/*
ChibiOS - Copyright (C) 2006..2019 Giovanni Di Sirio.
This file is part of ChibiOS.
ChibiOS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/**
* @file sb/user/sbapi.h
* @brief ARMv7-M sandbox user API macros and structures.
*
* @addtogroup ARMV7M_SANDBOX_USERAPI
* @{
*/
#ifndef SBUSER_H
#define SBUSER_H
#include "sberr.h"
/*===========================================================================*/
/* Module constants. */
/*===========================================================================*/
/*===========================================================================*/
/* Module pre-compile time settings. */
/*===========================================================================*/
/*===========================================================================*/
/* Derived constants and error checks. */
/*===========================================================================*/
/*===========================================================================*/
/* Module data structures and types. */
/*===========================================================================*/
/**
* @brief Type of system time counter.
*/
typedef uint32_t systime_t;
/**
* @brief Type of system time interval.
*/
typedef uint32_t sysinterval_t;
/**
* @brief Type of a wide time conversion variable.
*/
typedef uint64_t time_conv_t;
/**
* @brief Type of time in microseconds.
*/
typedef uint32_t time_usecs_t;
/**
* @brief Type of time in milliseconds.
*/
typedef uint32_t time_msecs_t;
/**
* @brief Type of time in seconds.
*/
typedef uint32_t time_secs_t;
/**
* @brief Type of a message.
*/
typedef uint32_t msg_t;
/**
* @brief Type of an event mask.
*/
typedef uint32_t eventmask_t;
/**
* @brief Type of event flags.
*/
typedef uint32_t eventflags_t;
/**
* @brief Type of a sandbox API internal state variables.
*/
typedef struct {
/**
* @brief System tick frequency.
*/
time_conv_t frequency;
} sbapi_state_t;
/*===========================================================================*/
/* Module macros. */
/*===========================================================================*/
/**
* @name Messages-related macros
* @{
*/
#define MSG_OK (msg_t)0
#define MSG_TIMEOUT (msg_t)-1
#define MSG_RESET (msg_t)-2
/** @} */
/**
* @name Events-related macros
* @{
*/
#define ALL_EVENTS ((eventmask_t)-1)
#define EVENT_MASK(eid) ((eventmask_t)1 << (eventmask_t)(eid))
/** @} */
/**
* @name Time and intervals related macros
* @{
*/
#define TIME_IMMEDIATE ((sysinterval_t)0)
#define TIME_INFINITE ((sysinterval_t)-1)
#define TIME_MAX_INTERVAL ((sysinterval_t)-2)
#define TIME_MAX_SYSTIME ((systime_t)-1)
/** @} */
/**
* @name SVC instruction wrappers.
* @{
*/
#define __syscall0(x) \
asm volatile ("svc " #x : : : "memory")
#define __syscall0r(x) \
register uint32_t r0 asm ("r0"); \
asm volatile ("svc " #x : "=r" (r0) : : "memory")
#define __syscall1r(x, p1) \
register uint32_t r0 asm ("r0") = (uint32_t)(p1); \
asm volatile ("svc " #x : "=r" (r0) : "r" (r0) : "memory")
#define __syscall2r(x, p1, p2) \
register uint32_t r0 asm ("r0") = (uint32_t)(p1); \
register uint32_t r1 asm ("r1") = (uint32_t)(p2); \
asm volatile ("svc " #x : "=r" (r0) : "r" (r0), "r" (r1) : "memory")
#define __syscall3r(x, p1, p2, p3) \
register uint32_t r0 asm ("r0") = (uint32_t)(p1); \
register uint32_t r1 asm ("r1") = (uint32_t)(p2); \
register uint32_t r2 asm ("r2") = (uint32_t)(p3); \
asm volatile ("svc " #x : "=r" (r0) : "r" (r0), "r" (r1), \
"r" (r2) : "memory")
#define __syscall4r(x, p1, p2, p3, p4) \
register uint32_t r0 asm ("r0") = (uint32_t)(p1); \
register uint32_t r1 asm ("r1") = (uint32_t)(p2); \
register uint32_t r2 asm ("r2") = (uint32_t)(p3); \
register uint32_t r3 asm ("r3") = (uint32_t)(p4); \
asm volatile ("svc " #x : "=r" (r0) : "r" (r0), "r" (r1), \
"r" (r2), "r" (r3) : "memory")
/** @} */
/*===========================================================================*/
/* External declarations. */
/*===========================================================================*/
extern sbapi_state_t sb;
#ifdef __cplusplus
extern "C" {
#endif
void sbApiInit(void);
#ifdef __cplusplus
}
#endif
/*===========================================================================*/
/* Module inline functions. */
/*===========================================================================*/
/**
* @brief Posix-style file open.
