1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
|
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_SAADC_H_
#define NRF_SAADC_H_
/**
* @defgroup nrf_saadc_hal SAADC HAL
* @{
* @ingroup nrf_saadc
*
* @brief @tagAPI52 Hardware access layer for accessing the SAADC peripheral.
*/
#include <stdbool.h>
#include <stddef.h>
#include "nrf.h"
#include "nrf_assert.h"
#ifdef __cplusplus
extern "C" {
#endif
#define NRF_SAADC_CHANNEL_COUNT 8
/**
* @brief Resolution of the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_RESOLUTION_8BIT = SAADC_RESOLUTION_VAL_8bit, ///< 8 bit resolution.
NRF_SAADC_RESOLUTION_10BIT = SAADC_RESOLUTION_VAL_10bit, ///< 10 bit resolution.
NRF_SAADC_RESOLUTION_12BIT = SAADC_RESOLUTION_VAL_12bit, ///< 12 bit resolution.
NRF_SAADC_RESOLUTION_14BIT = SAADC_RESOLUTION_VAL_14bit ///< 14 bit resolution.
} nrf_saadc_resolution_t;
/**
* @brief Input selection for the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_INPUT_DISABLED = SAADC_CH_PSELP_PSELP_NC, ///< Not connected.
NRF_SAADC_INPUT_AIN0 = SAADC_CH_PSELP_PSELP_AnalogInput0, ///< Analog input 0 (AIN0).
NRF_SAADC_INPUT_AIN1 = SAADC_CH_PSELP_PSELP_AnalogInput1, ///< Analog input 1 (AIN1).
NRF_SAADC_INPUT_AIN2 = SAADC_CH_PSELP_PSELP_AnalogInput2, ///< Analog input 2 (AIN2).
NRF_SAADC_INPUT_AIN3 = SAADC_CH_PSELP_PSELP_AnalogInput3, ///< Analog input 3 (AIN3).
NRF_SAADC_INPUT_AIN4 = SAADC_CH_PSELP_PSELP_AnalogInput4, ///< Analog input 4 (AIN4).
NRF_SAADC_INPUT_AIN5 = SAADC_CH_PSELP_PSELP_AnalogInput5, ///< Analog input 5 (AIN5).
NRF_SAADC_INPUT_AIN6 = SAADC_CH_PSELP_PSELP_AnalogInput6, ///< Analog input 6 (AIN6).
NRF_SAADC_INPUT_AIN7 = SAADC_CH_PSELP_PSELP_AnalogInput7, ///< Analog input 7 (AIN7).
NRF_SAADC_INPUT_VDD = SAADC_CH_PSELP_PSELP_VDD ///< VDD as input.
} nrf_saadc_input_t;
/**
* @brief Analog-to-digital converter oversampling mode.
*/
typedef enum
{
NRF_SAADC_OVERSAMPLE_DISABLED = SAADC_OVERSAMPLE_OVERSAMPLE_Bypass, ///< No oversampling.
NRF_SAADC_OVERSAMPLE_2X = SAADC_OVERSAMPLE_OVERSAMPLE_Over2x, ///< Oversample 2x.
NRF_SAADC_OVERSAMPLE_4X = SAADC_OVERSAMPLE_OVERSAMPLE_Over4x, ///< Oversample 4x.
NRF_SAADC_OVERSAMPLE_8X = SAADC_OVERSAMPLE_OVERSAMPLE_Over8x, ///< Oversample 8x.
NRF_SAADC_OVERSAMPLE_16X = SAADC_OVERSAMPLE_OVERSAMPLE_Over16x, ///< Oversample 16x.
NRF_SAADC_OVERSAMPLE_32X = SAADC_OVERSAMPLE_OVERSAMPLE_Over32x, ///< Oversample 32x.
NRF_SAADC_OVERSAMPLE_64X = SAADC_OVERSAMPLE_OVERSAMPLE_Over64x, ///< Oversample 64x.
