From 1b176cf6cd75c8031a140961655cdd3c16589a68 Mon Sep 17 00:00:00 2001
From: Clyne Sullivan <clyne@bitgloo.com>
Date: Sun, 9 Jan 2022 12:28:19 -0500
Subject: small changes; sig gen square(), triangle(), pulse()

---
 examples/4_fir_pro.cpp | 478 +++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 478 insertions(+)
 create mode 100644 examples/4_fir_pro.cpp

(limited to 'examples/4_fir_pro.cpp')

diff --git a/examples/4_fir_pro.cpp b/examples/4_fir_pro.cpp
new file mode 100644
index 0000000..b1a6832
--- /dev/null
+++ b/examples/4_fir_pro.cpp
@@ -0,0 +1,478 @@
+#include <cstdint>
+using float32_t = float;
+
+typedef struct
+{
+    uint16_t numTaps;     /**< number of filter coefficients in the filter. */
+    float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
+} arm_fir_instance_f32;
+
+static void arm_fir_f32(const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize);
+
+Sample *process_data(Samples samples)
+{
+	// 1. Define our array sizes (Be sure to set Run > Set buffer size... to below value!)
+	constexpr unsigned int buffer_size = 500;
+	constexpr unsigned int filter_size = 100;
+
+	// 2. Define our filter and the working arrays
+	static float filter[filter_size] = {
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+		.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f
+	};
+	static float input[buffer_size];
+	static float output[buffer_size];
+	static float working[buffer_size + filter_size];
+
+	// 3. Scale 0-4095 interger sample values to +/- 1.0 floats
+	for (unsigned int i = 0; i < samples.size(); i++)
+		input[i] = (samples[i] - 2048) / 2048.f;
+
+	// 4. Compute the FIR
+	arm_fir_instance_f32 fir { filter_size, working, filter };
+	arm_fir_f32(&fir, input, output, samples.size());
+
+	// 5. Convert float results back to 0-4095 range for output
+	for (unsigned int i = 0; i < samples.size(); i++)
+		samples[i] = output[i] * 2048.f + 2048;
+
+    return samples.data();
+}
+
+// Below taken from the CMSIS DSP Library (find it on GitHub)
+void arm_fir_f32(
+	const arm_fir_instance_f32 * S,
+	float32_t * pSrc,
+	float32_t * pDst,
+	uint32_t blockSize)
+{
+   float32_t *pState = S->pState;                 /* State pointer */
+   float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
+   float32_t *pStateCurnt;                        /* Points to the current sample of the state */
+   float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
+   float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7;     /* Accumulators */
+   float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0;  /* Temporary variables to hold state and coefficient values */
+   uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
+   uint32_t i, tapCnt, blkCnt;                    /* Loop counters */
+   float32_t p0,p1,p2,p3,p4,p5,p6,p7;             /* Temporary product values */
+
+   /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+   /* pStateCurnt points to the location where the new input data should be written */
+   pStateCurnt = &(S->pState[(numTaps - 1u)]);
+
+   /* Apply loop unrolling and compute 8 output values simultaneously.  
+    * The variables acc0 ... acc7 hold output values that are being computed:  
+    *  
+    *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]  
+    *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]  
+    *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]  
+    *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]  
+    */
+   blkCnt = blockSize >> 3;
+
+   /* First part of the processing with loop unrolling.  Compute 8 outputs at a time.  
+   ** a second loop below computes the remaining 1 to 7 samples. */
+   while(blkCnt > 0u)
+   {
+      /* Copy four new input samples into the state buffer */
