update templates to new api; open template status fix

master
Clyne 3 years ago
parent 707b24dd07
commit bf0a126e8a

1
.gitignore vendored

@ -2,3 +2,4 @@ imgui.ini
stmdspgui stmdspgui
stmdspgui.exe stmdspgui.exe
*.o *.o
.*

@ -87,6 +87,7 @@ void fileRenderMenu()
// Treat like new file. // Treat like new file.
fileCurrentPath.clear(); fileCurrentPath.clear();
statusMessage = "Ready.";
} }
} }

@ -7,10 +7,10 @@
* transient response is not calculated. * transient response is not calculated.
*/ */
adcsample_t *process_data(adcsample_t *samples, unsigned int size) Sample *process_data(Samples samples)
{ {
// Define our output buffer. SIZE is the largest size of the 'samples' buffer. // Define our output buffer. SIZE is the largest size of the 'samples' buffer.
static adcsample_t buffer[SIZE]; static Sample buffer[samples.size()];
// Define our filter // Define our filter
constexpr unsigned int filter_size = 3; constexpr unsigned int filter_size = 3;
@ -19,7 +19,7 @@ adcsample_t *process_data(adcsample_t *samples, unsigned int size)
}; };
// Begin convolving: // Begin convolving:
for (int n = 0; n < size - (filter_size - 1); n++) { for (int n = 0; n < samples.size() - (filter_size - 1); n++) {
buffer[n] = 0; buffer[n] = 0;
for (int k = 0; k < filter_size; k++) for (int k = 0; k < filter_size; k++)
buffer[n] += samples[n + k] * filter[k]; buffer[n] += samples[n + k] * filter[k];

@ -11,9 +11,9 @@
* computation. * computation.
*/ */
adcsample_t *process_data(adcsample_t *samples, unsigned int size) Sample *process_data(Samples samples)
{ {
static adcsample_t buffer[SIZE]; static Sample buffer[samples.size()];
constexpr unsigned int filter_size = 3; constexpr unsigned int filter_size = 3;
float filter[filter_size] = { float filter[filter_size] = {
@ -21,9 +21,9 @@ adcsample_t *process_data(adcsample_t *samples, unsigned int size)
}; };
// Keep a buffer of extra samples for overlap-save // Keep a buffer of extra samples for overlap-save
static adcsample_t prev[filter_size]; static Sample prev[filter_size];
for (int n = 0; n < size; n++) { for (int n = 0; n < samples.size(); n++) {
buffer[n] = 0; buffer[n] = 0;
for (int k = 0; k < filter_size; k++) { for (int k = 0; k < filter_size; k++) {
@ -40,7 +40,7 @@ adcsample_t *process_data(adcsample_t *samples, unsigned int size)
// Save samples for the next convolution run // Save samples for the next convolution run
for (int i = 0; i < filter_size; i++) for (int i = 0; i < filter_size; i++)
prev[i] = samples[size - filter_size + i]; prev[i] = samples[samples.size() - filter_size + i];
return buffer; return buffer;
} }

@ -7,9 +7,9 @@
* within the available execution time. Samples are also normalized so that they center around zero. * within the available execution time. Samples are also normalized so that they center around zero.
*/ */
adcsample_t *process_data(adcsample_t *samples, unsigned int size) Sample *process_data(Samples samples)
{ {
static adcsample_t buffer[SIZE]; static Sample buffer[samples.size()];
// Define the filter: // Define the filter:
constexpr unsigned int filter_size = 3; constexpr unsigned int filter_size = 3;
@ -19,9 +19,9 @@ adcsample_t *process_data(adcsample_t *samples, unsigned int size)
}; };
// Do an overlap-save convolution // Do an overlap-save convolution
static adcsample_t prev[filter_size]; static Sample prev[filter_size];
for (int n = 0; n < size; n++) { for (int n = 0; n < samples.size(); n++) {
// Using a float variable for accumulation allows for better code optimization // Using a float variable for accumulation allows for better code optimization
float v = 0; float v = 0;
@ -40,7 +40,7 @@ adcsample_t *process_data(adcsample_t *samples, unsigned int size)
// Save samples for next convolution // Save samples for next convolution
for (int i = 0; i < filter_size; i++) for (int i = 0; i < filter_size; i++)
prev[i] = samples[size - filter_size + i]; prev[i] = samples[samples.size() - filter_size + i];
return buffer; return buffer;
} }