NRF_SAADC_OVERSAMPLE_128X = SAADC_OVERSAMPLE_OVERSAMPLE_Over128x, ///< Oversample 128x.
NRF_SAADC_OVERSAMPLE_256X = SAADC_OVERSAMPLE_OVERSAMPLE_Over256x ///< Oversample 256x.
} nrf_saadc_oversample_t;
/**
* @brief Analog-to-digital converter channel resistor control.
*/
typedef enum
{
NRF_SAADC_RESISTOR_DISABLED = SAADC_CH_CONFIG_RESP_Bypass, ///< Bypass resistor ladder.
NRF_SAADC_RESISTOR_PULLDOWN = SAADC_CH_CONFIG_RESP_Pulldown, ///< Pull-down to GND.
NRF_SAADC_RESISTOR_PULLUP = SAADC_CH_CONFIG_RESP_Pullup, ///< Pull-up to VDD.
NRF_SAADC_RESISTOR_VDD1_2 = SAADC_CH_CONFIG_RESP_VDD1_2 ///< Set input at VDD/2.
} nrf_saadc_resistor_t;
/**
* @brief Gain factor of the analog-to-digital converter input.
*/
typedef enum
{
NRF_SAADC_GAIN1_6 = SAADC_CH_CONFIG_GAIN_Gain1_6, ///< Gain factor 1/6.
NRF_SAADC_GAIN1_5 = SAADC_CH_CONFIG_GAIN_Gain1_5, ///< Gain factor 1/5.
NRF_SAADC_GAIN1_4 = SAADC_CH_CONFIG_GAIN_Gain1_4, ///< Gain factor 1/4.
NRF_SAADC_GAIN1_3 = SAADC_CH_CONFIG_GAIN_Gain1_3, ///< Gain factor 1/3.
NRF_SAADC_GAIN1_2 = SAADC_CH_CONFIG_GAIN_Gain1_2, ///< Gain factor 1/2.
NRF_SAADC_GAIN1 = SAADC_CH_CONFIG_GAIN_Gain1, ///< Gain factor 1.
NRF_SAADC_GAIN2 = SAADC_CH_CONFIG_GAIN_Gain2, ///< Gain factor 2.
NRF_SAADC_GAIN4 = SAADC_CH_CONFIG_GAIN_Gain4, ///< Gain factor 4.
} nrf_saadc_gain_t;
/**
* @brief Reference selection for the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_REFERENCE_INTERNAL = SAADC_CH_CONFIG_REFSEL_Internal, ///< Internal reference (0.6 V).
NRF_SAADC_REFERENCE_VDD4 = SAADC_CH_CONFIG_REFSEL_VDD1_4 ///< VDD/4 as reference.
} nrf_saadc_reference_t;
/**
* @brief Analog-to-digital converter acquisition time.
*/
typedef enum
{
NRF_SAADC_ACQTIME_3US = SAADC_CH_CONFIG_TACQ_3us, ///< 3 us.
NRF_SAADC_ACQTIME_5US = SAADC_CH_CONFIG_TACQ_5us, ///< 5 us.
NRF_SAADC_ACQTIME_10US = SAADC_CH_CONFIG_TACQ_10us, ///< 10 us.
NRF_SAADC_ACQTIME_15US = SAADC_CH_CONFIG_TACQ_15us, ///< 15 us.
NRF_SAADC_ACQTIME_20US = SAADC_CH_CONFIG_TACQ_20us, ///< 20 us.
NRF_SAADC_ACQTIME_40US = SAADC_CH_CONFIG_TACQ_40us ///< 40 us.
} nrf_saadc_acqtime_t;
/**
* @brief Analog-to-digital converter channel mode.
*/
typedef enum
{
NRF_SAADC_MODE_SINGLE_ENDED = SAADC_CH_CONFIG_MODE_SE, ///< Single ended, PSELN will be ignored, negative input to ADC shorted to GND.