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+
+      /* Set all accumulators to zero */
+      acc0 = 0.0f;
+      acc1 = 0.0f;
+      acc2 = 0.0f;
+      acc3 = 0.0f;
+      acc4 = 0.0f;
+      acc5 = 0.0f;
+      acc6 = 0.0f;
+      acc7 = 0.0f;		
+
+      /* Initialize state pointer */
+      px = pState;
+
+      /* Initialize coeff pointer */
+      pb = (pCoeffs);		
+   
+      /* This is separated from the others to avoid 
+       * a call to __aeabi_memmove which would be slower
+       */
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+      *pStateCurnt++ = *pSrc++;
+
+      /* Read the first seven samples from the state buffer:  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+      x0 = *px++;
+      x1 = *px++;
+      x2 = *px++;
+      x3 = *px++;
+      x4 = *px++;
+      x5 = *px++;
+      x6 = *px++;
+
+      /* Loop unrolling.  Process 8 taps at a time. */
+      tapCnt = numTaps >> 3u;
+      
+      /* Loop over the number of taps.  Unroll by a factor of 8.  
+       ** Repeat until we've computed numTaps-8 coefficients. */
+      while(tapCnt > 0u)
+      {
+         /* Read the b[numTaps-1] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-3] sample */
+         x7 = *(px++);
+
+         /* acc0 +=  b[numTaps-1] * x[n-numTaps] */
+         p0 = x0 * c0;
+
+         /* acc1 +=  b[numTaps-1] * x[n-numTaps-1] */
+         p1 = x1 * c0;
+
+         /* acc2 +=  b[numTaps-1] * x[n-numTaps-2] */
+         p2 = x2 * c0;
+
+         /* acc3 +=  b[numTaps-1] * x[n-numTaps-3] */
+         p3 = x3 * c0;
+
+         /* acc4 +=  b[numTaps-1] * x[n-numTaps-4] */
+         p4 = x4 * c0;
+
+         /* acc1 +=  b[numTaps-1] * x[n-numTaps-5] */
+         p5 = x5 * c0;
+
+         /* acc2 +=  b[numTaps-1] * x[n-numTaps-6] */
+         p6 = x6 * c0;
+
+         /* acc3 +=  b[numTaps-1] * x[n-numTaps-7] */
+         p7 = x7 * c0;
+         
+         /* Read the b[numTaps-2] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-4] sample */
+         x0 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+
+         /* Perform the multiply-accumulate */
+         p0 = x1 * c0;
+         p1 = x2 * c0;   
+         p2 = x3 * c0;   
+         p3 = x4 * c0;   
+         p4 = x5 * c0;   
+         p5 = x6 * c0;   
+         p6 = x7 * c0;   
+         p7 = x0 * c0;   
+         
+         /* Read the b[numTaps-3] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-5] sample */
+         x1 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x2 * c0;
+         p1 = x3 * c0;   
+         p2 = x4 * c0;   
+         p3 = x5 * c0;   
+         p4 = x6 * c0;   
+         p5 = x7 * c0;   
+         p6 = x0 * c0;   
+         p7 = x1 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x2 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x3 * c0;
+         p1 = x4 * c0;   
+         p2 = x5 * c0;   
+         p3 = x6 * c0;   
+         p4 = x7 * c0;   
+         p5 = x0 * c0;   
+         p6 = x1 * c0;   
+         p7 = x2 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x3 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x4 * c0;
+         p1 = x5 * c0;   
+         p2 = x6 * c0;   
+         p3 = x7 * c0;   
+         p4 = x0 * c0;   
+         p5 = x1 * c0;   
+         p6 = x2 * c0;   
+         p7 = x3 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x4 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x5 * c0;
+         p1 = x6 * c0;   
+         p2 = x7 * c0;   
+         p3 = x0 * c0;   
+         p4 = x1 * c0;   
+         p5 = x2 * c0;   
+         p6 = x3 * c0;   
+         p7 = x4 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x5 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x6 * c0;
+         p1 = x7 * c0;   
+         p2 = x0 * c0;   