@ -10,7 +10,7 @@ typedef struct
static void arm_fir_f32(const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize); static void arm_fir_f32(const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize);
adcsample_t *process_data(adcsample_t *samples, unsigned int size) Sample *process_data(Samples samples)
{ {
// 1. Define our array sizes (Be sure to set Run > Set buffer size... to below value!) // 1. Define our array sizes (Be sure to set Run > Set buffer size... to below value!)
constexpr unsigned int buffer_size = 500; constexpr unsigned int buffer_size = 500;
@ -34,18 +34,18 @@ adcsample_t *process_data(adcsample_t *samples, unsigned int size)
static float working[buffer_size + filter_size]; static float working[buffer_size + filter_size];
// 3. Scale 0-4095 interger sample values to +/- 1.0 floats // 3. Scale 0-4095 interger sample values to +/- 1.0 floats
for (unsigned int i = 0; i < size; i++) for (unsigned int i = 0; i < samples.size(); i++)
input[i] = (samples[i] - 2048) / 2048.f; input[i] = (samples[i] - 2048) / 2048.f;
// 4. Compute the FIR // 4. Compute the FIR
arm_fir_instance_f32 fir { filter_size, working, filter }; arm_fir_instance_f32 fir { filter_size, working, filter };
arm_fir_f32(&fir, input, output, size); arm_fir_f32(&fir, input, output, samples.size());
// 5. Convert float results back to 0-4095 range for output // 5. Convert float results back to 0-4095 range for output
for (unsigned int i = 0; i < size; i++) for (unsigned int i = 0; i < samples.size(); i++)
samples[i] = output[i] * 2048.f + 2048; samples[i] = output[i] * 2048.f + 2048;
return samples; return samples.data();
} }
// Below taken from the CMSIS DSP Library (find it on GitHub) // Below taken from the CMSIS DSP Library (find it on GitHub)

@ -7,23 +7,23 @@
* A scaling factor is applied so that the output's form is more clearly visible. * A scaling factor is applied so that the output's form is more clearly visible.
*/ */
adcsample_t *process_data(adcsample_t *samples, unsigned int size) Sample *process_data(Samples samples)
{ {
constexpr int scaling_factor = 4; constexpr int scaling_factor = 4;
static adcsample_t output[SIZE]; static Sample output[samples.size()];
static adcsample_t prev = 2048; static Sample prev = 2048;
// Compute the first output value using the saved sample. // Compute the first output value using the saved sample.
output[0] = 2048 + ((samples[0] - prev) * scaling_factor); output[0] = 2048 + ((samples[0] - prev) * scaling_factor);
for (unsigned int i = 1; i < size; i++) { for (unsigned int i = 1; i < samples.size(); i++) {
// Take the rate of change and scale it. // Take the rate of change and scale it.
// 2048 is added as the output should be centered in the voltage range. // 2048 is added as the output should be centered in the voltage range.
output[i] = 2048 + ((samples[i] - samples[i - 1]) * scaling_factor); output[i] = 2048 + ((samples[i] - samples[i - 1]) * scaling_factor);
} }
// Save the last sample for the next iteration. // Save the last sample for the next iteration.
prev = samples[size - 1]; prev = samples[samples.size() - 1];
return output; return output;
} }

@ -1,13 +1,13 @@
adcsample_t *process_data(adcsample_t *samples, unsigned int size) Sample *process_data(Samples samples)
{ {
constexpr float alpha = 0.7; constexpr float alpha = 0.7;
static adcsample_t prev = 2048; static Sample prev = 2048;
samples[0] = (1 - alpha) * samples[0] + alpha * prev; samples[0] = (1 - alpha) * samples[0] + alpha * prev;
for (unsigned int i = 1; i < size; i++) for (unsigned int i = 1; i < samples.size(); i++)
samples[i] = (1 - alpha) * samples[i] + alpha * samples[i - 1]; samples[i] = (1 - alpha) * samples[i] + alpha * samples[i - 1];
prev = samples[size - 1]; prev = samples[samples.size() - 1];
return samples; return samples.data();
} }

@ -1,22 +1,22 @@
adcsample_t *process_data(adcsample_t *samples, unsigned int size) Sample *process_data(Samples samples)
{ {
constexpr float alpha = 0.75; constexpr float alpha = 0.75;
constexpr unsigned int D = 100; constexpr unsigned int D = 100;
static adcsample_t output[SIZE]; static Sample output[samples.size()];
static adcsample_t prev[D]; // prev[0] = output[0 - D] static Sample prev[D]; // prev[0] = output[0 - D]
// Do calculations with previous output // Do calculations with previous output
for (unsigned int i = 0; i < D; i++) for (unsigned int i = 0; i < D; i++)
output[i] = samples[i] + alpha * (prev[i] - 2048); output[i] = samples[i] + alpha * (prev[i] - 2048);
// Do calculations with current samples // Do calculations with current samples
for (unsigned int i = D; i < size; i++) for (unsigned int i = D; i < samples.size(); i++)
output[i] = samples[i] + alpha * (output[i - D] - 2048); output[i] = samples[i] + alpha * (output[i - D] - 2048);
// Save outputs for next computation // Save outputs for next computation
for (unsigned int i = 0; i < D; i++) for (unsigned int i = 0; i < D; i++)
prev[i] = output[size - (D - i)]; prev[i] = output[samples.size() - (D - i)];
return output; return output;
} }

Loading…
Cancel
Save