make helper funcs inline; drop std::span for algo

pull/1/head
Clyne 3 years ago
parent 660d967ec0
commit f211f96288
Signed by: clyne
GPG Key ID: 3267C8EBF3F9AFC7

@ -9,8 +9,8 @@
Sample* process_data(Samples samples) Sample* process_data(Samples samples)
{ {
// Define our output buffer. SIZE is the largest size of the 'samples' buffer. // Define our output buffer.
static Sample buffer[samples.size()]; static Samples buffer;
// Define our filter // Define our filter
constexpr unsigned int filter_size = 3; constexpr unsigned int filter_size = 3;
@ -19,7 +19,8 @@ Sample *process_data(Samples samples)
}; };
// Begin convolving: // Begin convolving:
for (int n = 0; n < samples.size() - (filter_size - 1); n++) { // SIZE is the size of the sample buffer.
for (int n = 0; n < SIZE - (filter_size - 1); n++) {
buffer[n] = 0; buffer[n] = 0;
for (int k = 0; k < filter_size; k++) for (int k = 0; k < filter_size; k++)
buffer[n] += samples[n + k] * filter[k]; buffer[n] += samples[n + k] * filter[k];

@ -13,7 +13,7 @@
Sample* process_data(Samples samples) Sample* process_data(Samples samples)
{ {
static Sample buffer[samples.size()]; static Samples buffer;
constexpr unsigned int filter_size = 3; constexpr unsigned int filter_size = 3;
float filter[filter_size] = { float filter[filter_size] = {
@ -23,7 +23,7 @@ Sample *process_data(Samples samples)
// Keep a buffer of extra samples for overlap-save // Keep a buffer of extra samples for overlap-save
static Sample prev[filter_size]; static Sample prev[filter_size];
for (int n = 0; n < samples.size(); n++) { for (int n = 0; n < SIZE; n++) {
buffer[n] = 0; buffer[n] = 0;
for (int k = 0; k < filter_size; k++) { for (int k = 0; k < filter_size; k++) {
@ -40,7 +40,7 @@ Sample *process_data(Samples samples)
// Save samples for the next convolution run // Save samples for the next convolution run
for (int i = 0; i < filter_size; i++) for (int i = 0; i < filter_size; i++)
prev[i] = samples[samples.size() - filter_size + i]; prev[i] = samples[SIZE - filter_size + i];
return buffer; return buffer;
} }

@ -9,7 +9,7 @@
Sample* process_data(Samples samples) Sample* process_data(Samples samples)
{ {
static Sample buffer[samples.size()]; static Samples buffer;
// Define the filter: // Define the filter:
constexpr unsigned int filter_size = 3; constexpr unsigned int filter_size = 3;
@ -21,7 +21,7 @@ Sample *process_data(Samples samples)
// Do an overlap-save convolution // Do an overlap-save convolution
static Sample prev[filter_size]; static Sample prev[filter_size];
for (int n = 0; n < samples.size(); n++) { for (int n = 0; n < SIZE; n++) {
// Using a float variable for accumulation allows for better code optimization // Using a float variable for accumulation allows for better code optimization
float v = 0; float v = 0;
@ -40,7 +40,7 @@ Sample *process_data(Samples samples)
// Save samples for next convolution // Save samples for next convolution
for (int i = 0; i < filter_size; i++) for (int i = 0; i < filter_size; i++)
prev[i] = samples[samples.size() - filter_size + i]; prev[i] = samples[SIZE - filter_size + i];
return buffer; return buffer;
} }