+         p3 = x1 * c0;   
+         p4 = x2 * c0;   
+         p5 = x3 * c0;   
+         p6 = x4 * c0;   
+         p7 = x5 * c0;   
+
+         /* Read the b[numTaps-4] coefficient */
+         c0 = *(pb++);
+
+         /* Read x[n-numTaps-6] sample */
+         x6 = *(px++);
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Perform the multiply-accumulates */      
+         p0 = x7 * c0;
+         p1 = x0 * c0;   
+         p2 = x1 * c0;   
+         p3 = x2 * c0;   
+         p4 = x3 * c0;   
+         p5 = x4 * c0;   
+         p6 = x5 * c0;   
+         p7 = x6 * c0;   
+
+         tapCnt--;
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+      }
+
+      /* If the filter length is not a multiple of 8, compute the remaining filter taps */
+      tapCnt = numTaps % 0x8u;
+
+      while(tapCnt > 0u)
+      {
+         /* Read coefficients */
+         c0 = *(pb++);
+
+         /* Fetch 1 state variable */
+         x7 = *(px++);
+
+         /* Perform the multiply-accumulates */      
+         p0 = x0 * c0;
+         p1 = x1 * c0;   
+         p2 = x2 * c0;   
+         p3 = x3 * c0;   
+         p4 = x4 * c0;   
+         p5 = x5 * c0;   
+         p6 = x6 * c0;   
+         p7 = x7 * c0;   
+
+         /* Reuse the present sample states for next sample */
+         x0 = x1;
+         x1 = x2;
+         x2 = x3;
+         x3 = x4;
+         x4 = x5;
+         x5 = x6;
+         x6 = x7;
+         
+         acc0 += p0;
+         acc1 += p1;
+         acc2 += p2;
+         acc3 += p3;
+         acc4 += p4;
+         acc5 += p5;
+         acc6 += p6;
+         acc7 += p7;
+
+         /* Decrement the loop counter */
+         tapCnt--;
+      }
+
+      /* Advance the state pointer by 8 to process the next group of 8 samples */
+      pState = pState + 8;
+
+      /* The results in the 8 accumulators, store in the destination buffer. */
+      *pDst++ = acc0;
+      *pDst++ = acc1;
+      *pDst++ = acc2;
+      *pDst++ = acc3;
+      *pDst++ = acc4;
+      *pDst++ = acc5;
+      *pDst++ = acc6;
+      *pDst++ = acc7;
+
+      blkCnt--;
+   }
+
+   /* If the blockSize is not a multiple of 8, compute any remaining output samples here.  
+   ** No loop unrolling is used. */
+   blkCnt = blockSize % 0x8u;
+
+   while(blkCnt > 0u)
+   {
+      /* Copy one sample at a time into state buffer */
+      *pStateCurnt++ = *pSrc++;
+
+      /* Set the accumulator to zero */
+      acc0 = 0.0f;
+
+      /* Initialize state pointer */
+      px = pState;
+
+      /* Initialize Coefficient pointer */
+      pb = (pCoeffs);
+
+      i = numTaps;
+
+      /* Perform the multiply-accumulates */
+      do
+      {
+         acc0 += *px++ * *pb++;
+         i--;
+
+      } while(i > 0u);
+
+      /* The result is store in the destination buffer. */
+      *pDst++ = acc0;
+
+      /* Advance state pointer by 1 for the next sample */
+      pState = pState + 1;
+
+      blkCnt--;
+   }
+
+   /* Processing is complete.  
+   ** Now copy the last numTaps - 1 samples to the start of the state buffer.  
+   ** This prepares the state buffer for the next function call. */
+
+   /* Points to the start of the state buffer */
+   pStateCurnt = S->pState;
+
+   tapCnt = (numTaps - 1u) >> 2u;
+
+   /* copy data */
+   while(tapCnt > 0u)
+   {
+      *pStateCurnt++ = *pState++;
+      *pStateCurnt++ = *pState++;
+      *pStateCurnt++ = *pState++;
+      *pStateCurnt++ = *pState++;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+   }
+
+   /* Calculate remaining number of copies */
+   tapCnt = (numTaps - 1u) % 0x4u;
+
+   /* Copy the remaining q31_t data */
+   while(tapCnt > 0u)
+   {
+      *pStateCurnt++ = *pState++;
+
+      /* Decrement the loop counter */
+      tapCnt--;
+   }
+}
-- 
cgit v1.2.3


