_object(L, raw_index(3)); if (type_of(L, 3) == type::lua_nil) { return erase(L); } auto& self = get_src(L); detail::error_result er = set_start(L, self, stack_object(L, raw_index(2)), std::move(value)); return handle_errors(L, er); } static int index_set(lua_State* L) { return set(L); } static int add(lua_State* L) { auto& self = get_src(L); detail::error_result er = add_copyable(is_copyable(), L, self, stack_object(L, raw_index(2))); return handle_errors(L, er); } static int insert(lua_State* L) { auto& self = get_src(L); detail::error_result er = insert_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)), stack_object(L, raw_index(3))); return handle_errors(L, er); } static int find(lua_State* L) { auto& self = get_src(L); detail::error_result er = find_has(has_find<T>(), L, self); return handle_errors(L, er); } static int index_of(lua_State* L) { auto& self = get_src(L); detail::error_result er = find_has<true>(has_find<T>(), L, self); return handle_errors(L, er); } static iterator begin(lua_State*, T& self) { using std::begin; return begin(self); } static iterator end(lua_State*, T& self) { using std::end; return end(self); } static int size(lua_State* L) { auto& self = get_src(L); std::size_t r = size_start(L, self); return stack::push(L, r); } static int clear(lua_State* L) { auto& self = get_src(L); clear_start(L, self); return 0; } static int erase(lua_State* L) { auto& self = get_src(L); detail::error_result er; { decltype(auto) key = stack::unqualified_get<K>(L, 2); er = erase_start(L, self, key); } return handle_errors(L, er); } static int empty(lua_State* L) { auto& self = get_src(L); return stack::push(L, empty_start(L, self)); } static std::ptrdiff_t index_adjustment(lua_State*, T&) { #if defined(SOL_CONTAINERS_START_INDEX) return static_cast<std::ptrdiff_t>((SOL_CONTAINERS_START) == 0 ? 0 : -(SOL_CONTAINERS_START)); #else return static_cast<std::ptrdiff_t>(-1); #endif } static int pairs(lua_State* L) { typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; return pairs_associative<false>(is_assoc(), L); } static int ipairs(lua_State* L) { typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; return pairs_associative<true>(is_assoc(), L); } static int next(lua_State* L) { return stack::push(L, next_iter<false>); } }; template <typename X> struct usertype_container_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> { private: typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T; typedef usertype_container<X> deferred_uc; public: typedef std::remove_extent_t<T> value_type; typedef value_type* iterator; private: struct iter { T& source; iterator it; iter(T& source, iterator it) : source(source), it(std::move(it)) { } }; static auto& get_src(lua_State* L) { auto p = stack::unqualified_check_get<T*>(L, 1); #if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE if (!p) { luaL_error(L, "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str()); } if (p.value() == nullptr) { luaL_error( L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str()); } #endif // Safe getting with error return *p.value(); } static int find(std::true_type, lua_State* L) { T& self = get_src(L); decltype(auto) value = stack::unqualified_get<value_type>(L, 2); std::size_t N = std::extent<T>::value; for (std::size_t idx = 0; idx < N; ++idx) { using v_t = std::add_const_t<decltype(self[idx])>; v_t v = self[idx]; if (v == value) { idx -= deferred_uc::index_adjustment(L, self); return stack::push(L, idx); } } return stack::push(L, lua_nil); } static int find(std::false_type, lua_State* L) { return luaL_error(L, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str()); } static int next_iter(lua_State* L) { iter& i = stack::unqualified_get<user<iter>>(L, 1); auto& source = i.source; auto& it = i.it; std::size_t k = stack::unqualified_get<std::size_t>(L, 2); if (it == deferred_uc::end(L, source)) { return 0; } int p; p = stack::push(L, k + 1); p += stack::push_reference(L, detail::deref_non_pointer(*it)); std::advance(it, 1); return p; } public: static int clear(lua_State* L) { return luaL_error(L, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str()); } static int erase(lua_State* L) { return luaL_error(L, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str()); } static int add(lua_State* L) { return luaL_error(L, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str()); } static int insert(lua_State* L) { return luaL_error(L, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str()); } static int at(lua_State* L) { return get(L); } static int get(lua_State* L) { T& self = get_src(L); std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2); idx += deferred_uc::index_adjustment(L, self); if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 0) { return stack::push(L, lua_nil); } return stack::push_reference(L, detail::deref_non_pointer(self[idx])); } static int index_get(lua_State* L) { return get(L); } static int set(lua_State* L) { T& self = get_src(L); std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2); idx += deferred_uc::index_adjustment(L, self); if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value)) { return luaL_error(L, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); } if (idx < 0) { return luaL_error(L, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str()); } self[idx] = stack::unqualified_get<value_type>(L, 3); return 0; } static int index_set(lua_State* L) { return set(L); } static int index_of(lua_State* L) { return find(L); } static int find(lua_State* L) { return find(meta::supports_op_equal<value_type, value_type>(), L); } static int size(lua_State* L) { return stack::push(L, std::extent<T>::value); } static int empty(lua_State* L) { return stack::push(L, std::extent<T>::value > 0); } static int pairs(lua_State* L) { auto& src = get_src(L); stack::push(L, next_iter); stack::push<user<iter>>(L, src, deferred_uc::begin(L, src)); stack::push(L, 0); return 3; } static int ipairs(lua_State* L) { return pairs(L); } static int next(lua_State* L) { return stack::push(L, next_iter); } static std::ptrdiff_t index_adjustment(lua_State*, T&) { #if defined(SOL_CONTAINERS_START_INDEX) return (SOL_CONTAINERS_START) == 0 ? 0 : -(SOL_CONTAINERS_START); #else return -1; #endif } static iterator begin(lua_State*, T& self) { return std::addressof(self[0]); } static iterator end(lua_State*, T& self) { return std::addressof(self[0]) + std::extent<T>::value; } }; template <typename X> struct usertype_container_default<usertype_container<X>> : usertype_container_default<X> {}; } // namespace container_detail template <typename T> struct usertype_container : container_detail::usertype_container_default<T> {}; } // namespace sol // end of sol/usertype_container.hpp namespace sol { namespace container_detail { template <typename X> struct u_c_launch { using T = std::remove_pointer_t<meta::unqualified_t<X>>; using uc = usertype_container<T>; using default_uc = usertype_container_default<T>; static inline int real_index_get_traits(std::true_type, lua_State* L) { return uc::index_get(L); } static inline int real_index_get_traits(std::false_type, lua_State* L) { return default_uc::index_get(L); } static inline int real_index_call(lua_State* L) { typedef detail::unordered_map<string_view, lua_CFunction> call_map; static const call_map calls{ { "at", &real_at_call }, { "get", &real_get_call }, { "set", &real_set_call }, { "size", &real_length_call }, { "add", &real_add_call }, { "empty", &real_empty_call }, { "insert", &real_insert_call }, { "clear", &real_clear_call }, { "find", &real_find_call }, { "index_of", &real_index_of_call }, { "erase", &real_erase_call }, { "pairs", &pairs_call }, { "next", &next_call }, }; auto maybenameview = stack::unqualified_check_get<string_view>(L, 2); if (maybenameview) { const string_view& name = *maybenameview; auto it = calls.find(name); if (it != calls.cend()) { return stack::push(L, it->second); } } return real_index_get_traits(container_detail::has_traits_index_get<uc>(), L); } static inline int real_at_traits(std::true_type, lua_State* L) { return uc::at(L); } static inline int real_at_traits(std::false_type, lua_State* L) { return default_uc::at(L); } static inline int real_at_call(lua_State* L) { return real_at_traits(container_detail::has_traits_at<uc>(), L); } static inline int real_get_traits(std::true_type, lua_State* L) { return uc::get(L); } static inline int real_get_traits(std::false_type, lua_State* L) { return default_uc::get(L); } static inline int real_get_call(lua_State* L) { return real_get_traits(container_detail::has_traits_get<uc>(), L); } static inline int real_set_traits(std::true_type, lua_State* L) { return uc::set(L); } static inline int real_set_traits(std::false_type, lua_State* L) { return default_uc::set(L); } static inline int real_set_call(lua_State* L) { return real_set_traits(container_detail::has_traits_set<uc>(), L); } static inline int real_index_set_traits(std::true_type, lua_State* L) { return uc::index_set(L); } static inline int real_index_set_traits(std::false_type, lua_State* L) { return default_uc::index_set(L); } static inline int real_new_index_call(lua_State* L) { return real_index_set_traits(container_detail::has_traits_index_set<uc>(), L); } static inline int real_pairs_traits(std::true_type, lua_State* L) { return uc::pairs(L); } static inline int real_pairs_traits(std::false_type, lua_State* L) { return default_uc::pairs(L); } static inline int real_pairs_call(lua_State* L) { return real_pairs_traits(container_detail::has_traits_pairs<uc>(), L); } static inline int real_ipairs_traits(std::true_type, lua_State* L) { return uc::ipairs(L); } static inline int real_ipairs_traits(std::false_type, lua_State* L) { return default_uc::ipairs(L); } static inline int real_ipairs_call(lua_State* L) { return real_ipairs_traits(container_detail::has_traits_ipairs<uc>(), L); } static inline int real_next_traits(std::true_type, lua_State* L) { return uc::next(L); } static inline int real_next_traits(std::false_type, lua_State* L) { return default_uc::next(L); } static inline int real_next_call(lua_State* L) { return real_next_traits(container_detail::has_traits_next<uc>(), L); } static inline int real_size_traits(std::true_type, lua_State* L) { return uc::size(L); } static inline int real_size_traits(std::false_type, lua_State* L) { return default_uc::size(L); } static inline int real_length_call(lua_State* L) { return real_size_traits(container_detail::has_traits_size<uc>(), L); } static inline int real_add_traits(std::true_type, lua_State* L) { return uc::add(L); } static inline int real_add_traits(std::false_type, lua_State* L) { return default_uc::add(L); } static inline int real_add_call(lua_State* L) { return real_add_traits(container_detail::has_traits_add<uc>(), L); } static inline int real_insert_traits(std::true_type, lua_State* L) { return uc::insert(L); } static inline int real_insert_traits(std::false_type, lua_State* L) { return default_uc::insert(L); } static inline int real_insert_call(lua_State* L) { return real_insert_traits(container_detail::has_traits_insert<uc>(), L); } static inline int real_clear_traits(std::true_type, lua_State* L) { return uc::clear(L); } static inline int real_clear_traits(std::false_type, lua_State* L) { return default_uc::clear(L); } static inline int real_clear_call(lua_State* L) { return real_clear_traits(container_detail::has_traits_clear<uc>(), L); } static inline int real_empty_traits(std::true_type, lua_State* L) { return uc::empty(L); } static inline int real_empty_traits(std::false_type, lua_State* L) { return default_uc::empty(L); } static inline int real_empty_call(lua_State* L) { return real_empty_traits(container_detail::has_traits_empty<uc>(), L); } static inline int real_erase_traits(std::true_type, lua_State* L) { return uc::erase(L); } static inline int real_erase_traits(std::false_type, lua_State* L) { return default_uc::erase(L); } static inline int real_erase_call(lua_State* L) { return real_erase_traits(container_detail::has_traits_erase<uc>(), L); } static inline int real_find_traits(std::true_type, lua_State* L) { return uc::find(L); } static inline int real_find_traits(std::false_type, lua_State* L) { return default_uc::find(L); } static inline int real_find_call(lua_State* L) { return real_find_traits(container_detail::has_traits_find<uc>(), L); } static inline int real_index_of_call(lua_State* L) { if constexpr(container_detail::has_traits_index_of<uc>()) { return uc::index_of(L); } else { return default_uc::index_of(L); } } static inline int add_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L); } static inline int erase_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L); } static inline int insert_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L); } static inline int clear_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L); } static inline int empty_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L); } static inline int find_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L); } static inline int index_of_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_index_of_call), (&real_index_of_call)>(L); } static inline int length_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L); } static inline int pairs_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L); } static inline int ipairs_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L); } static inline int next_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_next_call), (&real_next_call)>(L); } static inline int at_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_at_call), (&real_at_call)>(L); } static inline int get_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L); } static inline int set_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L); } static inline int index_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L); } static inline int new_index_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L); } }; } // namespace container_detail namespace stack { namespace stack_detail { template <typename T, bool is_shim = false> struct metatable_setup { lua_State* L; metatable_setup(lua_State* L) : L(L) { } void operator()() { using meta_usertype_container = container_detail::u_c_launch< meta::conditional_t<is_shim, as_container_t<std::remove_pointer_t<T>>, std::remove_pointer_t<T>>>; static const char* metakey = is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0]; static const std::array<luaL_Reg, 20> reg = { { // clang-format off { "__pairs", &meta_usertype_container::pairs_call }, { "__ipairs", &meta_usertype_container::ipairs_call }, { "__len", &meta_usertype_container::length_call }, { "__index", &meta_usertype_container::index_call }, { "__newindex", &meta_usertype_container::new_index_call }, { "pairs", &meta_usertype_container::pairs_call }, { "next", &meta_usertype_container::next_call }, { "at", &meta_usertype_container::at_call }, { "get", &meta_usertype_container::get_call }, { "set", &meta_usertype_container::set_call }, { "size", &meta_usertype_container::length_call }, { "empty", &meta_usertype_container::empty_call }, { "clear", &meta_usertype_container::clear_call }, { "insert", &meta_usertype_container::insert_call }, { "add", &meta_usertype_container::add_call }, { "find", &meta_usertype_container::find_call }, { "index_of", &meta_usertype_container::index_of_call }, { "erase", &meta_usertype_container::erase_call }, std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destruct<T> }, { nullptr, nullptr } // clang-format on } }; if (luaL_newmetatable(L, metakey) == 1) { luaL_setfuncs(L, reg.data(), 0); } lua_setmetatable(L, -2); } }; } // namespace stack_detail template <typename T> struct unqualified_pusher<as_container_t<T>> { using C = meta::unqualified_t<T>; static int push_lvalue(std::true_type, lua_State* L, const C& cont) { stack_detail::metatable_setup<C*, true> fx(L); return stack::push<detail::as_pointer_tag<const C>>(L, detail::with_function_tag(), fx, detail::ptr(cont)); } static int push_lvalue(std::false_type, lua_State* L, const C& cont) { stack_detail::metatable_setup<C, true> fx(L); return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, cont); } static int push_rvalue(std::true_type, lua_State* L, C&& cont) { stack_detail::metatable_setup<C, true> fx(L); return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, std::move(cont)); } static int push_rvalue(std::false_type, lua_State* L, const C& cont) { return push_lvalue(std::is_lvalue_reference<T>(), L, cont); } static int push(lua_State* L, const as_container_t<T>& as_cont) { return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.value()); } static int push(lua_State* L, as_container_t<T>&& as_cont) { return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.value())); } }; template <typename T> struct unqualified_pusher<as_container_t<T*>> { using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>; static int push(lua_State* L, T* cont) { stack_detail::metatable_setup<C> fx(L); return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont); } }; template <typename T> struct unqualified_pusher<T, std::enable_if_t<is_container_v<T>>> { using C = T; template <typename... Args> static int push(lua_State* L, Args&&... args) { stack_detail::metatable_setup<C> fx(L); return stack::push<detail::as_value_tag<T>>(L, detail::with_function_tag(), fx, std::forward<Args>(args)...); } }; template <typename T> struct unqualified_pusher<T*, std::enable_if_t<is_container_v<T>>> { using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>; static int push(lua_State* L, T* cont) { stack_detail::metatable_setup<C> fx(L); return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont); } }; } // namespace stack } // namespace sol // end of sol/usertype_container_launch.hpp namespace sol { namespace u_detail { constexpr const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1); constexpr const int environment_index = 1; constexpr const int usertype_storage_index = 2; constexpr const int usertype_storage_base_index = 3; constexpr const int exact_function_index = 4; constexpr const int magic_index = 5; constexpr const int simple_usertype_storage_index = 2; constexpr const int index_function_index = 3; constexpr const int new_index_function_index = 4; constexpr const int base_walking_failed_index = -32467; constexpr const int lookup_failed_index = -42469; enum class submetatable_type { // must be sequential value, reference, unique, const_reference, const_value, // must be LAST! named }; inline auto make_string_view(string_view s) { return s; } inline auto make_string_view(call_construction) { return string_view(to_string(meta_function::call_function)); } inline auto make_string_view(meta_function mf) { return string_view(to_string(mf)); } inline auto make_string_view(base_classes_tag) { return string_view(detail::base_class_cast_key()); } template <typename Arg> inline std::string make_string(Arg&& arg) { string_view s = make_string_view(arg); return std::string(s.data(), s.size()); } inline int is_indexer(string_view s) { if (s == to_string(meta_function::index)) { return 1; } else if (s == to_string(meta_function::new_index)) { return 2; } return 0; } inline int is_indexer(meta_function mf) { if (mf == meta_function::index) { return 1; } else if (mf == meta_function::new_index) { return 2; } return 0; } inline int is_indexer(call_construction) { return 0; } } // namespace u_detail namespace detail { template <typename T, typename IFx, typename Fx> inline void insert_default_registrations(IFx&& ifx, Fx&& fx) { (void)ifx; (void)fx; if