diff options
Diffstat (limited to 'gui/cmsis')
-rw-r--r-- | gui/cmsis/arm_conv_f32.c | 647 | ||||
-rw-r--r-- | gui/cmsis/arm_conv_q15.c | 734 | ||||
-rw-r--r-- | gui/cmsis/arm_conv_q31.c | 565 | ||||
-rw-r--r-- | gui/cmsis/arm_conv_q7.c | 690 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_f32.c | 997 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_init_f32.c | 96 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_init_q15.c | 154 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_init_q31.c | 96 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_init_q7.c | 94 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_q15.c | 691 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_q31.c | 365 | ||||
-rw-r--r-- | gui/cmsis/arm_fir_q7.c | 397 |
12 files changed, 0 insertions, 5526 deletions
diff --git a/gui/cmsis/arm_conv_f32.c b/gui/cmsis/arm_conv_f32.c deleted file mode 100644 index 65f7ab8..0000000 --- a/gui/cmsis/arm_conv_f32.c +++ /dev/null @@ -1,647 +0,0 @@ -/* ----------------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_conv_f32.c
-*
-* Description: Convolution of floating-point sequences.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @defgroup Conv Convolution
- *
- * Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
- * Convolution is similar to correlation and is frequently used in filtering and data analysis.
- * The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
- * The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
- *
- * \par Algorithm
- * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
- * Then the convolution
- *
- * <pre>
- * c[n] = a[n] * b[n]
- * </pre>
- *
- * \par
- * is defined as
- * \image html ConvolutionEquation.gif
- * \par
- * Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
- * <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
- * <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
- * The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
- *
- * \par
- * Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
- * the signal <code>b[n]</code> slides over <code>a[n]</code>.
- * For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
- *
- * \par
- * Note that convolution is a commutative operation:
- *
- * <pre>
- * a[n] * b[n] = b[n] * a[n].
- * </pre>
- *
- * \par
- * This means that switching the A and B arguments to the convolution functions has no effect.
- *
- * <b>Fixed-Point Behavior</b>
- *
- * \par
- * Convolution requires summing up a large number of intermediate products.
- * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
- * Refer to the function specific documentation below for further details of the particular algorithm used.
- *
- *
- * <b>Fast Versions</b>
- *
- * \par
- * Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires
- * the input signals should be scaled down to avoid intermediate overflows.
- *
- *
- * <b>Opt Versions</b>
- *
- * \par
- * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
- * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions
- */
-
-/**
- * @addtogroup Conv
- * @{
- */
-
-/**
- * @brief Convolution of floating-point sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
- */
-
-void arm_conv_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst)
-{
-
-
-#ifndef ARM_MATH_CM0_FAMILY
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- float32_t *pIn1; /* inputA pointer */
- float32_t *pIn2; /* inputB pointer */
- float32_t *pOut = pDst; /* output pointer */
- float32_t *px; /* Intermediate inputA pointer */
- float32_t *py; /* Intermediate inputB pointer */
- float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
- float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
- float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- if(srcALen >= srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcA;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcB;
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcB;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcA;
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
- }
-
- /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
- /* The function is internally
- * divided into three stages according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first stage of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second stage of the algorithm, srcBLen number of multiplications are done.
- * In the third stage of the algorithm, the multiplications decrease by one
- * for every iteration. */
-
- /* The algorithm is implemented in three stages.
- The loop counters of each stage is initiated here. */
- blockSize1 = srcBLen - 1u;
- blockSize2 = srcALen - (srcBLen - 1u);
- blockSize3 = blockSize1;
-
- /* --------------------------
- * initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[0]
- * sum = x[0] * y[1] + x[1] * y[0]
- * ....
- * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = 1u;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* The first stage starts here */
- while(blockSize1 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0.0f;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* x[0] * y[srcBLen - 1] */
- sum += *px++ * *py--;
-
- /* x[1] * y[srcBLen - 2] */
- sum += *px++ * *py--;
-
- /* x[2] * y[srcBLen - 3] */
- sum += *px++ * *py--;
-
- /* x[3] * y[srcBLen - 4] */
- sum += *px++ * *py--;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += *px++ * *py--;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = sum;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pIn2 + count;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
- * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
- */
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- py = pSrc2;
-
- /* count is index by which the pointer pIn1 to be incremented */
- count = 0u;
-
- /* -------------------
- * Stage2 process
- * ------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4 */
- if(srcBLen >= 4u)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = blockSize2 >> 2u;
-
- while(blkCnt > 0u)
- {
- /* Set all accumulators to zero */
- acc0 = 0.0f;
- acc1 = 0.0f;
- acc2 = 0.0f;
- acc3 = 0.0f;
-
- /* read x[0], x[1], x[2] samples */
- x0 = *(px++);
- x1 = *(px++);
- x2 = *(px++);
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read y[srcBLen - 1] sample */
- c0 = *(py--);
-
- /* Read x[3] sample */
- x3 = *(px);
-
- /* Perform the multiply-accumulate */
- /* acc0 += x[0] * y[srcBLen - 1] */
- acc0 += x0 * c0;
-
- /* acc1 += x[1] * y[srcBLen - 1] */
- acc1 += x1 * c0;
-
- /* acc2 += x[2] * y[srcBLen - 1] */
- acc2 += x2 * c0;
-
- /* acc3 += x[3] * y[srcBLen - 1] */
- acc3 += x3 * c0;
-
- /* Read y[srcBLen - 2] sample */
- c0 = *(py--);
-
- /* Read x[4] sample */
- x0 = *(px + 1u);
-
- /* Perform the multiply-accumulate */
- /* acc0 += x[1] * y[srcBLen - 2] */
- acc0 += x1 * c0;
- /* acc1 += x[2] * y[srcBLen - 2] */
- acc1 += x2 * c0;
- /* acc2 += x[3] * y[srcBLen - 2] */
- acc2 += x3 * c0;
- /* acc3 += x[4] * y[srcBLen - 2] */
- acc3 += x0 * c0;
-
- /* Read y[srcBLen - 3] sample */
- c0 = *(py--);
-
- /* Read x[5] sample */
- x1 = *(px + 2u);
-
- /* Perform the multiply-accumulates */
- /* acc0 += x[2] * y[srcBLen - 3] */
- acc0 += x2 * c0;
- /* acc1 += x[3] * y[srcBLen - 2] */
- acc1 += x3 * c0;
- /* acc2 += x[4] * y[srcBLen - 2] */
- acc2 += x0 * c0;
- /* acc3 += x[5] * y[srcBLen - 2] */
- acc3 += x1 * c0;
-
- /* Read y[srcBLen - 4] sample */
- c0 = *(py--);
-
- /* Read x[6] sample */
- x2 = *(px + 3u);
- px += 4u;
-
- /* Perform the multiply-accumulates */
- /* acc0 += x[3] * y[srcBLen - 4] */
- acc0 += x3 * c0;
- /* acc1 += x[4] * y[srcBLen - 4] */
- acc1 += x0 * c0;
- /* acc2 += x[5] * y[srcBLen - 4] */
- acc2 += x1 * c0;
- /* acc3 += x[6] * y[srcBLen - 4] */
- acc3 += x2 * c0;
-
-
- } while(--k);
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4u;
-
- while(k > 0u)
- {
- /* Read y[srcBLen - 5] sample */
- c0 = *(py--);
-
- /* Read x[7] sample */
- x3 = *(px++);
-
- /* Perform the multiply-accumulates */
- /* acc0 += x[4] * y[srcBLen - 5] */
- acc0 += x0 * c0;
- /* acc1 += x[5] * y[srcBLen - 5] */
- acc1 += x1 * c0;
- /* acc2 += x[6] * y[srcBLen - 5] */
- acc2 += x2 * c0;
- /* acc3 += x[7] * y[srcBLen - 5] */
- acc3 += x3 * c0;
-
- /* Reuse the present samples for the next MAC */
- x0 = x1;
- x1 = x2;
- x2 = x3;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = acc0;
- *pOut++ = acc1;
- *pOut++ = acc2;
- *pOut++ = acc3;
-
- /* Increment the pointer pIn1 index, count by 4 */
- count += 4u;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize2 % 0x4u;
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0.0f;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum += *px++ * *py--;
- sum += *px++ * *py--;
- sum += *px++ * *py--;
- sum += *px++ * *py--;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += *px++ * *py--;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = sum;
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = blockSize2;
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0.0f;
-
- /* srcBLen number of MACS should be performed */
- k = srcBLen;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += *px++ * *py--;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = sum;
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
- * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
- * ....
- * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
- * sum += x[srcALen-1] * y[srcBLen-1]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The blockSize3 variable holds the number of MAC operations performed */
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
- px = pSrc1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- py = pSrc2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- while(blockSize3 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0.0f;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = blockSize3 >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
- sum += *px++ * *py--;
-
- /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
- sum += *px++ * *py--;
-
- /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
- sum += *px++ * *py--;
-
- /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
- sum += *px++ * *py--;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = blockSize3 % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- /* sum += x[srcALen-1] * y[srcBLen-1] */
- sum += *px++ * *py--;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = sum;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
- float32_t *pIn1 = pSrcA; /* inputA pointer */
- float32_t *pIn2 = pSrcB; /* inputB pointer */
- float32_t sum; /* Accumulator */
- uint32_t i, j; /* loop counters */
-
- /* Loop to calculate convolution for output length number of times */
- for (i = 0u; i < ((srcALen + srcBLen) - 1u); i++)
- {
- /* Initialize sum with zero to carry out MAC operations */
- sum = 0.0f;
-
- /* Loop to perform MAC operations according to convolution equation */
- for (j = 0u; j <= i; j++)
- {
- /* Check the array limitations */
- if((((i - j) < srcBLen) && (j < srcALen)))
- {
- /* z[i] += x[i-j] * y[j] */
- sum += pIn1[j] * pIn2[i - j];
- }
- }
- /* Store the output in the destination buffer */
- pDst[i] = sum;
- }
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}
-
-/**
- * @} end of Conv group
- */
diff --git a/gui/cmsis/arm_conv_q15.c b/gui/cmsis/arm_conv_q15.c deleted file mode 100644 index 8454a94..0000000 --- a/gui/cmsis/arm_conv_q15.c +++ /dev/null @@ -1,734 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_conv_q15.c
-*
-* Description: Convolution of Q15 sequences.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup Conv
- * @{
- */
-
-/**
- * @brief Convolution of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * This approach provides 33 guard bits and there is no risk of overflow.
- * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
- *
- * \par
- * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
- *
- * \par
- * Refer the function <code>arm_conv_opt_q15()</code> for a faster implementation of this function using scratch buffers.
- *
- */
-
-void arm_conv_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst)
-{
-
-#if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q15_t *pIn1; /* inputA pointer */
- q15_t *pIn2; /* inputB pointer */
- q15_t *pOut = pDst; /* output pointer */
- q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
- q15_t *px; /* Intermediate inputA pointer */
- q15_t *py; /* Intermediate inputB pointer */
- q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
- q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- if(srcALen >= srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcA;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcB;
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcB;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcA;
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
- }
-
- /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
- /* The function is internally
- * divided into three stages according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first stage of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second stage of the algorithm, srcBLen number of multiplications are done.
