/** * Copyright (c) 2014 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(RTC) #define ENABLED_RTC_COUNT (RTC0_ENABLED+RTC1_ENABLED+RTC2_ENABLED) #if ENABLED_RTC_COUNT #include "nrf_drv_rtc.h" #include "nrf_rtc.h" #include "nrf_assert.h" #include "app_util_platform.h" #define NRF_LOG_MODULE_NAME "RTC" #if RTC_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL RTC_CONFIG_LOG_LEVEL #define NRF_LOG_INFO_COLOR RTC_CONFIG_INFO_COLOR #define NRF_LOG_DEBUG_COLOR RTC_CONFIG_DEBUG_COLOR #define EVT_TO_STR(event) (event == NRF_RTC_EVENT_TICK ? "NRF_RTC_EVENT_TICK" : \ (event == NRF_RTC_EVENT_OVERFLOW ? "NRF_RTC_EVENT_OVERFLOW" : \ (event == NRF_RTC_EVENT_COMPARE_0 ? "NRF_RTC_EVENT_COMPARE_0" : \ (event == NRF_RTC_EVENT_COMPARE_1 ? "NRF_RTC_EVENT_COMPARE_1" : \ (event == NRF_RTC_EVENT_COMPARE_2 ? "NRF_RTC_EVENT_COMPARE_2" : \ (event == NRF_RTC_EVENT_COMPARE_3 ? "NRF_RTC_EVENT_COMPARE_3" : "UNKNOWN EVENT") #else //RTC_CONFIG_LOG_ENABLED #define EVT_TO_STR(event) "" #define NRF_LOG_LEVEL 0 #endif //RTC_CONFIG_LOG_ENABLED #include "nrf_log.h" #include "nrf_log_ctrl.h" /**@brief RTC driver instance control block structure. */ typedef struct { nrf_drv_state_t state; /**< Instance state. */ bool reliable; /**< Reliable mode flag. */ uint8_t tick_latency; /**< Maximum length of interrupt handler in ticks (max 7.7 ms). */ } nrf_drv_rtc_cb_t; // User callbacks local storage. static nrf_drv_rtc_handler_t m_handlers[ENABLED_RTC_COUNT]; static nrf_drv_rtc_cb_t m_cb[ENABLED_RTC_COUNT]; ret_code_t nrf_drv_rtc_init(nrf_drv_rtc_t const * const p_instance, nrf_drv_rtc_config_t const * p_config, nrf_drv_rtc_handler_t handler) { ASSERT(p_config); ret_code_t err_code; if (handler) { m_handlers[p_instance->instance_id] = handler; } else { err_code = NRF_ERROR_INVALID_PARAM; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } if (m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED) { err_code = NRF_ERROR_INVALID_STATE; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } nrf_drv_common_irq_enable(p_instance->irq, p_config->interrupt_priority); nrf_rtc_prescaler_set(p_instance->p_reg, p_config->prescaler); m_cb[p_instance->instance_id].reliable = p_config->reliable; m_cb[p_instance->instance_id].tick_latency = p_config->tick_latency; m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED; err_code = NRF_SUCCESS; NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrf_drv_rtc_uninit(nrf_drv_rtc_t const * const p_instance) { uint32_t mask = NRF_RTC_INT_TICK_MASK | NRF_RTC_INT_OVERFLOW_MASK | NRF_RTC_INT_COMPARE0_MASK | NRF_RTC_INT_COMPARE1_MASK | NRF_RTC_INT_COMPARE2_MASK | NRF_RTC_INT_COMPARE3_MASK; ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); nrf_drv_common_irq_disable(p_instance->irq); nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP); nrf_rtc_event_disable(p_instance->p_reg, mask); nrf_rtc_int_disable(p_instance->p_reg, mask); m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED; NRF_LOG_INFO("Uninitialized.\r\n"); } void nrf_drv_rtc_enable(nrf_drv_rtc_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_INITIALIZED); nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_START); m_cb[p_instance->instance_id].state = NRF_DRV_STATE_POWERED_ON; NRF_LOG_INFO("Enabled.\r\n"); } void nrf_drv_rtc_disable(nrf_drv_rtc_t const * const p_instance) { ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP); m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED; NRF_LOG_INFO("Disabled.\r\n"); } ret_code_t nrf_drv_rtc_cc_disable(nrf_drv_rtc_t const * const p_instance, uint32_t channel) { ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(channelcc_channel_count); ret_code_t err_code; uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel); nrf_rtc_event_t event = RTC_CHANNEL_EVENT_ADDR(channel); nrf_rtc_event_disable(p_instance->p_reg,int_mask); if (nrf_rtc_int_is_enabled(p_instance->p_reg,int_mask)) { nrf_rtc_int_disable(p_instance->p_reg,int_mask); if (nrf_rtc_event_pending(p_instance->p_reg,event)) { nrf_rtc_event_clear(p_instance->p_reg,event); err_code = NRF_ERROR_TIMEOUT; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } } NRF_LOG_INFO("RTC id: %d, channel disabled: %d.