constexpr (is_automagical<T>::value) { if (fx(meta_function::less_than)) { if constexpr (meta::supports_op_less<T>::value) { lua_CFunction f = &comparsion_operator_wrap<T, std::less<>>; ifx(meta_function::less_than, f); } } if (fx(meta_function::less_than_or_equal_to)) { if constexpr (meta::supports_op_less_equal<T>::value) { lua_CFunction f = &comparsion_operator_wrap<T, std::less_equal<>>; ifx(meta_function::less_than_or_equal_to, f); } } if (fx(meta_function::equal_to)) { if constexpr (meta::supports_op_equal<T>::value) { lua_CFunction f = &comparsion_operator_wrap<T, std::equal_to<>>; ifx(meta_function::equal_to, f); } else { lua_CFunction f = &comparsion_operator_wrap<T, no_comp>; ifx(meta_function::equal_to, f); } } if (fx(meta_function::pairs)) { ifx(meta_function::pairs, &container_detail::u_c_launch<as_container_t<T>>::pairs_call); } if (fx(meta_function::length)) { if constexpr (meta::has_size<const T>::value || meta::has_size<T>::value) { auto f = &default_size<T>; ifx(meta_function::length, f); } } if (fx(meta_function::to_string)) { if constexpr (is_to_stringable<T>::value) { auto f = &detail::static_trampoline<&default_to_string<T>>; ifx(meta_function::to_string, f); } } if (fx(meta_function::call_function)) { if constexpr (meta::has_deducible_signature<T>::value) { auto f = &c_call<decltype(&T::operator()), &T::operator()>; ifx(meta_function::call_function, f); } } } } } // namespace detail namespace stack { namespace stack_detail { template <typename X> void set_undefined_methods_on(stack_reference t) { using T = std::remove_pointer_t<X>; lua_State* L = t.lua_state(); t.push(); detail::lua_reg_table l{}; int index = 0; detail::indexed_insert insert_fx(l, index); detail::insert_default_registrations<T>(insert_fx, detail::property_always_true); if constexpr (!std::is_pointer_v<X>) { l[index] = luaL_Reg{ to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() }; } luaL_setfuncs(L, l, 0); // __type table lua_createtable(L, 0, 2); const std::string& name = detail::demangle<T>(); lua_pushlstring(L, name.c_str(), name.size()); lua_setfield(L, -2, "name"); lua_CFunction is_func = &detail::is_check<T>; lua_pushcclosure(L, is_func, 0); lua_setfield(L, -2, "is"); lua_setfield(L, t.stack_index(), to_string(meta_function::type).c_str()); t.pop(); } }} // namespace stack::stack_detail } // namespace sol // end of sol/usertype_core.hpp // beginning of sol/usertype_storage.hpp namespace sol { namespace u_detail { struct usertype_storage_base; template <typename T> struct usertype_storage; optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index); usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey); template <typename T> optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L); template <typename T> usertype_storage<T>& get_usertype_storage(lua_State* L); using index_call_function = int(lua_State*, void*); using change_indexing_mem_func = void (usertype_storage_base::*)(lua_State*, submetatable_type, void*, stack_reference&, lua_CFunction, lua_CFunction, lua_CFunction, lua_CFunction); struct index_call_storage { index_call_function* index; index_call_function* new_index; void* binding_data; }; struct new_index_call_storage : index_call_storage { void* new_binding_data; }; struct binding_base { virtual void* data() = 0; virtual ~binding_base() { } }; template <typename K, typename Fq, typename T = void> struct binding : binding_base { using uF = meta::unqualified_t<Fq>; using F = meta::conditional_t<meta::is_c_str_of_v<uF, char> #ifdef __cpp_char8_t || meta::is_c_str_of_v<uF, char8_t> #endif || meta::is_c_str_of_v<uF, char16_t> || meta::is_c_str_of_v<uF, char32_t> || meta::is_c_str_of_v<uF, wchar_t>, std::add_pointer_t<std::add_const_t<std::remove_all_extents_t<Fq>>>, std::decay_t<Fq>>; F data_; template <typename... Args> binding(Args&&... args) : data_(std::forward<Args>(args)...) { } virtual void* data() override { return static_cast<void*>(std::addressof(data_)); } template <bool is_index = true, bool is_variable = false> static inline int call_with_(lua_State* L, void* target) { constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0; auto& f = *static_cast<F*>(target); return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f); } template <bool is_index = true, bool is_variable = false> static inline int call_(lua_State* L) { void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index)); return call_with_<is_index, is_variable>(L, f); } template <bool is_index = true, bool is_variable = false> static inline int call(lua_State* L) { return detail::typed_static_trampoline<decltype(&call_<is_index, is_variable>), (&call_<is_index, is_variable>)>(L); } template <bool is_index = true, bool is_variable = false> static inline int index_call_with_(lua_State* L, void* target) { if constexpr (!is_variable) { if constexpr (is_lua_c_function_v<std::decay_t<F>>) { auto& f = *static_cast<std::decay_t<F>*>(target); return stack::push(L, f); } else { // set up upvalues // for a chained call int upvalues = 0; upvalues += stack::push(L, nullptr); upvalues += stack::push(L, target); auto cfunc = &call<is_index, is_variable>; return stack::push(L, c_closure(cfunc, upvalues)); } } else { constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0; auto& f = *static_cast<F*>(target); return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f); } } template <bool is_index = true, bool is_variable = false> static inline int index_call_(lua_State* L) { void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index)); return index_call_with_<is_index, is_variable>(L, f); } template <bool is_index = true, bool is_variable = false> static inline int index_call(lua_State* L) { return detail::typed_static_trampoline<decltype(&index_call_<is_index, is_variable>), (&index_call_<is_index, is_variable>)>(L); } }; inline int index_fail(lua_State* L) { if (lua_getmetatable(L, 1) == 1) { int metatarget = lua_gettop(L); stack::get_field<false, true>(L, stack_reference(L, raw_index(2)), metatarget); return 1; } // With runtime extensibility, we can't // hard-error things. They have to // return nil, like regular table types return stack::push(L, lua_nil); } inline int index_target_fail(lua_State* L, void*) { return index_fail(L); } inline int new_index_fail(lua_State* L) { return luaL_error(L, "sol: cannot set (new_index) into this object: no defined new_index operation on usertype"); } inline int new_index_target_fail(lua_State* L, void*) { return new_index_fail(L); } struct string_for_each_metatable_func { bool is_destruction = false; bool is_index = false; bool is_new_index = false; bool is_static_index = false; bool is_static_new_index = false; bool poison_indexing = false; bool is_unqualified_lua_CFunction = false; bool is_unqualified_lua_reference = false; std::string* p_key = nullptr; reference* p_binding_ref = nullptr; lua_CFunction call_func = nullptr; index_call_storage* p_ics = nullptr; usertype_storage_base* p_usb = nullptr; void* p_derived_usb = nullptr; lua_CFunction idx_call = nullptr, new_idx_call = nullptr, meta_idx_call = nullptr, meta_new_idx_call = nullptr; change_indexing_mem_func change_indexing; void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) { std::string& key = *p_key; usertype_storage_base& usb = *p_usb; index_call_storage& ics = *p_ics; if (smt == submetatable_type::named) { // do not override __call or // other specific meta functions on named metatable: // we need that for call construction // and other amenities return; } int fast_index_table_push = fast_index_table.push(); stack_reference t(L, -fast_index_table_push); if (poison_indexing) { (usb.*change_indexing)(L, smt, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call); } if (is_destruction && (smt == submetatable_type::reference || smt == submetatable_type::const_reference || smt == submetatable_type::named || smt == submetatable_type::unique)) { // gc does not apply to us here // for reference types (raw T*, std::ref) // for the named metatable itself, // or for unique_usertypes, which do their own custom destruction t.pop(); return; } if (is_index || is_new_index || is_static_index || is_static_new_index) { // do not serialize the new_index and index functions here directly // we control those... t.pop(); return; } if (is_unqualified_lua_CFunction) { stack::set_field<false, true>(L, key, call_func, t.stack_index()); } else if (is_unqualified_lua_reference) { reference& binding_ref = *p_binding_ref; stack::set_field<false, true>(L, key, binding_ref, t.stack_index()); } else { stack::set_field<false, true>(L, key, make_closure(call_func, nullptr, ics.binding_data), t.stack_index()); } t.pop(); } }; struct lua_reference_func { reference key; reference value; void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) { if (smt == submetatable_type::named) { return; } int fast_index_table_push = fast_index_table.push(); stack_reference t(L, -fast_index_table_push); stack::set_field<false, true>(L, key, value, t.stack_index()); t.pop(); } }; struct update_bases_func { detail::inheritance_check_function base_class_check_func; detail::inheritance_cast_function base_class_cast_func; lua_CFunction idx_call, new_idx_call, meta_idx_call, meta_new_idx_call; usertype_storage_base* p_usb; void* p_derived_usb; change_indexing_mem_func change_indexing; void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) { int fast_index_table_push = fast_index_table.push(); stack_reference t(L, -fast_index_table_push); stack::set_field(L, detail::base_class_check_key(), reinterpret_cast<void*>(base_class_check_func), t.stack_index()); stack::set_field(L, detail::base_class_cast_key(), reinterpret_cast<void*>(base_class_cast_func), t.stack_index()); // change indexing, forcefully (p_usb->*change_indexing)(L, smt, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call); t.pop(); } }; struct binding_data_equals { void* binding_data; binding_data_equals(void* b) : binding_data(b) {} bool operator()(const std::unique_ptr<binding_base>& ptr) const { return binding_data == ptr->data(); } }; struct usertype_storage_base { public: std::vector<std::unique_ptr<binding_base>> storage; std::vector<std::unique_ptr<char[]>> string_keys_storage; detail::unordered_map<string_view, index_call_storage> string_keys; detail::unordered_map<reference, reference, reference_hash, reference_equals> auxiliary_keys; reference value_index_table; reference reference_index_table; reference unique_index_table; reference const_reference_index_table; reference const_value_index_table; reference named_index_table; reference type_table; reference gc_names_table; reference named_metatable; new_index_call_storage base_index; new_index_call_storage static_base_index; bool is_using_index; bool is_using_new_index; std::bitset<64> properties; usertype_storage_base(lua_State* L) : storage() , string_keys() , auxiliary_keys() , value_index_table() , reference_index_table() , unique_index_table() , const_reference_index_table() , type_table(make_reference(L, create)) , gc_names_table(make_reference(L, create)) , named_metatable(make_reference(L, create)) , base_index() , static_base_index() , is_using_index(false) , is_using_new_index(false) , properties() { base_index.binding_data = nullptr; base_index.index = index_target_fail; base_index.new_index = new_index_target_fail; base_index.new_binding_data = nullptr; static_base_index.binding_data = nullptr; static_base_index.index = index_target_fail; static_base_index.new_binding_data = this; static_base_index.new_index = new_index_target_set; } template <typename Fx> void for_each_table(lua_State* L, Fx&& fx) { for (int i = 0; i < 6; ++i) { submetatable_type smt = static_cast<submetatable_type>(i); reference* p_fast_index_table = nullptr; switch (smt) { case submetatable_type::const_value: p_fast_index_table = &this->const_value_index_table; break; case submetatable_type::reference: p_fast_index_table = &this->reference_index_table; break; case submetatable_type::unique: p_fast_index_table = &this->unique_index_table; break; case submetatable_type::const_reference: p_fast_index_table = &this->const_reference_index_table; break; case submetatable_type::named: p_fast_index_table = &this->named_index_table; break; case submetatable_type::value: default: p_fast_index_table = &this->value_index_table; break; } fx(L, smt, *p_fast_index_table); } } void add_entry(string_view sv, index_call_storage ics) { string_keys_storage.emplace_back(new char[sv.size()]); std::unique_ptr<char[]>& sv_storage = string_keys_storage.back(); std::memcpy(sv_storage.get(), sv.data(), sv.size()); string_view stored_sv(sv_storage.get(), sv.size()); string_keys.insert_or_assign(std::move(stored_sv), std::move(ics)); } template <typename T, typename... Bases> void update_bases(lua_State* L, bases<Bases...>) { static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file " "a bug report."); static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file " "a bug report."); static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases"); if constexpr (sizeof...(Bases) < 1) { return; } (void)detail::swallow{ 0, ((weak_derive<Bases>::value = true), 0)... }; void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this)); update_bases_func for_each_fx; for_each_fx.base_class_check_func = &detail::inheritance<T>::template type_check_with<Bases...>; for_each_fx.base_class_cast_func = &detail::inheritance<T>::template type_cast_with<Bases...>; for_each_fx.idx_call = &usertype_storage<T>::template index_call_with_bases<false, Bases...>; for_each_fx.new_idx_call = &usertype_storage<T>::template index_call_with_bases<true, Bases...>; for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<false, Bases...>; for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<true, Bases...>; for_each_fx.p_usb = this; for_each_fx.p_derived_usb = derived_this; for_each_fx.change_indexing = &usertype_storage_base::change_indexing; for_each_fx.p_derived_usb = derived_this; this->for_each_table(L, for_each_fx); } void clear() { if (value_index_table.valid()) { stack::clear(value_index_table); } if (reference_index_table.valid()) { stack::clear(reference_index_table); } if (unique_index_table.valid()) { stack::clear(unique_index_table); } if (const_reference_index_table.valid()) { stack::clear(const_reference_index_table); } if (const_value_index_table.valid()) { stack::clear(const_value_index_table); } if (named_index_table.valid()) { stack::clear(named_index_table); } if (type_table.valid()) { stack::clear(type_table); } if (gc_names_table.valid()) { stack::clear(gc_names_table); } if (named_metatable.valid()) { lua_State* L = named_metatable.lua_state(); auto pp = stack::push_pop(named_metatable); int named_metatable_index = pp.index_of(named_metatable); if (lua_getmetatable(L, named_metatable_index) == 1) { stack::clear(L, absolute_index(L, -1)); } stack::clear(named_metatable); } value_index_table = lua_nil; reference_index_table = lua_nil; unique_index_table = lua_nil; const_reference_index_table = lua_nil; const_value_index_table = lua_nil; named_index_table = lua_nil; type_table = lua_nil; gc_names_table = lua_nil; named_metatable = lua_nil; storage.clear(); string_keys.clear(); auxiliary_keys.clear(); } template <bool is_new_index, typename Base> static void base_walk_index(lua_State* L, usertype_storage_base& self, bool& keep_going, int& base_result) { using bases = typename base<Base>::type; if (!keep_going) { return; } (void)L; (void)self; #if defined(SOL_UNSAFE_BASE_LOOKUP) && SOL_UNSAFE_BASE_LOOKUP usertype_storage_base& base_storage = get_usertype_storage<Base>(L); base_result = self_index_call<is_new_index, true>(bases(), L, base_storage); #else optional<usertype_storage<Base>&> maybe_base_storage = maybe_get_usertype_storage<Base>(L); if (static_cast<bool>(maybe_base_storage)) { base_result = self_index_call<is_new_index, true>(bases(), L, *maybe_base_storage); keep_going = base_result == base_walking_failed_index; } #endif // Fast versus slow, safe base lookup } template <bool is_new_index = false, bool base_walking = false, bool from_named_metatable = false, typename... Bases> static inline int self_index_call(types<Bases...>, lua_State* L, usertype_storage_base& self) { type k_type = stack::get<type>(L, 2); if (k_type == type::string) { index_call_storage* target = nullptr; { string_view k = stack::get<string_view>(L, 2); auto it = self.string_keys.find(k); if (it != self.string_keys.cend()) { target = &it->second; } } if (target != nullptr) { // let the target decide what to do if constexpr (is_new_index) { return (target->new_index)(L, target->binding_data); } else { return (target->index)(L, target->binding_data); } } } else if (k_type != type::lua_nil && k_type != type::none) { reference* target = nullptr; { stack_reference k = stack::get<stack_reference>(L, 2); auto it = self.auxiliary_keys.find(k); if (it != self.auxiliary_keys.cend()) { target = &it->second; } } if (target != nullptr) { if constexpr(is_new_index) { // set value and return *target = reference(L, 3); return 0; } else { // push target to return // what we found return stack::push(L, *target); } } } // retrieve bases and walk through them. bool keep_going = true; int base_result; (void)keep_going; (void)base_result; (void)detail::swallow{ 1, (base_walk_index<is_new_index, Bases>(L, self, keep_going, base_result), 1)... }; if constexpr (sizeof...(Bases) > 0) { if (!keep_going) { return base_result; } } if constexpr (base_walking) { // if we're JUST base-walking then don't index-fail, just // return the false bits return base_walking_failed_index; } else if constexpr (from_named_metatable) { if constexpr (is_new_index) { return self.static_base_index.new_index(L, self.static_base_index.new_binding_data); } else { return self.static_base_index.index(L, self.static_base_index.binding_data); } } else { if constexpr (is_new_index) { return self.base_index.new_index(L, self.base_index.new_binding_data); } else { return self.base_index.index(L, self.base_index.binding_data); } } } void change_indexing(lua_State* L, submetatable_type submetatable, void* derived_this, stack_reference& t, lua_CFunction index, lua_CFunction new_index, lua_CFunction meta_index, lua_CFunction meta_new_index) { usertype_storage_base& this_base = *this; void* base_this = static_cast<void*>(&this_base); this->is_using_index |= true; this->is_using_new_index |= true; if (submetatable == submetatable_type::named) { stack::set_field(L, metatable_key, named_index_table, t.stack_index()); stack_reference stack_metametatable(L, -named_metatable.push()); stack::set_field<false, true>(L, meta_function::index, make_closure(meta_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), stack_metametatable.stack_index()); stack::set_field<false, true>(L, meta_function::new_index, make_closure(meta_new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), stack_metametatable.stack_index()); stack_metametatable.pop(); } else { stack::set_field<false, true>( L, meta_function::index, make_closure(index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index()); stack::set_field<false, true>( L, meta_function::new_index, make_closure(new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index()); } } template <typename T = void, typename Key, typename Value> void set(lua_State* L, Key&& key, Value&& value); static int new_index_target_set(lua_State* L, void* target) { usertype_storage_base& self = *static_cast<usertype_storage_base*>(target); self.set(L, reference(L, raw_index(2)), reference(L, raw_index(3))); return 0; } }; template <typename T> struct usertype_storage : usertype_storage_base { using usertype_storage_base::usertype_storage_base; template <bool is_new_index, bool from_named_metatable> static inline int index_call_(lua_State* L) { using bases = typename base<T>::type; usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index)); return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self); } template <bool is_new_index, bool from_named_metatable, typename... Bases> static inline int index_call_with_bases_(lua_State* L) { using bases = types<Bases...>; usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index)); return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self); } template <bool is_new_index> static inline int index_call(lua_State* L) { return detail::static_trampoline<&index_call_<is_new_index, false>>(L); } template <bool is_new_index, typename... Bases> static inline int index_call_with_bases(lua_State* L) { return detail::static_trampoline<&index_call_with_bases_<is_new_index, false, Bases...>>(L); } template <bool is_new_index> static inline int meta_index_call(lua_State* L) { return detail::static_trampoline<&index_call_<is_new_index, true>>(L); } template <bool is_new_index, typename... Bases> static inline int meta_index_call_with_bases(lua_State* L) { return detail::static_trampoline<&index_call_with_bases_<is_new_index, true, Bases...>>(L); } template <typename Key, typename Value> inline void set(lua_State* L, Key&& key, Value&& value); }; template <typename T> inline int destruct_usertype_storage (lua_State* L) { return detail::user_alloc_destruct<usertype_storage<T>>(L); } template <typename T, typename Key, typename Value> void usertype_storage_base::set(lua_State* L, Key&& key, Value&& value) { using ValueU = meta::unwrap_unqualified_t<Value>; using KeyU = meta::unwrap_unqualified_t<Key>; using Binding = binding<KeyU, ValueU, T>; using is_var_bind = is_variable_binding<ValueU>; if constexpr (std::is_same_v<KeyU, call_construction>) { std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value)); Binding& b = *p_binding; this->storage.push_back(std::move(p_binding)); this->named_index_table.push(); absolute_index metametatable_index(L, -1); stack::push(L, nullptr); stack::push(L, b.data()); lua_CFunction target_func = &b.template call<false, false>; lua_pushcclosure(L, target_func, 2); lua_setfield(L, metametatable_index, to_string(meta_function::call).c_str()); this->named_index_table.pop(); } else if constexpr (std::is_same_v<KeyU, base_classes_tag>) { this->update_bases<T>(L, std::forward<Value>(value)); } else if constexpr ((meta::is_string_like_or_constructible<KeyU>::value || std::is_same_v<KeyU, meta_function>)) { std::string s = u_detail::make_string(std::forward<Key>(key)); auto storage_it = this->storage.end(); auto string_it = this->string_keys.find(s); if (string_it != this->string_keys.cend()) { const auto& binding_data = string_it->second.binding_data; storage_it = std::find_if(this->storage.begin(), this->storage.end(), binding_data_equals(binding_data)); this->string_keys.erase(string_it); } std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value)); Binding& b = *p_binding; if (storage_it != this->storage.cend()) { *storage_it = std::move(p_binding); } else { this->storage.push_back(std::move(p_binding)); } bool is_index = (s == to_string(meta_function::index)); bool is_new_index = (s == to_string(meta_function::new_index)); bool is_static_index = (s == to_string(meta_function::static_index)); bool is_static_new_index = (s == to_string(meta_function::static_new_index)); bool is_destruction = s == to_string(meta_function::garbage_collect); bool poison_indexing = (!is_using_index || !is_using_new_index) && (is_var_bind::value || is_index || is_new_index); void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this)); index_call_storage ics; ics.binding_data = b.data(); ics.index = is_index || is_static_index ? &Binding::template call_with_<true, is_var_bind::value> : &Binding::template index_call_with_<true, is_var_bind::value>; ics.new_index = is_new_index || is_static_new_index ? &Binding::template call_with_<false, is_var_bind::value> : &Binding::template index_call_with_<false, is_var_bind::value>; string_for_each_metatable_func for_each_fx; for_each_fx.is_destruction = is_destruction; for_each_fx.is_index = is_index; for_each_fx.is_new_index = is_new_index; for_each_fx.is_static_index = is_static_index; for_each_fx.is_static_new_index = is_static_new_index; for_each_fx.poison_indexing = poison_indexing; for_each_fx.p_key = &s; for_each_fx.p_ics = &ics; if constexpr (is_lua_c_function_v<ValueU>) { for_each_fx.is_unqualified_lua_CFunction = true; for_each_fx.call_func = *static_cast<lua_CFunction*>(ics.binding_data); } else if constexpr (is_lua_reference_or_proxy_v<ValueU>) { for_each_fx.is_unqualified_lua_reference = true; for_each_fx.p_binding_ref = static_cast<reference*>(ics.binding_data); } else { for_each_fx.call_func = &b.template call<false, is_var_bind::value>; } for_each_fx.p_usb = this; for_each_fx.p_derived_usb = derived_this; for_each_fx.idx_call = &usertype_storage<T>::template index_call<false>; for_each_fx.new_idx_call = &usertype_storage<T>::template index_call<true>; for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call<false>; for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call<true>; for_each_fx.change_indexing = &usertype_storage_base::change_indexing; // set base index and base new_index // functions here if (is_index) { this->base_index.index = ics.index; this->base_index.binding_data = ics.binding_data; } if (is_new_index) { this->base_index.new_index = ics.new_index; this->base_index.new_binding_data = ics.binding_data; } if (is_static_index) { this->static_base_index.index = ics.index; this->static_base_index.binding_data = ics.binding_data; } if (is_static_new_index) { this->static_base_index.new_index = ics.new_index; this->static_base_index.new_binding_data = ics.binding_data; } this->for_each_table(L, for_each_fx); this->add_entry(s, std::move(ics)); } else { // the reference-based implementation might compare poorly and hash // poorly in some cases... if constexpr (is_lua_reference_v<KeyU> && is_lua_reference_v<ValueU>) { if (key.get_type() == type::string) { stack::push(L, key); std::string string_key = stack::pop<std::string>(L); this->set<T>(L, string_key, std::forward<Value>(value)); } else { lua_reference_func ref_additions_fx{ key, value }; this->for_each_table(L, ref_additions_fx); this->auxiliary_keys.insert_or_assign(std::forward<Key>(key), std::forward<Value>(value)); } } else { reference ref_key = make_reference(L, std::forward<Key>(key)); reference ref_value = make_reference(L, std::forward<Value>(value)); lua_reference_func ref_additions_fx{ key, value }; this->for_each_table(L, ref_additions_fx); this->auxiliary_keys.insert_or_assign(std::move(ref_key), std::move(ref_value)); } } } template <typename T> template <typename Key, typename Value> void usertype_storage<T>::set(lua_State* L, Key&& key, Value&& value) { static_cast<usertype_storage_base&>(*this).set<T>(L, std::forward<Key>(key), std::forward<Value>(value)); } template <typename T> inline usertype_storage<T>& create_usertype_storage(lua_State* L) { const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; // Make sure userdata's memory is properly in lua first, // otherwise all the light userdata we make later will become invalid int usertype_storage_push_count = stack::push<user<usertype_storage<T>>>(L, no_metatable, L); stack_reference usertype_storage_ref(L, -usertype_storage_push_count); // create and push onto the stack a table to use as metatable for this GC // we create a metatable to attach to the regular gc_table // so that the destructor is called for the usertype storage int usertype_storage_metatabe_count = stack::push(L, new_table(0, 1)); stack_reference usertype_storage_metatable(L, -usertype_storage_metatabe_count); // set the destruction routine on the metatable stack::set_field(L, meta_function::garbage_collect, &destruct_usertype_storage<T>, usertype_storage_metatable.stack_index()); // set the metatable on the usertype storage userdata stack::set_field(L, metatable_key, usertype_storage_metatable, usertype_storage_ref.stack_index()); usertype_storage_metatable.pop(); // set the usertype storage and its metatable // into the global table... stack::set_field<true>(L, gcmetakey, usertype_storage_ref); usertype_storage_ref.pop(); // then retrieve the lua-stored version so we have a well-pinned // reference that does not die stack::get_field<true>(L, gcmetakey); usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); return target_umt; } inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index) { stack::record tracking; if (!stack::check<user<usertype_storage_base>>(L, index)) { return nullopt; } usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking); return target_umt; } inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, const char* gcmetakey) { stack::get_field<true>(L, gcmetakey); auto maybe_storage = maybe_get_usertype_storage_base(L, lua_gettop(L)); lua_pop(L, 1); return maybe_storage; } inline usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey) { stack::get_field<true>(L, gcmetakey); stack::record tracking; usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking); lua_pop(L, 1); return target_umt; } template <typename T> inline optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L) { const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; stack::get_field<true>(L, gcmetakey); int target = lua_gettop(L); if (!stack::check<user<usertype_storage<T>>>(L, target)) { return nullopt; } usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); return target_umt; } template <typename T> inline usertype_storage<T>& get_usertype_storage(lua_State* L) { const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; stack::get_field<true>(L, gcmetakey); usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); return target_umt; } template <typename T> inline void delete_usertype_storage(lua_State* L) { using u_traits = usertype_traits<T>; #if 0 using u_const_traits = usertype_traits<const T>; using u_unique_traits = usertype_traits<detail::unique_usertype<T>>; using u_ref_traits = usertype_traits<T*>; using u_const_ref_traits = usertype_traits<T const*>; #endif using uts = usertype_storage<T>; const char* gcmetakey = &u_traits::gc_table()[0]; stack::get_field<true>(L, gcmetakey); if (!stack::check<user<uts>>(L)) { lua_pop(L, 1); return; } usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L); target_umt.clear(); // get the registry #if 0 stack_reference registry(L, raw_index(LUA_REGISTRYINDEX)); registry.push(); // eliminate all named entries for this usertype // in the registry (luaL_newmetatable does // [name] = new table // in registry upon creation stack::set_field(L, &u_traits::metatable()[0], lua_nil, registry.stack_index()); stack::set_field(L, &u_const_traits::metatable()[0], lua_nil, registry.stack_index()); stack::set_field(L, &u_const_ref_traits::metatable()[0], lua_nil, registry.stack_index()); stack::set_field(L, &u_ref_traits::metatable()[0], lua_nil, registry.stack_index()); stack::set_field(L, &u_unique_traits::metatable()[0], lua_nil, registry.stack_index()); registry.pop(); #endif // Registry Cleanout stack::set_field<true>(L, gcmetakey, lua_nil); } template <typename T> inline int register_usertype(lua_State* L, automagic_enrollments enrollments = {}) { using u_traits = usertype_traits<T>; using u_const_traits = usertype_traits<const T>; using u_unique_traits = usertype_traits<detail::unique_usertype<T>>; using u_ref_traits = usertype_traits<T*>; using u_const_ref_traits = usertype_traits<T const*>; using uts = usertype_storage<T>; // always have __new_index point to usertype_storage method // have __index always point to regular fast-lookup // meta_method table // if __new_index is invoked, runtime-swap // to slow __index if necessary // (no speed penalty because function calls // are all read-only -- only depend on __index // to retrieve function and then call happens VIA Lua) // __type entry: // table contains key -> value lookup, // where key is entry in metatable // and value is type information as a string as // best as we can give it // name entry: // string that contains raw class name, // as defined from C++ // is entry: // checks if argument supplied is of type T // __storage entry: // a light userdata pointing to the storage // mostly to enable this new abstraction // to not require the type name `T` // to get at the C++ usertype storage within // we then let typical definitions potentially override these intrinsics // it's the user's fault if they override things or screw them up: // these names have been reserved and documented since sol3 // STEP 0: tell the old usertype (if it exists) // to fuck off delete_usertype_storage<T>(L); // STEP 1: Create backing store for usertype storage // Pretty much the most important step. // STEP 2: Create Lua tables used for fast method indexing. // This is done inside of the storage table's constructor usertype_storage<T>& storage = create_usertype_storage<T>(L); usertype_storage_base& base_storage = storage; void* light_storage = static_cast<void*>(&storage); void* light_base_storage = static_cast<void*>(&base_storage); // STEP 3: set up GC escape hatch table entirely storage.gc_names_table.push(); stack_reference gnt(L, -1); stack::set_field(L, submetatable_type::named, &u_traits::gc_table()[0], gnt.stack_index()); stack::set_field(L, submetatable_type::const_value, &u_const_traits::metatable()[0], gnt.stack_index()); stack::set_field(L, submetatable_type::const_reference, &u_const_ref_traits::metatable()[0], gnt.stack_index()); stack::set_field(L, submetatable_type::reference, &u_ref_traits::metatable()[0], gnt.stack_index()); stack::set_field(L, submetatable_type::unique, &u_unique_traits::metatable()[0], gnt.stack_index()); stack::set_field(L, submetatable_type::value, &u_traits::metatable()[0], gnt.stack_index()); gnt.pop(); // STEP 4: add some useful information to the type table stack_reference stacked_type_table(L, -storage.type_table.push()); stack::set_field(L, "name", detail::demangle<T>(), stacked_type_table.stack_index()); stack::set_field(L, "is", &detail::is_check<T>, stacked_type_table.stack_index()); stacked_type_table.pop(); // STEP 5: create and hook up metatable, // add intrinsics // this one is the actual meta-handling table, // the next one will be the one for int for_each_backing_metatable_calls = 0; auto for_each_backing_metatable = [&](lua_State* L, submetatable_type smt, reference& fast_index_table) { // Pointer types, AKA "references" from C++ const char* metakey = nullptr; switch (smt) { case submetatable_type::const_value: metakey = &u_const_traits::metatable()[0]; break; case submetatable_type::reference: metakey = &u_ref_traits::metatable()[0]; break; case submetatable_type::unique: metakey = &u_unique_traits::metatable()[0]; break; case submetatable_type::const_reference: metakey = &u_const_ref_traits::metatable()[0]; break; case submetatable_type::named: metakey = &u_traits::user_metatable()[0]; break; case submetatable_type::value: default: metakey = &u_traits::metatable()[0]; break; } luaL_newmetatable(L, metakey); if (smt == submetatable_type::named) { // the named table itself // gets the associated name value storage.named_metatable = reference(L, -1); lua_pop(L, 1); // but the thing we perform the methods on // is still the metatable of the named // table lua_createtable(L, 0, 6); } stack_reference t(L, -1); fast_index_table = reference(t); stack::set_field<false, true>(L, meta_function::type, storage.type_table, t.stack_index()); if constexpr (std::is_destructible_v<T>) { // destructible: serialize default // destructor here switch (smt) { case submetatable_type::const_reference: case submetatable_type::reference: case submetatable_type::named: break; case submetatable_type::unique: stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::unique_destruct<T>, t.stack_index()); break; case submetatable_type::value: case submetatable_type::const_value: default: stack::set_field<false, true>(L, meta_function::garbage_collect, detail::make_destructor<T>(), t.stack_index()); break; } } else { // not destructible: serialize a // "hey you messed up" // destructor switch (smt) { case submetatable_type::const_reference: case submetatable_type::reference: case submetatable_type::named: break; case submetatable_type::unique: stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index()); break; case submetatable_type::value: case submetatable_type::const_value: default: stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index()); break; } } static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug " "report."); static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug " "report."); stack::set_field<false, true>(L, detail::base_class_check_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_check), t.stack_index()); stack::set_field<false, true>(L, detail::base_class_cast_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_cast), t.stack_index()); auto prop_fx = detail::properties_enrollment_allowed(for_each_backing_metatable_calls, storage.properties, enrollments); auto insert_fx = [&L, &t, &storage](meta_function mf, lua_CFunction reg) { stack::set_field<false, true>(L, mf, reg, t.stack_index()); storage.properties[static_cast<int>(mf)] = true; }; detail::insert_default_registrations<T>(insert_fx, prop_fx); // There are no variables, so serialize the fast function stuff // be sure to reset the index stuff to the non-fast version // if the user ever adds something later! if (smt == submetatable_type::named) { // add escape hatch storage pointer and gc names stack::set_field<false, true>(L, meta_function::storage, light_base_storage, t.stack_index()); stack::set_field<false, true>(L, meta_function::gc_names, storage.gc_names_table, t.stack_index()); // fancy new_indexing when using the named table { absolute_index named_metatable_index(L, -storage.named_metatable.push()); stack::set_field<false, true>(L, metatable_key, t, named_metatable_index); storage.named_metatable.pop(); } stack_reference stack_metametatable(L, -storage.named_index_table.push()); stack::set_field<false, true>(L, meta_function::index, make_closure(uts::template meta_index_call<false>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic), stack_metametatable.stack_index()); stack::set_field<false, true>(L, meta_function::new_index, make_closure(uts::template meta_index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic), stack_metametatable.stack_index()); stack_metametatable.pop(); } else { // otherwise just plain for index, // and elaborated for new_index stack::set_field<false, true>(L, meta_function::index, t, t.stack_index()); stack::set_field<false, true>(L, meta_function::new_index, make_closure(uts::template index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic), t.stack_index()); storage.is_using_new_index = true; } ++for_each_backing_metatable_calls; fast_index_table = reference(L, t); t.pop(); }; storage.for_each_table(L, for_each_backing_metatable); // can only use set AFTER we initialize all the metatables if constexpr (std::is_default_constructible_v<T>) { if (enrollments.default_constructor) { storage.set(L, meta_function::construct, constructors<T()>()); } } // return the named metatable we want names linked into storage.named_metatable.push(); return 1; } }} // namespace sol::u_detail // end of sol/usertype_storage.hpp // beginning of sol/usertype_proxy.hpp namespace sol { template <typename Table, typename Key> struct usertype_proxy : public proxy_base<usertype_proxy<Table, Key>> { private: using key_type = detail::proxy_key_t<Key>; template <typename T, std::size_t... I> decltype(auto) tuple_get(std::index_sequence<I...