summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions
diff options
context:
space:
mode:
authorClyne Sullivan <clyne@bitgloo.com>2025-02-02 11:26:53 -0500
committerClyne Sullivan <clyne@bitgloo.com>2025-02-02 11:26:53 -0500
commit9c59a184dba820975e5da6fcd5d248aee87f7e2f (patch)
tree6b30516adc2ba0f7b0a8f5fb5d2e6966c03108d8 /Drivers/CMSIS/DSP/Source/MatrixFunctions
parentd09f4289b5788d6a8b34e424841292e2b8529e56 (diff)
add l476 implementationl476
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt70
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c127
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c536
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c376
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c355
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c2038
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c935
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c1344
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c152
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c134
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c144
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c2697
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c1317
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c1535
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c966
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c748
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c1200
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c957
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c508
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c419
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c406
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c524
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c363
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c357
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c609
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c415
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c337
27 files changed, 7478 insertions, 12091 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt b/Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt
index f2b3211..41be093 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt
@@ -1,54 +1,16 @@
-cmake_minimum_required (VERSION 3.14)
-
-project(CMSISDSPMatrix)
-
-include(configLib)
-include(configDsp)
-
-file(GLOB SRCF64 "./*_f64.c")
-file(GLOB SRCF32 "./*_f32.c")
-file(GLOB SRCF16 "./*_f16.c")
-file(GLOB SRCQ31 "./*_q31.c")
-file(GLOB SRCQ15 "./*_q15.c")
-file(GLOB SRCQ7 "./*_q7.c")
-
-file(GLOB SRCU32 "./*_u32.c")
-file(GLOB SRCU16 "./*_u16.c")
-file(GLOB SRCU8 "./*_u8.c")
-
-add_library(CMSISDSPMatrix STATIC ${SRCF64})
-target_sources(CMSISDSPMatrix PRIVATE ${SRCF32})
-
-if ((NOT ARMAC5) AND (NOT DISABLEFLOAT16))
-target_sources(CMSISDSPMatrix PRIVATE ${SRCF16})
-endif()
-
-target_sources(CMSISDSPMatrix PRIVATE ${SRCQ31})
-target_sources(CMSISDSPMatrix PRIVATE ${SRCQ15})
-target_sources(CMSISDSPMatrix PRIVATE ${SRCQ7})
-
-target_sources(CMSISDSPMatrix PRIVATE ${SRCU32})
-target_sources(CMSISDSPMatrix PRIVATE ${SRCU16})
-target_sources(CMSISDSPMatrix PRIVATE ${SRCU8})
-
-configLib(CMSISDSPMatrix ${ROOT})
-configDsp(CMSISDSPMatrix ${ROOT})
-
-### Includes
-target_include_directories(CMSISDSPMatrix PUBLIC "${DSP}/Include")
-
-
-if ((NOT ARMAC5) AND (NOT DISABLEFLOAT16))
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_add_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_sub_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_trans_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_scale_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_mult_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_vec_mult_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_cmplx_trans_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_cmplx_mult_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_inverse_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_init_f16.c)
-target_sources(CMSISDSPMatrix PRIVATE arm_mat_cholesky_f16.c)
-
-endif()
+cmake_minimum_required (VERSION 3.6)
+
+project(CMSISDSPMatrix)
+
+
+file(GLOB SRC "./*_*.c")
+
+add_library(CMSISDSPMatrix STATIC ${SRC})
+
+configdsp(CMSISDSPMatrix ..)
+
+### Includes
+target_include_directories(CMSISDSPMatrix PUBLIC "${DSP}/../../Include")
+
+
+
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c
index d4fa42c..79d7be2 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c
@@ -1,74 +1,53 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: MatrixFunctions.c
- * Description: Combination of all matrix function source files.
- *
- * $Date: 18. March 2019
- * $Revision: V1.0.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2019 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "arm_mat_add_f32.c"
-#include "arm_mat_add_q15.c"
-#include "arm_mat_add_q31.c"
-#include "arm_mat_cmplx_mult_f32.c"
-#include "arm_mat_cmplx_mult_q15.c"
-#include "arm_mat_cmplx_mult_q31.c"
-#include "arm_mat_init_f32.c"
-#include "arm_mat_init_q15.c"
-#include "arm_mat_init_q31.c"
-#include "arm_mat_inverse_f32.c"
-#include "arm_mat_inverse_f64.c"
-#include "arm_mat_mult_f64.c"
-#include "arm_mat_mult_f32.c"
-#include "arm_mat_mult_fast_q15.c"
-#include "arm_mat_mult_fast_q31.c"
-#include "arm_mat_mult_q7.c"
-#include "arm_mat_mult_q15.c"
-#include "arm_mat_mult_q31.c"
-#include "arm_mat_mult_opt_q31.c"
-#include "arm_mat_scale_f32.c"
-#include "arm_mat_scale_q15.c"
-#include "arm_mat_scale_q31.c"
-#include "arm_mat_sub_f64.c"
-#include "arm_mat_sub_f32.c"
-#include "arm_mat_sub_q15.c"
-#include "arm_mat_sub_q31.c"
-#include "arm_mat_trans_f32.c"
-#include "arm_mat_trans_f64.c"
-#include "arm_mat_trans_q7.c"
-#include "arm_mat_trans_q15.c"
-#include "arm_mat_trans_q31.c"
-#include "arm_mat_vec_mult_f32.c"
-#include "arm_mat_vec_mult_q31.c"
-#include "arm_mat_vec_mult_q15.c"
-#include "arm_mat_vec_mult_q7.c"
-#include "arm_mat_cmplx_trans_f32.c"
-#include "arm_mat_cmplx_trans_q31.c"
-#include "arm_mat_cmplx_trans_q15.c"
-#include "arm_mat_cholesky_f64.c"
-#include "arm_mat_cholesky_f32.c"
-#include "arm_mat_solve_upper_triangular_f32.c"
-#include "arm_mat_solve_lower_triangular_f32.c"
-#include "arm_mat_solve_upper_triangular_f64.c"
-#include "arm_mat_solve_lower_triangular_f64.c"
-#include "arm_mat_ldlt_f32.c"
-#include "arm_mat_ldlt_f64.c"
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: MatrixFunctions.c
+ * Description: Combination of all matrix function source files.
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_mat_add_f32.c"
+#include "arm_mat_add_q15.c"
+#include "arm_mat_add_q31.c"
+#include "arm_mat_cmplx_mult_f32.c"
+#include "arm_mat_cmplx_mult_q15.c"
+#include "arm_mat_cmplx_mult_q31.c"
+#include "arm_mat_init_f32.c"
+#include "arm_mat_init_q15.c"
+#include "arm_mat_init_q31.c"
+#include "arm_mat_inverse_f32.c"
+#include "arm_mat_inverse_f64.c"
+#include "arm_mat_mult_f32.c"
+#include "arm_mat_mult_fast_q15.c"
+#include "arm_mat_mult_fast_q31.c"
+#include "arm_mat_mult_q15.c"
+#include "arm_mat_mult_q31.c"
+#include "arm_mat_scale_f32.c"
+#include "arm_mat_scale_q15.c"
+#include "arm_mat_scale_q31.c"
+#include "arm_mat_sub_f32.c"
+#include "arm_mat_sub_q15.c"
+#include "arm_mat_sub_q31.c"
+#include "arm_mat_trans_f32.c"
+#include "arm_mat_trans_q15.c"
+#include "arm_mat_trans_q31.c"
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c
index 879c8f8..7f9ec08 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c
@@ -1,304 +1,232 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_add_f32.c
- * Description: Floating-point matrix addition
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup MatrixAdd Matrix Addition
-
- Adds two matrices.
- \image html MatrixAddition.gif "Addition of two 3 x 3 matrices"
-
- The functions check to make sure that
- <code>pSrcA</code>, <code>pSrcB</code>, and <code>pDst</code> have the same
- number of rows and columns.
- */
-
-/**
- @addtogroup MatrixAdd
- @{
- */
-
-
-/**
- @brief Floating-point matrix addition.
- @param[in] pSrcA points to first input matrix structure
- @param[in] pSrcB points to second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
-
-#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
-arm_status arm_mat_add_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- arm_status status;
- uint32_t numSamples; /* total number of elements in the matrix */
- float32_t *pDataA, *pDataB, *pDataDst;
- f32x4_t vecA, vecB, vecDst;
- float32_t const *pSrcAVec;
- float32_t const *pSrcBVec;
- uint32_t blkCnt; /* loop counters */
-
- pDataA = pSrcA->pData;
- pDataB = pSrcB->pData;
- pDataDst = pDst->pData;
- pSrcAVec = (float32_t const *) pDataA;
- pSrcBVec = (float32_t const *) pDataB;
-
-#ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif
- {
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
- blkCnt = numSamples >> 2;
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* Add and then store the results in the destination buffer. */
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 4;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 4;
- vecDst = vaddq(vecA, vecB);
- vst1q(pDataDst, vecDst);
- pDataDst += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numSamples & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vld1q(pSrcAVec);
- vecB = vld1q(pSrcBVec);
- vecDst = vaddq_m(vecDst, vecA, vecB, p0);
- vstrwq_p(pDataDst, vecDst, p0);
- }
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- return (status);
-}
-#else
-#if defined(ARM_MATH_NEON)
-/*
-
-Neon version is assuming the matrix is small enough.
-So no blocking is used for taking into account cache effects.
-For big matrix, there exist better libraries for Neon.
-
-*/
-arm_status arm_mat_add_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
-
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix addition */
-
-#ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif
- {
- float32x4_t vec1;
- float32x4_t vec2;
- float32x4_t res;
-
- /* Total number of samples in the input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
- blkCnt = numSamples >> 2U;
-
- /* Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* Add and then store the results in the destination buffer. */
- vec1 = vld1q_f32(pIn1);
- vec2 = vld1q_f32(pIn2);
- res = vaddq_f32(vec1, vec2);
- vst1q_f32(pOut, res);
-
- /* update pointers to process next samples */
- pIn1 += 4U;
- pIn2 += 4U;
- pOut += 4U;
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = numSamples % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* Add and then store the results in the destination buffer. */
- *pOut++ = (*pIn1++) + (*pIn2++);
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_add_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix addition */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
-
- /* Add and store result in destination buffer. */
- *pOut++ = *pInA++ + *pInB++;
-
- *pOut++ = *pInA++ + *pInB++;
-
- *pOut++ = *pInA++ + *pInB++;
-
- *pOut++ = *pInA++ + *pInB++;
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
-
- /* Add and store result in destination buffer. */
- *pOut++ = *pInA++ + *pInB++;
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* #if defined(ARM_MATH_NEON) */
-#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
-
-/**
- @} end of MatrixAdd group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_add_f32.c
+ * Description: Floating-point matrix addition
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup MatrixAdd Matrix Addition
+
+ Adds two matrices.
+ \image html MatrixAddition.gif "Addition of two 3 x 3 matrices"
+
+ The functions check to make sure that
+ <code>pSrcA</code>, <code>pSrcB</code>, and <code>pDst</code> have the same
+ number of rows and columns.
+ */
+
+/**
+ @addtogroup MatrixAdd
+ @{
+ */
+
+
+/**
+ @brief Floating-point matrix addition.
+ @param[in] pSrcA points to first input matrix structure
+ @param[in] pSrcB points to second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ */
+#if defined(ARM_MATH_NEON)
+/*
+
+Neon version is assuming the matrix is small enough.
+So no blocking is used for taking into account cache effects.
+For big matrix, there exist better libraries for Neon.
+
+*/
+arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix addition */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif
+ {
+ float32x4_t vec1;
+ float32x4_t vec2;
+ float32x4_t res;
+
+ /* Total number of samples in the input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+ blkCnt = numSamples >> 2U;
+
+ /* Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+ /* Add and then store the results in the destination buffer. */
+ vec1 = vld1q_f32(pIn1);
+ vec2 = vld1q_f32(pIn2);
+ res = vaddq_f32(vec1, vec2);
+ vst1q_f32(pOut, res);
+
+ /* update pointers to process next samples */
+ pIn1 += 4U;
+ pIn2 += 4U;
+ pOut += 4U;
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = numSamples % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+ /* Add and then store the results in the destination buffer. */
+ *pOut++ = (*pIn1++) + (*pIn2++);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix addition */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcA->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+
+ /* Add and store result in destination buffer. */
+ *pOut++ = *pInA++ + *pInB++;
+
+ *pOut++ = *pInA++ + *pInB++;
+
+ *pOut++ = *pInA++ + *pInB++;
+
+ *pOut++ = *pInA++ + *pInB++;
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+
+ /* Add and store result in destination buffer. */
+ *pOut++ = *pInA++ + *pInB++;
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#endif /* #if defined(ARM_MATH_NEON) */
+
+/**
+ @} end of MatrixAdd group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c
index e27b72f..1e892fb 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c
@@ -1,227 +1,149 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_add_q15.c
- * Description: Q15 matrix addition
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixAdd
- @{
- */
-
-/**
- @brief Q15 matrix addition.
- @param[in] pSrcA points to first input matrix structure
- @param[in] pSrcB points to second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The function uses saturating arithmetic.
- Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-arm_status arm_mat_add_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst)
-{
- uint32_t numSamples; /* total number of elements in the matrix */
- q15_t *pDataA, *pDataB, *pDataDst;
- q15x8_t vecA, vecB, vecDst;
- q15_t const *pSrcAVec;
- q15_t const *pSrcBVec;
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix addition */
-
- pDataA = pSrcA->pData;
- pDataB = pSrcB->pData;
- pDataDst = pDst->pData;
- pSrcAVec = (q15_t const *) pDataA;
- pSrcBVec = (q15_t const *) pDataB;
-
- #ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
-
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
- blkCnt = numSamples >> 3;
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* Add and then store the results in the destination buffer. */
- vecA = vld1q(pSrcAVec); pSrcAVec += 8;
- vecB = vld1q(pSrcBVec); pSrcBVec += 8;
- vecDst = vqaddq(vecA, vecB);
- vst1q(pDataDst, vecDst); pDataDst += 8;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numSamples & 7;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecA = vld1q(pSrcAVec); pSrcAVec += 8;
- vecB = vld1q(pSrcBVec); pSrcBVec += 8;
- vecDst = vqaddq_m(vecDst, vecA, vecB, p0);
- vstrhq_p(pDataDst, vecDst, p0);
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_add_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst)
-{
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q15_t *pOut = pDst->pData; /* output data matrix pointer */
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix addition */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
-
- /* Add, saturate and store result in destination buffer. */
-#if defined (ARM_MATH_DSP)
- write_q15x2_ia (&pOut, __QADD16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB)));
-
- write_q15x2_ia (&pOut, __QADD16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB)));
-#else
- *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
-
- *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
-
- *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
-
- *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
-#endif
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
-
- /* Add, saturate and store result in destination buffer. */
-#if defined (ARM_MATH_DSP)
- *pOut++ = (q15_t) __QADD16(*pInA++, *pInB++);
-#else
- *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
-#endif
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixAdd group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_add_q15.c
+ * Description: Q15 matrix addition
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixAdd
+ @{
+ */
+
+/**
+ @brief Q15 matrix addition.
+ @param[in] pSrcA points to first input matrix structure
+ @param[in] pSrcB points to second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function uses saturating arithmetic.
+ Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
+ */
+
+arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst)
+{
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q15_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix addition */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcA->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+
+ /* Add, saturate and store result in destination buffer. */
+#if defined (ARM_MATH_DSP)
+ write_q15x2_ia (&pOut, __QADD16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB)));
+
+ write_q15x2_ia (&pOut, __QADD16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB)));
+#else
+ *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
+
+ *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
+
+ *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
+
+ *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
+#endif
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+
+ /* Add, saturate and store result in destination buffer. */
+#if defined (ARM_MATH_DSP)
+ *pOut++ = (q15_t) __QADD16(*pInA++, *pInB++);
+#else
+ *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16);
+#endif
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixAdd group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c
index 57f67e7..a9616f3 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c
@@ -1,216 +1,139 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_add_q31.c
- * Description: Q31 matrix addition
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixAdd
- @{
- */
-
-/**
- @brief Q31 matrix addition.
- @param[in] pSrcA points to first input matrix structure
- @param[in] pSrcB points to second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The function uses saturating arithmetic.
- Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-arm_status arm_mat_add_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- arm_status status; /* status of matrix addition */
- uint32_t numSamples; /* total number of elements in the matrix */
- q31_t *pDataA, *pDataB, *pDataDst;
- q31x4_t vecA, vecB, vecDst;
- q31_t const *pSrcAVec;
- q31_t const *pSrcBVec;
- uint32_t blkCnt; /* loop counters */
-
- pDataA = pSrcA->pData;
- pDataB = pSrcB->pData;
- pDataDst = pDst->pData;
- pSrcAVec = (q31_t const *) pDataA;
- pSrcBVec = (q31_t const *) pDataB;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
- blkCnt = numSamples >> 2;
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* Add and then store the results in the destination buffer. */
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 4;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 4;
- vecDst = vqaddq(vecA, vecB);
- vst1q(pDataDst, vecDst);
- pDataDst += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numSamples & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 4;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 4;
- vecDst = vqaddq_m(vecDst, vecA, vecB, p0);
- vstrwq_p(pDataDst, vecDst, p0);
- }
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_add_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix addition */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
-
- /* Add, saturate and store result in destination buffer. */
- *pOut++ = __QADD(*pInA++, *pInB++);
-
- *pOut++ = __QADD(*pInA++, *pInB++);
-
- *pOut++ = __QADD(*pInA++, *pInB++);
-
- *pOut++ = __QADD(*pInA++, *pInB++);
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
-
- /* Add, saturate and store result in destination buffer. */
- *pOut++ = __QADD(*pInA++, *pInB++);
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixAdd group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_add_q31.c
+ * Description: Q31 matrix addition
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixAdd
+ @{
+ */
+
+/**
+ @brief Q31 matrix addition.
+ @param[in] pSrcA points to first input matrix structure
+ @param[in] pSrcB points to second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function uses saturating arithmetic.
+ Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
+ */
+
+arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q31_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix addition */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcA->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+
+ /* Add, saturate and store result in destination buffer. */
+ *pOut++ = __QADD(*pInA++, *pInB++);
+
+ *pOut++ = __QADD(*pInA++, *pInB++);
+
+ *pOut++ = __QADD(*pInA++, *pInB++);
+
+ *pOut++ = __QADD(*pInA++, *pInB++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) + B(m,n) */
+
+ /* Add, saturate and store result in destination buffer. */
+ *pOut++ = __QADD(*pInA++, *pInB++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixAdd group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c
index 5add938..448122a 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c
@@ -1,1407 +1,631 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_cmplx_mult_f32.c
- * Description: Floating-point matrix multiplication
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup CmplxMatrixMult Complex Matrix Multiplication
-
- Complex Matrix multiplication is only defined if the number of columns of the
- first matrix equals the number of rows of the second matrix.
- Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
- in an <code>M x P</code> matrix.
- @par
- When matrix size checking is enabled, the functions check:
- - that the inner dimensions of <code>pSrcA</code> and <code>pSrcB</code> are equal;
- - that the size of the output matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
- */
-
-
-/**
- @addtogroup CmplxMatrixMult
- @{
- */
-
-/**
- @brief Floating-point Complex matrix multiplication.
- @param[in] pSrcA points to first input complex matrix structure
- @param[in] pSrcB points to second input complex matrix structure
- @param[out] pDst points to output complex matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
-#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#include "arm_helium_utils.h"
-
-#define MATRIX_DIM2 2
-#define MATRIX_DIM3 3
-#define MATRIX_DIM4 4
-
-__STATIC_INLINE arm_status arm_mat_cmplx_mult_f32_2x2_mve(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0;
- float32_t *pInA0 = pInA;
- float32_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM2;
- f32x4_t acc0, acc1;
- f32x4_t vecB, vecA;
-
- static const uint32_t offsetB0[4] = { 0, 1,
- MATRIX_DIM2 * CMPLX_DIM, MATRIX_DIM2 * CMPLX_DIM + 1
- };
-
- vecColBOffs0 = vldrwq_u32((uint32_t const *) offsetB0);
-
- pInB = (float32_t const *)pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc1[1] + acc1[3];
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 1] = acc1[1] + acc1[3];
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-__STATIC_INLINE arm_status arm_mat_cmplx_mult_f32_3x3_mve(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0, vecColBOffs1;
- float32_t *pInA0 = pInA;
- float32_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM3;
- float32_t *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM3;
- f32x4_t acc0, acc1, acc2;
- f32x4_t vecB, vecA;
- /* enable predication to disable upper half complex vector element */
- mve_pred16_t p0 = vctp32q(CMPLX_DIM);
-
- static const uint32_t offsetB0[4] = { 0, 1,
- MATRIX_DIM3 * CMPLX_DIM, MATRIX_DIM3 * CMPLX_DIM + 1
- };
- static const uint32_t offsetB1[4] = { 2 * MATRIX_DIM3 * CMPLX_DIM, 2 * MATRIX_DIM3 * CMPLX_DIM + 1,
- INACTIVELANE, INACTIVELANE
- };
-
- vecColBOffs0 = vldrwq_u32((uint32_t const *) offsetB0);
- vecColBOffs1 = vldrwq_u32((uint32_t const *) offsetB1);
-
- pInB = (float32_t const *)pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecColBOffs1, p0);
-
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc2[1] + acc2[3];
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecColBOffs1, p0);
-
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc2[1] + acc2[3];
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecColBOffs1, p0);
-
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = acc2[1] + acc2[3];
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-
-__STATIC_INLINE arm_status arm_mat_cmplx_mult_f32_4x4_mve(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0, vecColBOffs1;
- float32_t *pInA0 = pInA;
- float32_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM4;
- float32_t *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM4;
- float32_t *pInA3 = pInA2 + CMPLX_DIM * MATRIX_DIM4;
- f32x4_t acc0, acc1, acc2, acc3;
- f32x4_t vecB, vecA;
-
- static const uint32_t offsetB0[4] = { 0, 1,
- MATRIX_DIM4 * CMPLX_DIM, MATRIX_DIM4 * CMPLX_DIM + 1
- };
- static const uint32_t offsetB1[4] = { 2 * MATRIX_DIM4 * CMPLX_DIM, 2 * MATRIX_DIM4 * CMPLX_DIM + 1,
- 3 * MATRIX_DIM4 * CMPLX_DIM, 3 * MATRIX_DIM4 * CMPLX_DIM + 1
- };
-
- vecColBOffs0 = vldrwq_u32((uint32_t const *) offsetB0);
- vecColBOffs1 = vldrwq_u32((uint32_t const *) offsetB1);
-
- pInB = (float32_t const *)pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
-
- vecA = vldrwq_f32(pInA0);
- acc0 = vcmulq(vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(pInA1);
- acc1 = vcmulq(vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(pInA2);
- acc2 = vcmulq(vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(pInA3);
- acc3 = vcmulq(vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_f32(&pInA0[4]);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA1[4]);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA2[4]);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
-
- vecA = vldrwq_f32(&pInA3[4]);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc0[0] + acc0[2];
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc0[1] + acc0[3];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc1[0] + acc1[2];
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc1[1] + acc1[3];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc2[0] + acc2[2];
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc2[1] + acc2[3];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = acc3[0] + acc3[2];
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = acc3[1] + acc3[3];
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t const *pInB = (float32_t const *) pSrcB->pData; /* input data matrix pointer B */
- float32_t const *pInA = (float32_t const *) pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t col, i = 0U, row = numRowsA; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- uint32x4_t vecOffs, vecColBOffs;
- uint32_t blkCnt, rowCnt; /* loop counters */
-
- #ifdef ARM_MATH_MATRIX_CHECK
-
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
-
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /*
- * small squared matrix specialized routines
- */
- if (numRowsA == numColsB && numColsB == numColsA)
- {
- if (numRowsA == 1)
- {
- pOut[0] = pInA[0] * pInB[0] - pInA[1] * pInB[1];
- pOut[1] = pInA[0] * pInB[1] + pInA[1] * pInB[0];
- return (ARM_MATH_SUCCESS);
- }
- else if (numRowsA == 2)
- return arm_mat_cmplx_mult_f32_2x2_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 3)
- return arm_mat_cmplx_mult_f32_3x3_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 4)
- return arm_mat_cmplx_mult_f32_4x4_mve(pSrcA, pSrcB, pDst);
- }
-
- vecColBOffs[0] = 0;
- vecColBOffs[1] = 1;
- vecColBOffs[2] = numColsB * CMPLX_DIM;
- vecColBOffs[3] = (numColsB * CMPLX_DIM) + 1;
-
- /*
- * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
- */
-
- /*
- * row loop
- */
- rowCnt = row >> 2;
- while (rowCnt > 0u)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i * CMPLX_DIM;
- i = i + 4 * numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (float32_t const *) pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0u)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
-
- float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec;
- float32_t const *pInA0 = pInA;
- float32_t const *pInA1 = pInA0 + numColsA * CMPLX_DIM;
- float32_t const *pInA2 = pInA1 + numColsA * CMPLX_DIM;
- float32_t const *pInA3 = pInA2 + numColsA * CMPLX_DIM;
- f32x4_t acc0, acc1, acc2, acc3;
-
- acc0 = vdupq_n_f32(0.0f);
- acc1 = vdupq_n_f32(0.0f);
- acc2 = vdupq_n_f32(0.0f);
- acc3 = vdupq_n_f32(0.0f);
-
- pSrcA0Vec = (float32_t const *) pInA0;
- pSrcA1Vec = (float32_t const *) pInA1;
- pSrcA2Vec = (float32_t const *) pInA2;
- pSrcA3Vec = (float32_t const *) pInA3;
-
- vecOffs = vecColBOffs;
-
- /*
- * process 1 x 4 block output
- */
- blkCnt = (numColsA * CMPLX_DIM) >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
-
- vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- blkCnt--;
- }
-
-
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numColsA * CMPLX_DIM) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- f32x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
-
- vecA = vld1q(pSrcA0Vec);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
- vecA = vld1q(pSrcA1Vec);
- acc1 = vcmlaq(acc1, vecA, vecB);
- acc1 = vcmlaq_rot90(acc1, vecA, vecB);
- vecA = vld1q(pSrcA2Vec);
- acc2 = vcmlaq(acc2, vecA, vecB);
- acc2 = vcmlaq_rot90(acc2, vecA, vecB);
- vecA = vld1q(pSrcA3Vec);
- acc3 = vcmlaq(acc3, vecA, vecB);
- acc3 = vcmlaq_rot90(acc3, vecA, vecB);
-
- }
-
- px[0 * CMPLX_DIM * numColsB + 0] = acc0[0] + acc0[2];
- px[0 * CMPLX_DIM * numColsB + 1] = acc0[1] + acc0[3];
- px[1 * CMPLX_DIM * numColsB + 0] = acc1[0] + acc1[2];
- px[1 * CMPLX_DIM * numColsB + 1] = acc1[1] + acc1[3];
- px[2 * CMPLX_DIM * numColsB + 0] = acc2[0] + acc2[2];
- px[2 * CMPLX_DIM * numColsB + 1] = acc2[1] + acc2[3];
- px[3 * CMPLX_DIM * numColsB + 0] = acc3[0] + acc3[2];
- px[3 * CMPLX_DIM * numColsB + 1] = acc3[1] + acc3[3];
- px += CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (float32_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
- }
-
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += (numColsA * 4) * CMPLX_DIM;
- /*
- * Decrement the row loop counter
- */
- rowCnt --;
-
- }
-
- rowCnt = row & 3;
- while (rowCnt > 0u)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i * CMPLX_DIM;
- i = i + numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (float32_t const *) pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0u)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
-
- float32_t const *pSrcA0Vec;
- float32_t const *pInA0 = pInA;
- f32x4_t acc0;
-
- acc0 = vdupq_n_f32(0.0f);
-
- pSrcA0Vec = (float32_t const *) pInA0;
-
- vecOffs = vecColBOffs;
-
- /*
- * process 1 x 4 block output
- */
- blkCnt = (numColsA * CMPLX_DIM) >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
-
- vecA = vld1q(pSrcA0Vec);
- pSrcA0Vec += 4;
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
-
- blkCnt--;
- }
-
-
- /*
- * tail
- */
- blkCnt = (numColsA * CMPLX_DIM) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- f32x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
-
- vecA = vld1q(pSrcA0Vec);
- acc0 = vcmlaq(acc0, vecA, vecB);
- acc0 = vcmlaq_rot90(acc0, vecA, vecB);
-
- }
-
- px[0] = acc0[0] + acc0[2];
- px[1] = acc0[1] + acc0[3];
-
- px += CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (float32_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
- }
-
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += numColsA * CMPLX_DIM;
- rowCnt--;
- }
-
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-
-}
-
-#else
-#if defined(ARM_MATH_NEON)
-arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- float32_t sumReal1, sumImag1; /* accumulator */
- float32_t a1, a1B,b1, b1B, c1, d1;
- float32_t sumReal2, sumImag2; /* accumulator */
-
-
- float32x4x2_t a0V, a1V;
- float32x4_t accR0,accI0, accR1,accI1,tempR, tempI;
- float32x2_t accum = vdup_n_f32(0);
- float32_t *pIn1B = pSrcA->pData;
-
- uint16_t col, i = 0U, j, rowCnt, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- float32_t sumReal1B, sumImag1B;
- float32_t sumReal2B, sumImag2B;
- float32_t *pxB;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
-
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
-
- rowCnt = row >> 1;
-
- /* Row loop */
- while (rowCnt > 0U)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
- pxB = px + 2 * numColsB;
-
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
-
- j = 0U;
-
- /* Column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal1 = 0.0f;
- sumImag1 = 0.0f;
- sumReal1B = 0.0f;
- sumImag1B = 0.0f;
-
- sumReal2 = 0.0f;
- sumImag2 = 0.0f;
- sumReal2B = 0.0f;
- sumImag2B = 0.0f;
-
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- pIn1B = pIn1 + 2*numColsA;
-
- accR0 = vdupq_n_f32(0.0);
- accI0 = vdupq_n_f32(0.0);
- accR1 = vdupq_n_f32(0.0);
- accI1 = vdupq_n_f32(0.0);
-
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2;
-
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- a1V = vld2q_f32(pIn1B); // load & separate real/imag pSrcA (de-interleave 2)
-
- pIn1 += 8;
- pIn1B += 8;
-
- tempR = vsetq_lane_f32(*pIn2,tempR,0);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,0);
- pIn2 += 2 * numColsB;
-
-
- tempR = vsetq_lane_f32(*pIn2,tempR,1);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,1);
- pIn2 += 2 * numColsB;
-
- tempR = vsetq_lane_f32(*pIn2,tempR,2);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,2);
- pIn2 += 2 * numColsB;
-
- tempR = vsetq_lane_f32(*pIn2,tempR,3);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,3);
- pIn2 += 2 * numColsB;
-
- accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
- accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
-
- accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
- accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
-
- accR1 = vmlaq_f32(accR1,a1V.val[0],tempR);
- accR1 = vmlsq_f32(accR1,a1V.val[1],tempI);
-
- accI1 = vmlaq_f32(accI1,a1V.val[1],tempR);
- accI1 = vmlaq_f32(accI1,a1V.val[0],tempI);
-
- /* Decrement the loop count */
- colCnt--;
- }
-
- accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
- sumReal1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
- sumImag1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(accR1), vget_high_f32(accR1));
- sumReal1B += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(accI1), vget_high_f32(accI1));
- sumImag1B += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a1 = *pIn1;
- a1B = *pIn1B;
-
- c1 = *pIn2;
-
- b1 = *(pIn1 + 1U);
- b1B = *(pIn1B + 1U);
-
- d1 = *(pIn2 + 1U);
-
- sumReal1 += a1 * c1;
- sumImag1 += b1 * c1;
-
- sumReal1B += a1B * c1;
- sumImag1B += b1B * c1;
-
- pIn1 += 2U;
- pIn1B += 2U;
- pIn2 += 2 * numColsB;
-
- sumReal2 -= b1 * d1;
- sumImag2 += a1 * d1;
-
- sumReal2B -= b1B * d1;
- sumImag2B += a1B * d1;
-
- /* Decrement the loop counter */
- colCnt--;
- }
-
- sumReal1 += sumReal2;
- sumImag1 += sumImag2;
-
- sumReal1B += sumReal2B;
- sumImag1B += sumImag2B;
-
- /* Store the result in the destination buffer */
- *px++ = sumReal1;
- *px++ = sumImag1;
- *pxB++ = sumReal1B;
- *pxB++ = sumImag1B;
-
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
-
- /* Decrement the column loop counter */
- col--;
- }
-
- /* Update the pointer pInA to point to the starting address of the next 2 row */
- i = i + 2*numColsB;
- pInA = pInA + 4 * numColsA;
-
- /* Decrement the row loop counter */
- rowCnt--;
- }
-
- rowCnt = row & 1;
- while (rowCnt > 0U)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
-
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
-
- j = 0U;
-
- /* Column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal1 = 0.0f;
- sumImag1 = 0.0f;
-
- sumReal2 = 0.0f;
- sumImag2 = 0.0f;
-
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
-
- accR0 = vdupq_n_f32(0.0);
- accI0 = vdupq_n_f32(0.0);
-
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2;
-
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- pIn1 += 8;
-
- tempR = vsetq_lane_f32(*pIn2,tempR,0);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,0);
- pIn2 += 2 * numColsB;
-
- tempR = vsetq_lane_f32(*pIn2,tempR,1);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,1);
- pIn2 += 2 * numColsB;
-
- tempR = vsetq_lane_f32(*pIn2,tempR,2);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,2);
- pIn2 += 2 * numColsB;
-
- tempR = vsetq_lane_f32(*pIn2,tempR,3);
- tempI = vsetq_lane_f32(*(pIn2 + 1U),tempI,3);
- pIn2 += 2 * numColsB;
-
- accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
- accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
-
- accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
- accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
-
- /* Decrement the loop count */
- colCnt--;
- }
-
- accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
- sumReal1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
- sumImag1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a1 = *pIn1;
- c1 = *pIn2;
-
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
-
- sumReal1 += a1 * c1;
- sumImag1 += b1 * c1;
-
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- sumReal2 -= b1 * d1;
- sumImag2 += a1 * d1;
-
- /* Decrement the loop counter */
- colCnt--;
- }
-
- sumReal1 += sumReal2;
- sumImag1 += sumImag2;
-
- /* Store the result in the destination buffer */
- *px++ = sumReal1;
- *px++ = sumImag1;
-
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
-
- /* Decrement the column loop counter */
- col--;
-
- }
-
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + 2 * numColsA;
-
- /* Decrement the row loop counter */
- rowCnt--;
-
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* Output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- float32_t sumReal, sumImag; /* Accumulator */
- float32_t a1, b1, c1, d1;
- uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
-
-#if defined (ARM_MATH_LOOPUNROLL)
- float32_t a0, b0, c0, d0;
-#endif
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
-
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
-
- j = 0U;
-
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal = 0.0f;
- sumImag = 0.0f;
-
- /* Initiate pointer pIn1 to point to starting address of column being processed */
- pIn1 = pInA;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
-
- /* Reading real part of complex matrix A */
- a0 = *pIn1;
-
- /* Reading real part of complex matrix B */
- c0 = *pIn2;
-
- /* Reading imaginary part of complex matrix A */
- b0 = *(pIn1 + 1U);
-
- /* Reading imaginary part of complex matrix B */
- d0 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += a0 * c0;
- sumImag += b0 * c0;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= b0 * d0;
- sumImag += a0 * d0;
-
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- /* read real and imag values from pSrcA and pSrcB buffer */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
-
- a0 = *(pIn1 );
- c0 = *(pIn2 );
- b0 = *(pIn1 + 1U);
- d0 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += a0 * c0;
- sumImag += b0 * c0;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= b0 * d0;
- sumImag += a0 * d0;
-
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
-
- /* Decrement loop count */
- colCnt--;
- }
-
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- colCnt = numColsA;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Store result in destination buffer */
- *px++ = sumReal;
- *px++ = sumImag;
-
- /* Update pointer pIn2 to point to starting address of next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
-
- /* Decrement column loop counter */
- col--;
-
- } while (col > 0U);
-
- /* Update pointer pInA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + 2 * numColsA;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#endif /* #if defined(ARM_MATH_NEON) */
-#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
-
-/**
- @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_cmplx_mult_f32.c
+ * Description: Floating-point matrix multiplication
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup CmplxMatrixMult Complex Matrix Multiplication
+
+ Complex Matrix multiplication is only defined if the number of columns of the
+ first matrix equals the number of rows of the second matrix.
+ Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
+ in an <code>M x P</code> matrix.
+ @par
+ When matrix size checking is enabled, the functions check:
+ - that the inner dimensions of <code>pSrcA</code> and <code>pSrcB</code> are equal;
+ - that the size of the output matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
+ */
+
+
+/**
+ @addtogroup CmplxMatrixMult
+ @{
+ */
+
+/**
+ @brief Floating-point Complex matrix multiplication.
+ @param[in] pSrcA points to first input complex matrix structure
+ @param[in] pSrcB points to second input complex matrix structure
+ @param[out] pDst points to output complex matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ */
+#if defined(ARM_MATH_NEON)
+arm_status arm_mat_cmplx_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ float32_t sumReal1, sumImag1; /* accumulator */
+ float32_t a0, b0, c0, d0;
+ float32_t a1, a1B,b1, b1B, c1, d1;
+ float32_t sumReal2, sumImag2; /* accumulator */
+
+
+ float32x4x2_t a0V, a1V;
+ float32x4_t accR0,accI0, accR1,accI1,tempR, tempI;
+ float32x2_t accum = vdup_n_f32(0);
+ float32_t *pIn1B = pSrcA->pData;
+
+ uint16_t col, i = 0U, j, rowCnt, row = numRowsA, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+ float32_t sumReal1B, sumImag1B;
+ float32_t sumReal2B, sumImag2B;
+ float32_t *pxB;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+ {
+
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+
+ rowCnt = row >> 1;
+
+ /* Row loop */
+ while (rowCnt > 0U)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + 2 * i;
+ pxB = px + 2 * numColsB;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ while (col > 0U)
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sumReal1 = 0.0f;
+ sumImag1 = 0.0f;
+ sumReal1B = 0.0f;
+ sumImag1B = 0.0f;
+
+ sumReal2 = 0.0f;
+ sumImag2 = 0.0f;
+ sumReal2B = 0.0f;
+ sumImag2B = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+ pIn1B = pIn1 + 2*numColsA;
+
+ accR0 = vdupq_n_f32(0.0);
+ accI0 = vdupq_n_f32(0.0);
+ accR1 = vdupq_n_f32(0.0);
+ accI1 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* Reading real part of complex matrix A */
+ a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
+ a1V = vld2q_f32(pIn1B); // load & separate real/imag pSrcA (de-interleave 2)
+
+ pIn1 += 8;
+ pIn1B += 8;
+
+ tempR[0] = *pIn2;
+ tempI[0] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[1] = *pIn2;
+ tempI[1] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[2] = *pIn2;
+ tempI[2] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[3] = *pIn2;
+ tempI[3] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
+ accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
+
+ accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
+ accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
+
+ accR1 = vmlaq_f32(accR1,a1V.val[0],tempR);
+ accR1 = vmlsq_f32(accR1,a1V.val[1],tempI);
+
+ accI1 = vmlaq_f32(accI1,a1V.val[1],tempR);
+ accI1 = vmlaq_f32(accI1,a1V.val[0],tempI);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
+ sumReal1 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
+ sumImag1 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(accR1), vget_high_f32(accR1));
+ sumReal1B += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(accI1), vget_high_f32(accI1));
+ sumImag1B += accum[0] + accum[1];
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA & 3;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a1 = *pIn1;
+ a1B = *pIn1B;
+
+ c1 = *pIn2;
+
+ b1 = *(pIn1 + 1U);
+ b1B = *(pIn1B + 1U);
+
+ d1 = *(pIn2 + 1U);
+
+ sumReal1 += a1 * c1;
+ sumImag1 += b1 * c1;
+
+ sumReal1B += a1B * c1;
+ sumImag1B += b1B * c1;
+
+ pIn1 += 2U;
+ pIn1B += 2U;
+ pIn2 += 2 * numColsB;
+
+ sumReal2 -= b1 * d1;
+ sumImag2 += a1 * d1;
+
+ sumReal2B -= b1B * d1;
+ sumImag2B += a1B * d1;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ sumReal1 += sumReal2;
+ sumImag1 += sumImag2;
+
+ sumReal1B += sumReal2B;
+ sumImag1B += sumImag2B;
+
+ /* Store the result in the destination buffer */
+ *px++ = sumReal1;
+ *px++ = sumImag1;
+ *pxB++ = sumReal1B;
+ *pxB++ = sumImag1B;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + 2U * j;
+
+ /* Decrement the column loop counter */
+ col--;
+ }
+
+ /* Update the pointer pInA to point to the starting address of the next 2 row */
+ i = i + 2*numColsB;
+ pInA = pInA + 4 * numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+ }
+
+ rowCnt = row & 1;
+ while (rowCnt > 0U)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + 2 * i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ while (col > 0U)
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sumReal1 = 0.0f;
+ sumImag1 = 0.0f;
+
+ sumReal2 = 0.0f;
+ sumImag2 = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+
+ accR0 = vdupq_n_f32(0.0);
+ accI0 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* Reading real part of complex matrix A */
+ a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
+ pIn1 += 8;
+
+ tempR[0] = *pIn2;
+ tempI[0] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[1] = *pIn2;
+ tempI[1] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[2] = *pIn2;
+ tempI[2] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ tempR[3] = *pIn2;
+ tempI[3] = *(pIn2 + 1U);
+ pIn2 += 2 * numColsB;
+
+ accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
+ accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
+
+ accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
+ accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
+ sumReal1 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
+ sumImag1 += accum[0] + accum[1];
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA & 3;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a1 = *pIn1;
+ c1 = *pIn2;
+
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ sumReal1 += a1 * c1;
+ sumImag1 += b1 * c1;
+
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ sumReal2 -= b1 * d1;
+ sumImag2 += a1 * d1;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ sumReal1 += sumReal2;
+ sumImag1 += sumImag2;
+
+ /* Store the result in the destination buffer */
+ *px++ = sumReal1;
+ *px++ = sumImag1;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + 2U * j;
+
+ /* Decrement the column loop counter */
+ col--;
+
+ }
+
+ /* Update the pointer pInA to point to the starting address of the next row */
+ i = i + numColsB;
+ pInA = pInA + 2 * numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_cmplx_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* Output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ float32_t sumReal, sumImag; /* Accumulator */
+ float32_t a1, b1, c1, d1;
+ uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+
+#if defined (ARM_MATH_LOOPUNROLL)
+ float32_t a0, b0, c0, d0;
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + 2 * i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sumReal = 0.0f;
+ sumImag = 0.0f;
+
+ /* Initiate pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+
+ /* Reading real part of complex matrix A */
+ a0 = *pIn1;
+
+ /* Reading real part of complex matrix B */
+ c0 = *pIn2;
+
+ /* Reading imaginary part of complex matrix A */
+ b0 = *(pIn1 + 1U);
+
+ /* Reading imaginary part of complex matrix B */
+ d0 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a0 * c0;
+ sumImag += b0 * c0;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b0 * d0;
+ sumImag += a0 * d0;
+
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a1 * c1;
+ sumImag += b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b1 * d1;
+ sumImag += a1 * d1;
+
+ a0 = *(pIn1 );
+ c0 = *(pIn2 );
+ b0 = *(pIn1 + 1U);
+ d0 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a0 * c0;
+ sumImag += b0 * c0;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b0 * d0;
+ sumImag += a0 * d0;
+
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a1 * c1;
+ sumImag += b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b1 * d1;
+ sumImag += a1 * d1;
+
+ /* Decrement loop count */
+ colCnt--;
+ }
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += a1 * c1;
+ sumImag += b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= b1 * d1;
+ sumImag += a1 * d1;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = sumReal;
+ *px++ = sumImag;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ j++;
+ pIn2 = pSrcB->pData + 2U * j;
+
+ /* Decrement column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + 2 * numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#endif /* #if defined(ARM_MATH_NEON) */
+
+/**
+ @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
index 5b9db9f..9c417aa 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
@@ -1,595 +1,340 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cmplx_mat_mult_q15.c
- * Description: Q15 complex matrix multiplication
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup CmplxMatrixMult
- @{
- */
-
-/**
- @brief Q15 Complex matrix multiplication.
- @param[in] pSrcA points to first input complex matrix structure
- @param[in] pSrcB points to second input complex matrix structure
- @param[out] pDst points to output complex matrix structure
- @param[in] pScratch points to an array for storing intermediate results
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Conditions for optimum performance
- Input, output and state buffers should be aligned by 32-bit
-
- @par Scaling and Overflow Behavior
- The function is implemented using an internal 64-bit accumulator. The inputs to the
- multiplications are in 1.15 format and multiplications yield a 2.30 result.
- The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- This approach provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
- truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
-
-arm_status arm_mat_cmplx_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pScratch)
-{
- q15_t const *pInA = (q15_t const *) pSrcA->pData; /* input data matrix pointer A of Q15 type */
- q15_t const *pInB = (q15_t const *) pSrcB->pData; /* input data matrix pointer B of Q15 type */
- q15_t const *pInB2;
- q15_t *px; /* Temporary output data matrix pointer */
- uint32_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint32_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint32_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint32_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
- uint32_t col, i = 0u, j, row = numRowsB; /* loop counters */
- uint32_t blkCnt; /* loop counters */
- uint16x8_t vecOffs, vecColBOffs;
- arm_status status; /* Status of matrix multiplication */
- (void)pScratch;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- vecColBOffs[0] = 0;
- vecColBOffs[1] = 1;
- vecColBOffs[2] = numColsB * CMPLX_DIM;
- vecColBOffs[3] = (numColsB * CMPLX_DIM) + 1;
- vecColBOffs[4] = 2 * numColsB * CMPLX_DIM;
- vecColBOffs[5] = 2 * (numColsB * CMPLX_DIM) + 1;
- vecColBOffs[6] = 3 * numColsB * CMPLX_DIM;
- vecColBOffs[7] = 3 * (numColsB * CMPLX_DIM) + 1;
-
- /*
- * Reset the variables for the usage in the following multiplication process
- */
- i = 0;
- row = numRowsA;
- px = pDst->pData;
-
- /*
- * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
- */
-
- /*
- * row loop
- */
- while (row > 0u)
- {
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB >> 1;
- j = 0;
- /*
- * column loop
- */
- while (col > 0u)
- {
- q15_t const *pSrcAVec;
- //, *pSrcBVec, *pSrcB2Vec;
- q15x8_t vecA, vecB, vecB2;
- q63_t acc0, acc1, acc2, acc3;
-
- /*
- * Initiate the pointer pIn1 to point to the starting address of the column being processed
- */
- pInA = pSrcA->pData + i;
- pInB = pSrcB->pData + j;
- pInB2 = pInB + CMPLX_DIM;
-
- j += 2 * CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
-
- /*
- * Initiate the pointers
- * - current Matrix A rows
- * - 2 x consecutive Matrix B' rows (j increment is 2 x numRowsB)
- */
- pSrcAVec = (q15_t const *) pInA;
-
- acc0 = 0LL;
- acc1 = 0LL;
- acc2 = 0LL;
- acc3 = 0LL;
-
- vecOffs = vecColBOffs;
-
-
- blkCnt = (numColsA * CMPLX_DIM) >> 3;
- while (blkCnt > 0U)
- {
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 8;
- vecB = vldrhq_gather_shifted_offset(pInB, vecOffs);
-
- acc0 = vmlsldavaq_s16(acc0, vecA, vecB);
- acc1 = vmlaldavaxq_s16(acc1, vecA, vecB);
- vecB2 = vldrhq_gather_shifted_offset(pInB2, vecOffs);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vaddq_n_u16(vecOffs, (uint16_t) (numColsB * 4 * CMPLX_DIM));
-
- acc2 = vmlsldavaq_s16(acc2, vecA, vecB2);
- acc3 = vmlaldavaxq_s16(acc3, vecA, vecB2);
-
- blkCnt--;
- }
-
- /*
- * tail
- */
- blkCnt = (numColsA * CMPLX_DIM) & 7;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecB = vldrhq_gather_shifted_offset(pInB, vecOffs);
-
- vecA = vldrhq_z_s16(pSrcAVec, p0);
-
- acc0 = vmlsldavaq_s16(acc0, vecA, vecB);
- acc1 = vmlaldavaxq_s16(acc1, vecA, vecB);
- vecB2 = vldrhq_gather_shifted_offset(pInB2, vecOffs);
-
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vaddq_n_u16(vecOffs, (uint16_t) (numColsB * 4 * CMPLX_DIM));
-
- acc2 = vmlsldavaq_s16(acc2, vecA, vecB2);
- acc3 = vmlaldavaxq_s16(acc3, vecA, vecB2);
-
- }
- /*
- * Convert to 1.15, Store the results (1 x 2 block) in the destination buffer
- */
- *px++ = (q15_t)MVE_ASRL_SAT16(acc0, 15);
- *px++ = (q15_t)MVE_ASRL_SAT16(acc1, 15);
- *px++ = (q15_t)MVE_ASRL_SAT16(acc2, 15);
- *px++ = (q15_t)MVE_ASRL_SAT16(acc3, 15);
- }
-
- col = numColsB & 1;
- /*
- * column loop
- */
- while (col > 0u)
- {
-
- q15_t const *pSrcAVec;
- //, *pSrcBVec, *pSrcB2Vec;
- q15x8_t vecA, vecB;
- q63_t acc0, acc1;
-
- /*
- * Initiate the pointer pIn1 to point to the starting address of the column being processed
- */
- pInA = pSrcA->pData + i;
- pInB = pSrcB->pData + j;
-
- j += CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
-
- /*
- * Initiate the pointers
- * - current Matrix A rows
- * - 2 x consecutive Matrix B' rows (j increment is 2 x numRowsB)
- */
- pSrcAVec = (q15_t const *) pInA;
-
- acc0 = 0LL;
- acc1 = 0LL;
-
-
- vecOffs = vecColBOffs;
-
-
-
- blkCnt = (numColsA * CMPLX_DIM) >> 3;
- while (blkCnt > 0U)
- {
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 8;
- vecB = vldrhq_gather_shifted_offset(pInB, vecOffs);
-
- acc0 = vmlsldavaq_s16(acc0, vecA, vecB);
- acc1 = vmlaldavaxq_s16(acc1, vecA, vecB);
- /*
- * move Matrix B read offsets, 4 rows down
- */
- vecOffs = vaddq_n_u16(vecOffs, (uint16_t) (numColsB * 4 * CMPLX_DIM));
-
- blkCnt--;
- }
-
- /*
- * tail
- */
- blkCnt = (numColsA * CMPLX_DIM) & 7;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecB = vldrhq_gather_shifted_offset(pInB, vecOffs);
- vecA = vldrhq_z_s16(pSrcAVec, p0);
-
- acc0 = vmlsldavaq_s16(acc0, vecA, vecB);
- acc1 = vmlaldavaxq_s16(acc1, vecA, vecB);
-
- }
- /*
- * Convert to 1.15, Store the results (1 x 2 block) in the destination buffer
- */
- *px++ = (q15_t)MVE_ASRL_SAT16(acc0, 15);
- *px++ = (q15_t)MVE_ASRL_SAT16(acc1, 15);
-
- }
-
- i = i + numColsA * CMPLX_DIM;
-
- /*
- * Decrement the row loop counter
- */
- row--;
- }
-
-
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_cmplx_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pScratch)
-{
- q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
- q15_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
- q63_t sumReal, sumImag; /* accumulator */
- uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
-
-#if defined (ARM_MATH_DSP)
- q31_t prod1, prod2;
- q31_t pSourceA, pSourceB;
-#else
- q15_t a, b, c, d;
-#endif /* #if defined (ARM_MATH_DSP) */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Matrix transpose */
- do
- {
- /* The pointer px is set to starting address of column being processed */
- px = pSrcBT + i;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Apply loop unrolling and exchange the columns with row elements */
- col = numColsB >> 2;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- a second loop below computes the remaining 1 to 3 samples. */
- while (col > 0U)
- {
- /* Read two elements from row */
- write_q15x2 (px, read_q15x2_ia (&pInB));
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB * 2;
-
- /* Read two elements from row */
- write_q15x2 (px, read_q15x2_ia (&pInB));
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB * 2;
-
- /* Read two elements from row */
- write_q15x2 (px, read_q15x2_ia (&pInB));
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB * 2;
-
- /* Read two elements from row */
- write_q15x2 (px, read_q15x2_ia (&pInB));
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB * 2;
-
- /* Decrement column loop counter */
- col--;
- }
-
- /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- col = numColsB % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- col = numColsB;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (col > 0U)
- {
- /* Read two elements from row */
- write_q15x2 (px, read_q15x2_ia (&pInB));
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB * 2;
-
- /* Decrement column loop counter */
- col--;
- }
-
- i = i + 2U;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Reset variables for usage in following multiplication process */
- row = numRowsA;
- i = 0U;
- px = pDst->pData;
-
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
- pInB = pSrcBT;
-
- /* column loop */
- do
- {
- /* Set variable sum, that acts as accumulator, to zero */
- sumReal = 0;
- sumImag = 0;
-
- /* Initiate pointer pInA to point to starting address of column being processed */
- pInA = pSrcA->pData + i * 2;
-
- /* Apply loop unrolling and compute 2 MACs simultaneously. */
- colCnt = numColsA >> 1U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
-#if defined (ARM_MATH_DSP)
-
- /* read real and imag values from pSrcA and pSrcB buffer */
- pSourceA = read_q15x2_ia (&pInA);
- pSourceB = read_q15x2_ia (&pInB);
-
- /* Multiply and Accumlates */
-#ifdef ARM_MATH_BIG_ENDIAN
- prod1 = -__SMUSD(pSourceA, pSourceB);
-#else
- prod1 = __SMUSD(pSourceA, pSourceB);
-#endif
- prod2 = __SMUADX(pSourceA, pSourceB);
- sumReal += (q63_t) prod1;
- sumImag += (q63_t) prod2;
-
- /* read real and imag values from pSrcA and pSrcB buffer */
- pSourceA = read_q15x2_ia (&pInA);
- pSourceB = read_q15x2_ia (&pInB);
-
- /* Multiply and Accumlates */
-#ifdef ARM_MATH_BIG_ENDIAN
- prod1 = -__SMUSD(pSourceA, pSourceB);
-#else
- prod1 = __SMUSD(pSourceA, pSourceB);
-#endif
- prod2 = __SMUADX(pSourceA, pSourceB);
- sumReal += (q63_t) prod1;
- sumImag += (q63_t) prod2;
-
-#else /* #if defined (ARM_MATH_DSP) */
-
- /* read real and imag values from pSrcA buffer */
- a = *pInA;
- b = *(pInA + 1U);
- /* read real and imag values from pSrcB buffer */
- c = *pInB;
- d = *(pInB + 1U);
-
- /* Multiply and Accumlates */
- sumReal += (q31_t) a *c;
- sumImag += (q31_t) a *d;
- sumReal -= (q31_t) b *d;
- sumImag += (q31_t) b *c;
-
- /* read next real and imag values from pSrcA buffer */
- a = *(pInA + 2U);
- b = *(pInA + 3U);
- /* read next real and imag values from pSrcB buffer */
- c = *(pInB + 2U);
- d = *(pInB + 3U);
-
- /* update pointer */
- pInA += 4U;
-
- /* Multiply and Accumlates */
- sumReal += (q31_t) a * c;
- sumImag += (q31_t) a * d;
- sumReal -= (q31_t) b * d;
- sumImag += (q31_t) b * c;
- /* update pointer */
- pInB += 4U;
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* process odd column samples */
- if ((numColsA & 0x1U) > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
-#if defined (ARM_MATH_DSP)
- /* read real and imag values from pSrcA and pSrcB buffer */
- pSourceA = read_q15x2_ia (&pInA);
- pSourceB = read_q15x2_ia (&pInB);
-
- /* Multiply and Accumlates */
-#ifdef ARM_MATH_BIG_ENDIAN
- prod1 = -__SMUSD(pSourceA, pSourceB);
-#else
- prod1 = __SMUSD(pSourceA, pSourceB);
-#endif
- prod2 = __SMUADX(pSourceA, pSourceB);
- sumReal += (q63_t) prod1;
- sumImag += (q63_t) prod2;
-
-#else /* #if defined (ARM_MATH_DSP) */
-
- /* read real and imag values from pSrcA and pSrcB buffer */
- a = *pInA++;
- b = *pInA++;
- c = *pInB++;
- d = *pInB++;
-
- /* Multiply and Accumlates */
- sumReal += (q31_t) a * c;
- sumImag += (q31_t) a * d;
- sumReal -= (q31_t) b * d;
- sumImag += (q31_t) b * c;
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- }
-
- /* Saturate and store result in destination buffer */
- *px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
- *px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
-
- /* Decrement column loop counter */
- col--;
-
- } while (col > 0U);
-
- i = i + numColsA;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cmplx_mat_mult_q15.c
+ * Description: Q15 complex matrix multiplication
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup CmplxMatrixMult
+ @{
+ */
+
+/**
+ @brief Q15 Complex matrix multiplication.
