1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
/**
* @file adc.cpp
* @brief Manages signal reading through the ADC.
*
* Copyright (C) 2020 Clyne Sullivan
*
* Distributed under the GNU GPL v3 or later. You should have received a copy of
* the GNU General Public License along with this program.
* If not, see <https://www.gnu.org/licenses/>.
*/
#include "adc.hpp"
ADCDriver *ADC::m_driver = &ADCD1;
GPTDriver *ADC::m_timer = &GPTD6;
const ADCConfig ADC::m_config = {
.difsel = 0
};
ADCConversionGroup ADC::m_group_config = {
.circular = true,
.num_channels = 1,
.end_cb = ADC::conversionCallback,
.error_cb = nullptr,
.cfgr = ADC_CFGR_EXTEN_RISING | ADC_CFGR_EXTSEL_SRC(13), /* TIM6_TRGO */
.cfgr2 = ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR_0 | ADC_CFGR2_OVSS_1, // Oversampling 2x
.tr1 = ADC_TR(0, 4095),
.smpr = {
ADC_SMPR1_SMP_AN5(ADC_SMPR_SMP_12P5), 0
},
.sqr = {
ADC_SQR1_SQ1_N(ADC_CHANNEL_IN5),
0, 0, 0
}
};
const GPTConfig ADC::m_timer_config = {
.frequency = 36000000,
.callback = nullptr,
.cr2 = TIM_CR2_MMS_1, /* TRGO */
.dier = 0
};
std::array<std::array<uint32_t, 4>, 6> ADC::m_rate_presets = {{
// Rate PLLSAI2N R OVERSAMPLE 2x? GPT_DIV
{/* 8k */ 16, 3, 1, 4500},
{/* 16k */ 32, 3, 1, 2250},
{/* 20k */ 40, 3, 1, 1800},
{/* 32k */ 64, 3, 1, 1125},
{/* 48k */ 24, 3, 0, 750},
{/* 96k */ 48, 3, 0, 375}
}};
adcsample_t *ADC::m_current_buffer = nullptr;
size_t ADC::m_current_buffer_size = 0;
ADC::Operation ADC::m_operation = nullptr;
unsigned int ADC::m_timer_divisor = 2;
void ADC::begin()
{
palSetPadMode(GPIOA, 0, PAL_MODE_INPUT_ANALOG);
adcStart(m_driver, &m_config);
adcSTM32EnableVREF(m_driver);
gptStart(m_timer, &m_timer_config);
setRate(Rate::R32K);
}
void ADC::start(adcsample_t *buffer, size_t count, Operation operation)
{
m_current_buffer = buffer;
m_current_buffer_size = count;
m_operation = operation;
adcStartConversion(m_driver, &m_group_config, buffer, count);
gptStartContinuous(m_timer, m_timer_divisor);
}
void ADC::stop()
{
gptStopTimer(m_timer);
adcStopConversion(m_driver);
m_current_buffer = nullptr;
m_current_buffer_size = 0;
m_operation = nullptr;
}
void ADC::setRate(ADC::Rate rate)
{
auto& preset = m_rate_presets[static_cast<int>(rate)];
auto pllnr = (preset[0] << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
(preset[1] << RCC_PLLSAI2CFGR_PLLSAI2R_Pos);
bool oversample = preset[2] != 0;
m_timer_divisor = preset[3];
adcStop(m_driver);
// Adjust PLLSAI2
RCC->CR &= ~(RCC_CR_PLLSAI2ON);
while ((RCC->CR & RCC_CR_PLLSAI2RDY) == RCC_CR_PLLSAI2RDY);
RCC->PLLSAI2CFGR = (RCC->PLLSAI2CFGR & ~(RCC_PLLSAI2CFGR_PLLSAI2N_Msk | RCC_PLLSAI2CFGR_PLLSAI2R_Msk)) | pllnr;
RCC->CR |= RCC_CR_PLLSAI2ON;
while ((RCC->CR & RCC_CR_PLLSAI2RDY) != RCC_CR_PLLSAI2RDY);
// Set 2x oversampling
m_group_config.cfgr2 = oversample ? ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR_0 | ADC_CFGR2_OVSS_1 : 0;
adcStart(m_driver, &m_config);
}
void ADC::setOperation(ADC::Operation operation)
{
m_operation = operation;
}
int ADC::getRate()
{
for (unsigned int i = 0; i < m_rate_presets.size(); i++) {
if (m_timer_divisor == m_rate_presets[i][3])
return i;
}
return -1;
}
unsigned int ADC::getTimerDivisor()
{
return m_timer_divisor;
}
void ADC::conversionCallback(ADCDriver *driver)
{
if (m_operation != nullptr) {
auto half_size = m_current_buffer_size / 2;
if (adcIsBufferComplete(driver))
m_operation(m_current_buffer + half_size, half_size);
else
m_operation(m_current_buffer, half_size);
}
}
|