>) const & { return tbl.template traverse_get<T>(std::get<I>(key)...); } template <typename T, std::size_t... I> decltype(auto) tuple_get(std::index_sequence<I...>) && { return tbl.template traverse_get<T>(std::get<I>(std::move(key))...); } template <std::size_t... I, typename T> void tuple_set(std::index_sequence<I...>, T&& value) & { if constexpr (sizeof...(I) > 1) { tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value)); } else { tbl.set(std::get<I>(key)..., std::forward<T>(value)); } } template <std::size_t... I, typename T> void tuple_set(std::index_sequence<I...>, T&& value) && { if constexpr (sizeof...(I) > 1) { tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value)); } else { tbl.set(std::get<I>(std::move(key))..., std::forward<T>(value)); } } public: Table tbl; key_type key; template <typename T> usertype_proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) { } template <typename T> usertype_proxy& set(T&& item) & { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; tuple_set(idx_seq(), std::forward<T>(item)); return *this; } template <typename T> usertype_proxy&& set(T&& item) && { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; std::move(*this).tuple_set(idx_seq(), std::forward<T>(item)); return std::move(*this); } template <typename T> usertype_proxy& operator=(T&& other) & { return set(std::forward<T>(other)); } template <typename T> usertype_proxy&& operator=(T&& other) && { return std::move(*this).set(std::forward<T>(other)); } template <typename T> usertype_proxy& operator=(std::initializer_list<T> other) & { return set(std::move(other)); } template <typename T> usertype_proxy&& operator=(std::initializer_list<T> other) && { return std::move(*this).set(std::move(other)); } template <typename T> decltype(auto) get() const& { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; return tuple_get<T>(idx_seq()); } template <typename T> decltype(auto) get() && { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; return std::move(*this).template tuple_get<T>(idx_seq()); } template <typename K> decltype(auto) operator[](K&& k) const& { auto keys = meta::tuplefy(key, std::forward<K>(k)); return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename K> decltype(auto) operator[](K&& k) & { auto keys = meta::tuplefy(key, std::forward<K>(k)); return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename K> decltype(auto) operator[](K&& k) && { auto keys = meta::tuplefy(std::move(key), std::forward<K>(k)); return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args) { #if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 // MSVC is ass sometimes return get<function>().call<Ret...>(std::forward<Args>(args)...); #else return get<function>().template call<Ret...>(std::forward<Args>(args)...); #endif } template <typename... Args> decltype(auto) operator()(Args&&... args) { return call<>(std::forward<Args>(args)...); } bool valid() const { auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); lua_pop(lua_state(), p.levels); return p; } int push() const noexcept { return push(this->lua_state()); } int push(lua_State* L) const noexcept { return get<reference>().push(L); } type get_type() const { type t = type::none; auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); if (p) { t = type_of(lua_state(), -1); } lua_pop(lua_state(), p.levels); return t; } lua_State* lua_state() const { return tbl.lua_state(); } }; } // namespace sol // end of sol/usertype_proxy.hpp // beginning of sol/metatable.hpp // beginning of sol/table_core.hpp // beginning of sol/proxy.hpp namespace sol { template <typename Table, typename Key> struct proxy : public proxy_base<proxy<Table, Key>> { private: using key_type = detail::proxy_key_t<Key>; template <typename T, std::size_t... I> decltype(auto) tuple_get(std::index_sequence<I...>) const & { return tbl.template traverse_get<T>(std::get<I>(key)...); } template <typename T, std::size_t... I> decltype(auto) tuple_get(std::index_sequence<I...>) && { return tbl.template traverse_get<T>(std::get<I>(std::move(key))...); } template <std::size_t... I, typename T> void tuple_set(std::index_sequence<I...>, T&& value) & { tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value)); } template <std::size_t... I, typename T> void tuple_set(std::index_sequence<I...>, T&& value) && { tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value)); } auto setup_table(std::true_type) { auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, tbl.stack_index()); lua_pop(lua_state(), p.levels); return p; } bool is_valid(std::false_type) { auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, lua_gettop(lua_state())); lua_pop(lua_state(), p.levels); return p; } public: Table tbl; key_type key; template <typename T> proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) { } template <typename T> proxy& set(T&& item) & { tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item)); return *this; } template <typename T> proxy&& set(T&& item) && { tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item)); return std::move(*this); } template <typename... Args> proxy& set_function(Args&&... args) & { tbl.set_function(key, std::forward<Args>(args)...); return *this; } template <typename... Args> proxy&& set_function(Args&&... args) && { tbl.set_function(std::move(key), std::forward<Args>(args)...); return std::move(*this); } template <typename T> proxy& operator=(T&& other) & { using Tu = meta::unwrap_unqualified_t<T>; if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) { return set_function(std::forward<T>(other)); } else { return set(std::forward<T>(other)); } } template <typename T> proxy&& operator=(T&& other) && { using Tu = meta::unwrap_unqualified_t<T>; if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) { return std::move(*this).set_function(std::forward<T>(other)); } else { return std::move(*this).set(std::forward<T>(other)); } } template <typename T> proxy& operator=(std::initializer_list<T> other) & { return set(std::move(other)); } template <typename T> proxy&& operator=(std::initializer_list<T> other) && { return std::move(*this).set(std::move(other)); } template <typename T> decltype(auto) get() const & { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; return tuple_get<T>(idx_seq()); } template <typename T> decltype(auto) get() && { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; return std::move(*this).template tuple_get<T>(idx_seq()); } template <typename T> decltype(auto) get_or(T&& otherwise) const { typedef decltype(get<T>()) U; optional<U> option = get<optional<U>>(); if (option) { return static_cast<U>(option.value()); } return static_cast<U>(std::forward<T>(otherwise)); } template <typename T, typename D> decltype(auto) get_or(D&& otherwise) const { optional<T> option = get<optional<T>>(); if (option) { return static_cast<T>(option.value()); } return static_cast<T>(std::forward<D>(otherwise)); } template <typename T> decltype(auto) get_or_create() { return get_or_create<T>(new_table()); } template <typename T, typename Otherwise> decltype(auto) get_or_create(Otherwise&& other) { if (!this->valid()) { this->set(std::forward<Otherwise>(other)); } return get<T>(); } template <typename K> decltype(auto) operator[](K&& k) const& { auto keys = meta::tuplefy(key, std::forward<K>(k)); return proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename K> decltype(auto) operator[](K&& k) & { auto keys = meta::tuplefy(key, std::forward<K>(k)); return proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename K> decltype(auto) operator[](K&& k) && { auto keys = meta::tuplefy(std::move(key), std::forward<K>(k)); return proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args) { #if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 // MSVC is ass sometimes return get<function>().call<Ret...>(std::forward<Args>(args)...); #else return get<function>().template call<Ret...>(std::forward<Args>(args)...); #endif } template <typename... Args> decltype(auto) operator()(Args&&... args) { return call<>(std::forward<Args>(args)...); } bool valid() const { auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); lua_pop(lua_state(), p.levels); return p; } int push() const noexcept { return push(this->lua_state()); } int push(lua_State* L) const noexcept { return get<reference>().push(L); } type get_type() const { type t = type::none; auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); if (p) { t = type_of(lua_state(), -1); } lua_pop(lua_state(), p.levels); return t; } lua_State* lua_state() const { return tbl.lua_state(); } proxy& force() { if (!this->valid()) { this->set(new_table()); } return *this; } }; template <typename Table, typename Key, typename T> inline bool operator==(T&& left, const proxy<Table, Key>& right) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() == left; } template <typename Table, typename Key, typename T> inline bool operator==(const proxy<Table, Key>& right, T&& left) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() == left; } template <typename Table, typename Key, typename T> inline bool operator!=(T&& left, const proxy<Table, Key>& right) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() != left; } template <typename Table, typename Key, typename T> inline bool operator!=(const proxy<Table, Key>& right, T&& left) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() != left; } template <typename Table, typename Key> inline bool operator==(lua_nil_t, const proxy<Table, Key>& right) { return !right.valid(); } template <typename Table, typename Key> inline bool operator==(const proxy<Table, Key>& right, lua_nil_t) { return !right.valid(); } template <typename Table, typename Key> inline bool operator!=(lua_nil_t, const proxy<Table, Key>& right) { return right.valid(); } template <typename Table, typename Key> inline bool operator!=(const proxy<Table, Key>& right, lua_nil_t) { return right.valid(); } template <bool b> template <typename Super> basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) { basic_reference<b> v = r; this->operator=(std::move(v)); return *this; } template <bool b> template <typename Super> basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) { basic_reference<b> v = r; this->operator=(std::move(v)); return *this; } namespace stack { template <typename Table, typename Key> struct unqualified_pusher<proxy<Table, Key>> { static int push(lua_State* L, const proxy<Table, Key>& p) { reference r = p; return r.push(L); } }; } // namespace stack } // namespace sol // end of sol/proxy.hpp // beginning of sol/table_iterator.hpp namespace sol { template <typename reference_type> class basic_table_iterator : public std::iterator<std::input_iterator_tag, std::pair<object, object>> { public: typedef object key_type; typedef object mapped_type; typedef std::pair<object, object> value_type; typedef std::input_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; typedef value_type* pointer; typedef value_type& reference; typedef const value_type& const_reference; private: std::pair<object, object> kvp; reference_type ref; int tableidx = 0; int keyidx = 0; std::ptrdiff_t idx = 0; public: basic_table_iterator() : keyidx(-1), idx(-1) { } basic_table_iterator(reference_type x) : ref(std::move(x)) { ref.push(); tableidx = lua_gettop(ref.lua_state()); stack::push(ref.lua_state(), lua_nil); this->operator++(); if (idx == -1) { return; } --idx; } basic_table_iterator& operator++() { if (idx == -1) return *this; if (lua_next(ref.lua_state(), tableidx) == 0) { idx = -1; keyidx = -1; return *this; } ++idx; kvp.first = object(ref.lua_state(), -2); kvp.second = object(ref.lua_state(), -1); lua_pop(ref.lua_state(), 1); // leave key on the stack keyidx = lua_gettop(ref.lua_state()); return *this; } basic_table_iterator operator++(int) { auto saved = *this; this->operator++(); return saved; } reference operator*() { return kvp; } const_reference operator*() const { return kvp; } bool operator==(const basic_table_iterator& right) const { return idx == right.idx; } bool operator!=(const basic_table_iterator& right) const { return idx != right.idx; } ~basic_table_iterator() { if (keyidx != -1) { stack::remove(ref.lua_state(), keyidx, 1); } if (ref.lua_state() != nullptr && ref.valid()) { stack::remove(ref.lua_state(), tableidx, 1); } } }; } // namespace sol // end of sol/table_iterator.hpp namespace sol { namespace detail { template <std::size_t n> struct clean { lua_State* L; clean(lua_State* luastate) : L(luastate) { } ~clean() { lua_pop(L, static_cast<int>(n)); } }; struct ref_clean { lua_State* L; int& n; ref_clean(lua_State* luastate, int& n) : L(luastate), n(n) { } ~ref_clean() { lua_pop(L, static_cast<int>(n)); } }; inline int fail_on_newindex(lua_State* L) { return luaL_error(L, "sol: cannot modify the elements of an enumeration table"); } } // namespace detail template <bool top_level, typename ref_t> class basic_table_core : public basic_object<ref_t> { private: using base_t = basic_object<ref_t>; friend class state; friend class state_view; template <typename, typename> friend class basic_usertype; template <typename> friend class basic_metatable; template <bool raw, typename... Ret, typename... Keys> decltype(auto) tuple_get(int table_index, Keys&&... keys) const { if constexpr (sizeof...(Ret) < 2) { return traverse_get_single_maybe_tuple<raw, Ret...>(table_index, std::forward<Keys>(keys)...); } else { using multi_ret = decltype(stack::pop<std::tuple<Ret...>>(nullptr)); return multi_ret(traverse_get_single_maybe_tuple<raw, Ret>(table_index, std::forward<Keys>(keys))...); } } template <bool raw, typename Ret, size_t... I, typename Key> decltype(auto) traverse_get_single_tuple(int table_index, std::index_sequence<I...>, Key&& key) const { return traverse_get_single<raw, Ret>(table_index, std::get<I>(std::forward<Key>(key))...); } template <bool raw, typename Ret, typename Key> decltype(auto) traverse_get_single_maybe_tuple(int table_index, Key&& key) const { if constexpr (meta::is_tuple_v<meta::unqualified_t<Key>>) { return traverse_get_single_tuple<raw, Ret>( table_index, std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<Key>>>(), std::forward<Key>(key)); } else { return traverse_get_single<raw, Ret>(table_index, std::forward<Key>(key)); } } template <bool raw, typename Ret, typename... Keys> decltype(auto) traverse_get_single(int table_index, Keys&&... keys) const { constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); if constexpr (meta::is_optional_v<meta::unqualified_t<Ret>>) { int popcount = 0; detail::ref_clean c(base_t::lua_state(), popcount); return traverse_get_deep_optional<global, raw, detail::insert_mode::none, Ret>(popcount, table_index, std::forward<Keys>(keys)...); } else { detail::clean<sizeof...(Keys) - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>> c(base_t::lua_state()); return traverse_get_deep<global, raw, detail::insert_mode::none, Ret>(table_index, std::forward<Keys>(keys)...); } } template <bool raw, typename Pairs, std::size_t... I> void tuple_set(std::index_sequence<I...>, Pairs&& pairs) { constexpr static bool global = top_level && (meta::count_even_for_pack_v<meta::is_c_str, meta::unqualified_t<decltype(std::get<I * 2>(std::forward<Pairs>(pairs)))>...> > 0); auto pp = stack::push_pop<global>(*this); int table_index = pp.index_of(*this); lua_State* L = base_t::lua_state(); (void)table_index; (void)L; void(detail::swallow{ (stack::set_field<(top_level), raw>(L, std::get<I * 2>(std::forward<Pairs>(pairs)), std::get<I * 2 + 1>(std::forward<Pairs>(pairs)), table_index), 0)... }); } template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys> decltype(auto) traverse_get_deep(int table_index, Key&& key, Keys&&... keys) const { if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) { (void)key; return traverse_get_deep<false, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil), T>( table_index, std::forward<Keys>(keys)...); } else { lua_State* L = base_t::lua_state(); stack::get_field<global, raw>(L, std::forward<Key>(key), table_index); if constexpr (sizeof...(Keys) > 0) { if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { type t = type_of(L, -1); if (t == type::lua_nil || t == type::none) { lua_pop(L, 1); stack::push(L, new_table(0, 0)); } } return traverse_get_deep<false, raw, mode, T>(lua_gettop(L), std::forward<Keys>(keys)...); } else { if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { type t = type_of(L, -1); if ((t == type::lua_nil || t == type::none) && (is_table_like_v<T>)) { lua_pop(L, 1); stack::push(L, new_table(0, 0)); } } return stack::get<T>(L); } } } template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys> decltype(auto) traverse_get_deep_optional(int& popcount, int table_index, Key&& key, Keys&&... keys) const { if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) { constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil); (void)key; return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...); } else if constexpr (std::is_same_v<meta::unqualified_t<Key>, update_if_empty_t>) { constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty); (void)key; return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...); } else if constexpr (std::is_same_v<meta::unqualified_t<Key>, override_value_t>) { constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value); (void)key; return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...); } else { if constexpr (sizeof...(Keys) > 0) { lua_State* L = base_t::lua_state(); auto p = stack::probe_get_field<global, raw>(L, std::forward<Key>(key), table_index); popcount += p.levels; if (!p.success) { if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { lua_pop(L, 1); constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0; stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq))); stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); } else { return T(nullopt); } } return traverse_get_deep_optional<false, raw, mode, T>(popcount, lua_gettop(L), std::forward<Keys>(keys)...); } else { using R = decltype(stack::get<T>(nullptr)); using value_type = typename meta::unqualified_t<R>::value_type; lua_State* L = base_t::lua_state(); auto p = stack::probe_get_field<global, raw, value_type>(L, key, table_index); popcount += p.levels; if (!p.success) { if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { lua_pop(L, 1); stack::push(L, new_table(0, 0)); stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); if (stack::check<value_type>(L, lua_gettop(L), no_panic)) { return stack::get<T>(L); } } return R(nullopt); } return stack::get<T>(L); } } } template <bool global, bool raw, detail::insert_mode mode, typename Key, typename... Keys> void traverse_set_deep(int table_index, Key&& key, Keys&&... keys) const { using KeyU = meta::unqualified_t<Key>; if constexpr (std::is_same_v<KeyU, update_if_empty_t>) { (void)key; traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty)>(table_index, std::forward<Keys>(keys)...); } else if constexpr (std::is_same_v<KeyU, create_if_nil_t>) { (void)key; traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil)>( table_index, std::forward<Keys>(keys)...); } else if constexpr (std::is_same_v<KeyU, override_value_t>) { (void)key; traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value)>( table_index, std::forward<Keys>(keys)...); } else { lua_State* L = base_t::lua_state(); if constexpr (sizeof...