+ @param[in] pSrcA points to first input complex matrix structure
+ @param[in] pSrcB points to second input complex matrix structure
+ @param[out] pDst points to output complex matrix structure
+ @param[in] pScratch points to an array for storing intermediate results
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Conditions for optimum performance
+ Input, output and state buffers should be aligned by 32-bit
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator. The inputs to the
+ multiplications are in 1.15 format and multiplications yield a 2.30 result.
+ The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ This approach provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
+ truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
+ */
+
+arm_status arm_mat_cmplx_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pScratch)
+{
+ q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
+ q15_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
+ q63_t sumReal, sumImag; /* accumulator */
+ uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#if defined (ARM_MATH_DSP)
+ q31_t prod1, prod2;
+ q31_t pSourceA, pSourceB;
+#else
+ q15_t a, b, c, d;
+#endif /* #if defined (ARM_MATH_DSP) */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Matrix transpose */
+ do
+ {
+ /* The pointer px is set to starting address of column being processed */
+ px = pSrcBT + i;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Apply loop unrolling and exchange the columns with row elements */
+ col = numColsB >> 2;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ a second loop below computes the remaining 1 to 3 samples. */
+ while (col > 0U)
+ {
+ /* Read two elements from row */
+ write_q15x2 (px, read_q15x2_ia (&pInB));
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from row */
+ write_q15x2 (px, read_q15x2_ia (&pInB));
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from row */
+ write_q15x2 (px, read_q15x2_ia (&pInB));
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB * 2;
+
+ /* Read two elements from row */
+ write_q15x2 (px, read_q15x2_ia (&pInB));
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB * 2;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ col = numColsB % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ col = numColsB;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (col > 0U)
+ {
+ /* Read two elements from row */
+ write_q15x2 (px, read_q15x2_ia (&pInB));
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB * 2;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ i = i + 2U;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Reset variables for usage in following multiplication process */
+ row = numRowsA;
+ i = 0U;
+ px = pDst->pData;
+
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
+ pInB = pSrcBT;
+
+ /* column loop */
+ do
+ {
+ /* Set variable sum, that acts as accumulator, to zero */
+ sumReal = 0;
+ sumImag = 0;
+
+ /* Initiate pointer pInA to point to starting address of column being processed */
+ pInA = pSrcA->pData + i * 2;
+
+ /* Apply loop unrolling and compute 2 MACs simultaneously. */
+ colCnt = numColsA >> 1U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+#if defined (ARM_MATH_DSP)
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ pSourceA = read_q15x2_ia ((q15_t **) &pInA);
+ pSourceB = read_q15x2_ia ((q15_t **) &pInB);
+
+ /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+ prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+ prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+ prod2 = __SMUADX(pSourceA, pSourceB);
+ sumReal += (q63_t) prod1;
+ sumImag += (q63_t) prod2;
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ pSourceA = read_q15x2_ia ((q15_t **) &pInA);
+ pSourceB = read_q15x2_ia ((q15_t **) &pInB);
+
+ /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+ prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+ prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+ prod2 = __SMUADX(pSourceA, pSourceB);
+ sumReal += (q63_t) prod1;
+ sumImag += (q63_t) prod2;
+
+#else /* #if defined (ARM_MATH_DSP) */
+
+ /* read real and imag values from pSrcA buffer */
+ a = *pInA;
+ b = *(pInA + 1U);
+ /* read real and imag values from pSrcB buffer */
+ c = *pInB;
+ d = *(pInB + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += (q31_t) a *c;
+ sumImag += (q31_t) a *d;
+ sumReal -= (q31_t) b *d;
+ sumImag += (q31_t) b *c;
+
+ /* read next real and imag values from pSrcA buffer */
+ a = *(pInA + 2U);
+ b = *(pInA + 3U);
+ /* read next real and imag values from pSrcB buffer */
+ c = *(pInB + 2U);
+ d = *(pInB + 3U);
+
+ /* update pointer */
+ pInA += 4U;
+
+ /* Multiply and Accumlates */
+ sumReal += (q31_t) a * c;
+ sumImag += (q31_t) a * d;
+ sumReal -= (q31_t) b * d;
+ sumImag += (q31_t) b * c;
+ /* update pointer */
+ pInB += 4U;
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* process odd column samples */
+ if ((numColsA & 0x1U) > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+#if defined (ARM_MATH_DSP)
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ pSourceA = read_q15x2_ia ((q15_t **) &pInA);
+ pSourceB = read_q15x2_ia ((q15_t **) &pInB);
+
+ /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+ prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+ prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+ prod2 = __SMUADX(pSourceA, pSourceB);
+ sumReal += (q63_t) prod1;
+ sumImag += (q63_t) prod2;
+
+#else /* #if defined (ARM_MATH_DSP) */
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ a = *pInA++;
+ b = *pInA++;
+ c = *pInB++;
+ d = *pInB++;
+
+ /* Multiply and Accumlates */
+ sumReal += (q31_t) a * c;
+ sumImag += (q31_t) a * d;
+ sumReal -= (q31_t) b * d;
+ sumImag += (q31_t) b * c;
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ }
+
+ /* Saturate and store result in destination buffer */
+ *px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
+ *px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
+
+ /* Decrement column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ i = i + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c
index ee784a6..0060fcb 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c
@@ -1,1061 +1,283 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_cmplx_mult_q31.c
- * Description: Floating-point matrix multiplication
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup CmplxMatrixMult
- @{
- */
-
-/**
- @brief Q31 Complex matrix multiplication.
- @param[in] pSrcA points to first input complex matrix structure
- @param[in] pSrcB points to second input complex matrix structure
- @param[out] pDst points to output complex matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The function is implemented using an internal 64-bit accumulator.
- The accumulator has a 2.62 format and maintains full precision of the intermediate
- multiplication results but provides only a single guard bit. There is no saturation
- on intermediate additions. Thus, if the accumulator overflows it wraps around and
- distorts the result. The input signals should be scaled down to avoid intermediate
- overflows. The input is thus scaled down by log2(numColsA) bits
- to avoid overflows, as a total of numColsA additions are performed internally.
- The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#include "arm_helium_utils.h"
-
-#define MATRIX_DIM2 2
-#define MATRIX_DIM3 3
-#define MATRIX_DIM4 4
-
-__STATIC_INLINE arm_status arm_mat_cmplx_mult_q31_2x2_mve(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t const *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0;
- q31_t const *pInA0 = pInA;
- q31_t const *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM2;
- q63_t acc0, acc1, acc2, acc3;
- q31x4_t vecB, vecA;
-
- static const uint32_t offsetB0[4] = {
- 0, 1,
- MATRIX_DIM2 * CMPLX_DIM, MATRIX_DIM2 * CMPLX_DIM + 1
- };
-
- vecColBOffs0 = vldrwq_u32(offsetB0);
-
- pInB = (q31_t const *) pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 1] = (q31_t) asrl(acc3, 31);
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- pOut += CMPLX_DIM;
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM2 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM2 + 1] = (q31_t) asrl(acc3, 31);
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-__STATIC_INLINE arm_status arm_mat_cmplx_mult_q31_3x3_mve(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t const *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0, vecColBOffs1;
- q31_t const *pInA0 = pInA;
- q31_t const *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM3;
- q31_t const *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM3;
- q63_t acc0, acc1, acc2, acc3;
- q31x4_t vecB, vecB1, vecA;
- /*
- * enable predication to disable upper half complex vector element
- */
- mve_pred16_t p0 = vctp32q(CMPLX_DIM);
-
- static const uint32_t offsetB0[4] = {
- 0, 1,
- MATRIX_DIM3 * CMPLX_DIM, MATRIX_DIM3 * CMPLX_DIM + 1
- };
- static const uint32_t offsetB1[4] = {
- 2 * MATRIX_DIM3 * CMPLX_DIM, 2 * MATRIX_DIM3 * CMPLX_DIM + 1,
- INACTIVELANE, INACTIVELANE
- };
-
- vecColBOffs0 = vldrwq_u32(offsetB0);
- vecColBOffs1 = vldrwq_u32(offsetB1);
-
- pInB = (q31_t const *) pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecB1 = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_z_s32(&pInA0[4], p0);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_z_s32(&pInA1[4], p0);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc3, 31);
-
- vecA = vldrwq_s32(pInA2);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_z_s32(&pInA2[4], p0);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc0, 31);
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc1, 31);
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecB1 = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_z_s32(&pInA0[4], p0);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_z_s32(&pInA1[4], p0);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc3, 31);
-
- vecA = vldrwq_s32(pInA2);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_z_s32(&pInA2[4], p0);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc0, 31);
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc1, 31);
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecB1 = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_z_s32(&pInA0[4], p0);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_z_s32(&pInA1[4], p0);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc3, 31);
-
- vecA = vldrwq_s32(pInA2);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_z_s32(&pInA2[4], p0);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 0] = (q31_t) asrl(acc0, 31);
- pOut[2 * CMPLX_DIM * MATRIX_DIM3 + 1] = (q31_t) asrl(acc1, 31);
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-__STATIC_INLINE arm_status arm_mat_cmplx_mult_q31_4x4_mve(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t const *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs0, vecColBOffs1;
- q31_t const *pInA0 = pInA;
- q31_t const *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM4;
- q31_t const *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM4;
- q31_t const *pInA3 = pInA2 + CMPLX_DIM * MATRIX_DIM4;
- q63_t acc0, acc1, acc2, acc3;
- q31x4_t vecB, vecB1, vecA;
-
- static const uint32_t offsetB0[4] = {
- 0, 1,
- MATRIX_DIM4 * CMPLX_DIM, MATRIX_DIM4 * CMPLX_DIM + 1
- };
- static const uint32_t offsetB1[4] = {
- 2 * MATRIX_DIM4 * CMPLX_DIM, 2 * MATRIX_DIM4 * CMPLX_DIM + 1,
- 3 * MATRIX_DIM4 * CMPLX_DIM, 3 * MATRIX_DIM4 * CMPLX_DIM + 1
- };
-
- vecColBOffs0 = vldrwq_u32(offsetB0);
- vecColBOffs1 = vldrwq_u32(offsetB1);
-
- pInB = (q31_t const *) pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecB1 = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA0[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA1[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
-
- vecA = vldrwq_s32(pInA2);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA3);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA2[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA3[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecB1 = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA0[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA1[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
-
- vecA = vldrwq_s32(pInA2);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA3);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA2[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA3[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
- pOut += CMPLX_DIM;
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecB1 = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA0[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA1[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
-
- vecA = vldrwq_s32(pInA2);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA3);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA2[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA3[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
- pOut += CMPLX_DIM;
-
- /*
- * move to next B column
- */
- pInB = pInB + CMPLX_DIM;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecColBOffs0);
- vecB1 = vldrwq_gather_shifted_offset(pInB, vecColBOffs1);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA1);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA0[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA1[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[0 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[1 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
-
- vecA = vldrwq_s32(pInA2);
- acc0 = vmlsldavq_s32(vecA, vecB);
- acc1 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(pInA3);
- acc2 = vmlsldavq_s32(vecA, vecB);
- acc3 = vmlaldavxq_s32(vecA, vecB);
-
- vecA = vldrwq_s32(&pInA2[4]);
- acc0 = vmlsldavaq_s32(acc0, vecA, vecB1);
- acc1 = vmlaldavaxq_s32(acc1, vecA, vecB1);
-
- vecA = vldrwq_s32(&pInA3[4]);
- acc2 = vmlsldavaq_s32(acc2, vecA, vecB1);
- acc3 = vmlaldavaxq_s32(acc3, vecA, vecB1);
-
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc0, 31);
- pOut[2 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc1, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 0] = (q31_t) asrl(acc2, 31);
- pOut[3 * CMPLX_DIM * MATRIX_DIM4 + 1] = (q31_t) asrl(acc3, 31);
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-arm_status arm_mat_cmplx_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t const *pInB = (q31_t const *) pSrcB->pData; /* input data matrix pointer B */
- q31_t const *pInA = (q31_t const *) pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- q31_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t col, i = 0U, row = numRowsA; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- uint32x4_t vecOffs, vecColBOffs;
- uint32_t blkCnt, rowCnt; /* loop counters */
-
- #ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
-
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /*
- * small squared matrix specialized routines
- */
- if (numRowsA == numColsB && numColsB == numColsA)
- {
- if (numRowsA == 1)
- {
- q63_t sumReal = (q63_t) pInA[0] * pInB[0];
- sumReal -= (q63_t) pInA[1] * pInB[1];
-
- q63_t sumImag = (q63_t) pInA[0] * pInB[1];
- sumImag += (q63_t) pInA[1] * pInB[0];
-
- /* Store result in destination buffer */
- pOut[0] = (q31_t) clip_q63_to_q31(sumReal >> 31);
- pOut[1] = (q31_t) clip_q63_to_q31(sumImag >> 31);
- return (ARM_MATH_SUCCESS);
- }
- else if (numRowsA == 2)
- return arm_mat_cmplx_mult_q31_2x2_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 3)
- return arm_mat_cmplx_mult_q31_3x3_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 4)
- return arm_mat_cmplx_mult_q31_4x4_mve(pSrcA, pSrcB, pDst);
- }
-
- vecColBOffs[0] = 0;
- vecColBOffs[1] = 1;
- vecColBOffs[2] = numColsB * CMPLX_DIM;
- vecColBOffs[3] = (numColsB * CMPLX_DIM) + 1;
-
- /*
- * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
- */
-
- /*
- * row loop
- */
- rowCnt = row >> 1;
- while (rowCnt > 0u)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i * CMPLX_DIM;
- i = i + 2 * numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (q31_t const *) pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0u)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
-
- q31_t const *pSrcA0Vec, *pSrcA1Vec;
- q31_t const *pInA0 = pInA;
- q31_t const *pInA1 = pInA0 + numColsA * CMPLX_DIM;
- q63_t acc0, acc1, acc2, acc3;
-
- acc0 = 0LL;
- acc1 = 0LL;
- acc2 = 0LL;
- acc3 = 0LL;
-
- pSrcA0Vec = (q31_t const *) pInA0;
- pSrcA1Vec = (q31_t const *) pInA1;
-
-
- vecOffs = vecColBOffs;
-
- /*
- * process 1 x 2 block output
- */
- blkCnt = (numColsA * CMPLX_DIM) >> 2;
- while (blkCnt > 0U)
- {
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /*
- * move Matrix B read offsets, 2 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
-
-
- vecA = vld1q(pSrcA0Vec);
- pSrcA0Vec += 4;
- acc0 = vmlsldavaq(acc0, vecA, vecB);
- acc1 = vmlaldavaxq(acc1, vecA, vecB);
-
-
- vecA = vld1q(pSrcA1Vec);
- pSrcA1Vec += 4;
-
- acc2 = vmlsldavaq(acc2, vecA, vecB);
- acc3 = vmlaldavaxq(acc3, vecA, vecB);
-
-
- blkCnt--;
- }
-
-
- /*
- * tail
- */
- blkCnt = (numColsA * CMPLX_DIM) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
-
- /*
- * move Matrix B read offsets, 2 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
-
-