- * In the third stage of the algorithm, the multiplications decrease by one
- * for every iteration. */
-
- /* The algorithm is implemented in three stages.
- The loop counters of each stage is initiated here. */
- blockSize1 = srcBLen - 1u;
- blockSize2 = srcALen - (srcBLen - 1u);
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[0]
- * sum = x[0] * y[1] + x[1] * y[0]
- * ....
- * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = 1u;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations less than 4 */
- /* Second part of this stage computes the MAC operations greater than or equal to 4 */
-
- /* The first part of the stage starts here */
- while((count < 4u) && (blockSize1 > 0u))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Loop over number of MAC operations between
- * inputA samples and inputB samples */
- k = count;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum = __SMLALD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pIn2 + count;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* The second part of the stage starts here */
- /* The internal loop, over count, is unrolled by 4 */
- /* To, read the last two inputB samples using SIMD:
- * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
- py = py - 1;
-
- while(blockSize1 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
- sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
- /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
- sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* For the next MAC operations, the pointer py is used without SIMD
- * So, py is incremented by 1 */
- py = py + 1u;
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum = __SMLALD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pIn2 + (count - 1u);
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
- * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
- */
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- py = pSrc2;
-
- /* count is the index by which the pointer pIn1 to be incremented */
- count = 0u;
-
-
- /* --------------------
- * Stage2 process
- * -------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4 */
- if(srcBLen >= 4u)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = blockSize2 >> 2u;
-
- while(blkCnt > 0u)
- {
- py = py - 1u;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
-
- /* read x[0], x[1] samples */
- x0 = *__SIMD32(px);
- /* read x[1], x[2] samples */
- x1 = _SIMD32_OFFSET(px+1);
- px+= 2u;
-
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read the last two inputB samples using SIMD:
- * y[srcBLen - 1] and y[srcBLen - 2] */
- c0 = *__SIMD32(py)--;
-
- /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
- acc0 = __SMLALDX(x0, c0, acc0);
-
- /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
- acc1 = __SMLALDX(x1, c0, acc1);
-
- /* Read x[2], x[3] */
- x2 = *__SIMD32(px);
-
- /* Read x[3], x[4] */
- x3 = _SIMD32_OFFSET(px+1);
-
- /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
- acc2 = __SMLALDX(x2, c0, acc2);
-
- /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
- acc3 = __SMLALDX(x3, c0, acc3);
-
- /* Read y[srcBLen - 3] and y[srcBLen - 4] */
- c0 = *__SIMD32(py)--;
-
- /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
- acc0 = __SMLALDX(x2, c0, acc0);
-
- /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
- acc1 = __SMLALDX(x3, c0, acc1);
-
- /* Read x[4], x[5] */
- x0 = _SIMD32_OFFSET(px+2);
-
- /* Read x[5], x[6] */
- x1 = _SIMD32_OFFSET(px+3);
- px += 4u;
-
- /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
- acc2 = __SMLALDX(x0, c0, acc2);
-
- /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
- acc3 = __SMLALDX(x1, c0, acc3);
-
- } while(--k);
-
- /* For the next MAC operations, SIMD is not used
- * So, the 16 bit pointer if inputB, py is updated */
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4u;
-
- if(k == 1u)
- {
- /* Read y[srcBLen - 5] */
- c0 = *(py+1);
-
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16u;
-
-#else
-
- c0 = c0 & 0x0000FFFF;
-
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
- /* Read x[7] */
- x3 = *__SIMD32(px);
- px++;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLALD(x0, c0, acc0);
- acc1 = __SMLALD(x1, c0, acc1);
- acc2 = __SMLALDX(x1, c0, acc2);
- acc3 = __SMLALDX(x3, c0, acc3);
- }
-
- if(k == 2u)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- c0 = _SIMD32_OFFSET(py);
-
- /* Read x[7], x[8] */
- x3 = *__SIMD32(px);
-
- /* Read x[9] */
- x2 = _SIMD32_OFFSET(px+1);
- px += 2u;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLALDX(x0, c0, acc0);
- acc1 = __SMLALDX(x1, c0, acc1);
- acc2 = __SMLALDX(x3, c0, acc2);
- acc3 = __SMLALDX(x2, c0, acc3);
- }
-
- if(k == 3u)
- {
- /* Read y[srcBLen - 5], y[srcBLen - 6] */
- c0 = _SIMD32_OFFSET(py);
-
- /* Read x[7], x[8] */
- x3 = *__SIMD32(px);
-
- /* Read x[9] */
- x2 = _SIMD32_OFFSET(px+1);
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLALDX(x0, c0, acc0);
- acc1 = __SMLALDX(x1, c0, acc1);
- acc2 = __SMLALDX(x3, c0, acc2);
- acc3 = __SMLALDX(x2, c0, acc3);
-
- c0 = *(py-1);
-
-#ifdef ARM_MATH_BIG_ENDIAN
-
- c0 = c0 << 16u;
-#else
-
- c0 = c0 & 0x0000FFFF;
-#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
- /* Read x[10] */
- x3 = _SIMD32_OFFSET(px+2);
- px += 3u;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLALDX(x1, c0, acc0);
- acc1 = __SMLALD(x2, c0, acc1);
- acc2 = __SMLALDX(x2, c0, acc2);
- acc3 = __SMLALDX(x3, c0, acc3);
- }
-
-
- /* Store the results in the accumulators in the destination buffer. */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pOut)++ =
- __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
- *__SIMD32(pOut)++ =
- __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
-
-#else
-
- *__SIMD32(pOut)++ =
- __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
- *__SIMD32(pOut)++ =
- __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Increment the pointer pIn1 index, count by 4 */
- count += 4u;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize2 % 0x4u;
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum += (q63_t) ((q31_t) * px++ * *py--);
- sum += (q63_t) ((q31_t) * px++ * *py--);
- sum += (q63_t) ((q31_t) * px++ * *py--);
- sum += (q63_t) ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum += (q63_t) ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
-
- /* Increment the pointer pIn1 index, count by 1 */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = blockSize2;
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* srcBLen number of MACS should be performed */
- k = srcBLen;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += (q63_t) ((q31_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
- * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
- * ....
- * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
- * sum += x[srcALen-1] * y[srcBLen-1]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The blockSize3 variable holds the number of MAC operations performed */
-
- blockSize3 = srcBLen - 1u;
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
- px = pSrc1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- pIn2 = pSrc2 - 1u;
- py = pIn2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- /* For loop unrolling by 4, this stage is divided into two. */
- /* First part of this stage computes the MAC operations greater than 4 */
- /* Second part of this stage computes the MAC operations less than or equal to 4 */
-
- /* The first part of the stage starts here */
- j = blockSize3 >> 2u;
-
- while((j > 0u) && (blockSize3 > 0u))
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = blockSize3 >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
- * with y[srcBLen - 1], y[srcBLen - 2] respectively */
- sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
- /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
- * with y[srcBLen - 3], y[srcBLen - 4] respectively */
- sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* For the next MAC operations, the pointer py is used without SIMD
- * So, py is incremented by 1 */
- py = py + 1u;
-
- /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = blockSize3 % 0x4u;
-
- while(k > 0u)
- {
- /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
- sum = __SMLALD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pIn2;
-
- /* Decrement the loop counter */
- blockSize3--;
-
- j--;
- }
-
- /* The second part of the stage starts here */
- /* SIMD is not used for the next MAC operations,
- * so pointer py is updated to read only one sample at a time */
- py = py + 1u;
-
- while(blockSize3 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = blockSize3;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- /* sum += x[srcALen-1] * y[srcBLen-1] */
- sum = __SMLALD(*px++, *py--, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
-#else
-
-/* Run the below code for Cortex-M0 */
-
- q15_t *pIn1 = pSrcA; /* input pointer */
- q15_t *pIn2 = pSrcB; /* coefficient pointer */
- q63_t sum; /* Accumulator */
- uint32_t i, j; /* loop counter */
-
- /* Loop to calculate output of convolution for output length number of times */
- for (i = 0; i < (srcALen + srcBLen - 1); i++)
- {
- /* Initialize sum with zero to carry on MAC operations */
- sum = 0;
-
- /* Loop to perform MAC operations according to convolution equation */
- for (j = 0; j <= i; j++)
- {
- /* Check the array limitations */
- if(((i - j) < srcBLen) && (j < srcALen))
- {
- /* z[i] += x[i-j] * y[j] */
- sum += (q31_t) pIn1[j] * (pIn2[i - j]);
- }
- }
-
- /* Store the output in the destination buffer */
- pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u);
- }
-
-#endif /* #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)*/
-
-}
-
-/**
- * @} end of Conv group
- */
diff --git a/gui/cmsis/arm_conv_q31.c b/gui/cmsis/arm_conv_q31.c deleted file mode 100644 index ffa972f..0000000 --- a/gui/cmsis/arm_conv_q31.c +++ /dev/null @@ -1,565 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_conv_q31.c
-*
-* Description: Convolution of Q31 sequences.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup Conv
- * @{
- */
-
-/**
- * @brief Convolution of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * There is no saturation on intermediate additions.
- * Thus, if the accumulator overflows it wraps around and distorts the result.
- * The input signals should be scaled down to avoid intermediate overflows.
- * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
- * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
- * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
- *
- * \par
- * See <code>arm_conv_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
- */
-
-void arm_conv_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst)
-{
-
-
-#ifndef ARM_MATH_CM0_FAMILY
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q31_t *pIn1; /* inputA pointer */
- q31_t *pIn2; /* inputB pointer */
- q31_t *pOut = pDst; /* output pointer */
- q31_t *px; /* Intermediate inputA pointer */
- q31_t *py; /* Intermediate inputB pointer */
- q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
- q63_t sum; /* Accumulator */
- q63_t acc0, acc1, acc2; /* Accumulator */
- q31_t x0, x1, x2, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- if(srcALen >= srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcA;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcB;
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = (q31_t *) pSrcB;
-
- /* Initialization of inputB pointer */
- pIn2 = (q31_t *) pSrcA;
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
- }
-
- /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
- /* The function is internally
- * divided into three stages according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first stage of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second stage of the algorithm, srcBLen number of multiplications are done.
- * In the third stage of the algorithm, the multiplications decrease by one
- * for every iteration. */
-
- /* The algorithm is implemented in three stages.
- The loop counters of each stage is initiated here. */
- blockSize1 = srcBLen - 1u;
- blockSize2 = srcALen - (srcBLen - 1u);
- blockSize3 = blockSize1;
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[0]
- * sum = x[0] * y[1] + x[1] * y[0]
- * ....
- * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = 1u;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* The first stage starts here */
- while(blockSize1 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* x[0] * y[srcBLen - 1] */
- sum += (q63_t) * px++ * (*py--);
- /* x[1] * y[srcBLen - 2] */
- sum += (q63_t) * px++ * (*py--);
- /* x[2] * y[srcBLen - 3] */
- sum += (q63_t) * px++ * (*py--);
- /* x[3] * y[srcBLen - 4] */
- sum += (q63_t) * px++ * (*py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += (q63_t) * px++ * (*py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q31_t) (sum >> 31);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pIn2 + count;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
- * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
- */
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- py = pSrc2;
-
- /* count is index by which the pointer pIn1 to be incremented */
- count = 0u;
-
- /* -------------------
- * Stage2 process
- * ------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4 */
- if(srcBLen >= 4u)
- {
- /* Loop unroll by 3 */
- blkCnt = blockSize2 / 3;
-
- while(blkCnt > 0u)
- {
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
-
- /* read x[0], x[1], x[2] samples */
- x0 = *(px++);
- x1 = *(px++);
-
- /* Apply loop unrolling and compute 3 MACs simultaneously. */
- k = srcBLen / 3;
-
- /* First part of the processing with loop unrolling. Compute 3 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 2 samples. */
- do
- {
- /* Read y[srcBLen - 1] sample */
- c0 = *(py);
-
- /* Read x[3] sample */
- x2 = *(px);
-
- /* Perform the multiply-accumulates */
- /* acc0 += x[0] * y[srcBLen - 1] */
- acc0 += ((q63_t) x0 * c0);
- /* acc1 += x[1] * y[srcBLen - 1] */
- acc1 += ((q63_t) x1 * c0);
- /* acc2 += x[2] * y[srcBLen - 1] */
- acc2 += ((q63_t) x2 * c0);
-
- /* Read y[srcBLen - 2] sample */
- c0 = *(py - 1u);
-
- /* Read x[4] sample */
- x0 = *(px + 1u);
-
- /* Perform the multiply-accumulate */
- /* acc0 += x[1] * y[srcBLen - 2] */
- acc0 += ((q63_t) x1 * c0);
- /* acc1 += x[2] * y[srcBLen - 2] */
- acc1 += ((q63_t) x2 * c0);
- /* acc2 += x[3] * y[srcBLen - 2] */
- acc2 += ((q63_t) x0 * c0);
-
- /* Read y[srcBLen - 3] sample */
- c0 = *(py - 2u);
-
- /* Read x[5] sample */
- x1 = *(px + 2u);
-
- /* Perform the multiply-accumulates */
- /* acc0 += x[2] * y[srcBLen - 3] */
- acc0 += ((q63_t) x2 * c0);
- /* acc1 += x[3] * y[srcBLen - 2] */
- acc1 += ((q63_t) x0 * c0);
- /* acc2 += x[4] * y[srcBLen - 2] */
- acc2 += ((q63_t) x1 * c0);
-
- /* update scratch pointers */
- px += 3u;
- py -= 3u;
-
- } while(--k);
-
- /* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen - (3 * (srcBLen / 3));
-
- while(k > 0u)
- {
- /* Read y[srcBLen - 5] sample */
- c0 = *(py--);
-
- /* Read x[7] sample */
- x2 = *(px++);
-
- /* Perform the multiply-accumulates */
- /* acc0 += x[4] * y[srcBLen - 5] */
- acc0 += ((q63_t) x0 * c0);
- /* acc1 += x[5] * y[srcBLen - 5] */
- acc1 += ((q63_t) x1 * c0);
- /* acc2 += x[6] * y[srcBLen - 5] */
- acc2 += ((q63_t) x2 * c0);
-
- /* Reuse the present samples for the next MAC */
- x0 = x1;
- x1 = x2;
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the results in the accumulators in the destination buffer. */
- *pOut++ = (q31_t) (acc0 >> 31);
- *pOut++ = (q31_t) (acc1 >> 31);
- *pOut++ = (q31_t) (acc2 >> 31);
-
- /* Increment the pointer pIn1 index, count by 3 */
- count += 3u;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize2 - 3 * (blockSize2 / 3);
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum += (q63_t) * px++ * (*py--);
- sum += (q63_t) * px++ * (*py--);
- sum += (q63_t) * px++ * (*py--);
- sum += (q63_t) * px++ * (*py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += (q63_t) * px++ * (*py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q31_t) (sum >> 31);
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = blockSize2;
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* srcBLen number of MACS should be performed */
- k = srcBLen;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += (q63_t) * px++ * (*py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q31_t) (sum >> 31);
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
- * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
- * ....
- * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
- * sum += x[srcALen-1] * y[srcBLen-1]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The blockSize3 variable holds the number of MAC operations performed */
-
- /* Working pointer of inputA */
- pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
- px = pSrc1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- py = pSrc2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- while(blockSize3 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = blockSize3 >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
- sum += (q63_t) * px++ * (*py--);
- /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
- sum += (q63_t) * px++ * (*py--);
- /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
- sum += (q63_t) * px++ * (*py--);
- /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
- sum += (q63_t) * px++ * (*py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = blockSize3 % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += (q63_t) * px++ * (*py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q31_t) (sum >> 31);
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
- q31_t *pIn1 = pSrcA; /* input pointer */
- q31_t *pIn2 = pSrcB; /* coefficient pointer */
- q63_t sum; /* Accumulator */
- uint32_t i, j; /* loop counter */
-
- /* Loop to calculate output of convolution for output length number of times */
- for (i = 0; i < (srcALen + srcBLen - 1); i++)
- {
- /* Initialize sum with zero to carry on MAC operations */
- sum = 0;
-
- /* Loop to perform MAC operations according to convolution equation */
- for (j = 0; j <= i; j++)
- {
- /* Check the array limitations */
- if(((i - j) < srcBLen) && (j < srcALen))
- {
- /* z[i] += x[i-j] * y[j] */
- sum += ((q63_t) pIn1[j] * (pIn2[i - j]));
- }
- }
-
- /* Store the output in the destination buffer */
- pDst[i] = (q31_t) (sum >> 31u);
- }
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}
-
-/**
- * @} end of Conv group
- */
diff --git a/gui/cmsis/arm_conv_q7.c b/gui/cmsis/arm_conv_q7.c deleted file mode 100644 index 79b08fc..0000000 --- a/gui/cmsis/arm_conv_q7.c +++ /dev/null @@ -1,690 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_conv_q7.c
-*
-* Description: Convolution of Q7 sequences.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup Conv
- * @{
- */
-
-/**
- * @brief Convolution of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- *
- * \par
- * The function is implemented using a 32-bit internal accumulator.
- * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
- * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
- * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
- * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.
- *
- * \par
- * Refer the function <code>arm_conv_opt_q7()</code> for a faster implementation of this function.
- *
- */
-
-void arm_conv_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst)
-{
-
-
-#ifndef ARM_MATH_CM0_FAMILY
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q7_t *pIn1; /* inputA pointer */
- q7_t *pIn2; /* inputB pointer */
- q7_t *pOut = pDst; /* output pointer */
- q7_t *px; /* Intermediate inputA pointer */
- q7_t *py; /* Intermediate inputB pointer */
- q7_t *pSrc1, *pSrc2; /* Intermediate pointers */
- q7_t x0, x1, x2, x3, c0, c1; /* Temporary variables to hold state and coefficient values */
- q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
- q31_t input1, input2; /* Temporary input variables */
- q15_t in1, in2; /* Temporary input variables */
- uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
-
- /* The algorithm implementation is based on the lengths of the inputs. */
- /* srcB is always made to slide across srcA. */
- /* So srcBLen is always considered as shorter or equal to srcALen */
- if(srcALen >= srcBLen)
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcA;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcB;
- }
- else
- {
- /* Initialization of inputA pointer */
- pIn1 = pSrcB;
-
- /* Initialization of inputB pointer */
- pIn2 = pSrcA;
-
- /* srcBLen is always considered as shorter or equal to srcALen */
- j = srcBLen;
- srcBLen = srcALen;
- srcALen = j;
- }
-
- /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
- /* The function is internally
- * divided into three stages according to the number of multiplications that has to be
- * taken place between inputA samples and inputB samples. In the first stage of the
- * algorithm, the multiplications increase by one for every iteration.
- * In the second stage of the algorithm, srcBLen number of multiplications are done.
- * In the third stage of the algorithm, the multiplications decrease by one
- * for every iteration. */
-
- /* The algorithm is implemented in three stages.
- The loop counters of each stage is initiated here. */
- blockSize1 = srcBLen - 1u;
- blockSize2 = (srcALen - srcBLen) + 1u;
- blockSize3 = blockSize1;
-
- /* --------------------------
- * Initializations of stage1
- * -------------------------*/
-
- /* sum = x[0] * y[0]
- * sum = x[0] * y[1] + x[1] * y[0]
- * ....
- * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
- */
-
- /* In this stage the MAC operations are increased by 1 for every iteration.
- The count variable holds the number of MAC operations performed */
- count = 1u;
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- py = pIn2;
-
-
- /* ------------------------
- * Stage1 process
- * ----------------------*/
-
- /* The first stage starts here */
- while(blockSize1 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = count >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* x[0] , x[1] */
- in1 = (q15_t) * px++;
- in2 = (q15_t) * px++;
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* y[srcBLen - 1] , y[srcBLen - 2] */
- in1 = (q15_t) * py--;
- in2 = (q15_t) * py--;
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* x[0] * y[srcBLen - 1] */
- /* x[1] * y[srcBLen - 2] */
- sum = __SMLAD(input1, input2, sum);
-
- /* x[2] , x[3] */
- in1 = (q15_t) * px++;
- in2 = (q15_t) * px++;
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* y[srcBLen - 3] , y[srcBLen - 4] */
- in1 = (q15_t) * py--;
- in2 = (q15_t) * py--;
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* x[2] * y[srcBLen - 3] */
- /* x[3] * y[srcBLen - 4] */
- sum = __SMLAD(input1, input2, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the count is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = count % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum += ((q15_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- py = pIn2 + count;
- px = pIn1;
-
- /* Increment the MAC count */
- count++;
-
- /* Decrement the loop counter */
- blockSize1--;
- }
-
- /* --------------------------
- * Initializations of stage2
- * ------------------------*/
-
- /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
- * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
- * ....
- * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
- */
-
- /* Working pointer of inputA */
- px = pIn1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- py = pSrc2;
-
- /* count is index by which the pointer pIn1 to be incremented */
- count = 0u;
-
- /* -------------------
- * Stage2 process
- * ------------------*/
-
- /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
- * So, to loop unroll over blockSize2,
- * srcBLen should be greater than or equal to 4 */
- if(srcBLen >= 4u)
- {
- /* Loop unroll over blockSize2, by 4 */
- blkCnt = blockSize2 >> 2u;
-
- while(blkCnt > 0u)
- {
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* read x[0], x[1], x[2] samples */
- x0 = *(px++);
- x1 = *(px++);
- x2 = *(px++);
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- do
- {
- /* Read y[srcBLen - 1] sample */
- c0 = *(py--);
- /* Read y[srcBLen - 2] sample */
- c1 = *(py--);
-
- /* Read x[3] sample */
- x3 = *(px++);
-
- /* x[0] and x[1] are packed */
- in1 = (q15_t) x0;
- in2 = (q15_t) x1;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* y[srcBLen - 1] and y[srcBLen - 2] are packed */
- in1 = (q15_t) c0;
- in2 = (q15_t) c1;
-
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
- acc0 = __SMLAD(input1, input2, acc0);
-
- /* x[1] and x[2] are packed */
- in1 = (q15_t) x1;
- in2 = (q15_t) x2;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
- acc1 = __SMLAD(input1, input2, acc1);
-
- /* x[2] and x[3] are packed */
- in1 = (q15_t) x2;
- in2 = (q15_t) x3;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
- acc2 = __SMLAD(input1, input2, acc2);
-
- /* Read x[4] sample */
- x0 = *(px++);
-
- /* x[3] and x[4] are packed */
- in1 = (q15_t) x3;
- in2 = (q15_t) x0;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
- acc3 = __SMLAD(input1, input2, acc3);
-
- /* Read y[srcBLen - 3] sample */
- c0 = *(py--);
- /* Read y[srcBLen - 4] sample */
- c1 = *(py--);
-
- /* Read x[5] sample */
- x1 = *(px++);
-
- /* x[2] and x[3] are packed */
- in1 = (q15_t) x2;
- in2 = (q15_t) x3;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* y[srcBLen - 3] and y[srcBLen - 4] are packed */
- in1 = (q15_t) c0;
- in2 = (q15_t) c1;
-
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
- acc0 = __SMLAD(input1, input2, acc0);
-
- /* x[3] and x[4] are packed */
- in1 = (q15_t) x3;
- in2 = (q15_t) x0;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
- acc1 = __SMLAD(input1, input2, acc1);
-
- /* x[4] and x[5] are packed */
- in1 = (q15_t) x0;
- in2 = (q15_t) x1;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
- acc2 = __SMLAD(input1, input2, acc2);
-
- /* Read x[6] sample */
- x2 = *(px++);
-
- /* x[5] and x[6] are packed */
- in1 = (q15_t) x1;
- in2 = (q15_t) x2;
-
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
- acc3 = __SMLAD(input1, input2, acc3);
-
- } while(--k);
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4u;
-
- while(k > 0u)
- {
- /* Read y[srcBLen - 5] sample */
- c0 = *(py--);
-
- /* Read x[7] sample */
- x3 = *(px++);
-
- /* Perform the multiply-accumulates */
- /* acc0 += x[4] * y[srcBLen - 5] */
- acc0 += ((q15_t) x0 * c0);
- /* acc1 += x[5] * y[srcBLen - 5] */
- acc1 += ((q15_t) x1 * c0);
- /* acc2 += x[6] * y[srcBLen - 5] */
- acc2 += ((q15_t) x2 * c0);
- /* acc3 += x[7] * y[srcBLen - 5] */
- acc3 += ((q15_t) x3 * c0);
-
- /* Reuse the present samples for the next MAC */
- x0 = x1;
- x1 = x2;
- x2 = x3;
-
- /* Decrement the loop counter */
- k--;
- }
-
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
- *pOut++ = (q7_t) (__SSAT(acc1 >> 7u, 8));
- *pOut++ = (q7_t) (__SSAT(acc2 >> 7u, 8));
- *pOut++ = (q7_t) (__SSAT(acc3 >> 7u, 8));
-
- /* Increment the pointer pIn1 index, count by 4 */
- count += 4u;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize2 % 0x4u;
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = srcBLen >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
-
- /* Reading two inputs of SrcA buffer and packing */
- in1 = (q15_t) * px++;
- in2 = (q15_t) * px++;
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* Reading two inputs of SrcB buffer and packing */
- in1 = (q15_t) * py--;
- in2 = (q15_t) * py--;
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* Perform the multiply-accumulates */
- sum = __SMLAD(input1, input2, sum);
-
- /* Reading two inputs of SrcA buffer and packing */
- in1 = (q15_t) * px++;
- in2 = (q15_t) * px++;
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* Reading two inputs of SrcB buffer and packing */
- in1 = (q15_t) * py--;
- in2 = (q15_t) * py--;
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* Perform the multiply-accumulates */
- sum = __SMLAD(input1, input2, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = srcBLen % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum += ((q15_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
-
- /* Increment the pointer pIn1 index, count by 1 */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
- else
- {
- /* If the srcBLen is not a multiple of 4,
- * the blockSize2 loop cannot be unrolled by 4 */
- blkCnt = blockSize2;
-
- while(blkCnt > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* srcBLen number of MACS should be performed */
- k = srcBLen;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulate */
- sum += ((q15_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
-
- /* Increment the MAC count */
- count++;
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = pIn1 + count;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
- }
-
-
- /* --------------------------
- * Initializations of stage3
- * -------------------------*/
-
- /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
- * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
- * ....
- * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
- * sum += x[srcALen-1] * y[srcBLen-1]
- */
-
- /* In this stage the MAC operations are decreased by 1 for every iteration.
- The blockSize3 variable holds the number of MAC operations performed */
-
- /* Working pointer of inputA */
- pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
- px = pSrc1;
-
- /* Working pointer of inputB */
- pSrc2 = pIn2 + (srcBLen - 1u);
- py = pSrc2;
-
- /* -------------------
- * Stage3 process
- * ------------------*/
-
- while(blockSize3 > 0u)
- {
- /* Accumulator is made zero for every iteration */
- sum = 0;
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- k = blockSize3 >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
- ** a second loop below computes MACs for the remaining 1 to 3 samples. */
- while(k > 0u)
- {
- /* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */
- in1 = (q15_t) * px++;
- in2 = (q15_t) * px++;
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */
- in1 = (q15_t) * py--;
- in2 = (q15_t) * py--;
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
- /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
- sum = __SMLAD(input1, input2, sum);
-
- /* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */
- in1 = (q15_t) * px++;
- in2 = (q15_t) * px++;
- input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */
- in1 = (q15_t) * py--;
- in2 = (q15_t) * py--;
- input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
-
- /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
- /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
- sum = __SMLAD(input1, input2, sum);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- k = blockSize3 % 0x4u;
-
- while(k > 0u)
- {
- /* Perform the multiply-accumulates */
- sum += ((q15_t) * px++ * *py--);
-
- /* Decrement the loop counter */
- k--;
- }
-
- /* Store the result in the accumulator in the destination buffer. */
- *pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
-
- /* Update the inputA and inputB pointers for next MAC calculation */
- px = ++pSrc1;
- py = pSrc2;
-
- /* Decrement the loop counter */
- blockSize3--;
- }
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
- q7_t *pIn1 = pSrcA; /* input pointer */
- q7_t *pIn2 = pSrcB; /* coefficient pointer */
- q31_t sum; /* Accumulator */
- uint32_t i, j; /* loop counter */
-
- /* Loop to calculate output of convolution for output length number of times */
- for (i = 0; i < (srcALen + srcBLen - 1); i++)
- {
- /* Initialize sum with zero to carry on MAC operations */
- sum = 0;
-
- /* Loop to perform MAC operations according to convolution equation */
- for (j = 0; j <= i; j++)
- {
- /* Check the array limitations */
- if(((i - j) < srcBLen) && (j < srcALen))
- {
- /* z[i] += x[i-j] * y[j] */
- sum += (q15_t) pIn1[j] * (pIn2[i - j]);
- }
- }
-
- /* Store the output in the destination buffer */
- pDst[i] = (q7_t) __SSAT((sum >> 7u), 8u);
- }
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}
-
-/**
- * @} end of Conv group
- */
diff --git a/gui/cmsis/arm_fir_f32.c b/gui/cmsis/arm_fir_f32.c deleted file mode 100644 index 3ecb7b5..0000000 --- a/gui/cmsis/arm_fir_f32.c +++ /dev/null @@ -1,997 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_f32.c
-*
-* Description: Floating-point FIR filter processing function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
-* @ingroup groupFilters
-*/
-
-/**
-* @defgroup FIR Finite Impulse Response (FIR) Filters
-*
-* This set of functions implements Finite Impulse Response (FIR) filters
-* for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
-* The functions operate on blocks of input and output data and each call to the function processes
-* <code>blockSize</code> samples through the filter. <code>pSrc</code> and
-* <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
-*
-* \par Algorithm:
-* The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
-* Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
-* <pre>
-* y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
-* </pre>
-* \par
-* \image html FIR.gif "Finite Impulse Response filter"
-* \par
-* <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
-* Coefficients are stored in time reversed order.
-* \par
-* <pre>
-* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
-* </pre>
-* \par
-* <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
-* Samples in the state buffer are stored in the following order.
-* \par
-* <pre>
-* {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
-* </pre>
-* \par
-* Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
-* The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
-* to be avoided and yields a significant speed improvement.
-* The state variables are updated after each block of data is processed; the coefficients are untouched.
-* \par Instance Structure
-* The coefficients and state variables for a filter are stored together in an instance data structure.
-* A separate instance structure must be defined for each filter.
-* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
-* There are separate instance structure declarations for each of the 4 supported data types.
-*
-* \par Initialization Functions
-* There is also an associated initialization function for each data type.
-* The initialization function performs the following operations:
-* - Sets the values of the internal structure fields.
-* - Zeros out the values in the state buffer.
-* To do this manually without calling the init function, assign the follow subfields of the instance structure:
-* numTaps, pCoeffs, pState. Also set all of the values in pState to zero.
-*
-* \par
-* Use of the initialization function is optional.
-* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
-* To place an instance structure into a const data section, the instance structure must be manually initialized.
-* Set the values in the state buffer to zeros before static initialization.
-* The code below statically initializes each of the 4 different data type filter instance structures
-* <pre>
-*arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
-*arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
-*arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
-*arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
-* </pre>
-*
-* where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
-* <code>pCoeffs</code> is the address of the coefficient buffer.
-*
-* \par Fixed-Point Behavior
-* Care must be taken when using the fixed-point versions of the FIR filter functions.
-* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
-* Refer to the function specific documentation below for usage guidelines.
-*/
-
-/**
-* @addtogroup FIR
-* @{
-*/
-
-/**
-*
-* @param[in] *S points to an instance of the floating-point FIR filter structure.
-* @param[in] *pSrc points to the block of input data.
-* @param[out] *pDst points to the block of output data.
-* @param[in] blockSize number of samples to process per call.
-* @return none.
-*
-*/
-
-#if defined(ARM_MATH_CM7)
-
-void arm_fir_f32(
-const arm_fir_instance_f32 * S,
-float32_t * pSrc,
-float32_t * pDst,
-uint32_t blockSize)
-{
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *pStateCurnt; /* Points to the current sample of the state */
- float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
- float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
- float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 8 output values simultaneously.
- * The variables acc0 ... acc7 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
- blkCnt = blockSize >> 3;
-
- /* First part of the processing with loop unrolling. Compute 8 outputs at a time.