(Keys) == 1) { if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty) { auto p = stack::probe_get_field<global, raw>(L, key, table_index); lua_pop(L, p.levels); if (!p.success) { stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index); } } else { stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index); } } else { if constexpr (mode != detail::insert_mode::none) { stack::get_field<global, raw>(L, key, table_index); type vt = type_of(L, -1); if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty || (mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) { if (vt == type::lua_nil || vt == type::none) { constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0; lua_pop(L, 1); stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq))); stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); } } else { if (vt != type::table) { constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0; lua_pop(L, 1); stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq))); stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index); } } } else { stack::get_field<global, raw>(L, std::forward<Key>(key), table_index); } traverse_set_deep<false, raw, mode>(lua_gettop(L), std::forward<Keys>(keys)...); } } } basic_table_core(lua_State* L, detail::global_tag t) noexcept : base_t(L, t) { } protected: basic_table_core(detail::no_safety_tag, lua_nil_t n) : base_t(n) { } basic_table_core(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) { } basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) { } template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_table_core(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_table_core(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) { } public: using iterator = basic_table_iterator<ref_t>; using const_iterator = iterator; using base_t::lua_state; basic_table_core() noexcept = default; basic_table_core(const basic_table_core&) = default; basic_table_core(basic_table_core&&) = default; basic_table_core& operator=(const basic_table_core&) = default; basic_table_core& operator=(basic_table_core&&) = default; basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) { } basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) { } template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_table_core(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_table_core>(lua_state(), -1, handler); #endif // Safety } basic_table_core(lua_State* L, const new_table& nt) : base_t(L, -stack::push(L, nt)) { if (!is_stack_based<meta::unqualified_t<ref_t>>::value) { lua_pop(L, 1); } } basic_table_core(lua_State* L, int index = -1) : basic_table_core(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_table_core>(L, index, handler); #endif // Safety } basic_table_core(lua_State* L, ref_index index) : basic_table_core(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_table_core>(lua_state(), -1, handler); #endif // Safety } template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_table_core(T&& r) noexcept : basic_table_core(detail::no_safety, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_table<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_table_core>(lua_state(), -1, handler); } #endif // Safety } basic_table_core(lua_nil_t r) noexcept : basic_table_core(detail::no_safety, r) { } iterator begin() const { return iterator(*this); } iterator end() const { return iterator(); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } void clear () { auto pp = stack::push_pop<false>(*this); int table_index = pp.index_of(*this); stack::clear(lua_state(), table_index); } template <typename... Ret, typename... Keys> decltype(auto) get(Keys&&... keys) const { static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match"); constexpr static bool global = meta::all<meta::boolean<top_level>, meta::is_c_str<meta::unqualified_t<Keys>>...>::value; auto pp = stack::push_pop<global>(*this); int table_index = pp.index_of(*this); return tuple_get<false, Ret...>(table_index, std::forward<Keys>(keys)...); } template <typename T, typename Key> decltype(auto) get_or(Key&& key, T&& otherwise) const { typedef decltype(get<T>("")) U; optional<U> option = get<optional<U>>(std::forward<Key>(key)); if (option) { return static_cast<U>(option.value()); } return static_cast<U>(std::forward<T>(otherwise)); } template <typename T, typename Key, typename D> decltype(auto) get_or(Key&& key, D&& otherwise) const { optional<T> option = get<optional<T>>(std::forward<Key>(key)); if (option) { return static_cast<T>(option.value()); } return static_cast<T>(std::forward<D>(otherwise)); } template <typename T, typename... Keys> decltype(auto) traverse_get(Keys&&... keys) const { static_assert(sizeof...(Keys) > 0, "must pass at least 1 key to get"); constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); auto pp = stack::push_pop<global>(*this); int table_index = pp.index_of(*this); return traverse_get_single<false, T>(table_index, std::forward<Keys>(keys)...); } template <typename... Keys> basic_table_core& traverse_set(Keys&&... keys) { static_assert(sizeof...(Keys) > 1, "must pass at least 1 key and 1 value to set"); constexpr static bool global = top_level && (meta::count_when_for_to_pack_v<detail::is_not_insert_mode, 1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); auto pp = stack::push_pop<global>(*this); int table_index = pp.index_of(*this); lua_State* L = base_t::lua_state(); auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>)); traverse_set_deep<top_level, false, detail::insert_mode::none>(table_index, std::forward<Keys>(keys)...); return *this; } template <typename... Args> basic_table_core& set(Args&&... args) { if constexpr(sizeof...(Args) == 2) { traverse_set(std::forward<Args>(args)...); } else { tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...)); } return *this; } template <typename... Ret, typename... Keys> decltype(auto) raw_get(Keys&&... keys) const { static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match"); constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); auto pp = stack::push_pop<global>(*this); int table_index = pp.index_of(*this); return tuple_get<true, Ret...>(table_index, std::forward<Keys>(keys)...); } template <typename T, typename Key> decltype(auto) raw_get_or(Key&& key, T&& otherwise) const { typedef decltype(raw_get<T>("")) U; optional<U> option = raw_get<optional<U>>(std::forward<Key>(key)); if (option) { return static_cast<U>(option.value()); } return static_cast<U>(std::forward<T>(otherwise)); } template <typename T, typename Key, typename D> decltype(auto) raw_get_or(Key&& key, D&& otherwise) const { optional<T> option = raw_get<optional<T>>(std::forward<Key>(key)); if (option) { return static_cast<T>(option.value()); } return static_cast<T>(std::forward<D>(otherwise)); } template <typename T, typename... Keys> decltype(auto) traverse_raw_get(Keys&&... keys) const { constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); auto pp = stack::push_pop<global>(*this); int table_index = pp.index_of(*this); return traverse_get_single<true, T>(table_index, std::forward<Keys>(keys)...); } template <typename... Keys> basic_table_core& traverse_raw_set(Keys&&... keys) { constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0); auto pp = stack::push_pop<global>(*this); lua_State* L = base_t::lua_state(); auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>)); traverse_set_deep<top_level, true, false>(std::forward<Keys>(keys)...); return *this; } template <typename... Args> basic_table_core& raw_set(Args&&... args) { tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...)); return *this; } template <typename Class, typename Key> usertype<Class> new_usertype(Key&& key); template <typename Class, typename Key> usertype<Class> new_usertype(Key&& key, automagic_enrollments enrollment); template <typename Class, typename Key, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same_v<meta::unqualified_t<Arg>, automagic_enrollments>>> usertype<Class> new_usertype(Key&& key, Arg&& arg, Args&&... args); template <bool read_only = true, typename... Args> table new_enum(const string_view& name, Args&&... args) { table target = create_with(std::forward<Args>(args)...); if (read_only) { table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target); table shim = create_named(name, metatable_key, x); return shim; } else { set(name, target); return target; } } template <typename T, bool read_only = true> table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) { table target = create(static_cast<int>(items.size()), static_cast<int>(0)); for (const auto& kvp : items) { target.set(kvp.first, kvp.second); } if constexpr (read_only) { table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target); table shim = create_named(name, metatable_key, x); return shim; } else { set(name, target); return target; } } template <typename Key = object, typename Value = object, typename Fx> void for_each(Fx&& fx) const { lua_State* L = base_t::lua_state(); if constexpr (std::is_invocable_v<Fx, Key, Value>) { auto pp = stack::push_pop(*this); stack::push(L, lua_nil); while (lua_next(L, -2)) { Key key(L, -2); Value value(L, -1); auto pn = stack::pop_n(L, 1); fx(key, value); } } else { auto pp = stack::push_pop(*this); stack::push(L, lua_nil); while (lua_next(L, -2)) { Key key(L, -2); Value value(L, -1); auto pn = stack::pop_n(L, 1); std::pair<Key&, Value&> keyvalue(key, value); fx(keyvalue); } } } size_t size() const { auto pp = stack::push_pop(*this); lua_State* L = base_t::lua_state(); lua_len(L, -1); return stack::pop<size_t>(L); } bool empty() const { return cbegin() == cend(); } template <typename T> auto operator[](T&& key) & { return proxy<basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key)); } template <typename T> auto operator[](T&& key) const& { return proxy<const basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key)); } template <typename T> auto operator[](T&& key) && { return proxy<basic_table_core, detail::proxy_key_t<T>>(std::move(*this), std::forward<T>(key)); } template <typename Sig, typename Key, typename... Args> basic_table_core& set_function(Key&& key, Args&&... args) { set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...); return *this; } template <typename Key, typename... Args> basic_table_core& set_function(Key&& key, Args&&... args) { set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...); return *this; } template <typename... Args> basic_table_core& add(Args&&... args) { auto pp = stack::push_pop(*this); int table_index = pp.index_of(*this); lua_State* L = base_t::lua_state(); (void)detail::swallow{ 0, (stack::set_ref(L, std::forward<Args>(args), table_index), 0)... }; return *this; } private: template <typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>> void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) { set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx)); } template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler> void set_fx(types<>, Key&& key, Fx&& fx) { set(std::forward<Key>(key), std::forward<Fx>(fx)); } template <typename Fx, typename Key, typename... Args, meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler> void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) { set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...)); } template <typename... Sig, typename... Args, typename Key> void set_resolved_function(Key&& key, Args&&... args) { set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...)); } public: static inline table create(lua_State* L, int narr = 0, int nrec = 0) { lua_createtable(L, narr, nrec); table result(L); lua_pop(L, 1); return result; } template <typename Key, typename Value, typename... Args> static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { lua_createtable(L, narr, nrec); table result(L); result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); lua_pop(L, 1); return result; } template <typename... Args> static inline table create_with(lua_State* L, Args&&... args) { static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list."); constexpr int narr = static_cast<int>(meta::count_odd_for_pack_v<std::is_integral, Args...>); return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...); } table create(int narr = 0, int nrec = 0) { return create(base_t::lua_state(), narr, nrec); } template <typename Key, typename Value, typename... Args> table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); } template <typename Name> table create(Name&& name, int narr = 0, int nrec = 0) { table x = create(base_t::lua_state(), narr, nrec); this->set(std::forward<Name>(name), x); return x; } template <typename Name, typename Key, typename Value, typename... Args> table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); this->set(std::forward<Name>(name), x); return x; } template <typename... Args> table create_with(Args&&... args) { return create_with(base_t::lua_state(), std::forward<Args>(args)...); } template <typename Name, typename... Args> table create_named(Name&& name, Args&&... args) { static const int narr = static_cast<int>(meta::count_even_for_pack_v<std::is_integral, Args...>); return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...); } }; } // namespace sol // end of sol/table_core.hpp namespace sol { template <typename base_type> class basic_metatable : public basic_table<base_type> { typedef basic_table<base_type> base_t; friend class state; friend class state_view; protected: basic_metatable(detail::no_safety_tag, lua_nil_t n) : base_t(n) { } basic_metatable(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) { } basic_metatable(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) { } template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_metatable(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_metatable(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) { } public: using base_t::lua_state; basic_metatable() noexcept = default; basic_metatable(const basic_metatable&) = default; basic_metatable(basic_metatable&&) = default; basic_metatable& operator=(const basic_metatable&) = default; basic_metatable& operator=(basic_metatable&&) = default; basic_metatable(const stack_reference& r) : basic_metatable(r.lua_state(), r.stack_index()) { } basic_metatable(stack_reference&& r) : basic_metatable(r.lua_state(), r.stack_index()) { } template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_metatable(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_metatable>(lua_state(), -1, handler); #endif // Safety } basic_metatable(lua_State* L, int index = -1) : basic_metatable(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_metatable>(L, index, handler); #endif // Safety } basic_metatable(lua_State* L, ref_index index) : basic_metatable(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_metatable>(lua_state(), -1, handler); #endif // Safety } template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_metatable(T&& r) noexcept : basic_metatable(detail::no_safety, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_table<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_metatable>(base_t::lua_state(), -1, handler); } #endif // Safety } basic_metatable(lua_nil_t r) noexcept : basic_metatable(detail::no_safety, r) { } template <typename Key, typename Value> void set(Key&& key, Value&& value); void unregister() { using ustorage_base = u_detail::usertype_storage_base; lua_State* L = this->lua_state(); auto pp = stack::push_pop(*this); int top = lua_gettop(L); stack_reference mt(L, -1); stack::get_field(L, meta_function::gc_names, mt.stack_index()); if (type_of(L, -1) != type::table) { return; } stack_reference gc_names_table(L, -1); stack::get_field(L, meta_function::storage, mt.stack_index()); if (type_of(L, -1) != type::lightuserdata) { return; } ustorage_base& base_storage = *static_cast<ustorage_base*>(stack::get<void*>(L, -1)); std::array<string_view, 6> registry_traits; for (std::size_t i = 0; i < registry_traits.size(); ++i) { u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i); stack::get_field<false, true>(L, smt, gc_names_table.stack_index()); registry_traits[i] = stack::get<string_view>(L, -1); } // get the registry stack_reference registry(L, raw_index(LUA_REGISTRYINDEX)); registry.push(); // eliminate all named entries for this usertype // in the registry (luaL_newmetatable does // [name] = new table // in registry upon creation) for (std::size_t i = 0; i < registry_traits.size(); ++i) { u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i); const string_view& gcmetakey = registry_traits[i]; if (smt == u_detail::submetatable_type::named) { // use .data() to make it treat it like a c string, // which it is... stack::set_field<true>(L, gcmetakey.data(), lua_nil); } else { // do not change the values in the registry: they need to be present // no matter what, for safety's sake //stack::set_field(L, gcmetakey, lua_nil, registry.stack_index()); } } // destroy all storage and tables base_storage.clear(); // 6 strings from gc_names table, // + 1 registry, // + 1 gc_names table // + 1 light userdata of storage // + 1 registry // 10 total, 4 left since popping off 6 gc_names tables lua_settop(L, top); } }; } // namespace sol // end of sol/metatable.hpp namespace sol { template <typename T, typename base_type> class basic_usertype : private basic_metatable<base_type> { private: using base_t = basic_metatable<base_type>; using table_base_t = basic_table<base_type>; template <typename> friend class basic_metatable; template <bool, typename> friend class basic_table_core; template <std::size_t... I, typename... Args> void tuple_set(std::index_sequence<I...>, std::tuple<Args...