- vecA = vld1q(pSrcA0Vec);
- acc0 = vmlsldavaq(acc0, vecA, vecB);
- acc1 = vmlaldavaxq(acc1, vecA, vecB);
- vecA = vld1q(pSrcA1Vec);
- acc2 = vmlsldavaq(acc2, vecA, vecB);
- acc3 = vmlaldavaxq(acc3, vecA, vecB);
-
-
- }
-
- px[0 * CMPLX_DIM * numColsB + 0] = (q31_t) clip_q63_to_q31(acc0 >> 31);
- px[0 * CMPLX_DIM * numColsB + 1] = (q31_t) clip_q63_to_q31(acc1 >> 31);
- px[1 * CMPLX_DIM * numColsB + 0] = (q31_t) clip_q63_to_q31(acc2 >> 31);
- px[1 * CMPLX_DIM * numColsB + 1] = (q31_t) clip_q63_to_q31(acc3 >> 31);
- px += CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (q31_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
- }
-
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += (numColsA * 2) * CMPLX_DIM;
- /*
- * Decrement the row loop counter
- */
- rowCnt --;
-
- }
-
- rowCnt = row & 1;
- while (rowCnt > 0u)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i * CMPLX_DIM;
- i = i + numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (q31_t const *) pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0u)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
-
- q31_t const *pSrcA0Vec;
- q31_t const *pInA0 = pInA;
- q63_t acc0,acc1;
-
- acc0 = 0LL;
- acc1 = 0LL;
-
- pSrcA0Vec = (q31_t const *) pInA0;
-
- vecOffs = vecColBOffs;
-
- /*
- * process 1 x 2 block output
- */
- blkCnt = (numColsA * CMPLX_DIM) >> 2;
- while (blkCnt > 0U)
- {
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /*
- * move Matrix B read offsets, 2 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
-
- vecA = vld1q(pSrcA0Vec);
- pSrcA0Vec += 4;
- acc0 = vmlsldavaq(acc0, vecA, vecB);
- acc1 = vmlaldavaxq(acc1, vecA, vecB);
-
-
- blkCnt--;
- }
-
-
- /*
- * tail
- */
- blkCnt = (numColsA * CMPLX_DIM) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
-
- /*
- * move Matrix B read offsets, 2 rows down
- */
- vecOffs = vecOffs + (uint32_t) (numColsB * 2 * CMPLX_DIM);
-
- vecA = vld1q(pSrcA0Vec);
-
-
- acc0 = vmlsldavaq(acc0, vecA, vecB);
- acc1 = vmlaldavaxq(acc1, vecA, vecB);
-
-
- }
-
- px[0] = (q31_t) clip_q63_to_q31(acc0 >> 31);
- px[1] = (q31_t) clip_q63_to_q31(acc1 >> 31);
-
-
- px += CMPLX_DIM;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (q31_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
- }
-
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += numColsA * CMPLX_DIM;
- rowCnt--;
- }
-
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_cmplx_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* Output data matrix pointer */
- q31_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- q63_t sumReal, sumImag; /* Accumulator */
- q31_t a1, b1, c1, d1;
- uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
-
-#if defined (ARM_MATH_LOOPUNROLL)
- q31_t a0, b0, c0, d0;
-#endif
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
-
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
-
- j = 0U;
-
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal = 0.0;
- sumImag = 0.0;
-
- /* Initiate pointer pIn1 to point to starting address of column being processed */
- pIn1 = pInA;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
-
- /* Reading real part of complex matrix A */
- a0 = *pIn1;
-
- /* Reading real part of complex matrix B */
- c0 = *pIn2;
-
- /* Reading imaginary part of complex matrix A */
- b0 = *(pIn1 + 1U);
-
- /* Reading imaginary part of complex matrix B */
- d0 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += (q63_t) a0 * c0;
- sumImag += (q63_t) b0 * c0;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= (q63_t) b0 * d0;
- sumImag += (q63_t) a0 * d0;
-
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- /* read real and imag values from pSrcA and pSrcB buffer */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += (q63_t) a1 * c1;
- sumImag += (q63_t) b1 * c1;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= (q63_t) b1 * d1;
- sumImag += (q63_t) a1 * d1;
-
- a0 = *(pIn1 );
- c0 = *(pIn2 );
- b0 = *(pIn1 + 1U);
- d0 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += (q63_t) a0 * c0;
- sumImag += (q63_t) b0 * c0;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= (q63_t) b0 * d0;
- sumImag += (q63_t) a0 * d0;
-
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += (q63_t) a1 * c1;
- sumImag += (q63_t) b1 * c1;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= (q63_t) b1 * d1;
- sumImag += (q63_t) a1 * d1;
-
- /* Decrement loop count */
- colCnt--;
- }
-
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- colCnt = numColsA;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
-
- /* Multiply and Accumlates */
- sumReal += (q63_t) a1 * c1;
- sumImag += (q63_t) b1 * c1;
-
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
-
- /* Multiply and Accumlates */
- sumReal -= (q63_t) b1 * d1;
- sumImag += (q63_t) a1 * d1;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Store result in destination buffer */
- *px++ = (q31_t) clip_q63_to_q31(sumReal >> 31);
- *px++ = (q31_t) clip_q63_to_q31(sumImag >> 31);
-
- /* Update pointer pIn2 to point to starting address of next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
-
- /* Decrement column loop counter */
- col--;
-
- } while (col > 0U);
-
- /* Update pointer pInA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + 2 * numColsA;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_cmplx_mult_q31.c
+ * Description: Floating-point matrix multiplication
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup CmplxMatrixMult
+ @{
+ */
+
+/**
+ @brief Q31 Complex matrix multiplication.
+ @param[in] pSrcA points to first input complex matrix structure
+ @param[in] pSrcB points to second input complex matrix structure
+ @param[out] pDst points to output complex matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator.
+ The accumulator has a 2.62 format and maintains full precision of the intermediate
+ multiplication results but provides only a single guard bit. There is no saturation
+ on intermediate additions. Thus, if the accumulator overflows it wraps around and
+ distorts the result. The input signals should be scaled down to avoid intermediate
+ overflows. The input is thus scaled down by log2(numColsA) bits
+ to avoid overflows, as a total of numColsA additions are performed internally.
+ The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+ */
+
+arm_status arm_mat_cmplx_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ q31_t *pOut = pDst->pData; /* Output data matrix pointer */
+ q31_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ q63_t sumReal, sumImag; /* Accumulator */
+ q31_t a1, b1, c1, d1;
+ uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+
+#if defined (ARM_MATH_LOOPUNROLL)
+ q31_t a0, b0, c0, d0;
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + 2 * i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sumReal = 0.0;
+ sumImag = 0.0;
+
+ /* Initiate pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Apply loop unrolling and compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+
+ /* Reading real part of complex matrix A */
+ a0 = *pIn1;
+
+ /* Reading real part of complex matrix B */
+ c0 = *pIn2;
+
+ /* Reading imaginary part of complex matrix A */
+ b0 = *(pIn1 + 1U);
+
+ /* Reading imaginary part of complex matrix B */
+ d0 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += (q63_t) a0 * c0;
+ sumImag += (q63_t) b0 * c0;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= (q63_t) b0 * d0;
+ sumImag += (q63_t) a0 * d0;
+
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += (q63_t) a1 * c1;
+ sumImag += (q63_t) b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= (q63_t) b1 * d1;
+ sumImag += (q63_t) a1 * d1;
+
+ a0 = *(pIn1 );
+ c0 = *(pIn2 );
+ b0 = *(pIn1 + 1U);
+ d0 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += (q63_t) a0 * c0;
+ sumImag += (q63_t) b0 * c0;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= (q63_t) b0 * d0;
+ sumImag += (q63_t) a0 * d0;
+
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += (q63_t) a1 * c1;
+ sumImag += (q63_t) b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= (q63_t) b1 * d1;
+ sumImag += (q63_t) a1 * d1;
+
+ /* Decrement loop count */
+ colCnt--;
+ }
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+ a1 = *(pIn1 );
+ c1 = *(pIn2 );
+ b1 = *(pIn1 + 1U);
+ d1 = *(pIn2 + 1U);
+
+ /* Multiply and Accumlates */
+ sumReal += (q63_t) a1 * c1;
+ sumImag += (q63_t) b1 * c1;
+
+ /* update pointers */
+ pIn1 += 2U;
+ pIn2 += 2 * numColsB;
+
+ /* Multiply and Accumlates */
+ sumReal -= (q63_t) b1 * d1;
+ sumImag += (q63_t) a1 * d1;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = (q31_t) clip_q63_to_q31(sumReal >> 31);
+ *px++ = (q31_t) clip_q63_to_q31(sumImag >> 31);
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ j++;
+ pIn2 = pSrcB->pData + 2U * j;
+
+ /* Decrement column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + 2 * numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c
index d2a5201..5fcd121 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c
@@ -1,76 +1,76 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_init_f32.c
- * Description: Floating-point matrix initialization
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup MatrixInit Matrix Initialization
-
- Initializes the underlying matrix data structure.
- The functions set the <code>numRows</code>,
- <code>numCols</code>, and <code>pData</code> fields
- of the matrix data structure.
- */
-
-/**
- @addtogroup MatrixInit
- @{
- */
-
-/**
- @brief Floating-point matrix initialization.
- @param[in,out] S points to an instance of the floating-point matrix structure
- @param[in] nRows number of rows in the matrix
- @param[in] nColumns number of columns in the matrix
- @param[in] pData points to the matrix data array
- @return none
- */
-
-void arm_mat_init_f32(
- arm_matrix_instance_f32 * S,
- uint16_t nRows,
- uint16_t nColumns,
- float32_t * pData)
-{
- /* Assign Number of Rows */
- S->numRows = nRows;
-
- /* Assign Number of Columns */
- S->numCols = nColumns;
-
- /* Assign Data pointer */
- S->pData = pData;
-}
-
-/**
- @} end of MatrixInit group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_init_f32.c
+ * Description: Floating-point matrix initialization
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup MatrixInit Matrix Initialization
+
+ Initializes the underlying matrix data structure.
+ The functions set the <code>numRows</code>,
+ <code>numCols</code>, and <code>pData</code> fields
+ of the matrix data structure.
+ */
+
+/**
+ @addtogroup MatrixInit
+ @{
+ */
+
+/**
+ @brief Floating-point matrix initialization.
+ @param[in,out] S points to an instance of the floating-point matrix structure
+ @param[in] nRows number of rows in the matrix
+ @param[in] nColumns number of columns in the matrix
+ @param[in] pData points to the matrix data array
+ @return none
+ */
+
+void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t * pData)
+{
+ /* Assign Number of Rows */
+ S->numRows = nRows;
+
+ /* Assign Number of Columns */
+ S->numCols = nColumns;
+
+ /* Assign Data pointer */
+ S->pData = pData;
+}
+
+/**
+ @} end of MatrixInit group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c
index 33942b5..28d8d65 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c
@@ -1,67 +1,67 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_init_q15.c
- * Description: Q15 matrix initialization
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixInit
- @{
- */
-
-/**
- @brief Q15 matrix initialization.
- @param[in,out] S points to an instance of the floating-point matrix structure
- @param[in] nRows number of rows in the matrix
- @param[in] nColumns number of columns in the matrix
- @param[in] pData points to the matrix data array
- @return none
- */
-
-void arm_mat_init_q15(
- arm_matrix_instance_q15 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q15_t * pData)
-{
- /* Assign Number of Rows */
- S->numRows = nRows;
-
- /* Assign Number of Columns */
- S->numCols = nColumns;
-
- /* Assign Data pointer */
- S->pData = pData;
-}
-
-/**
- @} end of MatrixInit group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_init_q15.c
+ * Description: Q15 matrix initialization
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixInit
+ @{
+ */
+
+/**
+ @brief Q15 matrix initialization.
+ @param[in,out] S points to an instance of the floating-point matrix structure
+ @param[in] nRows number of rows in the matrix
+ @param[in] nColumns number of columns in the matrix
+ @param[in] pData points to the matrix data array
+ @return none
+ */
+
+void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t * pData)
+{
+ /* Assign Number of Rows */
+ S->numRows = nRows;
+
+ /* Assign Number of Columns */
+ S->numCols = nColumns;
+
+ /* Assign Data pointer */
+ S->pData = pData;
+}
+
+/**
+ @} end of MatrixInit group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c
index ab735d0..b691ede 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c
@@ -1,72 +1,72 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_init_q31.c
- * Description: Q31 matrix initialization
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup MatrixInit Matrix Initialization
-
- */
-
-/**
- @addtogroup MatrixInit
- @{
- */
-
-/**
- @brief Q31 matrix initialization.
- @param[in,out] S points to an instance of the Q31 matrix structure
- @param[in] nRows number of rows in the matrix
- @param[in] nColumns number of columns in the matrix
- @param[in] pData points to the matrix data array
- @return none
- */
-
-void arm_mat_init_q31(
- arm_matrix_instance_q31 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q31_t * pData)
-{
- /* Assign Number of Rows */
- S->numRows = nRows;
-
- /* Assign Number of Columns */
- S->numCols = nColumns;
-
- /* Assign Data pointer */
- S->pData = pData;
-}
-
-/**
- @} end of MatrixInit group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_init_q31.c
+ * Description: Q31 matrix initialization
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup MatrixInit Matrix Initialization
+
+ */
+
+/**
+ @addtogroup MatrixInit
+ @{
+ */
+
+/**
+ @brief Q31 matrix initialization.
+ @param[in,out] S points to an instance of the Q31 matrix structure
+ @param[in] nRows number of rows in the matrix
+ @param[in] nColumns number of columns in the matrix
+ @param[in] pData points to the matrix data array
+ @return none
+ */
+
+void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t * pData)
+{
+ /* Assign Number of Rows */
+ S->numRows = nRows;
+
+ /* Assign Number of Columns */
+ S->numCols = nColumns;
+
+ /* Assign Data pointer */
+ S->pData = pData;
+}
+
+/**
+ @} end of MatrixInit group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c
index b0ef760..df84b4d 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c
@@ -1,1570 +1,1127 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_inverse_f32.c
- * Description: Floating-point matrix inverse
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup MatrixInv Matrix Inverse
-
- Computes the inverse of a matrix.
-
- The inverse is defined only if the input matrix is square and non-singular (the determinant is non-zero).
- The function checks that the input and output matrices are square and of the same size.
-
- Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
- inversion of floating-point matrices.
-
- @par Algorithm
- The Gauss-Jordan method is used to find the inverse.
- The algorithm performs a sequence of elementary row-operations until it
- reduces the input matrix to an identity matrix. Applying the same sequence
- of elementary row-operations to an identity matrix yields the inverse matrix.
- If the input matrix is singular, then the algorithm terminates and returns error status
- <code>ARM_MATH_SINGULAR</code>.
- \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
- */
-
-/**
- @addtogroup MatrixInv
- @{
- */
-
-/**
- @brief Floating-point matrix inverse.
- @param[in] pSrc points to input matrix structure. The source matrix is modified by the function.
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible)
- */
-#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
-
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
- float32_t *pTmpA, *pTmpB;
-
- float32_t in = 0.0f; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- uint32_t blkCnt;
-
-#ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
-
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
-
- /*
- * Working pointer for destination matrix
- */
- pOutT1 = pOut;
- /*
- * Loop over the number of rows
- */
- rowCnt = numRows;
- /*
- * Making the destination matrix as identity matrix
- */
- while (rowCnt > 0U)
- {
- /*
- * Writing all zeroes in lower triangle of the destination matrix
- */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /*
- * Writing all ones in the diagonal of the destination matrix
- */
- *pOutT1++ = 1.0f;
- /*
- * Writing all zeroes in upper triangle of the destination matrix
- */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
- /*
- * Decrement the loop counter
- */
- rowCnt--;
- }
-
- /*
- * Loop over the number of columns of the input matrix.
- * All the elements in each column are processed by the row operations
- */
- loopCnt = numCols;
- /*
- * Index modifier to navigate through the columns
- */
- l = 0U;
- while (loopCnt > 0U)
- {
- /*
- * Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular.