- ** a second loop below computes the remaining 1 to 7 samples. */
- while(blkCnt > 0u)
- {
- /* Copy four new input samples into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Set all accumulators to zero */
- acc0 = 0.0f;
- acc1 = 0.0f;
- acc2 = 0.0f;
- acc3 = 0.0f;
- acc4 = 0.0f;
- acc5 = 0.0f;
- acc6 = 0.0f;
- acc7 = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize coeff pointer */
- pb = (pCoeffs);
-
- /* This is separated from the others to avoid
- * a call to __aeabi_memmove which would be slower
- */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
- x0 = *px++;
- x1 = *px++;
- x2 = *px++;
- x3 = *px++;
- x4 = *px++;
- x5 = *px++;
- x6 = *px++;
-
- /* Loop unrolling. Process 8 taps at a time. */
- tapCnt = numTaps >> 3u;
-
- /* Loop over the number of taps. Unroll by a factor of 8.
- ** Repeat until we've computed numTaps-8 coefficients. */
- while(tapCnt > 0u)
- {
- /* Read the b[numTaps-1] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-3] sample */
- x7 = *(px++);
-
- /* acc0 += b[numTaps-1] * x[n-numTaps] */
- acc0 += x0 * c0;
-
- /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
- acc1 += x1 * c0;
-
- /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
- acc2 += x2 * c0;
-
- /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
- acc3 += x3 * c0;
-
- /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
- acc4 += x4 * c0;
-
- /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
- acc5 += x5 * c0;
-
- /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
- acc6 += x6 * c0;
-
- /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
- acc7 += x7 * c0;
-
- /* Read the b[numTaps-2] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-4] sample */
- x0 = *(px++);
-
- /* Perform the multiply-accumulate */
- acc0 += x1 * c0;
- acc1 += x2 * c0;
- acc2 += x3 * c0;
- acc3 += x4 * c0;
- acc4 += x5 * c0;
- acc5 += x6 * c0;
- acc6 += x7 * c0;
- acc7 += x0 * c0;
-
- /* Read the b[numTaps-3] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-5] sample */
- x1 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x2 * c0;
- acc1 += x3 * c0;
- acc2 += x4 * c0;
- acc3 += x5 * c0;
- acc4 += x6 * c0;
- acc5 += x7 * c0;
- acc6 += x0 * c0;
- acc7 += x1 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x2 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x3 * c0;
- acc1 += x4 * c0;
- acc2 += x5 * c0;
- acc3 += x6 * c0;
- acc4 += x7 * c0;
- acc5 += x0 * c0;
- acc6 += x1 * c0;
- acc7 += x2 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x3 = *(px++);
- /* Perform the multiply-accumulates */
- acc0 += x4 * c0;
- acc1 += x5 * c0;
- acc2 += x6 * c0;
- acc3 += x7 * c0;
- acc4 += x0 * c0;
- acc5 += x1 * c0;
- acc6 += x2 * c0;
- acc7 += x3 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x4 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x5 * c0;
- acc1 += x6 * c0;
- acc2 += x7 * c0;
- acc3 += x0 * c0;
- acc4 += x1 * c0;
- acc5 += x2 * c0;
- acc6 += x3 * c0;
- acc7 += x4 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x5 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x6 * c0;
- acc1 += x7 * c0;
- acc2 += x0 * c0;
- acc3 += x1 * c0;
- acc4 += x2 * c0;
- acc5 += x3 * c0;
- acc6 += x4 * c0;
- acc7 += x5 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x6 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x7 * c0;
- acc1 += x0 * c0;
- acc2 += x1 * c0;
- acc3 += x2 * c0;
- acc4 += x3 * c0;
- acc5 += x4 * c0;
- acc6 += x5 * c0;
- acc7 += x6 * c0;
-
- tapCnt--;
- }
-
- /* If the filter length is not a multiple of 8, compute the remaining filter taps */
- tapCnt = numTaps % 0x8u;
-
- while(tapCnt > 0u)
- {
- /* Read coefficients */
- c0 = *(pb++);
-
- /* Fetch 1 state variable */
- x7 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += x0 * c0;
- acc1 += x1 * c0;
- acc2 += x2 * c0;
- acc3 += x3 * c0;
- acc4 += x4 * c0;
- acc5 += x5 * c0;
- acc6 += x6 * c0;
- acc7 += x7 * c0;
-
- /* Reuse the present sample states for next sample */
- x0 = x1;
- x1 = x2;
- x2 = x3;
- x3 = x4;
- x4 = x5;
- x5 = x6;
- x6 = x7;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Advance the state pointer by 8 to process the next group of 8 samples */
- pState = pState + 8;
-
- /* The results in the 8 accumulators, store in the destination buffer. */
- *pDst++ = acc0;
- *pDst++ = acc1;
- *pDst++ = acc2;
- *pDst++ = acc3;
- *pDst++ = acc4;
- *pDst++ = acc5;
- *pDst++ = acc6;
- *pDst++ = acc7;
-
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 8, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 0x8u;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = (pCoeffs);
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- acc0 += *px++ * *pb++;
- i--;
-
- } while(i > 0u);
-
- /* The result is store in the destination buffer. */
- *pDst++ = acc0;
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the start of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (numTaps - 1u) >> 2u;
-
- /* copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Calculate remaining number of copies */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* Copy the remaining q31_t data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-}
-
-#elif defined(ARM_MATH_CM0_FAMILY)
-
-void arm_fir_f32(
-const arm_fir_instance_f32 * S,
-float32_t * pSrc,
-float32_t * pDst,
-uint32_t blockSize)
-{
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *pStateCurnt; /* Points to the current sample of the state */
- float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
-
- /* Run the below code for Cortex-M0 */
-
- float32_t acc;
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Initialize blkCnt with blockSize */
- blkCnt = blockSize;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = pCoeffs;
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
- acc += *px++ * *pb++;
- i--;
-
- } while(i > 0u);
-
- /* The result is store in the destination buffer. */
- *pDst++ = acc;
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- /* Copy numTaps number of values */
- tapCnt = numTaps - 1u;
-
- /* Copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-}
-
-#else
-
-/* Run the below code for Cortex-M4 and Cortex-M3 */
-
-void arm_fir_f32(
-const arm_fir_instance_f32 * S,
-float32_t * pSrc,
-float32_t * pDst,
-uint32_t blockSize)
-{
- float32_t *pState = S->pState; /* State pointer */
- float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- float32_t *pStateCurnt; /* Points to the current sample of the state */
- float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
- float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
- float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
- float32_t p0,p1,p2,p3,p4,p5,p6,p7; /* Temporary product values */
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 8 output values simultaneously.
- * The variables acc0 ... acc7 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
- blkCnt = blockSize >> 3;
-
- /* First part of the processing with loop unrolling. Compute 8 outputs at a time.
- ** a second loop below computes the remaining 1 to 7 samples. */
- while(blkCnt > 0u)
- {
- /* Copy four new input samples into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Set all accumulators to zero */
- acc0 = 0.0f;
- acc1 = 0.0f;
- acc2 = 0.0f;
- acc3 = 0.0f;
- acc4 = 0.0f;
- acc5 = 0.0f;
- acc6 = 0.0f;
- acc7 = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize coeff pointer */
- pb = (pCoeffs);
-
- /* This is separated from the others to avoid
- * a call to __aeabi_memmove which would be slower
- */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
- x0 = *px++;
- x1 = *px++;
- x2 = *px++;
- x3 = *px++;
- x4 = *px++;
- x5 = *px++;
- x6 = *px++;
-
- /* Loop unrolling. Process 8 taps at a time. */
- tapCnt = numTaps >> 3u;
-
- /* Loop over the number of taps. Unroll by a factor of 8.
- ** Repeat until we've computed numTaps-8 coefficients. */
- while(tapCnt > 0u)
- {
- /* Read the b[numTaps-1] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-3] sample */
- x7 = *(px++);
-
- /* acc0 += b[numTaps-1] * x[n-numTaps] */
- p0 = x0 * c0;
-
- /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
- p1 = x1 * c0;
-
- /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
- p2 = x2 * c0;
-
- /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
- p3 = x3 * c0;
-
- /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
- p4 = x4 * c0;
-
- /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
- p5 = x5 * c0;
-
- /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
- p6 = x6 * c0;
-
- /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
- p7 = x7 * c0;
-
- /* Read the b[numTaps-2] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-4] sample */
- x0 = *(px++);
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
-
- /* Perform the multiply-accumulate */
- p0 = x1 * c0;
- p1 = x2 * c0;
- p2 = x3 * c0;
- p3 = x4 * c0;
- p4 = x5 * c0;
- p5 = x6 * c0;
- p6 = x7 * c0;
- p7 = x0 * c0;
-
- /* Read the b[numTaps-3] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-5] sample */
- x1 = *(px++);
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
- /* Perform the multiply-accumulates */
- p0 = x2 * c0;
- p1 = x3 * c0;
- p2 = x4 * c0;
- p3 = x5 * c0;
- p4 = x6 * c0;
- p5 = x7 * c0;
- p6 = x0 * c0;
- p7 = x1 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x2 = *(px++);
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
- /* Perform the multiply-accumulates */
- p0 = x3 * c0;
- p1 = x4 * c0;
- p2 = x5 * c0;
- p3 = x6 * c0;
- p4 = x7 * c0;
- p5 = x0 * c0;
- p6 = x1 * c0;
- p7 = x2 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x3 = *(px++);
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
- /* Perform the multiply-accumulates */
- p0 = x4 * c0;
- p1 = x5 * c0;
- p2 = x6 * c0;
- p3 = x7 * c0;
- p4 = x0 * c0;
- p5 = x1 * c0;
- p6 = x2 * c0;
- p7 = x3 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x4 = *(px++);
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
- /* Perform the multiply-accumulates */
- p0 = x5 * c0;
- p1 = x6 * c0;
- p2 = x7 * c0;
- p3 = x0 * c0;
- p4 = x1 * c0;
- p5 = x2 * c0;
- p6 = x3 * c0;
- p7 = x4 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x5 = *(px++);
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
- /* Perform the multiply-accumulates */
- p0 = x6 * c0;
- p1 = x7 * c0;
- p2 = x0 * c0;
- p3 = x1 * c0;
- p4 = x2 * c0;
- p5 = x3 * c0;
- p6 = x4 * c0;
- p7 = x5 * c0;
-
- /* Read the b[numTaps-4] coefficient */
- c0 = *(pb++);
-
- /* Read x[n-numTaps-6] sample */
- x6 = *(px++);
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
- /* Perform the multiply-accumulates */
- p0 = x7 * c0;
- p1 = x0 * c0;
- p2 = x1 * c0;
- p3 = x2 * c0;
- p4 = x3 * c0;
- p5 = x4 * c0;
- p6 = x5 * c0;
- p7 = x6 * c0;
-
- tapCnt--;
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
- }
-
- /* If the filter length is not a multiple of 8, compute the remaining filter taps */
- tapCnt = numTaps % 0x8u;
-
- while(tapCnt > 0u)
- {
- /* Read coefficients */
- c0 = *(pb++);
-
- /* Fetch 1 state variable */
- x7 = *(px++);
-
- /* Perform the multiply-accumulates */
- p0 = x0 * c0;
- p1 = x1 * c0;
- p2 = x2 * c0;
- p3 = x3 * c0;
- p4 = x4 * c0;
- p5 = x5 * c0;
- p6 = x6 * c0;
- p7 = x7 * c0;
-
- /* Reuse the present sample states for next sample */
- x0 = x1;
- x1 = x2;
- x2 = x3;
- x3 = x4;
- x4 = x5;
- x5 = x6;
- x6 = x7;
-
- acc0 += p0;
- acc1 += p1;
- acc2 += p2;
- acc3 += p3;
- acc4 += p4;
- acc5 += p5;
- acc6 += p6;
- acc7 += p7;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Advance the state pointer by 8 to process the next group of 8 samples */
- pState = pState + 8;
-
- /* The results in the 8 accumulators, store in the destination buffer. */
- *pDst++ = acc0;
- *pDst++ = acc1;
- *pDst++ = acc2;
- *pDst++ = acc3;
- *pDst++ = acc4;
- *pDst++ = acc5;
- *pDst++ = acc6;
- *pDst++ = acc7;
-
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 8, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 0x8u;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0.0f;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = (pCoeffs);
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- acc0 += *px++ * *pb++;
- i--;
-
- } while(i > 0u);
-
- /* The result is store in the destination buffer. */
- *pDst++ = acc0;
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the start of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (numTaps - 1u) >> 2u;
-
- /* copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Calculate remaining number of copies */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* Copy the remaining q31_t data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-}
-
-#endif
-
-/**
-* @} end of FIR group
-*/
diff --git a/gui/cmsis/arm_fir_init_f32.c b/gui/cmsis/arm_fir_init_f32.c deleted file mode 100644 index 92bdc9e..0000000 --- a/gui/cmsis/arm_fir_init_f32.c +++ /dev/null @@ -1,96 +0,0 @@ -/*-----------------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_init_f32.c
-*
-* Description: Floating-point FIR filter initialization function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* ---------------------------------------------------------------------------*/
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- * @details
- *
- * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed per call.