From f211f9628854b417000192c59d6ab22b946119b1 Mon Sep 17 00:00:00 2001
From: Clyne Sullivan <clyne@bitgloo.com>
Date: Sun, 22 May 2022 13:37:49 -0400
Subject: make helper funcs inline; drop std::span for algo

---
 examples/1_convolve_simple.cpp       |  9 +++---
 examples/2_convolve_overlap_save.cpp |  8 ++---
 examples/3_fir.cpp                   |  8 ++---
 examples/4_fir_pro.cpp               | 10 +++----
 examples/5_fir_differentiator.cpp    |  8 ++---
 examples/6_iir_test.cpp              | 18 ++++++++---
 examples/7_iir_echo.cpp              | 16 +++++++---
 source/stmdsp/stmdsp_code.hpp        | 58 ++++++++++++++++++------------------
 8 files changed, 77 insertions(+), 58 deletions(-)

(limited to 'examples/4_fir_pro.cpp')

diff --git a/examples/1_convolve_simple.cpp b/examples/1_convolve_simple.cpp
index 8de05d3..95877f1 100644
--- a/examples/1_convolve_simple.cpp
+++ b/examples/1_convolve_simple.cpp
@@ -7,10 +7,10 @@
  * transient response is not calculated.
  */
 
-Sample *process_data(Samples samples)
+Sample* process_data(Samples samples)
 {
-    // Define our output buffer. SIZE is the largest size of the 'samples' buffer.
-    static Sample buffer[samples.size()];
+    // Define our output buffer.
+    static Samples buffer;
 
     // Define our filter
     constexpr unsigned int filter_size = 3;
@@ -19,7 +19,8 @@ Sample *process_data(Samples samples)
     };
 
     // Begin convolving:
-    for (int n = 0; n < samples.size() - (filter_size - 1); n++) {
+    // SIZE is the size of the sample buffer.
+    for (int n = 0; n < SIZE - (filter_size - 1); n++) {
         buffer[n] = 0;
         for (int k = 0; k < filter_size; k++)
             buffer[n] += samples[n + k] * filter[k];
diff --git a/examples/2_convolve_overlap_save.cpp b/examples/2_convolve_overlap_save.cpp
index 57c020a..5651f3e 100644
--- a/examples/2_convolve_overlap_save.cpp
+++ b/examples/2_convolve_overlap_save.cpp
@@ -11,9 +11,9 @@
  * computation.
  */
 
-Sample *process_data(Samples samples)
+Sample* process_data(Samples samples)
 {
-    static Sample buffer[samples.size()];
+    static Samples buffer;
 
     constexpr unsigned int filter_size = 3;
 	float filter[filter_size] = {
@@ -23,7 +23,7 @@ Sample *process_data(Samples samples)
     // Keep a buffer of extra samples for overlap-save
     static Sample prev[filter_size];
 
-    for (int n = 0; n < samples.size(); n++) {
+    for (int n = 0; n < SIZE; n++) {
         buffer[n] = 0;
 
         for (int k = 0; k < filter_size; k++) {
@@ -40,7 +40,7 @@ Sample *process_data(Samples samples)
 
     // Save samples for the next convolution run
     for (int i = 0; i < filter_size; i++)
-        prev[i] = samples[samples.size() - filter_size + i];
+        prev[i] = samples[SIZE - filter_size + i];
 
     return buffer;
 }
diff --git a/examples/3_fir.cpp b/examples/3_fir.cpp
index 3a68500..b6d8751 100644
--- a/examples/3_fir.cpp
+++ b/examples/3_fir.cpp
@@ -7,9 +7,9 @@
  * within the available execution time. Samples are also normalized so that they center around zero.
  */
 
-Sample *process_data(Samples samples)
+Sample* process_data(Samples samples)
 {
-    static Sample buffer[samples.size()];
+    static Samples buffer;
 
 	// Define the filter:
 	constexpr unsigned int filter_size = 3;
@@ -21,7 +21,7 @@ Sample *process_data(Samples samples)
     // Do an overlap-save convolution
     static Sample prev[filter_size];
 
-    for (int n = 0; n < samples.size(); n++) {
+    for (int n = 0; n < SIZE; n++) {
         // Using a float variable for accumulation allows for better code optimization
         float v = 0;
 
@@ -40,7 +40,7 @@ Sample *process_data(Samples samples)
 
     // Save samples for next convolution
     for (int i = 0; i < filter_size; i++)
-        prev[i] = samples[samples.size() - filter_size + i];
+        prev[i] = samples[SIZE - filter_size + i];
 
     return buffer;
 }
diff --git a/examples/4_fir_pro.cpp b/examples/4_fir_pro.cpp
index b1a6832..1771cd5 100644
--- a/examples/4_fir_pro.cpp
+++ b/examples/4_fir_pro.cpp
@@ -10,7 +10,7 @@ typedef struct
 
 static void arm_fir_f32(const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize);
 
-Sample *process_data(Samples samples)
+Sample* process_data(Samples samples)
 {
 	// 1. Define our array sizes (Be sure to set Run > Set buffer size... to below value!)
 	constexpr unsigned int buffer_size = 500;
@@ -34,18 +34,18 @@ Sample *process_data(Samples samples)
 	static float working[buffer_size + filter_size];
 