NRF_SAADC_MODE_DIFFERENTIAL = SAADC_CH_CONFIG_MODE_Diff ///< Differential mode.
} nrf_saadc_mode_t;
/**
* @brief Analog-to-digital converter channel burst mode.
*/
typedef enum
{
NRF_SAADC_BURST_DISABLED = SAADC_CH_CONFIG_BURST_Disabled, ///< Burst mode is disabled (normal operation).
NRF_SAADC_BURST_ENABLED = SAADC_CH_CONFIG_BURST_Enabled ///< Burst mode is enabled. SAADC takes 2^OVERSAMPLE number of samples as fast as it can, and sends the average to Data RAM.
} nrf_saadc_burst_t;
/**
* @brief Analog-to-digital converter tasks.
*/
typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */
{
NRF_SAADC_TASK_START = offsetof(NRF_SAADC_Type, TASKS_START), ///< Start the ADC and prepare the result buffer in RAM.
NRF_SAADC_TASK_SAMPLE = offsetof(NRF_SAADC_Type, TASKS_SAMPLE), ///< Take one ADC sample. If scan is enabled, all channels are sampled.
NRF_SAADC_TASK_STOP = offsetof(NRF_SAADC_Type, TASKS_STOP), ///< Stop the ADC and terminate any on-going conversion.
NRF_SAADC_TASK_CALIBRATEOFFSET = offsetof(NRF_SAADC_Type, TASKS_CALIBRATEOFFSET), ///< Starts offset auto-calibration.
} nrf_saadc_task_t;
/**
* @brief Analog-to-digital converter events.
*/
typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */
{
NRF_SAADC_EVENT_STARTED = offsetof(NRF_SAADC_Type, EVENTS_STARTED), ///< The ADC has started.
NRF_SAADC_EVENT_END = offsetof(NRF_SAADC_Type, EVENTS_END), ///< The ADC has filled up the result buffer.
NRF_SAADC_EVENT_DONE = offsetof(NRF_SAADC_Type, EVENTS_DONE), ///< A conversion task has been completed.
NRF_SAADC_EVENT_RESULTDONE = offsetof(NRF_SAADC_Type, EVENTS_RESULTDONE), ///< A result is ready to get transferred to RAM.
NRF_SAADC_EVENT_CALIBRATEDONE = offsetof(NRF_SAADC_Type, EVENTS_CALIBRATEDONE), ///< Calibration is complete.
NRF_SAADC_EVENT_STOPPED = offsetof(NRF_SAADC_Type, EVENTS_STOPPED), ///< The ADC has stopped.
NRF_SAADC_EVENT_CH0_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[0].LIMITH), ///< Last result is equal or above CH[0].LIMIT.HIGH.
NRF_SAADC_EVENT_CH0_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[0].LIMITL), ///< Last result is equal or below CH[0].LIMIT.LOW.
NRF_SAADC_EVENT_CH1_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[1].LIMITH), ///< Last result is equal or above CH[1].LIMIT.HIGH.
NRF_SAADC_EVENT_CH1_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[1].LIMITL), ///< Last result is equal or below CH[1].LIMIT.LOW.
NRF_SAADC_EVENT_CH2_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[2].LIMITH), ///< Last result is equal or above CH[2].LIMIT.HIGH.
NRF_SAADC_EVENT_CH2_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[2].LIMITL), ///< Last result is equal or below CH[2].LIMIT.LOW.
NRF_SAADC_EVENT_CH3_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[3].LIMITH), ///< Last result is equal or above CH[3].LIMIT.HIGH.
NRF_SAADC_EVENT_CH3_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[3].LIMITL), ///< Last result is equal or below CH[3].LIMIT.LOW.
NRF_SAADC_EVENT_CH4_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[4].LIMITH), ///< Last result is equal or above CH[4].LIMIT.HIGH.