- * @return none.
- *
- * <b>Description:</b>
- * \par
- * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
- * <pre>
- * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
- * </pre>
- * \par
- * <code>pState</code> points to the array of state variables.
- * <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_f32()</code>.
- */
-
-void arm_fir_init_f32(
- arm_fir_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize)
-{
- /* Assign filter taps */
- S->numTaps = numTaps;
-
- /* Assign coefficient pointer */
- S->pCoeffs = pCoeffs;
-
- /* Clear state buffer and the size of state buffer is (blockSize + numTaps - 1) */
- memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(float32_t));
-
- /* Assign state pointer */
- S->pState = pState;
-
-}
-
-/**
- * @} end of FIR group
- */
diff --git a/gui/cmsis/arm_fir_init_q15.c b/gui/cmsis/arm_fir_init_q15.c deleted file mode 100644 index d976d73..0000000 --- a/gui/cmsis/arm_fir_init_q15.c +++ /dev/null @@ -1,154 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_init_q15.c
-*
-* Description: Q15 FIR filter initialization function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* ------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
- * @param[in] *pCoeffs points to the filter coefficients buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize is number of samples processed per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if
- * <code>numTaps</code> is not greater than or equal to 4 and even.
- *
- * <b>Description:</b>
- * \par
- * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
- * <pre>
- * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
- * </pre>
- * Note that <code>numTaps</code> must be even and greater than or equal to 4.
- * To implement an odd length filter simply increase <code>numTaps</code> by 1 and set the last coefficient to zero.
- * For example, to implement a filter with <code>numTaps=3</code> and coefficients
- * <pre>
- * {0.3, -0.8, 0.3}
- * </pre>
- * set <code>numTaps=4</code> and use the coefficients:
- * <pre>
- * {0.3, -0.8, 0.3, 0}.
- * </pre>
- * Similarly, to implement a two point filter
- * <pre>
- * {0.3, -0.3}
- * </pre>
- * set <code>numTaps=4</code> and use the coefficients:
- * <pre>
- * {0.3, -0.3, 0, 0}.
- * </pre>
- * \par
- * <code>pState</code> points to the array of state variables.
- * <code>pState</code> is of length <code>numTaps+blockSize</code>, when running on Cortex-M4 and Cortex-M3 and is of length <code>numTaps+blockSize-1</code>, when running on Cortex-M0 where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q15()</code>.
- */
-
-arm_status arm_fir_init_q15(
- arm_fir_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize)
-{
- arm_status status;
-
-
-#ifndef ARM_MATH_CM0_FAMILY
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- /* The Number of filter coefficients in the filter must be even and at least 4 */
- if(numTaps & 0x1u)
- {
- status = ARM_MATH_ARGUMENT_ERROR;
- }
- else
- {
- /* Assign filter taps */
- S->numTaps = numTaps;
-
- /* Assign coefficient pointer */
- S->pCoeffs = pCoeffs;
-
- /* Clear the state buffer. The size is always (blockSize + numTaps ) */
- memset(pState, 0, (numTaps + (blockSize)) * sizeof(q15_t));
-
- /* Assign state pointer */
- S->pState = pState;
-
- status = ARM_MATH_SUCCESS;
- }
-
- return (status);
-
-#else
-
- /* Run the below code for Cortex-M0 */
-
- /* Assign filter taps */
- S->numTaps = numTaps;
-
- /* Assign coefficient pointer */
- S->pCoeffs = pCoeffs;
-
- /* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
- memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(q15_t));
-
- /* Assign state pointer */
- S->pState = pState;
-
- status = ARM_MATH_SUCCESS;
-
- return (status);
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}
-
-/**
- * @} end of FIR group
- */
diff --git a/gui/cmsis/arm_fir_init_q31.c b/gui/cmsis/arm_fir_init_q31.c deleted file mode 100644 index 726cdfc..0000000 --- a/gui/cmsis/arm_fir_init_q31.c +++ /dev/null @@ -1,96 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_init_q31.c
-*
-* Description: Q31 FIR filter initialization function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- * @details
- *
- * @param[in,out] *S points to an instance of the Q31 FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed per call.
- * @return none.
- *
- * <b>Description:</b>
- * \par
- * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
- * <pre>
- * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
- * </pre>
- * \par
- * <code>pState</code> points to the array of state variables.
- * <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q31()</code>.
- */
-
-void arm_fir_init_q31(
- arm_fir_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize)
-{
- /* Assign filter taps */
- S->numTaps = numTaps;
-
- /* Assign coefficient pointer */
- S->pCoeffs = pCoeffs;
-
- /* Clear state buffer and state array size is (blockSize + numTaps - 1) */
- memset(pState, 0, (blockSize + ((uint32_t) numTaps - 1u)) * sizeof(q31_t));
-
- /* Assign state pointer */
- S->pState = pState;
-
-}
-
-/**
- * @} end of FIR group
- */
diff --git a/gui/cmsis/arm_fir_init_q7.c b/gui/cmsis/arm_fir_init_q7.c deleted file mode 100644 index 083d58e..0000000 --- a/gui/cmsis/arm_fir_init_q7.c +++ /dev/null @@ -1,94 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_init_q7.c
-*
-* Description: Q7 FIR filter initialization function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* ------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-/**
- * @param[in,out] *S points to an instance of the Q7 FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed per call.
- * @return none
- *
- * <b>Description:</b>
- * \par
- * <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
- * <pre>
- * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
- * </pre>
- * \par
- * <code>pState</code> points to the array of state variables.
- * <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q7()</code>.
- */
-
-void arm_fir_init_q7(
- arm_fir_instance_q7 * S,
- uint16_t numTaps,
- q7_t * pCoeffs,
- q7_t * pState,
- uint32_t blockSize)
-{
-
- /* Assign filter taps */
- S->numTaps = numTaps;
-
- /* Assign coefficient pointer */
- S->pCoeffs = pCoeffs;
-
- /* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
- memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(q7_t));
-
- /* Assign state pointer */
- S->pState = pState;
-
-}
-
-/**
- * @} end of FIR group
- */
diff --git a/gui/cmsis/arm_fir_q15.c b/gui/cmsis/arm_fir_q15.c deleted file mode 100644 index f3c595f..0000000 --- a/gui/cmsis/arm_fir_q15.c +++ /dev/null @@ -1,691 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_q15.c
-*
-* Description: Q15 FIR filter processing function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- * @brief Processing function for the Q15 FIR filter.
- * @param[in] *S points to an instance of the Q15 FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- *
- * \par Restrictions
- * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
- * In this case input, output, state buffers should be aligned by 32-bit
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
- * Lastly, the accumulator is saturated to yield a result in 1.15 format.
- *
- * \par
- * Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.
- */
-
-#ifndef ARM_MATH_CM0_FAMILY
-
-/* Run the below code for Cortex-M4 and Cortex-M3 */
-
-#ifndef UNALIGNED_SUPPORT_DISABLE
-
-
-void arm_fir_q15(
- const arm_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
-{
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q15_t *pStateCurnt; /* Points to the current sample of the state */
- q15_t *px1; /* Temporary q15 pointer for state buffer */
- q15_t *pb; /* Temporary pointer for coefficient buffer */
- q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */
- q63_t acc0, acc1, acc2, acc3; /* Accumulators */
- uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
- uint32_t tapCnt, blkCnt; /* Loop counters */
-
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 4 output values simultaneously.
- * The variables acc0 ... acc3 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
-
- blkCnt = blockSize >> 2;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(blkCnt > 0u)
- {
- /* Copy four new input samples into the state buffer.
- ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* Initialize state pointer of type q15 */
- px1 = pState;
-
- /* Initialize coeff pointer of type q31 */
- pb = pCoeffs;
-
- /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
- x0 = _SIMD32_OFFSET(px1);
-
- /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
- x1 = _SIMD32_OFFSET(px1 + 1u);
-
- px1 += 2u;
-
- /* Loop over the number of taps. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-4 coefficients. */
- tapCnt = numTaps >> 2;
-
- while(tapCnt > 0u)
- {
- /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
- c0 = *__SIMD32(pb)++;
-
- /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
- acc0 = __SMLALD(x0, c0, acc0);
-
- /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
- acc1 = __SMLALD(x1, c0, acc1);
-
- /* Read state x[n-N-2], x[n-N-3] */
- x2 = _SIMD32_OFFSET(px1);
-
- /* Read state x[n-N-3], x[n-N-4] */
- x3 = _SIMD32_OFFSET(px1 + 1u);
-
- /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
- acc2 = __SMLALD(x2, c0, acc2);
-
- /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
- acc3 = __SMLALD(x3, c0, acc3);
-
- /* Read coefficients b[N-2], b[N-3] */
- c0 = *__SIMD32(pb)++;
-
- /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
- acc0 = __SMLALD(x2, c0, acc0);
-
- /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
- acc1 = __SMLALD(x3, c0, acc1);
-
- /* Read state x[n-N-4], x[n-N-5] */
- x0 = _SIMD32_OFFSET(px1 + 2u);
-
- /* Read state x[n-N-5], x[n-N-6] */
- x1 = _SIMD32_OFFSET(px1 + 3u);
-
- /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
- acc2 = __SMLALD(x0, c0, acc2);
-
- /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
- acc3 = __SMLALD(x1, c0, acc3);
-
- px1 += 4u;
-
- tapCnt--;
-
- }
-
-
- /* If the filter length is not a multiple of 4, compute the remaining filter taps.
