/** * @file heap.c * A basic memory manager * * Copyright (C) 2018 Clyne Sullivan * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "heap.h" // Defines size of alignment on memory allocations #define HEAP_ALIGN 4 // Linked list of free'd memory static alloc_t *free_blocks; static void *heap_end; void heap_init(void *buf) { heap_end = buf; free_blocks = 0; } uint32_t heap_free(void) { uint32_t total = 0; // Count free'd block sizes for (alloc_t *node = free_blocks; node != 0; node = node->next) total += node->size; // Add remaining free memory to that total return total + (0x20018000 - (uint32_t)heap_end); } void *malloc(uint32_t size) { if (size == 0) return 0; // Round size to an aligned value size = (size + sizeof(alloc_t) + HEAP_ALIGN) & ~(HEAP_ALIGN - 1); // Begin searching through free'd blocks to see if we can reuse some memory. alloc_t *node = free_blocks; alloc_t *prev = 0; while (node != 0) { if (node->size >= size) { // If we can use this chunk, remove it from the free_blocks chain if (prev != 0) prev->next = node->next; else free_blocks = node->next; node->next = 0; // If this chunk is really big, give back the extra space if (node->size > size + 64) { // TODO why 64..? alloc_t *leftover = (alloc_t *)((uint32_t)node + sizeof(alloc_t) + size); leftover->size = node->size - size - sizeof(alloc_t); leftover->next = 0; free((uint8_t *)leftover + sizeof(alloc_t)); node->size = size; return (void *)((uint8_t *)node + sizeof(alloc_t)); } return (void *)((uint8_t *)node + sizeof(alloc_t)); } prev = node; node = node->next; } // No reusable chunks, take from the end of the heap node = (alloc_t *)heap_end; node->size = size; node->next = 0; heap_end = (void *)((uint8_t *)heap_end + size); return (void *)((uint8_t *)node + sizeof(alloc_t)); } void *calloc(uint32_t count, uint32_t size) { // Simply malloc and zero uint8_t *buf = malloc(count * size); for (uint32_t i = 0; i < count * size; i++) buf[i] = 0; // TODO safe? return buf; } void free(void *buf) { if (buf == 0) return; // Get the alloc_t structure of this chunk alloc_t *alloc = (alloc_t *)((uint8_t *)buf - sizeof(alloc_t)); if (alloc->next != 0) return; // Search through the free_blocks list to see if this free chunk can merge // into an adjacent free chunk. int merged = 0; for (alloc_t *prev = 0, *node = free_blocks; node != 0; prev = node, node = node->next) { // If the node after the current one is ours if ((uint32_t)node + sizeof(alloc_t) + node->size == (uint32_t)alloc) { // Merge by adding our node's size to this one merged |= 1; node->size += sizeof(alloc_t) + alloc->size; break; } // Or, if this current node is the one after ours else if ((uint32_t)buf + alloc->size == (uint32_t)node) { // Merge the current node into ours merged |= 1; alloc->size += sizeof(alloc_t) + node->size; alloc->next = node->next; // Take the current node's place in the free_blocks chain if (prev != 0) prev->next = alloc; else free_blocks = alloc; break; } } // If we couldn't merge, simply append to the chain if (merged == 0) { alloc->next = free_blocks; free_blocks = alloc; } }