>&& args) { (void)args; (void)detail::swallow{ 0, (this->set(std::get<I * 2>(std::move(args)), std::get<I * 2 + 1>(std::move(args))), 0)... }; } public: using base_t::base_t; using base_t::pop; using base_t::push; using base_t::lua_state; using base_t::get; using base_t::set_function; using base_t::traverse_set; using base_t::traverse_get; using base_t::unregister; template <typename Key, typename Value> void set(Key&& key, Value&& value) { optional<u_detail::usertype_storage<T>&> maybe_uts = u_detail::maybe_get_usertype_storage<T>(this->lua_state()); if (maybe_uts) { u_detail::usertype_storage<T>& uts = *maybe_uts; uts.set(this->lua_state(), std::forward<Key>(key), std::forward<Value>(value)); } else { using ValueU = meta::unqualified_t<Value>; // cannot get metatable: try regular table set? if constexpr (detail::is_non_factory_constructor_v<ValueU> || detail::is_policy_v<ValueU>) { // tag constructors so we don't get destroyed by lack of info table_base_t::set(std::forward<Key>(key), detail::tagged<T, Value>(std::forward<Value>(value))); } else { table_base_t::set(std::forward<Key>(key), std::forward<Value>(value)); } } } template <typename Key> usertype_proxy<basic_usertype&, std::decay_t<Key>> operator[](Key&& key) { return usertype_proxy<basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key)); } template <typename Key> usertype_proxy<const basic_usertype&, std::decay_t<Key>> operator[](Key&& key) const { return usertype_proxy<const basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key)); } }; } // namespace sol // end of sol/usertype.hpp // beginning of sol/table.hpp // beginning of sol/lua_table.hpp namespace sol { template <typename ref_t> struct basic_lua_table : basic_table_core<false, ref_t> { private: using base_t = basic_table_core<false, ref_t>; friend class state; friend class state_view; public: using base_t::lua_state; basic_lua_table() noexcept = default; basic_lua_table(const basic_lua_table&) = default; basic_lua_table(basic_lua_table&&) = default; basic_lua_table& operator=(const basic_lua_table&) = default; basic_lua_table& operator=(basic_lua_table&&) = default; basic_lua_table(const stack_reference& r) : basic_lua_table(r.lua_state(), r.stack_index()) { } basic_lua_table(stack_reference&& r) : basic_lua_table(r.lua_state(), r.stack_index()) { } template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_lua_table(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_lua_table>(lua_state(), -1, handler); #endif // Safety } basic_lua_table(lua_State* L, const new_table& nt) : base_t(L, nt) { if (!is_stack_based<meta::unqualified_t<ref_t>>::value) { lua_pop(L, 1); } } basic_lua_table(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_lua_table>(L, index, handler); #endif // Safety } basic_lua_table(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_lua_table>(lua_state(), -1, handler); #endif // Safety } template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_lua_table>>, meta::neg<std::is_same<ref_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_lua_table(T&& r) noexcept : basic_lua_table(detail::no_safety, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_table<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_lua_table>(lua_state(), -1, handler); } #endif // Safety } basic_lua_table(lua_nil_t r) noexcept : basic_lua_table(detail::no_safety, r) { } }; } // end of sol/lua_table.hpp namespace sol { typedef table_core<false> table; template <bool is_global, typename base_type> template <typename Class, typename Key> usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key) { automagic_enrollments enrollments; return this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments)); } template <bool is_global, typename base_type> template <typename Class, typename Key> usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, automagic_enrollments enrollments) { int mt_index = u_detail::register_usertype<Class>(this->lua_state(), std::move(enrollments)); usertype<Class> mt(this->lua_state(), -mt_index); lua_pop(this->lua_state(), 1); set(std::forward<Key>(key), mt); return mt; } template <bool is_global, typename base_type> template <typename Class, typename Key, typename Arg, typename... Args, typename> usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, Arg&& arg, Args&&... args) { automagic_enrollments enrollments; enrollments.default_constructor = !detail::any_is_constructor_v<Arg, Args...>; enrollments.destructor = !detail::any_is_destructor_v<Arg, Args...>; usertype<Class> ut = this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments)); static_assert(sizeof...(Args) % 2 == static_cast<std::size_t>(!detail::any_is_constructor_v<Arg>), "you must pass an even number of arguments to new_usertype after first passing a constructor"); if constexpr (detail::any_is_constructor_v<Arg>) { ut.set(meta_function::construct, std::forward<Arg>(arg)); ut.tuple_set(std::make_index_sequence<(sizeof...(Args)) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...)); } else { ut.tuple_set(std::make_index_sequence<(sizeof...(Args) + 1) / 2>(), std::forward_as_tuple(std::forward<Arg>(arg), std::forward<Args>(args)...)); } return ut; } template <typename base_type> template <typename Key, typename Value> void basic_metatable<base_type>::set(Key&& key, Value&& value) { this->push(); lua_State* L = this->lua_state(); int target = lua_gettop(L); optional<u_detail::usertype_storage_base&> maybe_uts = u_detail::maybe_get_usertype_storage_base(L, target); lua_pop(L, 1); if (maybe_uts) { u_detail::usertype_storage_base& uts = *maybe_uts; uts.set(L, std::forward<Key>(key), std::forward<Value>(value)); } else { base_t::set(std::forward<Key>(key), std::forward<Value>(value)); } } namespace stack { template <> struct unqualified_getter<metatable_key_t> { static table get(lua_State* L, int index = -1) { if (lua_getmetatable(L, index) == 0) { return table(L, ref_index(LUA_REFNIL)); } return table(L, -1); } }; } // namespace stack } // namespace sol // end of sol/table.hpp // beginning of sol/state.hpp // beginning of sol/state_view.hpp // beginning of sol/environment.hpp namespace sol { template <typename base_type> struct basic_environment : basic_table<base_type> { private: typedef basic_table<base_type> base_t; public: using base_t::lua_state; basic_environment() noexcept = default; basic_environment(const basic_environment&) = default; basic_environment(basic_environment&&) = default; basic_environment& operator=(const basic_environment&) = default; basic_environment& operator=(basic_environment&&) = default; basic_environment(const stack_reference& r) : basic_environment(r.lua_state(), r.stack_index()) { } basic_environment(stack_reference&& r) : basic_environment(r.lua_state(), r.stack_index()) { } basic_environment(lua_State* L, new_table nt) : base_t(L, std::move(nt)) { } template <bool b> basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback) : basic_environment(L, std::move(t)) { stack_table mt(L, new_table(0, 1)); mt.set(meta_function::index, fallback); this->set(metatable_key, mt); mt.pop(); } basic_environment(env_key_t, const stack_reference& extraction_target) : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<env_key_t>(this->lua_state(), -1, handler); #endif // Safety lua_pop(this->lua_state(), 2); } template <bool b> basic_environment(env_key_t, const basic_reference<b>& extraction_target) : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<env_key_t>(this->lua_state(), -1, handler); #endif // Safety lua_pop(this->lua_state(), 2); } basic_environment(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_environment>(L, index, handler); #endif // Safety } basic_environment(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_environment>(L, -1, handler); #endif // Safety } template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_environment(T&& r) noexcept : base_t(detail::no_safety, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_environment<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_environment>(lua_state(), -1, handler); } #endif // Safety } basic_environment(lua_nil_t r) noexcept : base_t(detail::no_safety, r) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_environment(lua_State* L, T&& r) noexcept : base_t(detail::no_safety, L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_environment<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_environment>(lua_state(), -1, handler); } #endif // Safety } template <typename T> void set_on(const T& target) const { lua_State* L = target.lua_state(); auto pp = stack::push_pop(target); #if SOL_LUA_VERSION < 502 // Use lua_setfenv this->push(); lua_setfenv(L, -2); #else // Use upvalues as explained in Lua 5.2 and beyond's manual this->push(); const char* name = lua_setupvalue(L, -2, 1); if (name == nullptr) { this->pop(); } #endif } }; template <typename T, typename E> void set_environment(const basic_environment<E>& env, const T& target) { env.set_on(target); } template <typename E = reference, typename T> basic_environment<E> get_environment(const T& target) { lua_State* L = target.lua_state(); auto pp = stack::pop_n(L, stack::push_environment_of(target)); return basic_environment<E>(L, -1); } struct this_environment { optional<environment> env; this_environment() : env(nullopt) { } this_environment(environment e) : env(std::move(e)) { } this_environment(const this_environment&) = default; this_environment(this_environment&&) = default; this_environment& operator=(const this_environment&) = default; this_environment& operator=(this_environment&&) = default; explicit operator bool() const { return static_cast<bool>(env); } operator optional<environment>&() { return env; } operator const optional<environment>&() const { return env; } operator environment&() { return env.value(); } operator const environment&() const { return env.value(); } }; namespace stack { template <> struct unqualified_getter<env_key_t> { static environment get(lua_State* L, int index, record& tracking) { tracking.use(1); return get_environment(stack_reference(L, raw_index(index))); } }; template <> struct unqualified_getter<this_environment> { static this_environment get(lua_State* L, int, record& tracking) { tracking.use(0); lua_Debug info; // Level 0 means current function (this C function, which may or may not be useful for us?) // Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call) int pre_stack_size = lua_gettop(L); if (lua_getstack(L, 1, &info) != 1) { if (lua_getstack(L, 0, &info) != 1) { lua_settop(L, pre_stack_size); return this_environment(); } } if (lua_getinfo(L, "f", &info) == 0) { lua_settop(L, pre_stack_size); return this_environment(); } stack_reference f(L, -1); environment env(env_key, f); if (!env.valid()) { lua_settop(L, pre_stack_size); return this_environment(); } return this_environment(std::move(env)); } }; } // namespace stack } // namespace sol // end of sol/environment.hpp // beginning of sol/load_result.hpp namespace sol { struct load_result : public proxy_base<load_result> { private: lua_State* L; int index; int returncount; int popcount; load_status err; template <typename T> decltype(auto) tagged_get(types<optional<T>>) const { if (!valid()) { return optional<T>(nullopt); } return stack::get<optional<T>>(L, index); } template <typename T> decltype(auto) tagged_get(types<T>) const { #if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0 if (!valid()) { type_panic_c_str(L, index, type_of(L, index), type::none); } #endif // Check Argument Safety return stack::get<T>(L, index); } optional<error> tagged_get(types<optional<error>>) const { if (valid()) { return nullopt; } return error(detail::direct_error, stack::get<std::string>(L, index)); } error tagged_get(types<error>) const { #if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0 if (valid()) { type_panic_c_str(L, index, type_of(L, index), type::none, "expecting an error type (a string, from Lua)"); } #endif // Check Argument Safety return error(detail::direct_error, stack::get<std::string>(L, index)); } public: load_result() = default; load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept : L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) { } load_result(const load_result&) = default; load_result& operator=(const load_result&) = default; load_result(load_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.popcount = 0; o.err = load_status::syntax; } load_result& operator=(load_result&& o) noexcept { L = o.L; index = o.index; returncount = o.returncount; popcount = o.popcount; err = o.err; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but we will be thorough o.L = nullptr; o.index = 0; o.returncount = 0; o.popcount = 0; o.err = load_status::syntax; return *this; } load_status status() const noexcept { return err; } bool valid() const noexcept { return status() == load_status::ok; } template <typename T> T get() const { return tagged_get(types<meta::unqualified_t<T>>()); } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args) { #if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 // MSVC is ass sometimes return get<protected_function>().call<Ret...>(std::forward<Args>(args)...); #else return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...); #endif } template <typename... Args> decltype(auto) operator()(Args&&... args) { return call<>(std::forward<Args>(args)...); } lua_State* lua_state() const noexcept { return L; }; int stack_index() const noexcept { return index; }; ~load_result() { stack::remove(L, index, popcount); } }; } // namespace sol // end of sol/load_result.hpp // beginning of sol/state_handling.hpp // beginning of sol/lua_value.hpp namespace sol { struct lua_value { public: struct arr : detail::ebco<std::initializer_list<lua_value>> { private: using base_t = detail::ebco<std::initializer_list<lua_value>>; public: using base_t::base_t; }; private: template <typename T> using is_reference_or_lua_value_init_list = meta::any<meta::is_specialization_of<T, std::initializer_list>, std::is_same<T, reference>, std::is_same<T, arr>>; template <typename T> using is_lua_value_single_constructible = meta::any<std::is_same<T, lua_value>, is_reference_or_lua_value_init_list<T>>; static lua_State*& thread_local_lua_state() { static thread_local lua_State* L = nullptr; return L; } reference ref_value; public: static void set_lua_state(lua_State* L) { thread_local_lua_state() = L; } template <typename T, meta::disable<is_reference_or_lua_value_init_list<meta::unqualified_t<T>>> = meta::enabler> lua_value(lua_State* L_, T&& value) : lua_value(((set_lua_state(L_)), std::forward<T>(value))) { } template <typename T, meta::disable<is_lua_value_single_constructible<meta::unqualified_t<T>>> = meta::enabler> lua_value(T&& value) : ref_value(make_reference(thread_local_lua_state(), std::forward<T>(value))) { } lua_value(lua_State* L_, std::initializer_list<std::pair<lua_value, lua_value>> il) : lua_value([&L_, &il]() { set_lua_state(L_); return std::move(il); }()) { } lua_value(std::initializer_list<std::pair<lua_value, lua_value>> il) : ref_value(make_reference(thread_local_lua_state(), std::move(il))) { } lua_value(lua_State* L_, arr il) : lua_value([&L_, &il]() { set_lua_state(L_); return std::move(il); }()) { } lua_value(arr il) : ref_value(make_reference(thread_local_lua_state(), std::move(il.value()))) { } lua_value(lua_State* L_, reference r) : lua_value([&L_, &r]() { set_lua_state(L_); return std::move(r); }()) { } lua_value(reference r) : ref_value(std::move(r)) { } lua_value(const lua_value&) noexcept = default; lua_value(lua_value&&) = default; lua_value& operator=(const lua_value&) = default; lua_value& operator=(lua_value&&) = default; const reference& value() const& { return ref_value; } reference& value() & { return ref_value; } reference&& value() && { return std::move(ref_value); } template <typename T> decltype(auto) as() const { ref_value.push(); return stack::pop<T>(ref_value.lua_state()); } template <typename T> bool is() const { int r = ref_value.registry_index(); if (r == LUA_REFNIL) return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false; if (r == LUA_NOREF) return false; auto pp = stack::push_pop(ref_value); return stack::check<T>(ref_value.lua_state(), -1, no_panic); } }; using array_value = typename lua_value::arr; namespace stack { template <> struct unqualified_pusher<lua_value> { static int push(lua_State* L, const lua_value& lv) { return stack::push(L, lv.value()); } static int push(lua_State* L, lua_value&& lv) { return stack::push(L, std::move(lv).value()); } }; template <> struct unqualified_getter<lua_value> { static lua_value get(lua_State* L, int index, record& tracking) { return lua_value(L, stack::get<reference>(L, index, tracking)); } }; } } // namespace sol // end of sol/lua_value.hpp #if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS #endif namespace sol { inline void register_main_thread(lua_State* L) { #if SOL_LUA_VERSION < 502 if (L == nullptr) { lua_pushnil(L); lua_setglobal(L, detail::default_main_thread_name()); return; } lua_pushthread(L); lua_setglobal(L, detail::default_main_thread_name()); #else (void)L; #endif } inline int default_at_panic(lua_State* L) { #if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS (void)L; return -1; #else size_t messagesize; const char* message = lua_tolstring(L, -1, &messagesize); if (message) { std::string err(message, messagesize); lua_settop(L, 0); #if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS std::cerr << "[sol3] An error occurred and panic has been invoked: "; std::cerr << err; std::cerr << std::endl; #endif throw error(err); } lua_settop(L, 0); throw error(std::string("An unexpected error occurred and panic has been invoked")); #endif // Printing Errors } inline int default_traceback_error_handler(lua_State* L) { std::string msg = "An unknown error has triggered the default error handler"; optional<string_view> maybetopmsg = stack::unqualified_check_get<string_view>(L, 1, no_panic); if (maybetopmsg) { const string_view& topmsg = maybetopmsg.value(); msg.assign(topmsg.data(), topmsg.size()); } luaL_traceback(L, L, msg.c_str(), 1); optional<string_view> maybetraceback = stack::unqualified_check_get<string_view>(L, -1, no_panic); if (maybetraceback) { const string_view& traceback = maybetraceback.value(); msg.assign(traceback.data(), traceback.size()); } #if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS //std::cerr << "[sol3] An error occurred and was caught in traceback: "; //std::cerr << msg; //std::cerr << std::endl; #endif // Printing return stack::push(L, msg); } inline void set_default_state(lua_State* L, lua_CFunction panic_function = &default_at_panic, lua_CFunction traceback_function = c_call<decltype(&default_traceback_error_handler), &default_traceback_error_handler>, exception_handler_function exf = detail::default_exception_handler) { lua_atpanic(L, panic_function); protected_function::set_default_handler(object(L, in_place, traceback_function)); set_default_exception_handler(L, exf); register_main_thread(L); stack::luajit_exception_handler(L); lua_value::set_lua_state(L); } inline std::size_t total_memory_used(lua_State* L) { std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0); kb *= 1024; kb += lua_gc(L, LUA_GCCOUNTB, 0); return kb; } inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result) { return result; } inline protected_function_result script_throw_on_error(lua_State*L, protected_function_result result) { type t = type_of(L, result.stack_index()); std::string err = "sol: "; err += to_string(result.status()); err += " error"; #if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) std::exception_ptr eptr = std::current_exception(); if (eptr) { err += " with a "; try { std::rethrow_exception(eptr); } catch (const std::exception& ex) { err += "std::exception -- "; err.append(ex.what()); } catch (const std::string& message) { err += "thrown message -- "; err.append(message); } catch (const char* message) { err += "thrown message -- "; err.append(message); } catch (...) { err.append("thrown but unknown type, cannot serialize into error message"); } } #endif // serialize exception information if possible if (t == type::string) { err += ": "; string_view serr = stack::unqualified_get<string_view>(L, result.stack_index()); err.append(serr.data(), serr.size()); } #if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS std::cerr << "[sol3] An error occurred and has been passed to an error handler: "; std::cerr << err; std::cerr << std::endl; #endif // replacing information of stack error into pfr int target = result.stack_index(); if (result.pop_count() > 0) { stack::remove(L, target, result.pop_count()); } stack::push(L, err); int top = lua_gettop(L); int towards = top - target; if (towards != 0) { lua_rotate(L, top, towards); } #if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS return result; #else // just throw our error throw error(detail::direct_error, err); #endif // If exceptions are allowed } inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr) { #if defined(SOL_DEFAULT_PASS_ON_ERROR) && SOL_DEFAULT_PASS_ON_ERROR return script_pass_on_error(L, std::move(pfr)); #else return script_throw_on_error(L, std::move(pfr)); #endif } namespace stack { inline error get_traceback_or_errors(lua_State* L) { int p = default_traceback_error_handler(L); sol::error err = stack::get<sol::error>(L, -p); lua_pop(L, p); return err; } } } // namespace sol // end of sol/state_handling.hpp namespace sol { class state_view { private: lua_State* L; table reg; global_table global; optional<object> is_loaded_package(const std::string& key) { auto loaded = reg.traverse_get<optional<object>>("_LOADED", key); bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>()); if (is53mod) return loaded; #if SOL_LUA_VERSION <= 501 auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key); bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>()); if (is51mod) return loaded51; #endif return nullopt; } template <typename T> void ensure_package(const std::string& key, T&& sr) { #if SOL_LUA_VERSION <= 501 auto pkg = global["package"]; if (!pkg.valid()) { pkg = create_table_with("loaded", create_table_with(key, sr)); } else { auto ld = pkg["loaded"]; if (!ld.valid()) { ld = create_table_with(key, sr); } else { ld[key] = sr; } } #endif auto loaded = reg["_LOADED"]; if (!loaded.valid()) { loaded = create_table_with(key, sr); } else { loaded[key] = sr; } } template <typename Fx> object require_core(const std::string& key, Fx&& action, bool create_global = true) { optional<object> loaded = is_loaded_package(key); if (loaded && loaded->valid()) return std::move(*loaded); action(); stack_reference sr(L, -1); if (create_global) set(key, sr); ensure_package(key, sr); return stack::pop<object>(L); } public: using iterator = typename global_table::iterator; using const_iterator = typename global_table::const_iterator; state_view(lua_State* Ls) : L(Ls), reg(Ls, LUA_REGISTRYINDEX), global(Ls, detail::global_) { } state_view(this_state Ls) : state_view(Ls.L) { } lua_State* lua_state() const { return L; } template <typename... Args> void open_libraries(Args&&... args) { static_assert(meta::all_same<lib, Args...