- ** This is always be 2 taps since the filter length is even. */
- if((numTaps & 0x3u) != 0u)
- {
- /* Read 2 coefficients */
- c0 = *__SIMD32(pb)++;
-
- /* Fetch 4 state variables */
- x2 = _SIMD32_OFFSET(px1);
-
- x3 = _SIMD32_OFFSET(px1 + 1u);
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLALD(x0, c0, acc0);
-
- px1 += 2u;
-
- acc1 = __SMLALD(x1, c0, acc1);
- acc2 = __SMLALD(x2, c0, acc2);
- acc3 = __SMLALD(x3, c0, acc3);
- }
-
- /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
- ** Then store the 4 outputs in the destination buffer. */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
-
-#else
-
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
-
-
- /* Advance the state pointer by 4 to process the next group of 4 samples */
- pState = pState + 4;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 0x4u;
- while(blkCnt > 0u)
- {
- /* Copy two samples into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0;
-
- /* Initialize state pointer of type q15 */
- px1 = pState;
-
- /* Initialize coeff pointer of type q31 */
- pb = pCoeffs;
-
- tapCnt = numTaps >> 1;
-
- do
- {
-
- c0 = *__SIMD32(pb)++;
- x0 = *__SIMD32(px1)++;
-
- acc0 = __SMLALD(x0, c0, acc0);
- tapCnt--;
- }
- while(tapCnt > 0u);
-
- /* The result is in 2.30 format. Convert to 1.15 with saturation.
- ** Then store the output in the destination buffer. */
- *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- /* Calculation of count for copying integer writes */
- tapCnt = (numTaps - 1u) >> 2;
-
- while(tapCnt > 0u)
- {
-
- /* Copy state values to start of state buffer */
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
-
- tapCnt--;
-
- }
-
- /* Calculation of count for remaining q15_t data */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* copy remaining data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-}
-
-#else /* UNALIGNED_SUPPORT_DISABLE */
-
-void arm_fir_q15(
- const arm_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
-{
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q15_t *pStateCurnt; /* Points to the current sample of the state */
- q63_t acc0, acc1, acc2, acc3; /* Accumulators */
- q15_t *pb; /* Temporary pointer for coefficient buffer */
- q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */
- q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */
- uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
- uint32_t tapCnt, blkCnt; /* Loop counters */
-
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 4 output values simultaneously.
- * The variables acc0 ... acc3 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
-
- blkCnt = blockSize >> 2;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(blkCnt > 0u)
- {
- /* Copy four new input samples into the state buffer.
- ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
- px = pState;
-
- /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
- pb = pCoeffs;
-
- /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
- x0 = *__SIMD32(px)++;
-
- /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
- x2 = *__SIMD32(px)++;
-
- /* Loop over the number of taps. Unroll by a factor of 4.
- ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
- tapCnt = numTaps >> 2;
-
- while(tapCnt > 0)
- {
- /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
- c0 = *__SIMD32(pb)++;
-
- /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
- acc0 = __SMLALD(x0, c0, acc0);
-
- /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
- acc2 = __SMLALD(x2, c0, acc2);
-
- /* pack x[n-N-1] and x[n-N-2] */
-#ifndef ARM_MATH_BIG_ENDIAN
- x1 = __PKHBT(x2, x0, 0);
-#else
- x1 = __PKHBT(x0, x2, 0);
-#endif
-
- /* Read state x[n-N-4], x[n-N-5] */
- x0 = _SIMD32_OFFSET(px);
-
- /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
- acc1 = __SMLALDX(x1, c0, acc1);
-
- /* pack x[n-N-3] and x[n-N-4] */
-#ifndef ARM_MATH_BIG_ENDIAN
- x1 = __PKHBT(x0, x2, 0);
-#else
- x1 = __PKHBT(x2, x0, 0);
-#endif
-
- /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
- acc3 = __SMLALDX(x1, c0, acc3);
-
- /* Read coefficients b[N-2], b[N-3] */
- c0 = *__SIMD32(pb)++;
-
- /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
- acc0 = __SMLALD(x2, c0, acc0);
-
- /* Read state x[n-N-6], x[n-N-7] with offset */
- x2 = _SIMD32_OFFSET(px + 2u);
-
- /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
- acc2 = __SMLALD(x0, c0, acc2);
-
- /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
- acc1 = __SMLALDX(x1, c0, acc1);
-
- /* pack x[n-N-5] and x[n-N-6] */
-#ifndef ARM_MATH_BIG_ENDIAN
- x1 = __PKHBT(x2, x0, 0);
-#else
- x1 = __PKHBT(x0, x2, 0);
-#endif
-
- /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
- acc3 = __SMLALDX(x1, c0, acc3);
-
- /* Update state pointer for next state reading */
- px += 4u;
-
- /* Decrement tap count */
- tapCnt--;
-
- }
-
- /* If the filter length is not a multiple of 4, compute the remaining filter taps.
- ** This is always be 2 taps since the filter length is even. */
- if((numTaps & 0x3u) != 0u)
- {
-
- /* Read last two coefficients */
- c0 = *__SIMD32(pb)++;
-
- /* Perform the multiply-accumulates */
- acc0 = __SMLALD(x0, c0, acc0);
- acc2 = __SMLALD(x2, c0, acc2);
-
- /* pack state variables */
-#ifndef ARM_MATH_BIG_ENDIAN
- x1 = __PKHBT(x2, x0, 0);
-#else
- x1 = __PKHBT(x0, x2, 0);
-#endif
-
- /* Read last state variables */
- x0 = *__SIMD32(px);
-
- /* Perform the multiply-accumulates */
- acc1 = __SMLALDX(x1, c0, acc1);
-
- /* pack state variables */
-#ifndef ARM_MATH_BIG_ENDIAN
- x1 = __PKHBT(x0, x2, 0);
-#else
- x1 = __PKHBT(x2, x0, 0);
-#endif
-
- /* Perform the multiply-accumulates */
- acc3 = __SMLALDX(x1, c0, acc3);
- }
-
- /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
- ** Then store the 4 outputs in the destination buffer. */
-
-#ifndef ARM_MATH_BIG_ENDIAN
-
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
-
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
-
-#else
-
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
-
- *__SIMD32(pDst)++ =
- __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Advance the state pointer by 4 to process the next group of 4 samples */
- pState = pState + 4;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 0x4u;
- while(blkCnt > 0u)
- {
- /* Copy two samples into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0;
-
- /* Use SIMD to hold states and coefficients */
- px = pState;
- pb = pCoeffs;
-
- tapCnt = numTaps >> 1u;
-
- do
- {
- acc0 += (q31_t) * px++ * *pb++;
- acc0 += (q31_t) * px++ * *pb++;
- tapCnt--;
- }
- while(tapCnt > 0u);
-
- /* The result is in 2.30 format. Convert to 1.15 with saturation.
- ** Then store the output in the destination buffer. */
- *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1u;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- /* Calculation of count for copying integer writes */
- tapCnt = (numTaps - 1u) >> 2;
-
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- tapCnt--;
-
- }
-
- /* Calculation of count for remaining q15_t data */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* copy remaining data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-}
-
-
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
-#else /* ARM_MATH_CM0_FAMILY */
-
-
-/* Run the below code for Cortex-M0 */
-
-void arm_fir_q15(
- const arm_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
-{
- q15_t *pState = S->pState; /* State pointer */
- q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q15_t *pStateCurnt; /* Points to the current sample of the state */
-
-
-
- q15_t *px; /* Temporary pointer for state buffer */
- q15_t *pb; /* Temporary pointer for coefficient buffer */
- q63_t acc; /* Accumulator */
- uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */
- uint32_t tapCnt, blkCnt; /* Loop counters */
-
- /* S->pState buffer contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Initialize blkCnt with blockSize */
- blkCnt = blockSize;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = pCoeffs;
-
- tapCnt = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
- acc += (q31_t) * px++ * *pb++;
- tapCnt--;
- } while(tapCnt > 0u);
-
- /* The result is in 2.30 format. Convert to 1.15
- ** Then store the output in the destination buffer. */
- *pDst++ = (q15_t) __SSAT((acc >> 15u), 16);
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- /* Decrement the samples loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- /* Copy numTaps number of values */
- tapCnt = (numTaps - 1u);
-
- /* copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-}
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-
-
-
-/**
- * @} end of FIR group
- */
diff --git a/gui/cmsis/arm_fir_q31.c b/gui/cmsis/arm_fir_q31.c deleted file mode 100644 index af5707f..0000000 --- a/gui/cmsis/arm_fir_q31.c +++ /dev/null @@ -1,365 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_q31.c
-*
-* Description: Q31 FIR filter processing function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- * @param[in] *S points to an instance of the Q31 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * Thus, if the accumulator result overflows it wraps around rather than clip.
- * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
- * After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
- *
- * \par
- * Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
- */
-
-void arm_fir_q31(
- const arm_fir_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize)
-{
- q31_t *pState = S->pState; /* State pointer */
- q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q31_t *pStateCurnt; /* Points to the current sample of the state */
-
-
-#ifndef ARM_MATH_CM0_FAMILY
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q31_t x0, x1, x2; /* Temporary variables to hold state */
- q31_t c0; /* Temporary variable to hold coefficient value */
- q31_t *px; /* Temporary pointer for state */
- q31_t *pb; /* Temporary pointer for coefficient buffer */
- q63_t acc0, acc1, acc2; /* Accumulators */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 4 output values simultaneously.
- * The variables acc0 ... acc3 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
- blkCnt = blockSize / 3;
- blockSize = blockSize - (3 * blkCnt);
-
- tapCnt = numTaps / 3;
- tapCntN3 = numTaps - (3 * tapCnt);
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(blkCnt > 0u)
- {
- /* Copy three new input samples into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize coefficient pointer */
- pb = pCoeffs;
-
- /* Read the first two samples from the state buffer:
- * x[n-numTaps], x[n-numTaps-1] */
- x0 = *(px++);
- x1 = *(px++);
-
- /* Loop unrolling. Process 3 taps at a time. */
- i = tapCnt;
-
- while(i > 0u)
- {
- /* Read the b[numTaps] coefficient */
- c0 = *pb;
-
- /* Read x[n-numTaps-2] sample */
- x2 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q63_t) x0 * c0);
- acc1 += ((q63_t) x1 * c0);
- acc2 += ((q63_t) x2 * c0);
-
- /* Read the coefficient and state */
- c0 = *(pb + 1u);
- x0 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q63_t) x1 * c0);
- acc1 += ((q63_t) x2 * c0);
- acc2 += ((q63_t) x0 * c0);
-
- /* Read the coefficient and state */
- c0 = *(pb + 2u);
- x1 = *(px++);
-
- /* update coefficient pointer */
- pb += 3u;
-
- /* Perform the multiply-accumulates */
- acc0 += ((q63_t) x2 * c0);
- acc1 += ((q63_t) x0 * c0);
- acc2 += ((q63_t) x1 * c0);
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* If the filter length is not a multiple of 3, compute the remaining filter taps */
-
- i = tapCntN3;
-
- while(i > 0u)
- {
- /* Read coefficients */
- c0 = *(pb++);
-
- /* Fetch 1 state variable */
- x2 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q63_t) x0 * c0);
- acc1 += ((q63_t) x1 * c0);
- acc2 += ((q63_t) x2 * c0);
-
- /* Reuse the present sample states for next sample */
- x0 = x1;
- x1 = x2;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 3 to process the next group of 3 samples */
- pState = pState + 3;
-
- /* The results in the 3 accumulators are in 2.30 format. Convert to 1.31
- ** Then store the 3 outputs in the destination buffer. */
- *pDst++ = (q31_t) (acc0 >> 31u);
- *pDst++ = (q31_t) (acc1 >> 31u);
- *pDst++ = (q31_t) (acc2 >> 31u);
-
- /* Decrement the samples loop counter */
- blkCnt--;
- }
-
- /* If the blockSize is not a multiple of 3, compute any remaining output samples here.