 	// 3. Scale 0-4095 interger sample values to +/- 1.0 floats
-	for (unsigned int i = 0; i < samples.size(); i++)
+	for (unsigned int i = 0; i < SIZE; i++)
 		input[i] = (samples[i] - 2048) / 2048.f;
 
 	// 4. Compute the FIR
 	arm_fir_instance_f32 fir { filter_size, working, filter };
-	arm_fir_f32(&fir, input, output, samples.size());
+	arm_fir_f32(&fir, input, output, SIZE);
 
 	// 5. Convert float results back to 0-4095 range for output
-	for (unsigned int i = 0; i < samples.size(); i++)
+	for (unsigned int i = 0; i < SIZE; i++)
 		samples[i] = output[i] * 2048.f + 2048;
 
-    return samples.data();
+    return samples;
 }
 
 // Below taken from the CMSIS DSP Library (find it on GitHub)
diff --git a/examples/5_fir_differentiator.cpp b/examples/5_fir_differentiator.cpp
index 72415c6..1500dee 100644
--- a/examples/5_fir_differentiator.cpp
+++ b/examples/5_fir_differentiator.cpp
@@ -7,23 +7,23 @@
  * A scaling factor is applied so that the output's form is more clearly visible.
  */
 
-Sample *process_data(Samples samples)
+Sample* process_data(Samples samples)
 {
     constexpr int scaling_factor = 4;
-	static Sample output[samples.size()];
+    static Samples output;
     static Sample prev = 2048;
 
     // Compute the first output value using the saved sample.
     output[0] = 2048 + ((samples[0] - prev) * scaling_factor);
 
-	for (unsigned int i = 1; i < samples.size(); i++) {
+	for (unsigned int i = 1; i < SIZE; i++) {
         // Take the rate of change and scale it.
         // 2048 is added as the output should be centered in the voltage range.
 		output[i] = 2048 + ((samples[i] - samples[i - 1]) * scaling_factor);
     }
 
 	// Save the last sample for the next iteration.
-    prev = samples[samples.size() - 1];
+    prev = samples[SIZE - 1];
 
     return output;
 }
diff --git a/examples/6_iir_test.cpp b/examples/6_iir_test.cpp
index 116a680..e0b266d 100644
--- a/examples/6_iir_test.cpp
+++ b/examples/6_iir_test.cpp
@@ -1,13 +1,23 @@
-Sample *process_data(Samples samples)
+/**
+ * 6_iir_test.cpp
+ * Written by Clyne Sullivan.
+ *
+ * Implements a simple infinite impulse response (IIR) filter using an alpha
+ * parameter.
+ * To build upon this example, try setting `alpha` with a parameter knob:
+ * alpha = param1() / 4095.0
+ */
+
+Sample* process_data(Samples samples)
 {
 	constexpr float alpha = 0.7;
 
 	static Sample prev = 2048;
 
 	samples[0] = (1 - alpha) * samples[0] + alpha * prev;
-	for (unsigned int i = 1; i < samples.size(); i++)
+	for (unsigned int i = 1; i < SIZE; i++)
 		samples[i] = (1 - alpha) * samples[i] + alpha * samples[i - 1];
-	prev = samples[samples.size() - 1];
+	prev = samples[SIZE - 1];
 
-	return samples.data();
+	return samples;
 }
diff --git a/examples/7_iir_echo.cpp b/examples/7_iir_echo.cpp
index 57e5605..75bf56e 100644
--- a/examples/7_iir_echo.cpp
+++ b/examples/7_iir_echo.cpp
@@ -1,9 +1,17 @@
-Sample *process_data(Samples samples)
+/**
+ * 7_iir_echo.cpp
+ * Written by Clyne Sullivan.
+ *
+ * This filter produces an echo of the given input. There are two parameters:
+ * alpha controls the feedback gain, and D controls the echo/delay length.
+ */
+
+Sample* process_data(Samples samples)
 {
 	constexpr float alpha = 0.75;
 	constexpr unsigned int D = 100;
 
-	static Sample output[samples.size()];
+	static Samples output;
 	static Sample prev[D]; // prev[0] = output[0 - D]
 