>::value, "all types must be libraries"); if constexpr (sizeof...(args) == 0) { luaL_openlibs(L); return; } else { lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... }; for (auto&& library : libraries) { switch (library) { #if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT) case lib::coroutine: #endif // luajit opens coroutine base stuff case lib::base: luaL_requiref(L, "base", luaopen_base, 1); lua_pop(L, 1); break; case lib::package: luaL_requiref(L, "package", luaopen_package, 1); lua_pop(L, 1); break; #if !defined(SOL_LUAJIT) case lib::coroutine: #if SOL_LUA_VERSION > 501 luaL_requiref(L, "coroutine", luaopen_coroutine, 1); lua_pop(L, 1); #endif // Lua 5.2+ only break; #endif // Not LuaJIT - comes builtin case lib::string: luaL_requiref(L, "string", luaopen_string, 1); lua_pop(L, 1); break; case lib::table: luaL_requiref(L, "table", luaopen_table, 1); lua_pop(L, 1); break; case lib::math: luaL_requiref(L, "math", luaopen_math, 1); lua_pop(L, 1); break; case lib::bit32: #ifdef SOL_LUAJIT luaL_requiref(L, "bit32", luaopen_bit, 1); lua_pop(L, 1); #elif (SOL_LUA_VERSION == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2) luaL_requiref(L, "bit32", luaopen_bit32, 1); lua_pop(L, 1); #else #endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags) break; case lib::io: luaL_requiref(L, "io", luaopen_io, 1); lua_pop(L, 1); break; case lib::os: luaL_requiref(L, "os", luaopen_os, 1); lua_pop(L, 1); break; case lib::debug: luaL_requiref(L, "debug", luaopen_debug, 1); lua_pop(L, 1); break; case lib::utf8: #if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT) luaL_requiref(L, "utf8", luaopen_utf8, 1); lua_pop(L, 1); #endif // Lua 5.3+ only break; case lib::ffi: #ifdef SOL_LUAJIT luaL_requiref(L, "ffi", luaopen_ffi, 1); lua_pop(L, 1); #endif // LuaJIT only break; case lib::jit: #ifdef SOL_LUAJIT luaL_requiref(L, "jit", luaopen_jit, 0); lua_pop(L, 1); #endif // LuaJIT Only break; case lib::count: default: break; } } } } object require(const std::string& key, lua_CFunction open_function, bool create_global = true) { luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0); return stack::pop<object>(L); } object require_script(const std::string& key, const string_view& code, bool create_global = true, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { auto action = [this, &code, &chunkname, &mode]() { stack::script(L, code, chunkname, mode); }; return require_core(key, action, create_global); } object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any) { auto action = [this, &filename, &mode]() { stack::script_file(L, filename, mode); }; return require_core(key, action, create_global); } void clear_package_loaders() { optional<table> maybe_package = this->global["package"]; if (!maybe_package) { // package lib wasn't opened // open package lib return; } table& package = *maybe_package; // yay for version differences... // one day Lua 5.1 will die a peaceful death // and its old bones will find blissful rest auto loaders_proxy = package #if SOL_LUA_VERSION < 502 ["loaders"] #else ["searchers"] #endif ; if (!loaders_proxy.valid()) { // nothing to clear return; } // we need to create the table for loaders // table does not exist, so create and move forward loaders_proxy = new_table(1, 0); } template <typename Fx> void add_package_loader(Fx&& fx, bool clear_all_package_loaders = false) { optional<table> maybe_package = this->global["package"]; if (!maybe_package) { // package lib wasn't opened // open package lib return; } table& package = *maybe_package; // yay for version differences... // one day Lua 5.1 will die a peaceful death // and its old bones will find blissful rest auto loaders_proxy = package #if SOL_LUA_VERSION < 502 ["loaders"] #else ["searchers"] #endif ; bool make_new_table = clear_all_package_loaders || !loaders_proxy.valid(); if (make_new_table) { // we need to create the table for loaders // table does not exist, so create and move forward loaders_proxy = new_table(1, 0); } optional<table> maybe_loaders = loaders_proxy; if (!maybe_loaders) { // loaders/searches // thing exists in package, but it // ain't a table or a table-alike...! return; } table loaders = loaders_proxy; loaders.add(std::forward<Fx>(fx)); } template <typename E> protected_function_result do_reader(lua_Reader reader, void* data, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())); if (x != load_status::ok) { return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); } stack_aligned_protected_function pf(L, -1); set_environment(env, pf); return pf(); } protected_function_result do_reader(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())); if (x != load_status::ok) { return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); } stack_aligned_protected_function pf(L, -1); return pf(); } template <typename E> protected_function_result do_string(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); if (x != load_status::ok) { return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); } stack_aligned_protected_function pf(L, -1); set_environment(env, pf); return pf(); } protected_function_result do_string(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); if (x != load_status::ok) { return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); } stack_aligned_protected_function pf(L, -1); return pf(); } template <typename E> protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); if (x != load_status::ok) { return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); } stack_aligned_protected_function pf(L, -1); set_environment(env, pf); return pf(); } protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any) { load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); if (x != load_status::ok) { return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); } stack_aligned_protected_function pf(L, -1); return pf(); } template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> protected_function_result safe_script(lua_Reader reader, void* data, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { protected_function_result pfr = do_reader(reader, data, chunkname, mode); if (!pfr.valid()) { return on_error(L, std::move(pfr)); } return pfr; } protected_function_result safe_script(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(reader, data, script_default_on_error, chunkname, mode); } template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> protected_function_result safe_script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { protected_function_result pfr = do_string(code, chunkname, mode); if (!pfr.valid()) { return on_error(L, std::move(pfr)); } return pfr; } template <typename Fx, typename E> protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { protected_function_result pfr = do_string(code, env, chunkname, mode); if (!pfr.valid()) { return on_error(L, std::move(pfr)); } return pfr; } template <typename E> protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(code, env, script_default_on_error, chunkname, mode); } protected_function_result safe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(code, script_default_on_error, chunkname, mode); } template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) { protected_function_result pfr = do_file(filename, mode); if (!pfr.valid()) { return on_error(L, std::move(pfr)); } return pfr; } template <typename Fx, typename E> protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) { protected_function_result pfr = do_file(filename, env, mode); if (!pfr.valid()) { return on_error(L, std::move(pfr)); } return pfr; } template <typename E> protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { return safe_script_file(filename, env, script_default_on_error, mode); } protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any) { return safe_script_file(filename, script_default_on_error, mode); } template <typename E> unsafe_function_result unsafe_script(lua_Reader reader, void* data, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); int index = lua_gettop(L); if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())) { lua_error(L); } set_environment(env, stack_reference(L, raw_index(index + 1))); if (lua_pcall(L, 0, LUA_MULTRET, 0)) { lua_error(L); } int postindex = lua_gettop(L); int returns = postindex - index; return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); } unsafe_function_result unsafe_script(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { int index = lua_gettop(L); stack::script(L, reader, data, chunkname, mode); int postindex = lua_gettop(L); int returns = postindex - index; return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); } template <typename E> unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); int index = lua_gettop(L); if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) { lua_error(L); } set_environment(env, stack_reference(L, raw_index(index + 1))); if (lua_pcall(L, 0, LUA_MULTRET, 0)) { lua_error(L); } int postindex = lua_gettop(L); int returns = postindex - index; return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); } unsafe_function_result unsafe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { int index = lua_gettop(L); stack::script(L, code, chunkname, mode); int postindex = lua_gettop(L); int returns = postindex - index; return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); } template <typename E> unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { int index = lua_gettop(L); if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) { lua_error(L); } set_environment(env, stack_reference(L, raw_index(index + 1))); if (lua_pcall(L, 0, LUA_MULTRET, 0)) { lua_error(L); } int postindex = lua_gettop(L); int returns = postindex - index; return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); } unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any) { int index = lua_gettop(L); stack::script_file(L, filename, mode); int postindex = lua_gettop(L); int returns = postindex - index; return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); } template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> protected_function_result script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(code, std::forward<Fx>(on_error), chunkname, mode); } template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) { return safe_script_file(filename, std::forward<Fx>(on_error), mode); } template <typename Fx, typename E> protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode); } template <typename Fx, typename E> protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) { return safe_script_file(filename, env, std::forward<Fx>(on_error), mode); } protected_function_result script(const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(code, env, script_default_on_error, chunkname, mode); } protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any) { return safe_script_file(filename, env, script_default_on_error, mode); } #if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION protected_function_result script(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(reader, data, chunkname, mode); } protected_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return safe_script(code, chunkname, mode); } protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) { return safe_script_file(filename, mode); } #else unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return unsafe_script(code, chunkname, mode); } unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) { return unsafe_script_file(filename, mode); } #endif load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); return load_result(L, absolute_index(L, -1), 1, 1, x); } load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return load(string_view(buff, size), chunkname, mode); } load_result load_buffer(const std::byte* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { return load(string_view(reinterpret_cast<const char*>(buff), size), chunkname, mode); } load_result load_file(const std::string& filename, load_mode mode = load_mode::any) { load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); return load_result(L, absolute_index(L, -1), 1, 1, x); } load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { detail::typical_chunk_name_t basechunkname = {}; const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())); return load_result(L, absolute_index(L, -1), 1, 1, x); } iterator begin() const { return global.begin(); } iterator end() const { return global.end(); } const_iterator cbegin() const { return global.cbegin(); } const_iterator cend() const { return global.cend(); } global_table globals() const { // if we return a reference // we'll be screwed a bit return global; } global_table& globals() { return global; } table registry() const { return reg; } std::size_t memory_used() const { return total_memory_used(lua_state()); } int stack_top() const { return stack::top(L); } int stack_clear() { int s = stack_top(); lua_pop(L, s); return s; } void collect_garbage() { lua_gc(lua_state(), LUA_GCCOLLECT, 0); } operator lua_State*() const { return lua_state(); } void set_panic(lua_CFunction panic) { lua_atpanic(lua_state(), panic); } void set_exception_handler(exception_handler_function handler) { set_default_exception_handler(lua_state(), handler); } template <typename... Args, typename... Keys> decltype(auto) get(Keys&&... keys) const { return global.get<Args...>(std::forward<Keys>(keys)...); } template <typename T, typename Key> decltype(auto) get_or(Key&& key, T&& otherwise) const { return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise)); } template <typename T, typename Key, typename D> decltype(auto) get_or(Key&& key, D&& otherwise) const { return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise)); } template <typename... Args> state_view& set(Args&&... args) { global.set(std::forward<Args>(args)...); return *this; } template <typename T, typename... Keys> decltype(auto) traverse_get(Keys&&... keys) const { return global.traverse_get<T>(std::forward<Keys>(keys)...); } template <typename... Args> state_view& traverse_set(Args&&... args) { global.traverse_set(std::forward<Args>(args)...); return *this; } template <typename Class, typename... Args> usertype<Class> new_usertype(const std::string& name, Args&&... args) { return global.new_usertype<Class>(name, std::forward<Args>(args)...); } template <bool read_only = true, typename... Args> state_view& new_enum(const string_view& name, Args&&... args) { global.new_enum<read_only>(name, std::forward<Args>(args)...); return *this; } template <typename T, bool read_only = true> state_view& new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) { global.new_enum<T, read_only>(name, std::move(items)); return *this; } template <typename Fx> void for_each(Fx&& fx) { global.for_each(std::forward<Fx>(fx)); } template <typename T> proxy<global_table&, detail::proxy_key_t<T>> operator[](T&& key) { return global[std::forward<T>(key)]; } template <typename T> proxy<const global_table&, detail::proxy_key_t<T>> operator[](T&& key) const { return global[std::forward<T>(key)]; } template <typename Sig, typename... Args, typename Key> state_view& set_function(Key&& key, Args&&... args) { global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...); return *this; } template <typename... Args, typename Key> state_view& set_function(Key&& key, Args&&... args) { global.set_function(std::forward<Key>(key), std::forward<Args>(args)...); return *this; } template <typename Name> table create_table(Name&& name, int narr = 0, int nrec = 0) { return global.create(std::forward<Name>(name), narr, nrec); } template <typename Name, typename Key, typename Value, typename... Args> table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); } template <typename Name, typename... Args> table create_named_table(Name&& name, Args&&... args) { table x = global.create_with(std::forward<Args>(args)...); global.set(std::forward<Name>(name), x); return x; } table create_table(int narr = 0, int nrec = 0) { return create_table(lua_state(), narr, nrec); } template <typename Key, typename Value, typename... Args> table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); } template <typename... Args> table create_table_with(Args&&... args) { return create_table_with(lua_state(), std::forward<Args>(args)...); } static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) { return global_table::create(L, narr, nrec); } template <typename Key, typename Value, typename... Args> static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); } template <typename... Args> static inline table create_table_with(lua_State* L, Args&&... args) { return global_table::create_with(L, std::forward<Args>(args)...); } }; } // namespace sol // end of sol/state_view.hpp // beginning of sol/thread.hpp namespace sol { struct lua_thread_state { lua_State* L; lua_thread_state(lua_State* Ls) : L(Ls) { } lua_State* lua_state() const noexcept { return L; } operator lua_State*() const noexcept { return lua_state(); } lua_State* operator->() const noexcept { return lua_state(); } }; namespace stack { template <> struct unqualified_pusher<lua_thread_state> { int push(lua_State*, lua_thread_state lts) { lua_pushthread(lts.L); return 1; } }; template <> struct unqualified_getter<lua_thread_state> { lua_thread_state get(lua_State* L, int index, record& tracking) { tracking.use(1); lua_thread_state lts( lua_tothread(L, index) ); return lts; } }; template <> struct unqualified_check_getter<lua_thread_state> { template <typename Handler> optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) { lua_thread_state lts( lua_tothread(L, index) ); if (lts.lua_state() == nullptr) { handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type"); return