- */
-
- /*
- * Working pointer for the input matrix that points
- * * to the pivot element of the particular row
- */
- pInT1 = pIn + (l * numCols);
- /*
- * Working pointer for the destination matrix that points
- * * to the pivot element of the particular row
- */
- pOutT1 = pOut + (l * numCols);
- /*
- * Temporary variable to hold the pivot value
- */
- in = *pInT1;
-
-
- /*
- * Check if the pivot element is zero
- */
- if (*pInT1 == 0.0f)
- {
- /*
- * Loop over the number rows present below
- */
- for (i = 1U; i < numRows-l; i++)
- {
- /*
- * Update the input and destination pointers
- */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
- /*
- * Check if there is a non zero pivot element to
- * * replace in the rows below
- */
- if (*pInT2 != 0.0f)
- {
- f32x4_t vecA, vecB;
- /*
- * Loop over number of columns
- * * to the right of the pilot element
- */
- pTmpA = pInT1;
- pTmpB = pInT2;
- blkCnt = (numCols - l) >> 2;
- while (blkCnt > 0U)
- {
-
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_f32(pTmpB, vecA);
- vstrwq_f32(pTmpA, vecB);
-
- pTmpA += 4;
- pTmpB += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
-
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_p_f32(pTmpB, vecA, p0);
- vstrwq_p_f32(pTmpA, vecB, p0);
- }
-
- pInT1 += numCols - l;
- pInT2 += numCols - l;
- pTmpA = pOutT1;
- pTmpB = pOutT2;
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
-
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_f32(pTmpB, vecA);
- vstrwq_f32(pTmpA, vecB);
- pTmpA += 4;
- pTmpB += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
-
- vecA = vldrwq_f32(pTmpA);
- vecB = vldrwq_f32(pTmpB);
- vstrwq_p_f32(pTmpB, vecA, p0);
- vstrwq_p_f32(pTmpA, vecB, p0);
- }
-
- pOutT1 += numCols;
- pOutT2 += numCols;
- /*
- * Flag to indicate whether exchange is done or not
- */
- flag = 1U;
-
- /*
- * Break after exchange is done
- */
- break;
- }
-
- }
- }
-
- /*
- * Update the status if the matrix is singular
- */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
-
- /*
- * Points to the pivot row of input and destination matrices
- */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
-
- /*
- * Temporary pointers to the pivot row pointers
- */
- pInT1 = pPivotRowIn;
- pOutT1 = pPivotRowDst;
-
- /*
- * Pivot element of the row
- */
- in = *(pIn + (l * numCols));
-
- pTmpA = pInT1;
-
- f32x4_t invIn = vdupq_n_f32(1.0f / in);
-
- blkCnt = (numCols - l) >> 2;
- f32x4_t vecA;
- while (blkCnt > 0U)
- {
- *(f32x4_t *) pTmpA = *(f32x4_t *) pTmpA * invIn;
- pTmpA += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
-
-
- vecA = vldrwq_f32(pTmpA);
- vecA = vecA * invIn;
- vstrwq_p_f32(pTmpA, vecA, p0);
- }
-
- pInT1 += numCols - l;
- /*
- * Loop over number of columns
- * * to the right of the pilot element
- */
-
- pTmpA = pOutT1;
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- *(f32x4_t *) pTmpA = *(f32x4_t *) pTmpA *invIn;
- pTmpA += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
-
- vecA = vldrwq_f32(pTmpA);
- vecA = vecA * invIn;
- vstrwq_p_f32(pTmpA, vecA, p0);
- }
-
- pOutT1 += numCols;
-
- /*
- * Replace the rows with the sum of that row and a multiple of row i
- * * so that each new element in column i above row i is zero.
- */
-
- /*
- * Temporary pointers for input and destination matrices
- */
- pInT1 = pIn;
- pOutT1 = pOut;
-
- for (i = 0U; i < numRows; i++)
- {
- /*
- * Check for the pivot element
- */
- if (i == l)
- {
- /*
- * If the processing element is the pivot element,
- * only the columns to the right are to be processed
- */
- pInT1 += numCols - l;
- pOutT1 += numCols;
- }
- else
- {
- /*
- * Element of the reference row
- */
-
- /*
- * Working pointers for input and destination pivot rows
- */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
- /*
- * Loop over the number of columns to the right of the pivot element,
- * to replace the elements in the input matrix
- */
-
- in = *pInT1;
- f32x4_t tmpV = vdupq_n_f32(in);
-
- blkCnt = (numCols - l) >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- /*
- * Replace the element by the sum of that row
- * and a multiple of the reference row
- */
- vec1 = vldrwq_f32(pInT1);
- vec2 = vldrwq_f32(pPRT_in);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_f32(pInT1, vec1);
- pPRT_in += 4;
- pInT1 += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = (numCols - l) & 3;
- if (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- mve_pred16_t p0 = vctp32q(blkCnt);
-
- vec1 = vldrwq_f32(pInT1);
- vec2 = vldrwq_f32(pPRT_in);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_p_f32(pInT1, vec1, p0);
- pInT1 += blkCnt;
- }
-
- blkCnt = numCols >> 2;
- while (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
-
- /*
- * Replace the element by the sum of that row
- * and a multiple of the reference row
- */
- vec1 = vldrwq_f32(pOutT1);
- vec2 = vldrwq_f32(pPRT_pDst);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_f32(pOutT1, vec1);
- pPRT_pDst += 4;
- pOutT1 += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numCols & 3;
- if (blkCnt > 0U)
- {
- f32x4_t vec1, vec2;
- mve_pred16_t p0 = vctp32q(blkCnt);
-
- vec1 = vldrwq_f32(pOutT1);
- vec2 = vldrwq_f32(pPRT_pDst);
- vec1 = vfmsq_f32(vec1, tmpV, vec2);
- vstrwq_p_f32(pOutT1, vec1, p0);
-
- pInT2 += blkCnt;
- pOutT1 += blkCnt;
- }
- }
- /*
- * Increment the temporary input pointer
- */
- pInT1 = pInT1 + l;
- }
- /*
- * Increment the input pointer
- */
- pIn++;
- /*
- * Decrement the loop counter
- */
- loopCnt--;
- /*
- * Increment the index modifier
- */
- l++;
- }
-
- /*
- * Set status as ARM_MATH_SUCCESS
- */
- status = ARM_MATH_SUCCESS;
-
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
-
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
-}
-
-#else
-#if defined(ARM_MATH_NEON)
-arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
-
-
- float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
- float32x4_t vec1;
- float32x4_t vec2;
- float32x4_t tmpV;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
- || (pSrc->numRows != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
-
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
-
- /* Loop over the number of rows */
- rowCnt = numRows;
-
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
-
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
-
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
-
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
-
- /* Decrement the loop counter */
- rowCnt--;
- }
-
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
-
- /* Index modifier to navigate through the columns */
- l = 0U;
-
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
-
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
-
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
-
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = 1U; i < numRows - l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
-
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- j = numCols - l;
-
- while (j > 0U)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over number of columns of the destination matrix */
- j = numCols;
-
- while (j > 0U)
- {
- /* Exchange the row elements of the destination matrix */
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
-
- /* Break after exchange is done */
- break;
- }
-
-
- }
- }
-
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
-
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
-
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pInT2 = pPivotRowDst;
-
- /* Pivot element of the row */
- in = *pPivotRowIn;
- tmpV = vdupq_n_f32(1.0f/in);
-
- /* Loop over number of columns
- * to the right of the pilot element */
- j = (numCols - l) >> 2;
-
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- vec1 = vld1q_f32(pInT1);
-
- vec1 = vmulq_f32(vec1, tmpV);
- vst1q_f32(pInT1, vec1);
- pInT1 += 4;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Tail */
- j = (numCols - l) & 3;
-
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- in1 = *pInT1;
- *pInT1++ = in1 / in;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over number of columns of the destination matrix */
- j = numCols >> 2;
-
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- vec1 = vld1q_f32(pInT2);
-
- vec1 = vmulq_f32(vec1, tmpV);
- vst1q_f32(pInT2, vec1);
- pInT2 += 4;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Tail */
- j = numCols & 3;
-
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- in1 = *pInT2;
- *pInT2++ = in1 / in;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
-
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pInT2 = pOut;
-
- /* index used to check for pivot element */
- i = 0U;
-
- /* Loop over number of rows */
- /* to be replaced by the sum of that row and a multiple of row i */
- k = numRows;
-
- while (k > 0U)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
-
- pInT2 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
- tmpV = vdupq_n_f32(in);
-
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
-
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- j = (numCols - l) >> 2;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- vec1 = vld1q_f32(pInT1);
- vec2 = vld1q_f32(pPRT_in);
- vec1 = vmlsq_f32(vec1, tmpV, vec2);
- vst1q_f32(pInT1, vec1);
- pPRT_in += 4;
- pInT1 += 4;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Tail */
- j = (numCols - l) & 3;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT1;
- *pInT1++ = in1 - (in * *pPRT_in++);
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- j = numCols >> 2;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- vec1 = vld1q_f32(pInT2);
- vec2 = vld1q_f32(pPRT_pDst);
- vec1 = vmlsq_f32(vec1, tmpV, vec2);
- vst1q_f32(pInT2, vec1);
- pPRT_pDst += 4;
- pInT2 += 4;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Tail */
- j = numCols & 3;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT2;
- *pInT2++ = in1 - (in * *pPRT_pDst++);
-
- /* Decrement the loop counter */
- j--;
- }
-
- }
-
- /* Increment the temporary input pointer */
- pInT1 = pInT1 + l;
-
- /* Decrement the loop counter */
- k--;
-
- /* Increment the pivot index */
- i++;
- }
-
- /* Increment the input pointer */
- pIn++;
-
- /* Decrement the loop counter */
- loopCnt--;
-
- /* Increment the index modifier */
- l++;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
-
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
-
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
-
-#if defined (ARM_MATH_DSP)
-
- float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k,l; /* loop counters */
- arm_status status; /* status of matrix inverse */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
-
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
-
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
-
- /* Loop over the number of rows */
- rowCnt = numRows;
-
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
-
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
-
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
-
- /* Decrement loop counter */
- rowCnt--;
- }
-
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
-
- /* Index modifier to navigate through the columns */
- l = 0U;
-
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
-
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
-
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
-
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
-
-
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
-
- for (i = 1U; i < numRows - l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
-
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- j = numCols - l;
-
- while (j > 0U)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over number of columns of the destination matrix */
- j = numCols;
-
- while (j > 0U)
- {
- /* Exchange the row elements of the destination matrix */
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
-
- /* Decrement loop counter */
- j--;
- }
-
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
-
- /* Break after exchange is done */
- break;
- }
-
-
- /* Decrement loop counter */
- }
- }
-
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
-
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
-
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pInT2 = pPivotRowDst;
-
- /* Pivot element of the row */
- in = *pPivotRowIn;
-
- /* Loop over number of columns
- * to the right of the pilot element */
- j = (numCols - l);
-
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- in1 = *pInT1;
- *pInT1++ = in1 / in;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over number of columns of the destination matrix */
- j = numCols;
-
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- in1 = *pInT2;
- *pInT2++ = in1 / in;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
-
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pInT2 = pOut;
-
- /* index used to check for pivot element */
- i = 0U;
-
- /* Loop over number of rows */
- /* to be replaced by the sum of that row and a multiple of row i */
- k = numRows;
-
- while (k > 0U)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
-
- pInT2 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
-
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
-
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- j = (numCols - l);
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT1;
- *pInT1++ = in1 - (in * *pPRT_in++);
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- j = numCols;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT2;
- *pInT2++ = in1 - (in * *pPRT_pDst++);
-
- /* Decrement loop counter */
- j--;
- }
-
- }
-
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
-
- /* Decrement loop counter */
- k--;
-
- /* Increment pivot index */
- i++;
- }
-
- /* Increment the input pointer */
- pIn++;
-
- /* Decrement the loop counter */
- loopCnt--;
-
- /* Increment the index modifier */
- l++;
- }
-
-
-#else
-
- float32_t Xchg, in = 0.0f; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
-
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
-
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
-
- /* Loop over the number of rows */
- rowCnt = numRows;
-
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
-
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0f;
-
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0f;
- j--;
- }
-
- /* Decrement loop counter */
- rowCnt--;
- }
-
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
-
- /* Index modifier to navigate through the columns */
- l = 0U;
-
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
-
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
-
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
-
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0f)
- {
- /* Loop over the number rows present below */
- for (i = 1U; i < numRows-l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
-
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0f)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- }
-
- for (j = 0U; j < numCols; j++)
- {
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- }
-
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
-
- /* Break after exchange is done */
- break;
- }
- }
- }
-
-
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0f))
- {
- return ARM_MATH_SINGULAR;
- }
-
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
-
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pOutT1 = pPivotRowDst;
-
- /* Pivot element of the row */
- in = *(pIn + (l * numCols));
-
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- *pInT1 = *pInT1 / in;
- pInT1++;
- }
- for (j = 0U; j < numCols; j++)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- *pOutT1 = *pOutT1 / in;
- pOutT1++;
- }
-
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
-
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pOutT1 = pOut;
-
- for (i = 0U; i < numRows; i++)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pOutT1 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
-
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
-
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pInT1 = *pInT1 - (in * *pPRT_in++);
- pInT1++;
- }
-
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- for (j = 0U; j < numCols; j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
- pOutT1++;
- }
-
- }
-
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
- }
-
- /* Increment the input pointer */
- pIn++;
-
- /* Decrement the loop counter */
- loopCnt--;
-
- /* Increment the index modifier */
- l++;
- }
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
-
- if ((flag != 1U) && (in == 0.0f))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0f)
- break;
- }
-
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* #if defined(ARM_MATH_NEON) */
-#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
-
-/**
- @} end of MatrixInv group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_inverse_f32.c
+ * Description: Floating-point matrix inverse
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup MatrixInv Matrix Inverse
+
+ Computes the inverse of a matrix.
+
+ The inverse is defined only if the input matrix is square and non-singular (the determinant is non-zero).
+ The function checks that the input and output matrices are square and of the same size.
+
+ Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
+ inversion of floating-point matrices.
+
+ @par Algorithm
+ The Gauss-Jordan method is used to find the inverse.
+ The algorithm performs a sequence of elementary row-operations until it
+ reduces the input matrix to an identity matrix. Applying the same sequence
+ of elementary row-operations to an identity matrix yields the inverse matrix.
+ If the input matrix is singular, then the algorithm terminates and returns error status
+ <code>ARM_MATH_SINGULAR</code>.
+ \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
+ */
+
+/**
+ @addtogroup MatrixInv
+ @{
+ */
+
+/**
+ @brief Floating-point matrix inverse.
+ @param[in] pSrc points to input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible)
+ */
+#if defined(ARM_MATH_NEON)
+arm_status arm_mat_inverse_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn = pSrc->pData; /* input data matrix pointer */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
+ float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
+ float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
+ uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
+ uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
+
+ float32_t maxC; /* maximum value in the column */
+
+ float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
+ uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
+ arm_status status; /* status of matrix inverse */
+ float32x4_t vec1;
+ float32x4_t vec2;
+ float32x4_t tmpV;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
+ || (pSrc->numRows != pDst->numRows))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /*--------------------------------------------------------------------------------------------------------------
+ * Matrix Inverse can be solved using elementary row operations.
+ *
+ * Gauss-Jordan Method:
+ *
+ * 1. First combine the identity matrix and the input matrix separated by a bar to form an
+ * augmented matrix as follows:
+ * _ _ _ _
+ * | a11 a12 | 1 0 | | X11 X12 |
+ * | | | = | |
+ * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
+ *
+ * 2. In our implementation, pDst Matrix is used as identity matrix.
+ *
+ * 3. Begin with the first row. Let i = 1.
+ *
+ * 4. Check to see if the pivot for column i is the greatest of the column.
+ * The pivot is the element of the main diagonal that is on the current row.
+ * For instance, if working with row i, then the pivot element is aii.
+ * If the pivot is not the most significant of the columns, exchange that row with a row
+ * below it that does contain the most significant value in column i. If the most
+ * significant value of the column is zero, then an inverse to that matrix does not exist.
+ * The most significant value of the column is the absolute maximum.
+ *
+ * 5. Divide every element of row i by the pivot.
+ *
+ * 6. For every row below and row i, replace that row with the sum of that row and
+ * a multiple of row i so that each new element in column i below row i is zero.
+ *
+ * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
+ * for every element below and above the main diagonal.
+ *
+ * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
+ * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
+ *----------------------------------------------------------------------------------------------------------------*/
+
+ /* Working pointer for destination matrix */
+ pOutT1 = pOut;
+
+ /* Loop over the number of rows */
+ rowCnt = numRows;
+
+ /* Making the destination matrix as identity matrix */
+ while (rowCnt > 0U)
+ {
+ /* Writing all zeroes in lower triangle of the destination matrix */
+ j = numRows - rowCnt;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0f;
+ j--;
+ }
+
+ /* Writing all ones in the diagonal of the destination matrix */
+ *pOutT1++ = 1.0f;
+
+ /* Writing all zeroes in upper triangle of the destination matrix */
+ j = rowCnt - 1U;
+
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0f;
+ j--;
+ }
+
+ /* Decrement the loop counter */
+ rowCnt--;
+ }
+
+ /* Loop over the number of columns of the input matrix.
+ All the elements in each column are processed by the row operations */
+ loopCnt = numCols;
+
+ /* Index modifier to navigate through the columns */
+ l = 0U;
+
+ while (loopCnt > 0U)
+ {
+ /* Check if the pivot element is zero..
+ * If it is zero then interchange the row with non zero row below.