NRF_SAADC_EVENT_CH4_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[4].LIMITL), ///< Last result is equal or below CH[4].LIMIT.LOW.
NRF_SAADC_EVENT_CH5_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[5].LIMITH), ///< Last result is equal or above CH[5].LIMIT.HIGH.
NRF_SAADC_EVENT_CH5_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[5].LIMITL), ///< Last result is equal or below CH[5].LIMIT.LOW.
NRF_SAADC_EVENT_CH6_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[6].LIMITH), ///< Last result is equal or above CH[6].LIMIT.HIGH.
NRF_SAADC_EVENT_CH6_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[6].LIMITL), ///< Last result is equal or below CH[6].LIMIT.LOW.
NRF_SAADC_EVENT_CH7_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[7].LIMITH), ///< Last result is equal or above CH[7].LIMIT.HIGH.
NRF_SAADC_EVENT_CH7_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[7].LIMITL) ///< Last result is equal or below CH[7].LIMIT.LOW.
} nrf_saadc_event_t;
/**
* @brief Analog-to-digital converter interrupt masks.
*/
typedef enum
{
NRF_SAADC_INT_STARTED = SAADC_INTENSET_STARTED_Msk, ///< Interrupt on EVENTS_STARTED event.
NRF_SAADC_INT_END = SAADC_INTENSET_END_Msk, ///< Interrupt on EVENTS_END event.
NRF_SAADC_INT_DONE = SAADC_INTENSET_DONE_Msk, ///< Interrupt on EVENTS_DONE event.
NRF_SAADC_INT_RESULTDONE = SAADC_INTENSET_RESULTDONE_Msk, ///< Interrupt on EVENTS_RESULTDONE event.
NRF_SAADC_INT_CALIBRATEDONE = SAADC_INTENSET_CALIBRATEDONE_Msk, ///< Interrupt on EVENTS_CALIBRATEDONE event.
NRF_SAADC_INT_STOPPED = SAADC_INTENSET_STOPPED_Msk, ///< Interrupt on EVENTS_STOPPED event.
NRF_SAADC_INT_CH0LIMITH = SAADC_INTENSET_CH0LIMITH_Msk, ///< Interrupt on EVENTS_CH[0].LIMITH event.
NRF_SAADC_INT_CH0LIMITL = SAADC_INTENSET_CH0LIMITL_Msk, ///< Interrupt on EVENTS_CH[0].LIMITL event.
NRF_SAADC_INT_CH1LIMITH = SAADC_INTENSET_CH1LIMITH_Msk, ///< Interrupt on EVENTS_CH[1].LIMITH event.
NRF_SAADC_INT_CH1LIMITL = SAADC_INTENSET_CH1LIMITL_Msk, ///< Interrupt on EVENTS_CH[1].LIMITL event.
NRF_SAADC_INT_CH2LIMITH = SAADC_INTENSET_CH2LIMITH_Msk, ///< Interrupt on EVENTS_CH[2].LIMITH event.
NRF_SAADC_INT_CH2LIMITL = SAADC_INTENSET_CH2LIMITL_Msk, ///< Interrupt on EVENTS_CH[2].LIMITL event.
NRF_SAADC_INT_CH3LIMITH = SAADC_INTENSET_CH3LIMITH_Msk, ///< Interrupt on EVENTS_CH[3].LIMITH event.
NRF_SAADC_INT_CH3LIMITL = SAADC_INTENSET_CH3LIMITL_Msk, ///< Interrupt on EVENTS_CH[3].LIMITL event.
NRF_SAADC_INT_CH4LIMITH = SAADC_INTENSET_CH4LIMITH_Msk, ///< Interrupt on EVENTS_CH[4].LIMITH event.
NRF_SAADC_INT_CH4LIMITL = SAADC_INTENSET_CH4LIMITL_Msk, ///< Interrupt on EVENTS_CH[4].LIMITL event.