- ** No loop unrolling is used. */
-
- while(blockSize > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = (pCoeffs);
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- acc0 += (q63_t) * (px++) * (*(pb++));
- i--;
- } while(i > 0u);
-
- /* The result is in 2.62 format. Convert to 1.31
- ** Then store the output in the destination buffer. */
- *pDst++ = (q31_t) (acc0 >> 31u);
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- /* Decrement the samples loop counter */
- blockSize--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (numTaps - 1u) >> 2u;
-
- /* copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Calculate remaining number of copies */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* Copy the remaining q31_t data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-#else
-
-/* Run the below code for Cortex-M0 */
-
- q31_t *px; /* Temporary pointer for state */
- q31_t *pb; /* Temporary pointer for coefficient buffer */
- q63_t acc; /* Accumulator */
- uint32_t numTaps = S->numTaps; /* Length of the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
-
- /* S->pState buffer contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Initialize blkCnt with blockSize */
- blkCnt = blockSize;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = pCoeffs;
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
- acc += (q63_t) * px++ * *pb++;
- i--;
- } while(i > 0u);
-
- /* The result is in 2.62 format. Convert to 1.31
- ** Then store the output in the destination buffer. */
- *pDst++ = (q31_t) (acc >> 31u);
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- /* Decrement the samples loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- /* Copy numTaps number of values */
- tapCnt = numTaps - 1u;
-
- /* Copy the data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}
-
-/**
- * @} end of FIR group
- */
diff --git a/gui/cmsis/arm_fir_q7.c b/gui/cmsis/arm_fir_q7.c deleted file mode 100644 index 54a30e2..0000000 --- a/gui/cmsis/arm_fir_q7.c +++ /dev/null @@ -1,397 +0,0 @@ -/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_fir_q7.c
-*
-* Description: Q7 FIR filter processing function.
-*
-* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup FIR
- * @{
- */
-
-/**
- * @param[in] *S points to an instance of the Q7 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 32-bit internal accumulator.
- * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.
- * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * The accumulator is converted to 18.7 format by discarding the low 7 bits.
- * Finally, the result is truncated to 1.7 format.
- */
-
-void arm_fir_q7(
- const arm_fir_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize)
-{
-
-#ifndef ARM_MATH_CM0_FAMILY
-
- /* Run the below code for Cortex-M4 and Cortex-M3 */
-
- q7_t *pState = S->pState; /* State pointer */
- q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q7_t *pStateCurnt; /* Points to the current sample of the state */
- q7_t x0, x1, x2, x3; /* Temporary variables to hold state */
- q7_t c0; /* Temporary variable to hold coefficient value */
- q7_t *px; /* Temporary pointer for state */
- q7_t *pb; /* Temporary pointer for coefficient buffer */
- q31_t acc0, acc1, acc2, acc3; /* Accumulators */
- uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
- uint32_t i, tapCnt, blkCnt; /* Loop counters */
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = &(S->pState[(numTaps - 1u)]);
-
- /* Apply loop unrolling and compute 4 output values simultaneously.
- * The variables acc0 ... acc3 hold output values that are being computed:
- *
- * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
- * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
- * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
- * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
- */
- blkCnt = blockSize >> 2;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(blkCnt > 0u)
- {
- /* Copy four new input samples into the state buffer */
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
- *pStateCurnt++ = *pSrc++;
-
- /* Set all accumulators to zero */
- acc0 = 0;
- acc1 = 0;
- acc2 = 0;
- acc3 = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize coefficient pointer */
- pb = pCoeffs;
-
- /* Read the first three samples from the state buffer:
- * x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
- x0 = *(px++);
- x1 = *(px++);
- x2 = *(px++);
-
- /* Loop unrolling. Process 4 taps at a time. */
- tapCnt = numTaps >> 2;
- i = tapCnt;
-
- while(i > 0u)
- {
- /* Read the b[numTaps] coefficient */
- c0 = *pb;
-
- /* Read x[n-numTaps-3] sample */
- x3 = *px;
-
- /* acc0 += b[numTaps] * x[n-numTaps] */
- acc0 += ((q15_t) x0 * c0);
-
- /* acc1 += b[numTaps] * x[n-numTaps-1] */
- acc1 += ((q15_t) x1 * c0);
-
- /* acc2 += b[numTaps] * x[n-numTaps-2] */
- acc2 += ((q15_t) x2 * c0);
-
- /* acc3 += b[numTaps] * x[n-numTaps-3] */
- acc3 += ((q15_t) x3 * c0);
-
- /* Read the b[numTaps-1] coefficient */
- c0 = *(pb + 1u);
-
- /* Read x[n-numTaps-4] sample */
- x0 = *(px + 1u);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x1 * c0);
- acc1 += ((q15_t) x2 * c0);
- acc2 += ((q15_t) x3 * c0);
- acc3 += ((q15_t) x0 * c0);
-
- /* Read the b[numTaps-2] coefficient */
- c0 = *(pb + 2u);
-
- /* Read x[n-numTaps-5] sample */
- x1 = *(px + 2u);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x2 * c0);
- acc1 += ((q15_t) x3 * c0);
- acc2 += ((q15_t) x0 * c0);
- acc3 += ((q15_t) x1 * c0);
-
- /* Read the b[numTaps-3] coefficients */
- c0 = *(pb + 3u);
-
- /* Read x[n-numTaps-6] sample */
- x2 = *(px + 3u);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x3 * c0);
- acc1 += ((q15_t) x0 * c0);
- acc2 += ((q15_t) x1 * c0);
- acc3 += ((q15_t) x2 * c0);
-
- /* update coefficient pointer */
- pb += 4u;
- px += 4u;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* If the filter length is not a multiple of 4, compute the remaining filter taps */
-
- i = numTaps - (tapCnt * 4u);
- while(i > 0u)
- {
- /* Read coefficients */
- c0 = *(pb++);
-
- /* Fetch 1 state variable */
- x3 = *(px++);
-
- /* Perform the multiply-accumulates */
- acc0 += ((q15_t) x0 * c0);
- acc1 += ((q15_t) x1 * c0);
- acc2 += ((q15_t) x2 * c0);
- acc3 += ((q15_t) x3 * c0);
-
- /* Reuse the present sample states for next sample */
- x0 = x1;
- x1 = x2;
- x2 = x3;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Advance the state pointer by 4 to process the next group of 4 samples */
- pState = pState + 4;
-
- /* The results in the 4 accumulators are in 2.62 format. Convert to 1.31
- ** Then store the 4 outputs in the destination buffer. */
- acc0 = __SSAT((acc0 >> 7u), 8);
- *pDst++ = acc0;
- acc1 = __SSAT((acc1 >> 7u), 8);
- *pDst++ = acc1;
- acc2 = __SSAT((acc2 >> 7u), 8);
- *pDst++ = acc2;
- acc3 = __SSAT((acc3 >> 7u), 8);
- *pDst++ = acc3;
-
- /* Decrement the samples loop counter */
- blkCnt--;
- }
-
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = blockSize % 4u;
-
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set the accumulator to zero */
- acc0 = 0;
-
- /* Initialize state pointer */
- px = pState;
-
- /* Initialize Coefficient pointer */
- pb = (pCoeffs);
-
- i = numTaps;
-
- /* Perform the multiply-accumulates */
- do
- {
- acc0 += (q15_t) * (px++) * (*(pb++));
- i--;
- } while(i > 0u);
-
- /* The result is in 2.14 format. Convert to 1.7
- ** Then store the output in the destination buffer. */
- *pDst++ = __SSAT((acc0 >> 7u), 8);
-
- /* Advance state pointer by 1 for the next sample */
- pState = pState + 1;
-
- /* Decrement the samples loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
- tapCnt = (numTaps - 1u) >> 2u;
-
- /* copy data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
- /* Calculate remaining number of copies */
- tapCnt = (numTaps - 1u) % 0x4u;
-
- /* Copy the remaining q31_t data */
- while(tapCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
-
- /* Decrement the loop counter */
- tapCnt--;
- }
-
-#else
-
-/* Run the below code for Cortex-M0 */
-
- uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
- uint32_t i, blkCnt; /* Loop counters */
- q7_t *pState = S->pState; /* State pointer */
- q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
- q7_t *px, *pb; /* Temporary pointers to state and coeff */
- q31_t acc = 0; /* Accumlator */
- q7_t *pStateCurnt; /* Points to the current sample of the state */
-
-
- /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
- /* pStateCurnt points to the location where the new input data should be written */
- pStateCurnt = S->pState + (numTaps - 1u);
-
- /* Initialize blkCnt with blockSize */
- blkCnt = blockSize;
-
- /* Perform filtering upto BlockSize - BlockSize%4 */
- while(blkCnt > 0u)
- {
- /* Copy one sample at a time into state buffer */
- *pStateCurnt++ = *pSrc++;
-
- /* Set accumulator to zero */
- acc = 0;
-
- /* Initialize state pointer of type q7 */
- px = pState;
-
- /* Initialize coeff pointer of type q7 */
- pb = pCoeffs;
-
-
- i = numTaps;
-
- while(i > 0u)
- {
- /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
- acc += (q15_t) * px++ * *pb++;
- i--;
- }
-
- /* Store the 1.7 format filter output in destination buffer */
- *pDst++ = (q7_t) __SSAT((acc >> 7), 8);
-
- /* Advance the state pointer by 1 to process the next sample */
- pState = pState + 1;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Processing is complete.
- ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
- ** This prepares the state buffer for the next function call. */
-
-
- /* Points to the start of the state buffer */
- pStateCurnt = S->pState;
-
-
- /* Copy numTaps number of values */
- i = (numTaps - 1u);
-
- /* Copy q7_t data */
- while(i > 0u)
- {
- *pStateCurnt++ = *pState++;
- i--;
- }
-
-#endif /* #ifndef ARM_MATH_CM0_FAMILY */
-
-}
-
-/**
- * @} end of FIR group
- */
|