+ * If there is no non zero element to replace in the rows below,
+ * then the matrix is Singular. */
+
+ /* Working pointer for the input matrix that points
+ * to the pivot element of the particular row */
+ pInT1 = pIn + (l * numCols);
+
+ /* Working pointer for the destination matrix that points
+ * to the pivot element of the particular row */
+ pOutT1 = pOut + (l * numCols);
+
+ /* Temporary variable to hold the pivot value */
+ in = *pInT1;
+
+ /* Grab the most significant value from column l */
+ maxC = 0;
+
+ for (i = l; i < numRows; i++)
+ {
+ maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
+ pInT1 += numCols;
+ }
+
+ /* Update the status if the matrix is singular */
+ if (maxC == 0.0f)
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Restore pInT1 */
+ pInT1 = pIn;
+
+ /* Destination pointer modifier */
+ k = 1U;
+
+ /* Check if the pivot element is the most significant of the column */
+ if ( (in > 0.0f ? in : -in) != maxC)
+ {
+ /* Loop over the number rows present below */
+ i = numRows - (l + 1U);
+
+ while (i > 0U)
+ {
+ /* Update the input and destination pointers */
+ pInT2 = pInT1 + (numCols * l);
+ pOutT2 = pOutT1 + (numCols * k);
+
+ /* Look for the most significant element to
+ * replace in the rows below */
+ if ((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
+ {
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ j = numCols - l;
+
+ while (j > 0U)
+ {
+ /* Exchange the row elements of the input matrix */
+ Xchg = *pInT2;
+ *pInT2++ = *pInT1;
+ *pInT1++ = Xchg;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over number of columns of the destination matrix */
+ j = numCols;
+
+ while (j > 0U)
+ {
+ /* Exchange the row elements of the destination matrix */
+ Xchg = *pOutT2;
+ *pOutT2++ = *pOutT1;
+ *pOutT1++ = Xchg;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Flag to indicate whether exchange is done or not */
+ flag = 1U;
+
+ /* Break after exchange is done */
+ break;
+ }
+
+ /* Update the destination pointer modifier */
+ k++;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+ }
+
+ /* Update the status if the matrix is singular */
+ if ((flag != 1U) && (in == 0.0f))
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Points to the pivot row of input and destination matrices */
+ pPivotRowIn = pIn + (l * numCols);
+ pPivotRowDst = pOut + (l * numCols);
+
+ /* Temporary pointers to the pivot row pointers */
+ pInT1 = pPivotRowIn;
+ pInT2 = pPivotRowDst;
+
+ /* Pivot element of the row */
+ in = *pPivotRowIn;
+ tmpV = vdupq_n_f32(1.0/in);
+
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ j = (numCols - l) >> 2;
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the input matrix
+ * by the pivot element */
+ vec1 = vld1q_f32(pInT1);
+
+ vec1 = vmulq_f32(vec1, tmpV);
+ vst1q_f32(pInT1, vec1);
+ pInT1 += 4;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Tail */
+ j = (numCols - l) & 3;
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the input matrix
+ * by the pivot element */
+ in1 = *pInT1;
+ *pInT1++ = in1 / in;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over number of columns of the destination matrix */
+ j = numCols >> 2;
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the destination matrix
+ * by the pivot element */
+ vec1 = vld1q_f32(pInT2);
+
+ vec1 = vmulq_f32(vec1, tmpV);
+ vst1q_f32(pInT2, vec1);
+ pInT2 += 4;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Tail */
+ j = numCols & 3;
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the destination matrix
+ * by the pivot element */
+ in1 = *pInT2;
+ *pInT2++ = in1 / in;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Replace the rows with the sum of that row and a multiple of row i
+ * so that each new element in column i above row i is zero.*/
+
+ /* Temporary pointers for input and destination matrices */
+ pInT1 = pIn;
+ pInT2 = pOut;
+
+ /* index used to check for pivot element */
+ i = 0U;
+
+ /* Loop over number of rows */
+ /* to be replaced by the sum of that row and a multiple of row i */
+ k = numRows;
+
+ while (k > 0U)
+ {
+ /* Check for the pivot element */
+ if (i == l)
+ {
+ /* If the processing element is the pivot element,
+ only the columns to the right are to be processed */
+ pInT1 += numCols - l;
+
+ pInT2 += numCols;
+ }
+ else
+ {
+ /* Element of the reference row */
+ in = *pInT1;
+ tmpV = vdupq_n_f32(in);
+
+ /* Working pointers for input and destination pivot rows */
+ pPRT_in = pPivotRowIn;
+ pPRT_pDst = pPivotRowDst;
+
+ /* Loop over the number of columns to the right of the pivot element,
+ to replace the elements in the input matrix */
+ j = (numCols - l) >> 2;
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ vec1 = vld1q_f32(pInT1);
+ vec2 = vld1q_f32(pPRT_in);
+ vec1 = vmlsq_f32(vec1, tmpV, vec2);
+ vst1q_f32(pInT1, vec1);
+ pPRT_in += 4;
+ pInT1 += 4;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Tail */
+ j = (numCols - l) & 3;
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ in1 = *pInT1;
+ *pInT1++ = in1 - (in * *pPRT_in++);
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over the number of columns to
+ replace the elements in the destination matrix */
+ j = numCols >> 2;
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ vec1 = vld1q_f32(pInT2);
+ vec2 = vld1q_f32(pPRT_pDst);
+ vec1 = vmlsq_f32(vec1, tmpV, vec2);
+ vst1q_f32(pInT2, vec1);
+ pPRT_pDst += 4;
+ pInT2 += 4;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Tail */
+ j = numCols & 3;
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ in1 = *pInT2;
+ *pInT2++ = in1 - (in * *pPRT_pDst++);
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ }
+
+ /* Increment the temporary input pointer */
+ pInT1 = pInT1 + l;
+
+ /* Decrement the loop counter */
+ k--;
+
+ /* Increment the pivot index */
+ i++;
+ }
+
+ /* Increment the input pointer */
+ pIn++;
+
+ /* Decrement the loop counter */
+ loopCnt--;
+
+ /* Increment the index modifier */
+ l++;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ if ((flag != 1U) && (in == 0.0f))
+ {
+ pIn = pSrc->pData;
+ for (i = 0; i < numRows * numCols; i++)
+ {
+ if (pIn[i] != 0.0f)
+ break;
+ }
+
+ if (i == numRows * numCols)
+ status = ARM_MATH_SINGULAR;
+ }
+ }
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_inverse_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn = pSrc->pData; /* input data matrix pointer */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
+ float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
+ float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
+ uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
+ uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
+
+#if defined (ARM_MATH_DSP)
+ float32_t maxC; /* maximum value in the column */
+
+ float32_t Xchg, in = 0.0f, in1; /* Temporary input values */
+ uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
+ arm_status status; /* status of matrix inverse */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pDst->numRows != pDst->numCols) ||
+ (pSrc->numRows != pDst->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+
+ /*--------------------------------------------------------------------------------------------------------------
+ * Matrix Inverse can be solved using elementary row operations.
+ *
+ * Gauss-Jordan Method:
+ *
+ * 1. First combine the identity matrix and the input matrix separated by a bar to form an
+ * augmented matrix as follows:
+ * _ _ _ _
+ * | a11 a12 | 1 0 | | X11 X12 |
+ * | | | = | |
+ * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
+ *
+ * 2. In our implementation, pDst Matrix is used as identity matrix.
+ *
+ * 3. Begin with the first row. Let i = 1.
+ *
+ * 4. Check to see if the pivot for column i is the greatest of the column.
+ * The pivot is the element of the main diagonal that is on the current row.
+ * For instance, if working with row i, then the pivot element is aii.
+ * If the pivot is not the most significant of the columns, exchange that row with a row
+ * below it that does contain the most significant value in column i. If the most
+ * significant value of the column is zero, then an inverse to that matrix does not exist.
+ * The most significant value of the column is the absolute maximum.
+ *
+ * 5. Divide every element of row i by the pivot.
+ *
+ * 6. For every row below and row i, replace that row with the sum of that row and
+ * a multiple of row i so that each new element in column i below row i is zero.
+ *
+ * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
+ * for every element below and above the main diagonal.
+ *
+ * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
+ * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
+ *----------------------------------------------------------------------------------------------------------------*/
+
+ /* Working pointer for destination matrix */
+ pOutT1 = pOut;
+
+ /* Loop over the number of rows */
+ rowCnt = numRows;
+
+ /* Making the destination matrix as identity matrix */
+ while (rowCnt > 0U)
+ {
+ /* Writing all zeroes in lower triangle of the destination matrix */
+ j = numRows - rowCnt;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0f;
+ j--;
+ }
+
+ /* Writing all ones in the diagonal of the destination matrix */
+ *pOutT1++ = 1.0f;
+
+ /* Writing all zeroes in upper triangle of the destination matrix */
+ j = rowCnt - 1U;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0f;
+ j--;
+ }
+
+ /* Decrement loop counter */
+ rowCnt--;
+ }
+
+ /* Loop over the number of columns of the input matrix.
+ All the elements in each column are processed by the row operations */
+ loopCnt = numCols;
+
+ /* Index modifier to navigate through the columns */
+ l = 0U;
+
+ while (loopCnt > 0U)
+ {
+ /* Check if the pivot element is zero..
+ * If it is zero then interchange the row with non zero row below.
+ * If there is no non zero element to replace in the rows below,
+ * then the matrix is Singular. */
+
+ /* Working pointer for the input matrix that points
+ * to the pivot element of the particular row */
+ pInT1 = pIn + (l * numCols);
+
+ /* Working pointer for the destination matrix that points
+ * to the pivot element of the particular row */
+ pOutT1 = pOut + (l * numCols);
+
+ /* Temporary variable to hold the pivot value */
+ in = *pInT1;
+
+ /* Grab the most significant value from column l */
+ maxC = 0;
+ for (i = l; i < numRows; i++)
+ {
+ maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
+ pInT1 += numCols;
+ }
+
+ /* Update the status if the matrix is singular */
+ if (maxC == 0.0f)
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Restore pInT1 */
+ pInT1 = pIn;
+
+ /* Destination pointer modifier */
+ k = 1U;
+
+ /* Check if the pivot element is the most significant of the column */
+ if ( (in > 0.0f ? in : -in) != maxC)
+ {
+ /* Loop over the number rows present below */
+ i = numRows - (l + 1U);
+
+ while (i > 0U)
+ {
+ /* Update the input and destination pointers */
+ pInT2 = pInT1 + (numCols * l);
+ pOutT2 = pOutT1 + (numCols * k);
+
+ /* Look for the most significant element to
+ * replace in the rows below */
+ if ((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
+ {
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ j = numCols - l;
+
+ while (j > 0U)
+ {
+ /* Exchange the row elements of the input matrix */
+ Xchg = *pInT2;
+ *pInT2++ = *pInT1;
+ *pInT1++ = Xchg;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over number of columns of the destination matrix */
+ j = numCols;
+
+ while (j > 0U)
+ {
+ /* Exchange the row elements of the destination matrix */
+ Xchg = *pOutT2;
+ *pOutT2++ = *pOutT1;
+ *pOutT1++ = Xchg;
+
+ /* Decrement loop counter */
+ j--;
+ }
+
+ /* Flag to indicate whether exchange is done or not */
+ flag = 1U;
+
+ /* Break after exchange is done */
+ break;
+ }
+
+ /* Update the destination pointer modifier */
+ k++;
+
+ /* Decrement loop counter */
+ i--;
+ }
+ }
+
+ /* Update the status if the matrix is singular */
+ if ((flag != 1U) && (in == 0.0f))
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Points to the pivot row of input and destination matrices */
+ pPivotRowIn = pIn + (l * numCols);
+ pPivotRowDst = pOut + (l * numCols);
+
+ /* Temporary pointers to the pivot row pointers */
+ pInT1 = pPivotRowIn;
+ pInT2 = pPivotRowDst;
+
+ /* Pivot element of the row */
+ in = *pPivotRowIn;
+
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ j = (numCols - l);
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the input matrix
+ * by the pivot element */
+ in1 = *pInT1;
+ *pInT1++ = in1 / in;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over number of columns of the destination matrix */
+ j = numCols;
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the destination matrix
+ * by the pivot element */
+ in1 = *pInT2;
+ *pInT2++ = in1 / in;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Replace the rows with the sum of that row and a multiple of row i
+ * so that each new element in column i above row i is zero.*/
+
+ /* Temporary pointers for input and destination matrices */
+ pInT1 = pIn;
+ pInT2 = pOut;
+
+ /* index used to check for pivot element */
+ i = 0U;
+
+ /* Loop over number of rows */
+ /* to be replaced by the sum of that row and a multiple of row i */
+ k = numRows;
+
+ while (k > 0U)
+ {
+ /* Check for the pivot element */
+ if (i == l)
+ {
+ /* If the processing element is the pivot element,
+ only the columns to the right are to be processed */
+ pInT1 += numCols - l;
+
+ pInT2 += numCols;
+ }
+ else
+ {
+ /* Element of the reference row */
+ in = *pInT1;
+
+ /* Working pointers for input and destination pivot rows */
+ pPRT_in = pPivotRowIn;
+ pPRT_pDst = pPivotRowDst;
+
+ /* Loop over the number of columns to the right of the pivot element,
+ to replace the elements in the input matrix */
+ j = (numCols - l);
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ in1 = *pInT1;
+ *pInT1++ = in1 - (in * *pPRT_in++);
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over the number of columns to
+ replace the elements in the destination matrix */
+ j = numCols;
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ in1 = *pInT2;
+ *pInT2++ = in1 - (in * *pPRT_pDst++);
+
+ /* Decrement loop counter */
+ j--;
+ }
+
+ }
+
+ /* Increment temporary input pointer */
+ pInT1 = pInT1 + l;
+
+ /* Decrement loop counter */
+ k--;
+
+ /* Increment pivot index */
+ i++;
+ }
+
+ /* Increment the input pointer */
+ pIn++;
+
+ /* Decrement the loop counter */
+ loopCnt--;
+
+ /* Increment the index modifier */
+ l++;
+ }
+
+
+#else
+
+ float32_t Xchg, in = 0.0f; /* Temporary input values */
+ uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
+ arm_status status; /* status of matrix inverse */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pDst->numRows != pDst->numCols) ||
+ (pSrc->numRows != pDst->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+
+ /*--------------------------------------------------------------------------------------------------------------
+ * Matrix Inverse can be solved using elementary row operations.
+ *
+ * Gauss-Jordan Method:
+ *
+ * 1. First combine the identity matrix and the input matrix separated by a bar to form an
+ * augmented matrix as follows:
+ * _ _ _ _ _ _ _ _
+ * | | a11 a12 | | | 1 0 | | | X11 X12 |
+ * | | | | | | | = | |
+ * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
+ *
+ * 2. In our implementation, pDst Matrix is used as identity matrix.
+ *
+ * 3. Begin with the first row. Let i = 1.
+ *
+ * 4. Check to see if the pivot for row i is zero.
+ * The pivot is the element of the main diagonal that is on the current row.
+ * For instance, if working with row i, then the pivot element is aii.
+ * If the pivot is zero, exchange that row with a row below it that does not
+ * contain a zero in column i. If this is not possible, then an inverse
+ * to that matrix does not exist.
+ *
+ * 5. Divide every element of row i by the pivot.
+ *
+ * 6. For every row below and row i, replace that row with the sum of that row and
+ * a multiple of row i so that each new element in column i below row i is zero.
+ *
+ * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
+ * for every element below and above the main diagonal.
+ *
+ * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
+ * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
+ *----------------------------------------------------------------------------------------------------------------*/
+
+ /* Working pointer for destination matrix */
+ pOutT1 = pOut;
+
+ /* Loop over the number of rows */
+ rowCnt = numRows;
+
+ /* Making the destination matrix as identity matrix */
+ while (rowCnt > 0U)
+ {
+ /* Writing all zeroes in lower triangle of the destination matrix */
+ j = numRows - rowCnt;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0f;
+ j--;
+ }
+
+ /* Writing all ones in the diagonal of the destination matrix */
+ *pOutT1++ = 1.0f;
+
+ /* Writing all zeroes in upper triangle of the destination matrix */
+ j = rowCnt - 1U;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0f;
+ j--;
+ }
+
+ /* Decrement loop counter */
+ rowCnt--;
+ }
+
+ /* Loop over the number of columns of the input matrix.
+ All the elements in each column are processed by the row operations */
+ loopCnt = numCols;
+
+ /* Index modifier to navigate through the columns */
+ l = 0U;
+
+ while (loopCnt > 0U)
+ {
+ /* Check if the pivot element is zero..
+ * If it is zero then interchange the row with non zero row below.
+ * If there is no non zero element to replace in the rows below,
+ * then the matrix is Singular. */
+
+ /* Working pointer for the input matrix that points
+ * to the pivot element of the particular row */
+ pInT1 = pIn + (l * numCols);
+
+ /* Working pointer for the destination matrix that points
+ * to the pivot element of the particular row */
+ pOutT1 = pOut + (l * numCols);
+
+ /* Temporary variable to hold the pivot value */
+ in = *pInT1;
+
+ /* Destination pointer modifier */
+ k = 1U;
+
+ /* Check if the pivot element is zero */
+ if (*pInT1 == 0.0f)
+ {
+ /* Loop over the number rows present below */
+ for (i = (l + 1U); i < numRows; i++)
+ {
+ /* Update the input and destination pointers */
+ pInT2 = pInT1 + (numCols * l);
+ pOutT2 = pOutT1 + (numCols * k);
+
+ /* Check if there is a non zero pivot element to
+ * replace in the rows below */
+ if (*pInT2 != 0.0f)
+ {
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ for (j = 0U; j < (numCols - l); j++)
+ {
+ /* Exchange the row elements of the input matrix */
+ Xchg = *pInT2;
+ *pInT2++ = *pInT1;
+ *pInT1++ = Xchg;
+ }
+
+ for (j = 0U; j < numCols; j++)
+ {
+ Xchg = *pOutT2;
+ *pOutT2++ = *pOutT1;
+ *pOutT1++ = Xchg;
+ }
+
+ /* Flag to indicate whether exchange is done or not */
+ flag = 1U;
+
+ /* Break after exchange is done */
+ break;
+ }
+
+ /* Update the destination pointer modifier */
+ k++;
+ }
+ }
+
+ /* Update the status if the matrix is singular */
+ if ((flag != 1U) && (in == 0.0f))
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Points to the pivot row of input and destination matrices */
+ pPivotRowIn = pIn + (l * numCols);
+ pPivotRowDst = pOut + (l * numCols);
+
+ /* Temporary pointers to the pivot row pointers */
+ pInT1 = pPivotRowIn;
+ pOutT1 = pPivotRowDst;
+
+ /* Pivot element of the row */
+ in = *(pIn + (l * numCols));
+
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ for (j = 0U; j < (numCols - l); j++)
+ {
+ /* Divide each element of the row of the input matrix
+ * by the pivot element */
+ *pInT1 = *pInT1 / in;
+ pInT1++;
+ }
+ for (j = 0U; j < numCols; j++)
+ {
+ /* Divide each element of the row of the destination matrix
+ * by the pivot element */
+ *pOutT1 = *pOutT1 / in;
+ pOutT1++;
+ }
+
+ /* Replace the rows with the sum of that row and a multiple of row i
+ * so that each new element in column i above row i is zero.*/
+
+ /* Temporary pointers for input and destination matrices */
+ pInT1 = pIn;
+ pOutT1 = pOut;
+
+ for (i = 0U; i < numRows; i++)
+ {
+ /* Check for the pivot element */
+ if (i == l)
+ {
+ /* If the processing element is the pivot element,
+ only the columns to the right are to be processed */
+ pInT1 += numCols - l;
+ pOutT1 += numCols;
+ }
+ else
+ {
+ /* Element of the reference row */
+ in = *pInT1;
+
+ /* Working pointers for input and destination pivot rows */
+ pPRT_in = pPivotRowIn;
+ pPRT_pDst = pPivotRowDst;
+
+ /* Loop over the number of columns to the right of the pivot element,
+ to replace the elements in the input matrix */
+ for (j = 0U; j < (numCols - l); j++)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ *pInT1 = *pInT1 - (in * *pPRT_in++);
+ pInT1++;
+ }
+
+ /* Loop over the number of columns to
+ replace the elements in the destination matrix */
+ for (j = 0U; j < numCols; j++)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
+ pOutT1++;
+ }
+
+ }
+
+ /* Increment temporary input pointer */
+ pInT1 = pInT1 + l;
+ }
+
+ /* Increment the input pointer */
+ pIn++;
+
+ /* Decrement the loop counter */
+ loopCnt--;
+
+ /* Increment the index modifier */
+ l++;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ if ((flag != 1U) && (in == 0.0f))
+ {
+ pIn = pSrc->pData;
+ for (i = 0; i < numRows * numCols; i++)
+ {
+ if (pIn[i] != 0.0f)
+ break;
+ }
+
+ if (i == numRows * numCols)
+ status = ARM_MATH_SINGULAR;
+ }
+ }
+
+ /* Return to application */
+ return (status);
+}
+#endif /* #if defined(ARM_MATH_NEON) */
+
+/**
+ @} end of MatrixInv group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c
index bf99a79..17390c8 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c
@@ -1,644 +1,673 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_inverse_f64.c
- * Description: Floating-point matrix inverse
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-
-/**
- @addtogroup MatrixInv
- @{
- */
-
-/**
- @brief Floating-point (64 bit) matrix inverse.