NRF_SAADC_INT_CH5LIMITH = SAADC_INTENSET_CH5LIMITH_Msk, ///< Interrupt on EVENTS_CH[5].LIMITH event.
NRF_SAADC_INT_CH5LIMITL = SAADC_INTENSET_CH5LIMITL_Msk, ///< Interrupt on EVENTS_CH[5].LIMITL event.
NRF_SAADC_INT_CH6LIMITH = SAADC_INTENSET_CH6LIMITH_Msk, ///< Interrupt on EVENTS_CH[6].LIMITH event.
NRF_SAADC_INT_CH6LIMITL = SAADC_INTENSET_CH6LIMITL_Msk, ///< Interrupt on EVENTS_CH[6].LIMITL event.
NRF_SAADC_INT_CH7LIMITH = SAADC_INTENSET_CH7LIMITH_Msk, ///< Interrupt on EVENTS_CH[7].LIMITH event.
NRF_SAADC_INT_CH7LIMITL = SAADC_INTENSET_CH7LIMITL_Msk, ///< Interrupt on EVENTS_CH[7].LIMITL event.
NRF_SAADC_INT_ALL = 0x7FFFFFFFUL ///< Mask of all interrupts.
} nrf_saadc_int_mask_t;
/**
* @brief Analog-to-digital converter value limit type.
*/
typedef enum
{
NRF_SAADC_LIMIT_LOW = 0,
NRF_SAADC_LIMIT_HIGH = 1
} nrf_saadc_limit_t;
typedef int16_t nrf_saadc_value_t; ///< Type of a single ADC conversion result.
/**
* @brief Analog-to-digital converter configuration structure.
*/
typedef struct
{
nrf_saadc_resolution_t resolution;
nrf_saadc_oversample_t oversample;
nrf_saadc_value_t * buffer;
uint32_t buffer_size;
} nrf_saadc_config_t;
/**
* @brief Analog-to-digital converter channel configuration structure.
*/
typedef struct
{
nrf_saadc_resistor_t resistor_p;
nrf_saadc_resistor_t resistor_n;
nrf_saadc_gain_t gain;
nrf_saadc_reference_t reference;
nrf_saadc_acqtime_t acq_time;
nrf_saadc_mode_t mode;
nrf_saadc_burst_t burst;
nrf_saadc_input_t pin_p;
nrf_saadc_input_t pin_n;
} nrf_saadc_channel_config_t;
/**
* @brief Function for triggering a specific SAADC task.
*
* @param[in] saadc_task SAADC task.
*/
__STATIC_INLINE void nrf_saadc_task_trigger(nrf_saadc_task_t saadc_task)
{
*((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_task)) = 0x1UL;
}
/**
* @brief Function for getting the address of a specific SAADC task register.
*
* @param[in] saadc_task SAADC task.
*
* @return Address of the specified SAADC task.
*/
__STATIC_INLINE uint32_t nrf_saadc_task_address_get(nrf_saadc_task_t saadc_task)
{
return (uint32_t)((uint8_t *)NRF_SAADC + (uint32_t)saadc_task);
}
/**
* @brief Function for getting the state of a specific SAADC event.
*
* @param[in] saadc_event SAADC event.
*
* @return State of the specified SAADC event.
*/
__STATIC_INLINE bool nrf_saadc_event_check(nrf_saadc_event_t saadc_event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event);
}
/**
* @brief Function for clearing the specific SAADC event.
*
* @param[in] saadc_event SAADC event.
*/
__STATIC_INLINE void nrf_saadc_event_clear(nrf_saadc_event_t saadc_event)
{
*((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event)) = 0x0UL;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event));
(void)dummy;
#endif
}
/**
* @brief Function for getting the address of a specific SAADC event register.
*
* @param[in] saadc_event SAADC event.
*
* @return Address of the specified SAADC event.