nullopt; } tracking.use(1); return lts; } }; } // namespace stack template <typename ref_t> class basic_thread : public basic_object<ref_t> { private: using base_t = basic_object<ref_t>; public: using base_t::lua_state; basic_thread() noexcept = default; basic_thread(const basic_thread&) = default; basic_thread(basic_thread&&) = default; template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_thread(T&& r) : base_t(std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_thread>(lua_state(), -1, handler); #endif // Safety } basic_thread(const stack_reference& r) : basic_thread(r.lua_state(), r.stack_index()){}; basic_thread(stack_reference&& r) : basic_thread(r.lua_state(), r.stack_index()){}; basic_thread& operator=(const basic_thread&) = default; basic_thread& operator=(basic_thread&&) = default; template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_thread(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_thread>(lua_state(), -1, handler); #endif // Safety } basic_thread(lua_State* L, int index = -1) : base_t(L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_thread>(L, index, handler); #endif // Safety } basic_thread(lua_State* L, ref_index index) : base_t(L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_thread>(lua_state(), -1, handler); #endif // Safety } basic_thread(lua_State* L, lua_State* actualthread) : basic_thread(L, lua_thread_state{ actualthread }) { } basic_thread(lua_State* L, this_state actualthread) : basic_thread(L, lua_thread_state{ actualthread.L }) { } basic_thread(lua_State* L, lua_thread_state actualthread) : base_t(L, -stack::push(L, actualthread)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_thread>(lua_state(), -1, handler); #endif // Safety if (!is_stack_based<base_t>::value) { lua_pop(lua_state(), 1); } } state_view state() const { return state_view(this->thread_state()); } bool is_main_thread() const { return stack::is_main_thread(this->thread_state()); } lua_State* thread_state() const { auto pp = stack::push_pop(*this); lua_State* lthread = lua_tothread(lua_state(), -1); return lthread; } thread_status status() const { lua_State* lthread = thread_state(); auto lstat = static_cast<thread_status>(lua_status(lthread)); if (lstat == thread_status::ok) { lua_Debug ar; if (lua_getstack(lthread, 0, &ar) > 0) return thread_status::ok; else if (lua_gettop(lthread) == 0) return thread_status::dead; else return thread_status::yielded; } return lstat; } basic_thread create() { return create(lua_state()); } static basic_thread create(lua_State* L) { lua_newthread(L); basic_thread result(L); if (!is_stack_based<base_t>::value) { lua_pop(L, 1); } return result; } }; typedef basic_thread<reference> thread; typedef basic_thread<stack_reference> stack_thread; } // namespace sol // end of sol/thread.hpp namespace sol { class state : private std::unique_ptr<lua_State, detail::state_deleter>, public state_view { private: typedef std::unique_ptr<lua_State, detail::state_deleter> unique_base; public: state(lua_CFunction panic = default_at_panic) : unique_base(luaL_newstate()), state_view(unique_base::get()) { set_default_state(unique_base::get(), panic); } state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr) : unique_base(lua_newstate(alfunc, alpointer)), state_view(unique_base::get()) { set_default_state(unique_base::get(), panic); } state(const state&) = delete; state(state&&) = default; state& operator=(const state&) = delete; state& operator=(state&& that) { state_view::operator=(std::move(that)); unique_base::operator=(std::move(that)); return *this; } using state_view::get; ~state() { } }; } // namespace sol // end of sol/state.hpp // beginning of sol/coroutine.hpp namespace sol { template <typename ref_t> class basic_coroutine : public basic_object<ref_t> { private: using base_t = basic_object<ref_t>; public: typedef reference handler_t; handler_t error_handler; private: call_status stats = call_status::yielded; void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) { #if SOL_LUA_VERSION >= 504 int nresults; stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount), &nresults)); #else stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount))); #endif } template <std::size_t... I, typename... Ret> auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) { luacall(n, sizeof...(Ret)); return stack::pop<std::tuple<Ret...>>(lua_state()); } template <std::size_t I, typename Ret> Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) { luacall(n, 1); return stack::pop<Ret>(lua_state()); } template <std::size_t I> void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) { luacall(n, 0); } protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) { int firstreturn = 1; luacall(n, LUA_MULTRET); int poststacksize = lua_gettop(this->lua_state()); int returncount = poststacksize - (firstreturn - 1); if (error()) { if (error_handler.valid()) { string_view err = stack::get<string_view>(this->lua_state(), poststacksize); error_handler.push(); stack::push(this->lua_state(), err); lua_call(lua_state(), 1, 1); } return protected_function_result(this->lua_state(), lua_absindex(this->lua_state(), -1), 1, returncount, status()); } return protected_function_result(this->lua_state(), firstreturn, returncount, returncount, status()); } public: using base_t::lua_state; basic_coroutine() = default; template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_coroutine(T&& r) noexcept : base_t(std::forward<T>(r)), error_handler(detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_function<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_coroutine>(lua_state(), -1, handler); } #endif // Safety } basic_coroutine(const basic_coroutine&) = default; basic_coroutine& operator=(const basic_coroutine&) = default; basic_coroutine(basic_coroutine&&) = default; basic_coroutine& operator=(basic_coroutine&&) = default; basic_coroutine(const basic_function<base_t>& b) : basic_coroutine(b, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) { } basic_coroutine(basic_function<base_t>&& b) : basic_coroutine(std::move(b), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) { } basic_coroutine(const basic_function<base_t>& b, handler_t eh) : base_t(b), error_handler(std::move(eh)) { } basic_coroutine(basic_function<base_t>&& b, handler_t eh) : base_t(std::move(b)), error_handler(std::move(eh)) { } basic_coroutine(const stack_reference& r) : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { } basic_coroutine(stack_reference&& r) : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { } basic_coroutine(const stack_reference& r, handler_t eh) : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) { } basic_coroutine(stack_reference&& r, handler_t eh) : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) { } template <typename Super> basic_coroutine(const proxy_base<Super>& p) : basic_coroutine(p, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) { } template <typename Super> basic_coroutine(proxy_base<Super>&& p) : basic_coroutine(std::move(p), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) { } template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler> basic_coroutine(Proxy&& p, Handler&& eh) : basic_coroutine(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_coroutine(lua_State* L, T&& r) : basic_coroutine(L, std::forward<T>(r), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_coroutine(lua_State* L, T&& r, handler_t eh) : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_coroutine>(lua_state(), -1, handler); #endif // Safety } basic_coroutine(lua_nil_t n) : base_t(n), error_handler(n) { } basic_coroutine(lua_State* L, int index = -1) : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { } basic_coroutine(lua_State* L, int index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #ifdef SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_coroutine>(L, index, handler); #endif // Safety } basic_coroutine(lua_State* L, absolute_index index) : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { } basic_coroutine(lua_State* L, absolute_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_coroutine>(L, index, handler); #endif // Safety } basic_coroutine(lua_State* L, raw_index index) : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { } basic_coroutine(lua_State* L, raw_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_coroutine>(L, index, handler); #endif // Safety } basic_coroutine(lua_State* L, ref_index index) : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { } basic_coroutine(lua_State* L, ref_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_coroutine>(lua_state(), -1, handler); #endif // Safety } call_status status() const noexcept { return stats; } bool error() const noexcept { call_status cs = status(); return cs != call_status::ok && cs != call_status::yielded; } bool runnable() const noexcept { return base_t::valid() && (status() == call_status::yielded); } explicit operator bool() const noexcept { return runnable(); } template <typename... Args> protected_function_result operator()(Args&&... args) { return call<>(std::forward<Args>(args)...); } template <typename... Ret, typename... Args> decltype(auto) operator()(types<Ret...>, Args&&... args) { return call<Ret...>(std::forward<Args>(args)...); } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args) { // some users screw up coroutine.create // and try to use it with sol::coroutine without ever calling the first resume in Lua // this makes the stack incompatible with other kinds of stacks: protect against this // make sure coroutines don't screw us over base_t::push(); int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount); } }; } // namespace sol // end of sol/coroutine.hpp // beginning of sol/userdata.hpp namespace sol { template <typename base_type> class basic_userdata : public basic_table<base_type> { private: using base_t = basic_table<base_type>; public: using base_t::lua_state; basic_userdata() noexcept = default; template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_userdata(T&& r) noexcept : base_t(std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_userdata<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); type_assert(lua_state(), -1, type::userdata); } #endif // Safety } basic_userdata(const basic_userdata&) = default; basic_userdata(basic_userdata&&) = default; basic_userdata& operator=(const basic_userdata&) = default; basic_userdata& operator=(basic_userdata&&) = default; basic_userdata(const stack_reference& r) : basic_userdata(r.lua_state(), r.stack_index()) { } basic_userdata(stack_reference&& r) : basic_userdata(r.lua_state(), r.stack_index()) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_userdata(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_userdata>(L, -1, handler); #endif // Safety } basic_userdata(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_userdata>(L, index, handler); #endif // Safety } basic_userdata(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_userdata>(L, -1, handler); #endif // Safety } }; template <typename base_type> class basic_lightuserdata : public basic_object_base<base_type> { typedef basic_object_base<base_type> base_t; public: using base_t::lua_state; basic_lightuserdata() noexcept = default; template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_lightuserdata(T&& r) noexcept : base_t(std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES if (!is_lightuserdata<meta::unqualified_t<T>>::value) { auto pp = stack::push_pop(*this); type_assert(lua_state(), -1, type::lightuserdata); } #endif // Safety } basic_lightuserdata(const basic_lightuserdata&) = default; basic_lightuserdata(basic_lightuserdata&&) = default; basic_lightuserdata& operator=(const basic_lightuserdata&) = default; basic_lightuserdata& operator=(basic_lightuserdata&&) = default; basic_lightuserdata(const stack_reference& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) { } basic_lightuserdata(stack_reference&& r) : basic_lightuserdata(r.lua_state(), r.stack_index()) { } template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> basic_lightuserdata(lua_State* L, T&& r) : basic_lightuserdata(L, std::forward<T>(r)) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_lightuserdata>(lua_state(), -1, handler); #endif // Safety } basic_lightuserdata(lua_State* L, int index = -1) : base_t(L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES constructor_handler handler{}; stack::check<basic_lightuserdata>(L, index, handler); #endif // Safety } basic_lightuserdata(lua_State* L, ref_index index) : base_t(L, index) { #if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES auto pp = stack::push_pop(*this); constructor_handler handler{}; stack::check<basic_lightuserdata>(lua_state(), index, handler); #endif // Safety } }; } // namespace sol // end of sol/userdata.hpp // beginning of sol/as_args.hpp namespace sol { template <typename T> struct as_args_t { T src; }; template <typename Source> auto as_args(Source&& source) { return as_args_t<Source> { std::forward<Source>(source) }; } namespace stack { template <typename T> struct unqualified_pusher<as_args_t<T>> { int push(lua_State* L, const as_args_t<T>& e) { int p = 0; for (const auto& i : e.src) { p += stack::push(L, i); } return p; } }; } // namespace stack } // namespace sol // end of sol/as_args.hpp // beginning of sol/variadic_args.hpp namespace sol { struct variadic_args { private: lua_State* L; int index; int stacktop; public: typedef stack_proxy reference_type; typedef stack_proxy value_type; typedef stack_proxy* pointer; typedef std::ptrdiff_t difference_type; typedef std::size_t size_type; typedef stack_iterator<stack_proxy, false> iterator; typedef stack_iterator<stack_proxy, true> const_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; variadic_args() = default; variadic_args(lua_State* luastate, int stackindex = -1) : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) { } variadic_args(lua_State* luastate, int stackindex, int lastindex) : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lastindex) { } variadic_args(const variadic_args&) = default; variadic_args& operator=(const variadic_args&) = default; variadic_args(variadic_args&& o) : L(o.L), index(o.index), stacktop(o.stacktop) { // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.stacktop = 0; } variadic_args& operator=(variadic_args&& o) { L = o.L; index = o.index; stacktop = o.stacktop; // Must be manual, otherwise destructor will screw us // return count being 0 is enough to keep things clean // but will be thorough o.L = nullptr; o.index = 0; o.stacktop = 0; return *this; } iterator begin() { return iterator(L, index, stacktop + 1); } iterator end() { return iterator(L, stacktop + 1, stacktop + 1); } const_iterator begin() const { return const_iterator(L, index, stacktop + 1); } const_iterator end() const { return const_iterator(L, stacktop + 1, stacktop + 1); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } reverse_iterator rbegin() { return std::reverse_iterator<iterator>(begin()); } reverse_iterator rend() { return std::reverse_iterator<iterator>(end()); } const_reverse_iterator rbegin() const { return std::reverse_iterator<const_iterator>(begin()); } const_reverse_iterator rend() const { return std::reverse_iterator<const_iterator>(end()); } const_reverse_iterator crbegin() const { return std::reverse_iterator<const_iterator>(cbegin()); } const_reverse_iterator crend() const { return std::reverse_iterator<const_iterator>(cend()); } int push() const { return push(L); } int push(lua_State* target) const { int pushcount = 0; for (int i = index; i <= stacktop; ++i) { lua_pushvalue(L, i); pushcount += 1; } if (target != L) { lua_xmove(L, target, pushcount); } return pushcount; } template <typename T> decltype(auto) get(difference_type index_offset = 0) const { return stack::get<T>(L, index + static_cast<int>(index_offset)); } type get_type(difference_type index_offset = 0) const noexcept { return type_of(L, index + static_cast<int>(index_offset)); } stack_proxy operator[](difference_type index_offset) const { return stack_proxy(L, index + static_cast<int>(index_offset)); } lua_State* lua_state() const { return L; }; int stack_index() const { return index; }; int leftover_count() const { return stacktop - (index - 1); } std::size_t size() const { return static_cast<std::size_t>(leftover_count()); } int top() const { return stacktop; } }; namespace stack { template <> struct unqualified_getter<variadic_args> { static variadic_args get(lua_State* L, int index, record& tracking) { tracking.last = 0; return variadic_args(L, index); } }; template <> struct unqualified_pusher<variadic_args> { static int push(lua_State* L, const variadic_args& ref) { return ref.push(L); } }; } // namespace stack } // namespace sol // end of sol/variadic_args.hpp // beginning of sol/variadic_results.hpp // beginning of sol/as_returns.hpp namespace sol { template <typename T> struct as_returns_t { T src; }; template <typename Source> auto as_returns(Source&& source) { return as_returns_t<std::decay_t<Source>>{ std::forward<Source>(source) }; } namespace stack { template <typename T> struct unqualified_pusher<as_returns_t<T>> { int push(lua_State* L, const as_returns_t<T>& e) { auto& src = detail::unwrap(e.src); int p = 0; for (const auto& i : src) { p += stack::push(L, i); } return p; } }; } // namespace stack } // namespace sol // end of sol/as_returns.hpp namespace sol { template <typename Al = typename std::allocator<object>> struct basic_variadic_results : public std::vector<object, Al> { private: using base_t = std::vector<object, Al>; public: basic_variadic_results() : base_t() {} basic_variadic_results(unsafe_function_result fr) : base_t() { this->reserve(fr.return_count()); this->insert(this->cend(), fr.begin(), fr.end()); } basic_variadic_results(protected_function_result fr) : base_t() { this->reserve(fr.return_count()); this->insert(this->cend(), fr.begin(), fr.end()); } template <typename Arg0, typename... Args, meta::disable_any<std::is_same<meta::unqualified_t<Arg0>, basic_variadic_results>, std::is_same<meta::unqualified_t<Arg0>, function_result>, std::is_same<meta::unqualified_t<Arg0>, protected_function_result>> = meta::enabler> basic_variadic_results(Arg0&& arg0, Args&&... args) : base_t(std::forward<Arg0>(arg0), std::forward<Args>(args)...) { } basic_variadic_results(const basic_variadic_results&) = default; basic_variadic_results(basic_variadic_results&&) = default; }; struct variadic_results : public basic_variadic_results<> { private: using base_t = basic_variadic_results<>; public: using base_t::base_t; }; template <typename Al> struct is_container<basic_variadic_results<Al>> : std::false_type {}; template <> struct is_container<variadic_results> : std::false_type {}; namespace stack { template <typename Al> struct unqualified_pusher<basic_variadic_results<Al>> { int push(lua_State* L, const basic_variadic_results<Al>& e) { int p = 0; for (const auto& i : e) { p += stack::push(L, i); } return p; } }; template <> struct unqualified_pusher<variadic_results> { int push(lua_State* L, const variadic_results& r) { using base_t = basic_variadic_results<>; return stack::push(L, static_cast<const base_t&>(r)); } }; } // namespace stack } // namespace sol // end of sol/variadic_results.hpp #if defined(__GNUC__) #pragma GCC diagnostic pop #elif defined _MSC_VER #pragma warning(pop) #endif // g++ #if defined(SOL_INSIDE_UNREAL) #undef check #pragma pop_macro("check") #endif // Unreal Engine 4 Bullshit #endif // SOL_HPP // end of sol/sol.hpp #endif // SOL_SINGLE_INCLUDE_HPP