\r\n", p_instance->instance_id, channel); err_code = NRF_SUCCESS; NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } ret_code_t nrf_drv_rtc_cc_set(nrf_drv_rtc_t const * const p_instance, uint32_t channel, uint32_t val, bool enable_irq) { ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(channelcc_channel_count); ret_code_t err_code; uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel); nrf_rtc_event_t event = RTC_CHANNEL_EVENT_ADDR(channel); nrf_rtc_event_disable(p_instance->p_reg, int_mask); nrf_rtc_int_disable(p_instance->p_reg, int_mask); val = RTC_WRAP(val); if (m_cb[p_instance->instance_id].reliable) { nrf_rtc_cc_set(p_instance->p_reg,channel,val); uint32_t cnt = nrf_rtc_counter_get(p_instance->p_reg); int32_t diff = cnt - val; if (cnt < val) { diff += RTC_COUNTER_COUNTER_Msk; } if (diff < m_cb[p_instance->instance_id].tick_latency) { err_code = NRF_ERROR_TIMEOUT; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } } else { nrf_rtc_cc_set(p_instance->p_reg,channel,val); } if (enable_irq) { nrf_rtc_event_clear(p_instance->p_reg,event); nrf_rtc_int_enable(p_instance->p_reg, int_mask); } nrf_rtc_event_enable(p_instance->p_reg,int_mask); NRF_LOG_INFO("RTC id: %d, channel enabled: %d, compare value: %d.\r\n", p_instance->instance_id, channel, val); err_code = NRF_SUCCESS; NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrf_drv_rtc_tick_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq) { nrf_rtc_event_t event = NRF_RTC_EVENT_TICK; uint32_t mask = NRF_RTC_INT_TICK_MASK; nrf_rtc_event_clear(p_instance->p_reg, event); nrf_rtc_event_enable(p_instance->p_reg, mask); if (enable_irq) { nrf_rtc_int_enable(p_instance->p_reg, mask); } NRF_LOG_INFO("Tick events enabled.\r\n"); } void nrf_drv_rtc_tick_disable(nrf_drv_rtc_t const * const p_instance) { uint32_t mask = NRF_RTC_INT_TICK_MASK; nrf_rtc_event_disable(p_instance->p_reg, mask); nrf_rtc_int_disable(p_instance->p_reg, mask); NRF_LOG_INFO("Tick events disabled.\r\n"); } void nrf_drv_rtc_overflow_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq) { nrf_rtc_event_t event = NRF_RTC_EVENT_OVERFLOW; uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK; nrf_rtc_event_clear(p_instance->p_reg, event); nrf_rtc_event_enable(p_instance->p_reg, mask); if (enable_irq) { nrf_rtc_int_enable(p_instance->p_reg, mask); } } void nrf_drv_rtc_overflow_disable(nrf_drv_rtc_t const * const p_instance) { uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK; nrf_rtc_event_disable(p_instance->p_reg, mask); nrf_rtc_int_disable(p_instance->p_reg, mask); } uint32_t nrf_drv_rtc_max_ticks_get(nrf_drv_rtc_t const * const p_instance) { uint32_t ticks; if (m_cb[p_instance->instance_id].reliable) { ticks = RTC_COUNTER_COUNTER_Msk - m_cb[p_instance->instance_id].tick_latency; } else { ticks = RTC_COUNTER_COUNTER_Msk; } return ticks; } /**@brief Generic function for handling RTC interrupt * * @param[in] p_reg Pointer to instance register structure. * @param[in] instance_id Index of instance. */ __STATIC_INLINE void nrf_drv_rtc_int_handler(NRF_RTC_Type * p_reg, uint32_t instance_id, uint32_t channel_count) { uint32_t i; uint32_t int_mask = (uint32_t)NRF_RTC_INT_COMPARE0_MASK; nrf_rtc_event_t event = NRF_RTC_EVENT_COMPARE_0; for (i = 0; i < channel_count; i++) { if (nrf_rtc_int_is_enabled(p_reg,int_mask) && nrf_rtc_event_pending(p_reg,event)) { nrf_rtc_event_disable(p_reg,int_mask); nrf_rtc_int_disable(p_reg,int_mask); nrf_rtc_event_clear(p_reg,event); NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n", (uint32_t)EVT_TO_STR(event), (uint32_t)instance_id); m_handlers[instance_id]((nrf_drv_rtc_int_type_t)i); } int_mask <<= 1; event = (nrf_rtc_event_t)((uint32_t)event + sizeof(uint32_t)); } event = NRF_RTC_EVENT_TICK; if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_TICK_MASK) && nrf_rtc_event_pending(p_reg, event)) { nrf_rtc_event_clear(p_reg, event); NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n", (uint32_t)EVT_TO_STR(event), instance_id); m_handlers[instance_id](NRF_DRV_RTC_INT_TICK); } event = NRF_RTC_EVENT_OVERFLOW; if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_OVERFLOW_MASK) && nrf_rtc_event_pending(p_reg, event)) { nrf_rtc_event_clear(p_reg,event); NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n", (uint32_t)EVT_TO_STR(event), instance_id); m_handlers[instance_id](NRF_DRV_RTC_INT_OVERFLOW); } } #if NRF_MODULE_ENABLED(RTC0) void RTC0_IRQHandler(void) { nrf_drv_rtc_int_handler(NRF_RTC0,RTC0_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(0)); } #endif #if NRF_MODULE_ENABLED(RTC1) void RTC1_IRQHandler(void) { nrf_drv_rtc_int_handler(NRF_RTC1,RTC1_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(1)); } #endif #if NRF_MODULE_ENABLED(RTC2) void RTC2_IRQHandler(void) { nrf_drv_rtc_int_handler(NRF_RTC2,RTC2_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(2)); } #endif #endif //ENABLED_RTC_COUNT #endif //NRF_MODULE_ENABLED(RTC)