@ -34,18 +34,18 @@ Sample *process_data(Samples samples)
static float working[buffer_size + filter_size]; static float working[buffer_size + filter_size];
// 3. Scale 0-4095 interger sample values to +/- 1.0 floats // 3. Scale 0-4095 interger sample values to +/- 1.0 floats
for (unsigned int i = 0; i < samples.size(); i++) for (unsigned int i = 0; i < SIZE; i++)
input[i] = (samples[i] - 2048) / 2048.f; input[i] = (samples[i] - 2048) / 2048.f;
// 4. Compute the FIR // 4. Compute the FIR
arm_fir_instance_f32 fir { filter_size, working, filter }; arm_fir_instance_f32 fir { filter_size, working, filter };
arm_fir_f32(&fir, input, output, samples.size()); arm_fir_f32(&fir, input, output, SIZE);
// 5. Convert float results back to 0-4095 range for output // 5. Convert float results back to 0-4095 range for output
for (unsigned int i = 0; i < samples.size(); i++) for (unsigned int i = 0; i < SIZE; i++)
samples[i] = output[i] * 2048.f + 2048; samples[i] = output[i] * 2048.f + 2048;
return samples.data(); return samples;
} }
// Below taken from the CMSIS DSP Library (find it on GitHub) // Below taken from the CMSIS DSP Library (find it on GitHub)

@ -10,20 +10,20 @@
Sample* process_data(Samples samples) Sample* process_data(Samples samples)
{ {
constexpr int scaling_factor = 4; constexpr int scaling_factor = 4;
static Sample output[samples.size()]; static Samples output;
static Sample prev = 2048; static Sample prev = 2048;
// Compute the first output value using the saved sample. // Compute the first output value using the saved sample.
output[0] = 2048 + ((samples[0] - prev) * scaling_factor); output[0] = 2048 + ((samples[0] - prev) * scaling_factor);
for (unsigned int i = 1; i < samples.size(); i++) { for (unsigned int i = 1; i < SIZE; i++) {
// Take the rate of change and scale it. // Take the rate of change and scale it.
// 2048 is added as the output should be centered in the voltage range. // 2048 is added as the output should be centered in the voltage range.
output[i] = 2048 + ((samples[i] - samples[i - 1]) * scaling_factor); output[i] = 2048 + ((samples[i] - samples[i - 1]) * scaling_factor);
} }
// Save the last sample for the next iteration. // Save the last sample for the next iteration.
prev = samples[samples.size() - 1]; prev = samples[SIZE - 1];
return output; return output;
} }

@ -1,3 +1,13 @@
/**
* 6_iir_test.cpp
* Written by Clyne Sullivan.
*
* Implements a simple infinite impulse response (IIR) filter using an alpha
* parameter.
* To build upon this example, try setting `alpha` with a parameter knob:
* alpha = param1() / 4095.0
*/
Sample* process_data(Samples samples) Sample* process_data(Samples samples)
{ {
constexpr float alpha = 0.7; constexpr float alpha = 0.7;
@ -5,9 +15,9 @@ Sample *process_data(Samples samples)
static Sample prev = 2048; static Sample prev = 2048;
samples[0] = (1 - alpha) * samples[0] + alpha * prev; samples[0] = (1 - alpha) * samples[0] + alpha * prev;
for (unsigned int i = 1; i < samples.size(); i++) for (unsigned int i = 1; i < SIZE; i++)
samples[i] = (1 - alpha) * samples[i] + alpha * samples[i - 1]; samples[i] = (1 - alpha) * samples[i] + alpha * samples[i - 1];
prev = samples[samples.size() - 1]; prev = samples[SIZE - 1];
return samples.data(); return samples;
} }

@ -1,9 +1,17 @@
/**
* 7_iir_echo.cpp
* Written by Clyne Sullivan.
*
* This filter produces an echo of the given input. There are two parameters:
* alpha controls the feedback gain, and D controls the echo/delay length.
*/
Sample* process_data(Samples samples) Sample* process_data(Samples samples)
{ {
constexpr float alpha = 0.75; constexpr float alpha = 0.75;
constexpr unsigned int D = 100; constexpr unsigned int D = 100;
static Sample output[samples.size()]; static Samples output;
static Sample prev[D]; // prev[0] = output[0 - D] static Sample prev[D]; // prev[0] = output[0 - D]
// Do calculations with previous output // Do calculations with previous output
@ -11,12 +19,12 @@ Sample *process_data(Samples samples)
output[i] = samples[i] + alpha * (prev[i] - 2048); output[i] = samples[i] + alpha * (prev[i] - 2048);
// Do calculations with current samples // Do calculations with current samples
for (unsigned int i = D; i < samples.size(); i++) for (unsigned int i = D; i < SIZE; i++)
output[i] = samples[i] + alpha * (output[i - D] - 2048); output[i] = samples[i] + alpha * (output[i - D] - 2048);
// Save outputs for next computation // Save outputs for next computation
for (unsigned int i = 0; i < D; i++) for (unsigned int i = 0; i < D; i++)
prev[i] = output[samples.size() - (D - i)]; prev[i] = output[SIZE - (D - i)];
return output; return output;
} }