*/
__STATIC_INLINE uint32_t nrf_saadc_event_address_get(nrf_saadc_event_t saadc_event)
{
return (uint32_t )((uint8_t *)NRF_SAADC + (uint32_t)saadc_event);
}
/**
* @brief Function for getting the address of a specific SAADC limit event register.
*
* @param[in] channel Channel number.
* @param[in] limit_type Low limit or high limit.
*
* @return Address of the specified SAADC limit event.
*/
__STATIC_INLINE volatile uint32_t * nrf_saadc_event_limit_address_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
if (limit_type == NRF_SAADC_LIMIT_HIGH)
{
return &NRF_SAADC->EVENTS_CH[channel].LIMITH;
}
else
{
return &NRF_SAADC->EVENTS_CH[channel].LIMITL;
}
}
/**
* @brief Function for getting the SAADC channel monitoring limit events.
*
* @param[in] channel Channel number.
* @param[in] limit_type Low limit or high limit.
*/
__STATIC_INLINE nrf_saadc_event_t nrf_saadc_event_limit_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
if (limit_type == NRF_SAADC_LIMIT_HIGH)
{
return (nrf_saadc_event_t)( (uint32_t) NRF_SAADC_EVENT_CH0_LIMITH +
(uint32_t) (NRF_SAADC_EVENT_CH1_LIMITH - NRF_SAADC_EVENT_CH0_LIMITH)
* (uint32_t) channel );
}
else
{
return (nrf_saadc_event_t)( (uint32_t) NRF_SAADC_EVENT_CH0_LIMITL +
(uint32_t) (NRF_SAADC_EVENT_CH1_LIMITL - NRF_SAADC_EVENT_CH0_LIMITL)
* (uint32_t) channel );
}
}
/**
* @brief Function for configuring the input pins for a specific SAADC channel.
*
* @param[in] channel Channel number.
* @param[in] pselp Positive input.
* @param[in] pseln Negative input. Set to NRF_SAADC_INPUT_DISABLED in single ended mode.
*/
__STATIC_INLINE void nrf_saadc_channel_input_set(uint8_t channel,
nrf_saadc_input_t pselp,
nrf_saadc_input_t pseln)
{
NRF_SAADC->CH[channel].PSELN = pseln;
NRF_SAADC->CH[channel].PSELP = pselp;
}
/**
* @brief Function for setting the SAADC channel monitoring limits.
*
* @param[in] channel Channel number.
* @param[in] low Low limit.
* @param[in] high High limit.
*/
__STATIC_INLINE void nrf_saadc_channel_limits_set(uint8_t channel, int16_t low, int16_t high)
{
NRF_SAADC->CH[channel].LIMIT = (
(((uint32_t) low << SAADC_CH_LIMIT_LOW_Pos) & SAADC_CH_LIMIT_LOW_Msk)
| (((uint32_t) high << SAADC_CH_LIMIT_HIGH_Pos) & SAADC_CH_LIMIT_HIGH_Msk));
}
/**
* @brief Function for enabling specified SAADC interrupts.
*
* @param[in] saadc_int_mask Interrupt(s) to enable.
*/
__STATIC_INLINE void nrf_saadc_int_enable(uint32_t saadc_int_mask)
{
NRF_SAADC->INTENSET = saadc_int_mask;
}
/**
* @brief Function for retrieving the state of specified SAADC interrupts.
*
* @param[in] saadc_int_mask Interrupt(s) to check.
*
* @retval true If all specified interrupts are enabled.
* @retval false If at least one of the given interrupts is not enabled.
*/
__STATIC_INLINE bool nrf_saadc_int_enable_check(uint32_t saadc_int_mask)
{
return (bool)(NRF_SAADC->INTENSET & saadc_int_mask);
}
/**
* @brief Function for disabling specified interrupts.
*
* @param saadc_int_mask Interrupt(s) to disable.