 	// Do calculations with previous output
@@ -11,12 +19,12 @@ Sample *process_data(Samples samples)
 		output[i] = samples[i] + alpha * (prev[i] - 2048);
 
 	// Do calculations with current samples
-	for (unsigned int i = D; i < samples.size(); i++)
+	for (unsigned int i = D; i < SIZE; i++)
 		output[i] = samples[i] + alpha * (output[i - D] - 2048);
 
 	// Save outputs for next computation
 	for (unsigned int i = 0; i < D; i++)
-		prev[i] = output[samples.size() - (D - i)];
+		prev[i] = output[SIZE - (D - i)];
 
 	return output;
 }
diff --git a/source/stmdsp/stmdsp_code.hpp b/source/stmdsp/stmdsp_code.hpp
index 6850459..7ba0ed2 100644
--- a/source/stmdsp/stmdsp_code.hpp
+++ b/source/stmdsp/stmdsp_code.hpp
@@ -118,67 +118,67 @@ return s;
 )cpp";
 static std::string file_header_l4 = R"cpp(
 #include <cstdint>
-#include <span>
 
 using Sample = uint16_t;
-using Samples = std::span<Sample, $0>;
+using Samples = Sample[$0];
+constexpr unsigned int SIZE = $0;
 
 Sample *process_data(Samples samples);
 extern "C" void process_data_entry()
 {
     Sample *samples;
     asm("mov %0, r0" : "=r" (samples));
-    process_data(Samples(samples, $0));
+    process_data(samples);
 }
 
-static float PI = 3.14159265358979L;
+static inline float PI = 3.14159265358979L;
 __attribute__((naked))
-auto sin(float x) {
-asm("vmov.f32 r1, s0;"
+static inline auto sin(float x) {
+    asm("vmov.f32 r1, s0;"
     "eor r0, r0;"
     "svc 1;"
     "vmov.f32 s0, r1;"
     "bx lr");
-return 0;
+    return 0;
 }
 __attribute__((naked))
-auto cos(float x) {
-asm("vmov.f32 r1, s0;"
+static inline auto cos(float x) {
+    asm("vmov.f32 r1, s0;"
 	"mov r0, #1;"
 	"svc 1;"
 	"vmov.f32 s0, r1;"
 	"bx lr");
-return 0;
+    return 0;
 }
 __attribute__((naked))
-auto tan(float x) {
-asm("vmov.f32 r1, s0;"
+static inline auto tan(float x) {
+    asm("vmov.f32 r1, s0;"
 	"mov r0, #2;"
 	"svc 1;"
 	"vmov.f32 s0, r1;"
 	"bx lr");
-return 0;
+    return 0;
 }
 __attribute__((naked))
-auto sqrt(float) {
-asm("vsqrt.f32 s0, s0; bx lr");
-return 0;
+static inline auto sqrt(float) {
+    asm("vsqrt.f32 s0, s0; bx lr");
+    return 0;
 }
 
-auto readpot1() {
-Sample s;
-asm("push {r4-r11}; eor r0, r0; svc 3; mov %0, r0; pop {r4-r11}" : "=r"(s));
-return s;
+static inline auto param1() {
+    Sample s;
+    asm("eor r0, r0; svc 3; mov %0, r0" : "=r" (s) :: "r0");
+    return s;
 }
-auto readpot2() {
-Sample s;
-asm("push {r4-r11}; mov r0, #1; svc 3; mov %0, r0; pop {r4-r11}" : "=r"(s));
-return s;
+static inline auto param2() {
+    Sample s;
+    asm("mov r0, #1; svc 3; mov %0, r0" : "=r" (s) :: "r0");
+    return s;
 }
 
-//void puts(const char *s) {
-// 's' will already be in r0.
-//asm("push {r4-r6}; svc 4; pop {r4-r6}");
+//static inline void puts(const char *s) {
+//    // 's' will already be in r0.
+//    asm("push {r4-r6}; svc 4; pop {r4-r6}");
 //}
 
 // End stmdspgui header code
@@ -187,9 +187,9 @@ return s;
 
 
 static std::string file_content = 
-R"cpp(Sample *process_data(Samples samples)
+R"cpp(Sample* process_data(Samples samples)
 {
-    return samples.data();
+    return samples;
 }
 )cpp";
 
-- 
cgit v1.2.3