*
* @param[in] pathname file to be opened
* @param[in] flags open mode
* @return The file descriptor or an error.
*/
static inline uint32_t sbFileOpen(const char *pathname,
uint32_t flags) {
__syscall3r(0, SB_POSIX_OPEN, pathname, flags);
return r0;
}
/**
* @brief Posix-style file close.
*
* @param[in] fd file descriptor
* @return Operation result.
*/
static inline uint32_t sbFileClose(uint32_t fd) {
__syscall2r(0, SB_POSIX_CLOSE, fd);
return r0;
}
/**
* @brief Posix-style file read.
*
* @param[in] fd file descriptor
* @param[out] buf buffer pointer
* @param[in] count number of bytes
* @return The number of bytes really transferred or an error.
*/
static inline size_t sbFileRead(uint32_t fd,
uint8_t *buf,
size_t count) {
__syscall4r(0, SB_POSIX_READ, fd, buf, count);
return (size_t)r0;
}
/**
* @brief Posix-style file write.
*
* @param[in] fd file descriptor
* @param[in] buf buffer pointer
* @param[in] count number of bytes
* @return The number of bytes really transferred or an error.
*/
static inline size_t sbFileWrite(uint32_t fd,
const uint8_t *buf,
size_t count) {
__syscall4r(0, SB_POSIX_WRITE, fd, buf, count);
return (size_t)r0;
}
/**
* @brief Posix-style file seek.
*
* @param[in] fd file descriptor
* @param[in] offset file offset
* @param[in] whence operation mode
* @return Operation result.
*/
static inline uint32_t sbFileSeek(uint32_t fd,
uint32_t offset,
uint32_t whence) {
__syscall4r(0, SB_POSIX_LSEEK, fd, offset, whence);
return (size_t)r0;
}
/**
* @brief Terminates the sandbox.
*
* @param[in] msg The exit message.
*
* @api
*/
static inline void sbExit(msg_t msg) {
__syscall1r(1, msg);
}
/**
* @brief Returns the system time.
*
* @return The current system time.
*/
static inline systime_t sbGetSystemTime(void) {
__syscall0r(2);
return (systime_t)r0;
}
/**
* @brief Returns the system time frequency.
*
* @return The system time frequency.
*/
static inline uint32_t sbGetFrequency(void) {
__syscall0r(3);
return (uint32_t)r0;
}
/**
* @brief Suspends the invoking thread for the specified interval.
*
* @param[in] interval the delay in system ticks
*
* @api
*/
static inline void sbSleep(sysinterval_t interval) {
__syscall1r(4, interval);
}
/**
* @brief Suspends the invoking thread until the system time arrives to the
* specified value.
* @note The system time is assumed to be between @p start and @p next
* else the call is assumed to have been called outside the
* allowed time interval, in this case no sleep is performed.
*
* @param[in] prev absolute system time of the previous deadline
* @param[in] next absolute system time of the next deadline
* @return the @p next parameter
*
* @api
*/
static inline void sbSleepUntil(systime_t prev, systime_t next) {
__syscall2r(5, prev, next);
}
/**
* @brief Waits for a message.
*
* @return The received message.
*/
static inline msg_t sbMsgWait(void) {
__syscall0r(6);
return (uint32_t)r0;
}
/**
* @brief Replies to a message.
*
* @param[in] msg the reply message
*
* @api
*/
static inline uint32_t sbMsgReply(msg_t msg) {
__syscall1r(7, msg);
return (uint32_t)r0;
}
/**
* @brief Waits for exactly one of the specified events.