*/
__STATIC_INLINE void nrf_saadc_int_disable(uint32_t saadc_int_mask)
{
NRF_SAADC->INTENCLR = saadc_int_mask;
}
/**
* @brief Function for generating masks for SAADC channel limit interrupts.
*
* @param[in] channel SAADC channel number.
* @param[in] limit_type Limit type.
*
* @returns Interrupt mask.
*/
__STATIC_INLINE uint32_t nrf_saadc_limit_int_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
uint32_t mask = (limit_type == NRF_SAADC_LIMIT_LOW) ? NRF_SAADC_INT_CH0LIMITL : NRF_SAADC_INT_CH0LIMITH;
return mask << (channel * 2);
}
/**
* @brief Function for checking whether the SAADC is busy.
*
* This function checks whether the analog-to-digital converter is busy with a conversion.
*
* @retval true If the SAADC is busy.
* @retval false If the SAADC is not busy.
*/
__STATIC_INLINE bool nrf_saadc_busy_check(void)
{
//return ((NRF_SAADC->STATUS & SAADC_STATUS_STATUS_Msk) == SAADC_STATUS_STATUS_Msk);
//simplified for performance
return NRF_SAADC->STATUS;
}
/**
* @brief Function for enabling the SAADC.
*
* The analog-to-digital converter must be enabled before use.
*/
__STATIC_INLINE void nrf_saadc_enable(void)
{
NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Enabled << SAADC_ENABLE_ENABLE_Pos);
}
/**
* @brief Function for disabling the SAADC.
*/
__STATIC_INLINE void nrf_saadc_disable(void)
{
NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Disabled << SAADC_ENABLE_ENABLE_Pos);
}
/**
* @brief Function for checking if the SAADC is enabled.
*
* @retval true If the SAADC is enabled.
* @retval false If the SAADC is not enabled.
*/
__STATIC_INLINE bool nrf_saadc_enable_check(void)
{
//simplified for performance
return NRF_SAADC->ENABLE;
}
/**
* @brief Function for initializing the SAADC result buffer.
*
* @param[in] buffer Pointer to the result buffer.
* @param[in] num Size of buffer in words.
*/
__STATIC_INLINE void nrf_saadc_buffer_init(nrf_saadc_value_t * buffer, uint32_t num)
{
NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
NRF_SAADC->RESULT.MAXCNT = num;
}
/**
* @brief Function for getting the number of buffer words transferred since last START operation.
*
* @returns Number of words transferred.
*/
__STATIC_INLINE uint16_t nrf_saadc_amount_get(void)
{
return NRF_SAADC->RESULT.AMOUNT;
}
/**
* @brief Function for setting the SAADC sample resolution.
*
* @param[in] resolution Bit resolution.
*/
__STATIC_INLINE void nrf_saadc_resolution_set(nrf_saadc_resolution_t resolution)
{
NRF_SAADC->RESOLUTION = resolution;
}
/**
* @brief Function for configuring the oversampling feature.
*
* @param[in] oversample Oversampling mode.
*/
__STATIC_INLINE void nrf_saadc_oversample_set(nrf_saadc_oversample_t oversample)
{
NRF_SAADC->OVERSAMPLE = oversample;
}
/**
* @brief Function for getting the oversampling feature configuration.
*
* @return Oversampling configuration.
*/
__STATIC_INLINE nrf_saadc_oversample_t nrf_saadc_oversample_get(void)
{
return (nrf_saadc_oversample_t)NRF_SAADC->OVERSAMPLE;
}
/**
* @brief Function for initializing the SAADC channel.
*
* @param[in] channel Channel number.
* @param[in] config Pointer to the channel configuration structure.
*/
void nrf_saadc_channel_init(uint8_t channel, nrf_saadc_channel_config_t const * const config);
/**
*@}
**/
#ifdef __cplusplus
}
#endif
#endif /* NRF_SAADC_H_ */
|