@ -118,22 +118,22 @@ return s;
)cpp"; )cpp";
static std::string file_header_l4 = R"cpp( static std::string file_header_l4 = R"cpp(
#include <cstdint> #include <cstdint>
#include <span>
using Sample = uint16_t; using Sample = uint16_t;
using Samples = std::span<Sample, $0>; using Samples = Sample[$0];
constexpr unsigned int SIZE = $0;
Sample *process_data(Samples samples); Sample *process_data(Samples samples);
extern "C" void process_data_entry() extern "C" void process_data_entry()
{ {
Sample *samples; Sample *samples;
asm("mov %0, r0" : "=r" (samples)); asm("mov %0, r0" : "=r" (samples));
process_data(Samples(samples, $0)); process_data(samples);
} }
static float PI = 3.14159265358979L; static inline float PI = 3.14159265358979L;
__attribute__((naked)) __attribute__((naked))
auto sin(float x) { static inline auto sin(float x) {
asm("vmov.f32 r1, s0;" asm("vmov.f32 r1, s0;"
"eor r0, r0;" "eor r0, r0;"
"svc 1;" "svc 1;"
@ -142,7 +142,7 @@ asm("vmov.f32 r1, s0;"
return 0; return 0;
} }
__attribute__((naked)) __attribute__((naked))
auto cos(float x) { static inline auto cos(float x) {
asm("vmov.f32 r1, s0;" asm("vmov.f32 r1, s0;"
"mov r0, #1;" "mov r0, #1;"
"svc 1;" "svc 1;"
@ -151,7 +151,7 @@ asm("vmov.f32 r1, s0;"
return 0; return 0;
} }
__attribute__((naked)) __attribute__((naked))
auto tan(float x) { static inline auto tan(float x) {
asm("vmov.f32 r1, s0;" asm("vmov.f32 r1, s0;"
"mov r0, #2;" "mov r0, #2;"
"svc 1;" "svc 1;"
@ -160,24 +160,24 @@ asm("vmov.f32 r1, s0;"
return 0; return 0;
} }
__attribute__((naked)) __attribute__((naked))
auto sqrt(float) { static inline auto sqrt(float) {
asm("vsqrt.f32 s0, s0; bx lr"); asm("vsqrt.f32 s0, s0; bx lr");
return 0; return 0;
} }
auto readpot1() { static inline auto param1() {
Sample s; Sample s;
asm("push {r4-r11}; eor r0, r0; svc 3; mov %0, r0; pop {r4-r11}" : "=r"(s)); asm("eor r0, r0; svc 3; mov %0, r0" : "=r" (s) :: "r0");
return s; return s;
} }
auto readpot2() { static inline auto param2() {
Sample s; Sample s;
asm("push {r4-r11}; mov r0, #1; svc 3; mov %0, r0; pop {r4-r11}" : "=r"(s)); asm("mov r0, #1; svc 3; mov %0, r0" : "=r" (s) :: "r0");
return s; return s;
} }
//void puts(const char *s) { //static inline void puts(const char *s) {
// 's' will already be in r0. // // 's' will already be in r0.
// asm("push {r4-r6}; svc 4; pop {r4-r6}"); // asm("push {r4-r6}; svc 4; pop {r4-r6}");
//} //}
@ -189,7 +189,7 @@ return s;
static std::string file_content = static std::string file_content =
R"cpp(Sample* process_data(Samples samples) R"cpp(Sample* process_data(Samples samples)
{ {
return samples.data(); return samples;
} }
)cpp"; )cpp";

Loading…
Cancel
Save