* @details The function waits for one event among those specified in
* @p events to become pending then the event is cleared and returned.
* @note One and only one event is served in the function, the one with the
* lowest event id. The function is meant to be invoked into a loop
* in order to serve all the pending events.
* This means that Event Listeners with a lower event identifier have
* an higher priority.
*
* @param[in] events events that the function should wait
* for, @p ALL_EVENTS enables all the events
* @param[in] timeout the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The mask of the lowest event id served and cleared.
* @retval 0 if the operation has timed out.
*
* @api
*/
static inline eventmask_t sbEventWaitOneTimeout(eventmask_t events,
sysinterval_t timeout) {
__syscall2r(8, events, timeout);
return (uint32_t)r0;
}
/**
* @brief Waits for any of the specified events.
* @details The function waits for any event among those specified in
* @p events to become pending then the events are cleared and
* returned.
*
* @param[in] events events that the function should wait
* for, @p ALL_EVENTS enables all the events
* @param[in] timeout the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The mask of the served and cleared events.
* @retval 0 if the operation has timed out.
*
* @api
*/
static inline eventmask_t sbEventWaitAnyTimeout(eventmask_t events,
sysinterval_t timeout) {
__syscall2r(9, events, timeout);
return (uint32_t)r0;
}
/**
* @brief Waits for all the specified events.
* @details The function waits for all the events specified in @p events to
* become pending then the events are cleared and returned.
*
* @param[in] events events that the function should wait
* for, @p ALL_EVENTS requires all the events
* @param[in] timeout the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The mask of the served and cleared events.
* @retval 0 if the operation has timed out.
*
* @api
*/
static inline eventmask_t sbEventWaitAllTimeout(eventmask_t events,
sysinterval_t timeout) {
__syscall2r(10, events, timeout);
return (uint32_t)r0;
}
/**
* @brief Signals all the Event Listeners registered on the specified Event
* Source.
*
* @param[in] flags the flags set to be added to the listener flags mask
*
* @api
*/
static inline uint32_t sbEventBroadcastFlags(eventflags_t flags) {
__syscall1r(11, flags);
return (uint32_t)r0;
}
/**
* @brief Seconds to time interval.
* @details Converts from seconds to system ticks number.
* @note The result is rounded upward to the next tick boundary.
*
* @param[in] secs number of seconds
* @return The number of ticks.
*
* @special
*/
static inline sysinterval_t sbTimeS2I(time_secs_t secs) {
time_conv_t ticks;
ticks = (time_conv_t)secs * sb.frequency;
/* sbDbgAssert(ticks <= (time_conv_t)TIME_MAX_INTERVAL,
"conversion overflow");*/
return (sysinterval_t)ticks;
}
/**
* @brief Milliseconds to time interval.
* @details Converts from milliseconds to system ticks number.
* @note The result is rounded upward to the next tick boundary.
*
* @param[in] msec number of milliseconds
* @return The number of ticks.
*
* @special
*/
static inline sysinterval_t sbTimeMS2I(time_msecs_t msec) {
time_conv_t ticks;
ticks = (((time_conv_t)msec * sb.frequency) +
(time_conv_t)999) / (time_conv_t)1000;
/* chDbgAssert(ticks <= (time_conv_t)TIME_MAX_INTERVAL,
"conversion overflow");*/
return (sysinterval_t)ticks;
}
/**
* @brief Microseconds to time interval.
* @details Converts from microseconds to system ticks number.
* @note The result is rounded upward to the next tick boundary.
*
* @param[in] usec number of microseconds
* @return The number of ticks.
*
* @special
*/
static inline sysinterval_t sbTimeUS2I(time_usecs_t usec) {
time_conv_t ticks;
ticks = (((time_conv_t)usec * sb.frequency) +
(time_conv_t)999999) / (time_conv_t)1000000;
/* chDbgAssert(ticks <= (time_conv_t)TIME_MAX_INTERVAL,
"conversion overflow");*/
return (sysinterval_t)ticks;
}
/**
* @brief Time interval to seconds.
* @details Converts from system interval to seconds.
* @note The result is rounded up to the next second boundary.
*
* @param[in] interval interval in ticks
* @return The number of seconds.
*
* @special
*/
static inline time_secs_t sbTimeI2S(sysinterval_t interval) {
time_conv_t secs;
secs = ((time_conv_t)interval +
sb.frequency -
(time_conv_t)1) / sb.frequency;
/* sbDbgAssert(secs < (time_conv_t)((time_secs_t)-1),
"conversion overflow");*/
return (time_secs_t)secs;
}
/**
* @brief Time interval to milliseconds.
* @details Converts from system interval to milliseconds.
* @note The result is rounded up to the next millisecond boundary.
*
* @param[in] interval interval in ticks
* @return The number of milliseconds.
*
* @special
*/
static inline time_msecs_t sbTimeI2MS(sysinterval_t interval) {
time_conv_t msecs;
msecs = (((time_conv_t)interval * (time_conv_t)1000) +
sb.frequency - (time_conv_t)1) /
sb.frequency;
/* sbDbgAssert(msecs < (time_conv_t)((time_msecs_t)-1),
"conversion overflow");*/
return (time_msecs_t)msecs;
}
/**
* @brief Time interval to microseconds.
* @details Converts from system interval to microseconds.
* @note The result is rounded up to the next microsecond boundary.
*
* @param[in] interval interval in ticks
* @return The number of microseconds.
*
* @special
*/
static inline time_usecs_t sbTimeI2US(sysinterval_t interval) {
time_conv_t usecs;
usecs = (((time_conv_t)interval * (time_conv_t)1000000) +
sb.frequency - (time_conv_t)1) / sb.frequency;
/* sbDbgAssert(usecs <= (time_conv_t)((time_usecs_t)-1),
"conversion overflow");*/
return (time_usecs_t)usecs;
}
/**
* @brief Adds an interval to a system time returning a system time.
*
* @param[in] systime base system time
* @param[in] interval interval to be added
* @return The new system time.
*
* @xclass
*/
static inline systime_t sbTimeAddX(systime_t systime, sysinterval_t interval) {
return systime + (systime_t)interval;
}
/**
* @brief Subtracts two system times returning an interval.
*
* @param[in] start first system time
* @param[in] end second system time
* @return The interval representing the time difference.
*
* @xclass
*/
static inline sysinterval_t sbTimeDiffX(systime_t start, systime_t end) {
return (sysinterval_t)((systime_t)(end - start));
}
/**
* @brief Checks if the specified time is within the specified time range.
* @note When start==end then the function returns always true because the
* whole time range is specified.
*
* @param[in] time the time to be verified
* @param[in] start the start of the time window (inclusive)
* @param[in] end the end of the time window (non inclusive)
* @retval true current time within the specified time window.
* @retval false current time not within the specified time window.
*
* @xclass
*/
static inline bool sbTimeIsInRangeX(systime_t time, systime_t start, systime_t end) {
return (bool)((systime_t)((systime_t)time - (systime_t)start) <
(systime_t)((systime_t)end - (systime_t)start));
}
/**
* @brief Delays the invoking thread for the specified number of seconds.
* @note The specified time is rounded up to a value allowed by the real
* system tick clock.
*
* @param[in] secs time in seconds
*
* @api
*/
static inline void sbSleepSeconds(time_secs_t secs) {
sbSleep(sbTimeS2I(secs));
}
/**
* @brief Delays the invoking thread for the specified number of
* milliseconds.
* @note The specified time is rounded up to a value allowed by the real
* system tick clock.
*
* @param[in] msecs time in milliseconds
*
* @api
*/
static inline void sbSleepMilliseconds(time_msecs_t msecs) {
sbSleep(sbTimeMS2I(msecs));
}
/**
* @brief Delays the invoking thread for the specified number of
* microseconds.
* @note The specified time is rounded up to a value allowed by the real
* system tick clock.
*
* @param[in] usecs time in microseconds
*
* @api
*/
static inline void sbSleepMicroseconds(time_usecs_t usecs) {
sbSleep(sbTimeUS2I(usecs));
}
#endif /* SBUSER_H */
/** @} */