- @param[in] pSrc points to input matrix structure. The source matrix is modified by the function.
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible)
- */
-
-arm_status arm_mat_inverse_f64(
- const arm_matrix_instance_f64 * pSrc,
- arm_matrix_instance_f64 * pDst)
-{
- float64_t *pIn = pSrc->pData; /* input data matrix pointer */
- float64_t *pOut = pDst->pData; /* output data matrix pointer */
- float64_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
- float64_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
- float64_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
- uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
- uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
-
-#if defined (ARM_MATH_DSP)
-
- float64_t Xchg, in = 0.0, in1; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, k,l; /* loop counters */
- arm_status status; /* status of matrix inverse */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
-
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _
- * | a11 a12 | 1 0 | | X11 X12 |
- * | | | = | |
- * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
- * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
- *----------------------------------------------------------------------------------------------------------------*/
-
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
-
- /* Loop over the number of rows */
- rowCnt = numRows;
-
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0;
- j--;
- }
-
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0;
-
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0;
- j--;
- }
-
- /* Decrement loop counter */
- rowCnt--;
- }
-
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
-
- /* Index modifier to navigate through the columns */
- l = 0U;
-
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
-
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
-
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
-
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
-
-
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0)
- {
- /* Loop over the number rows present below */
-
- for (i = 1U; i < numRows - l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
-
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- j = numCols - l;
-
- while (j > 0U)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over number of columns of the destination matrix */
- j = numCols;
-
- while (j > 0U)
- {
- /* Exchange the row elements of the destination matrix */
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
-
- /* Decrement loop counter */
- j--;
- }
-
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
-
- /* Break after exchange is done */
- break;
- }
-
-
- /* Decrement loop counter */
- }
- }
-
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0))
- {
- return ARM_MATH_SINGULAR;
- }
-
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
-
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pInT2 = pPivotRowDst;
-
- /* Pivot element of the row */
- in = *pPivotRowIn;
-
- /* Loop over number of columns
- * to the right of the pilot element */
- j = (numCols - l);
-
- while (j > 0U)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- in1 = *pInT1;
- *pInT1++ = in1 / in;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over number of columns of the destination matrix */
- j = numCols;
-
- while (j > 0U)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- in1 = *pInT2;
- *pInT2++ = in1 / in;
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
-
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pInT2 = pOut;
-
- /* index used to check for pivot element */
- i = 0U;
-
- /* Loop over number of rows */
- /* to be replaced by the sum of that row and a multiple of row i */
- k = numRows;
-
- while (k > 0U)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
-
- pInT2 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
-
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
-
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- j = (numCols - l);
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT1;
- *pInT1++ = in1 - (in * *pPRT_in++);
-
- /* Decrement the loop counter */
- j--;
- }
-
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- j = numCols;
-
- while (j > 0U)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- in1 = *pInT2;
- *pInT2++ = in1 - (in * *pPRT_pDst++);
-
- /* Decrement loop counter */
- j--;
- }
-
- }
-
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
-
- /* Decrement loop counter */
- k--;
-
- /* Increment pivot index */
- i++;
- }
-
- /* Increment the input pointer */
- pIn++;
-
- /* Decrement the loop counter */
- loopCnt--;
-
- /* Increment the index modifier */
- l++;
- }
-
-
-#else
-
- float64_t Xchg, in = 0.0; /* Temporary input values */
- uint32_t i, rowCnt, flag = 0U, j, loopCnt, l; /* loop counters */
- arm_status status; /* status of matrix inverse */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pSrc->numCols) ||
- (pDst->numRows != pDst->numCols) ||
- (pSrc->numRows != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
-
- /*--------------------------------------------------------------------------------------------------------------
- * Matrix Inverse can be solved using elementary row operations.
- *
- * Gauss-Jordan Method:
- *
- * 1. First combine the identity matrix and the input matrix separated by a bar to form an
- * augmented matrix as follows:
- * _ _ _ _ _ _ _ _
- * | | a11 a12 | | | 1 0 | | | X11 X12 |
- * | | | | | | | = | |
- * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
- *
- * 2. In our implementation, pDst Matrix is used as identity matrix.
- *
- * 3. Begin with the first row. Let i = 1.
- *
- * 4. Check to see if the pivot for row i is zero.
- * The pivot is the element of the main diagonal that is on the current row.
- * For instance, if working with row i, then the pivot element is aii.
- * If the pivot is zero, exchange that row with a row below it that does not
- * contain a zero in column i. If this is not possible, then an inverse
- * to that matrix does not exist.
- *
- * 5. Divide every element of row i by the pivot.
- *
- * 6. For every row below and row i, replace that row with the sum of that row and
- * a multiple of row i so that each new element in column i below row i is zero.
- *
- * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
- * for every element below and above the main diagonal.
- *
- * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
- * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
- *----------------------------------------------------------------------------------------------------------------*/
-
- /* Working pointer for destination matrix */
- pOutT1 = pOut;
-
- /* Loop over the number of rows */
- rowCnt = numRows;
-
- /* Making the destination matrix as identity matrix */
- while (rowCnt > 0U)
- {
- /* Writing all zeroes in lower triangle of the destination matrix */
- j = numRows - rowCnt;
- while (j > 0U)
- {
- *pOutT1++ = 0.0;
- j--;
- }
-
- /* Writing all ones in the diagonal of the destination matrix */
- *pOutT1++ = 1.0;
-
- /* Writing all zeroes in upper triangle of the destination matrix */
- j = rowCnt - 1U;
- while (j > 0U)
- {
- *pOutT1++ = 0.0;
- j--;
- }
-
- /* Decrement loop counter */
- rowCnt--;
- }
-
- /* Loop over the number of columns of the input matrix.
- All the elements in each column are processed by the row operations */
- loopCnt = numCols;
-
- /* Index modifier to navigate through the columns */
- l = 0U;
-
- while (loopCnt > 0U)
- {
- /* Check if the pivot element is zero..
- * If it is zero then interchange the row with non zero row below.
- * If there is no non zero element to replace in the rows below,
- * then the matrix is Singular. */
-
- /* Working pointer for the input matrix that points
- * to the pivot element of the particular row */
- pInT1 = pIn + (l * numCols);
-
- /* Working pointer for the destination matrix that points
- * to the pivot element of the particular row */
- pOutT1 = pOut + (l * numCols);
-
- /* Temporary variable to hold the pivot value */
- in = *pInT1;
-
- /* Check if the pivot element is zero */
- if (*pInT1 == 0.0)
- {
- /* Loop over the number rows present below */
- for (i = 1U; i < numRows-l; i++)
- {
- /* Update the input and destination pointers */
- pInT2 = pInT1 + (numCols * i);
- pOutT2 = pOutT1 + (numCols * i);
-
- /* Check if there is a non zero pivot element to
- * replace in the rows below */
- if (*pInT2 != 0.0)
- {
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Exchange the row elements of the input matrix */
- Xchg = *pInT2;
- *pInT2++ = *pInT1;
- *pInT1++ = Xchg;
- }
-
- for (j = 0U; j < numCols; j++)
- {
- Xchg = *pOutT2;
- *pOutT2++ = *pOutT1;
- *pOutT1++ = Xchg;
- }
-
- /* Flag to indicate whether exchange is done or not */
- flag = 1U;
-
- /* Break after exchange is done */
- break;
- }
- }
- }
-
-
- /* Update the status if the matrix is singular */
- if ((flag != 1U) && (in == 0.0))
- {
- return ARM_MATH_SINGULAR;
- }
-
- /* Points to the pivot row of input and destination matrices */
- pPivotRowIn = pIn + (l * numCols);
- pPivotRowDst = pOut + (l * numCols);
-
- /* Temporary pointers to the pivot row pointers */
- pInT1 = pPivotRowIn;
- pOutT1 = pPivotRowDst;
-
- /* Pivot element of the row */
- in = *(pIn + (l * numCols));
-
- /* Loop over number of columns
- * to the right of the pilot element */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Divide each element of the row of the input matrix
- * by the pivot element */
- *pInT1 = *pInT1 / in;
- pInT1++;
- }
- for (j = 0U; j < numCols; j++)
- {
- /* Divide each element of the row of the destination matrix
- * by the pivot element */
- *pOutT1 = *pOutT1 / in;
- pOutT1++;
- }
-
- /* Replace the rows with the sum of that row and a multiple of row i
- * so that each new element in column i above row i is zero.*/
-
- /* Temporary pointers for input and destination matrices */
- pInT1 = pIn;
- pOutT1 = pOut;
-
- for (i = 0U; i < numRows; i++)
- {
- /* Check for the pivot element */
- if (i == l)
- {
- /* If the processing element is the pivot element,
- only the columns to the right are to be processed */
- pInT1 += numCols - l;
- pOutT1 += numCols;
- }
- else
- {
- /* Element of the reference row */
- in = *pInT1;
-
- /* Working pointers for input and destination pivot rows */
- pPRT_in = pPivotRowIn;
- pPRT_pDst = pPivotRowDst;
-
- /* Loop over the number of columns to the right of the pivot element,
- to replace the elements in the input matrix */
- for (j = 0U; j < (numCols - l); j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pInT1 = *pInT1 - (in * *pPRT_in++);
- pInT1++;
- }
-
- /* Loop over the number of columns to
- replace the elements in the destination matrix */
- for (j = 0U; j < numCols; j++)
- {
- /* Replace the element by the sum of that row
- and a multiple of the reference row */
- *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
- pOutT1++;
- }
-
- }
-
- /* Increment temporary input pointer */
- pInT1 = pInT1 + l;
- }
-
- /* Increment the input pointer */
- pIn++;
-
- /* Decrement the loop counter */
- loopCnt--;
-
- /* Increment the index modifier */
- l++;
- }
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
-
- if ((flag != 1U) && (in == 0.0))
- {
- pIn = pSrc->pData;
- for (i = 0; i < numRows * numCols; i++)
- {
- if (pIn[i] != 0.0)
- break;
- }
-
- if (i == numRows * numCols)
- status = ARM_MATH_SINGULAR;
- }
- }
-
- /* Return to application */
- return (status);
-}
-
-/**
- @} end of MatrixInv group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_inverse_f64.c
+ * Description: Floating-point matrix inverse
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+
+/**
+ @addtogroup MatrixInv
+ @{
+ */
+
+/**
+ @brief Floating-point (64 bit) matrix inverse.
+ @param[in] pSrc points to input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible)
+ */
+
+arm_status arm_mat_inverse_f64(
+ const arm_matrix_instance_f64 * pSrc,
+ arm_matrix_instance_f64 * pDst)
+{
+ float64_t *pIn = pSrc->pData; /* input data matrix pointer */
+ float64_t *pOut = pDst->pData; /* output data matrix pointer */
+ float64_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
+ float64_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
+ float64_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
+ uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
+ uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
+
+#if defined (ARM_MATH_DSP)
+ float64_t maxC; /* maximum value in the column */
+
+ float64_t Xchg, in = 0.0, in1; /* Temporary input values */
+ uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
+ arm_status status; /* status of matrix inverse */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pDst->numRows != pDst->numCols) ||
+ (pSrc->numRows != pDst->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+
+ /*--------------------------------------------------------------------------------------------------------------
+ * Matrix Inverse can be solved using elementary row operations.
+ *
+ * Gauss-Jordan Method:
+ *
+ * 1. First combine the identity matrix and the input matrix separated by a bar to form an
+ * augmented matrix as follows:
+ * _ _ _ _
+ * | a11 a12 | 1 0 | | X11 X12 |
+ * | | | = | |
+ * |_ a21 a22 | 0 1 _| |_ X21 X21 _|
+ *
+ * 2. In our implementation, pDst Matrix is used as identity matrix.
+ *
+ * 3. Begin with the first row. Let i = 1.
+ *
+ * 4. Check to see if the pivot for column i is the greatest of the column.
+ * The pivot is the element of the main diagonal that is on the current row.
+ * For instance, if working with row i, then the pivot element is aii.
+ * If the pivot is not the most significant of the columns, exchange that row with a row
+ * below it that does contain the most significant value in column i. If the most
+ * significant value of the column is zero, then an inverse to that matrix does not exist.
+ * The most significant value of the column is the absolute maximum.
+ *
+ * 5. Divide every element of row i by the pivot.
+ *
+ * 6. For every row below and row i, replace that row with the sum of that row and
+ * a multiple of row i so that each new element in column i below row i is zero.
+ *
+ * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
+ * for every element below and above the main diagonal.
+ *
+ * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
+ * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
+ *----------------------------------------------------------------------------------------------------------------*/
+
+ /* Working pointer for destination matrix */
+ pOutT1 = pOut;
+
+ /* Loop over the number of rows */
+ rowCnt = numRows;
+
+ /* Making the destination matrix as identity matrix */
+ while (rowCnt > 0U)
+ {
+ /* Writing all zeroes in lower triangle of the destination matrix */
+ j = numRows - rowCnt;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0;
+ j--;
+ }
+
+ /* Writing all ones in the diagonal of the destination matrix */
+ *pOutT1++ = 1.0;
+
+ /* Writing all zeroes in upper triangle of the destination matrix */
+ j = rowCnt - 1U;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0;
+ j--;
+ }
+
+ /* Decrement loop counter */
+ rowCnt--;
+ }
+
+ /* Loop over the number of columns of the input matrix.
+ All the elements in each column are processed by the row operations */
+ loopCnt = numCols;
+
+ /* Index modifier to navigate through the columns */
+ l = 0U;
+
+ while (loopCnt > 0U)
+ {
+ /* Check if the pivot element is zero..
+ * If it is zero then interchange the row with non zero row below.
+ * If there is no non zero element to replace in the rows below,
+ * then the matrix is Singular. */
+
+ /* Working pointer for the input matrix that points
+ * to the pivot element of the particular row */
+ pInT1 = pIn + (l * numCols);
+
+ /* Working pointer for the destination matrix that points
+ * to the pivot element of the particular row */
+ pOutT1 = pOut + (l * numCols);
+
+ /* Temporary variable to hold the pivot value */
+ in = *pInT1;
+
+ /* Grab the most significant value from column l */
+ maxC = 0;
+ for (i = l; i < numRows; i++)
+ {
+ maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
+ pInT1 += numCols;
+ }
+
+ /* Update the status if the matrix is singular */
+ if (maxC == 0.0)
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Restore pInT1 */
+ pInT1 = pIn;
+
+ /* Destination pointer modifier */
+ k = 1U;
+
+ /* Check if the pivot element is the most significant of the column */
+ if ( (in > 0.0 ? in : -in) != maxC)
+ {
+ /* Loop over the number rows present below */
+ i = numRows - (l + 1U);
+
+ while (i > 0U)
+ {
+ /* Update the input and destination pointers */
+ pInT2 = pInT1 + (numCols * l);
+ pOutT2 = pOutT1 + (numCols * k);
+
+ /* Look for the most significant element to
+ * replace in the rows below */
+ if ((*pInT2 > 0.0 ? *pInT2: -*pInT2) == maxC)
+ {
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ j = numCols - l;
+
+ while (j > 0U)
+ {
+ /* Exchange the row elements of the input matrix */
+ Xchg = *pInT2;
+ *pInT2++ = *pInT1;
+ *pInT1++ = Xchg;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over number of columns of the destination matrix */
+ j = numCols;
+
+ while (j > 0U)
+ {
+ /* Exchange the row elements of the destination matrix */
+ Xchg = *pOutT2;
+ *pOutT2++ = *pOutT1;
+ *pOutT1++ = Xchg;
+
+ /* Decrement loop counter */
+ j--;
+ }
+
+ /* Flag to indicate whether exchange is done or not */
+ flag = 1U;
+
+ /* Break after exchange is done */
+ break;
+ }
+
+ /* Update the destination pointer modifier */
+ k++;
+
+ /* Decrement loop counter */
+ i--;
+ }
+ }
+
+ /* Update the status if the matrix is singular */
+ if ((flag != 1U) && (in == 0.0))
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Points to the pivot row of input and destination matrices */
+ pPivotRowIn = pIn + (l * numCols);
+ pPivotRowDst = pOut + (l * numCols);
+
+ /* Temporary pointers to the pivot row pointers */
+ pInT1 = pPivotRowIn;
+ pInT2 = pPivotRowDst;
+
+ /* Pivot element of the row */
+ in = *pPivotRowIn;
+
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ j = (numCols - l);
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the input matrix
+ * by the pivot element */
+ in1 = *pInT1;
+ *pInT1++ = in1 / in;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over number of columns of the destination matrix */
+ j = numCols;
+
+ while (j > 0U)
+ {
+ /* Divide each element of the row of the destination matrix
+ * by the pivot element */
+ in1 = *pInT2;
+ *pInT2++ = in1 / in;
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Replace the rows with the sum of that row and a multiple of row i
+ * so that each new element in column i above row i is zero.*/
+
+ /* Temporary pointers for input and destination matrices */
+ pInT1 = pIn;
+ pInT2 = pOut;
+
+ /* index used to check for pivot element */
+ i = 0U;
+
+ /* Loop over number of rows */
+ /* to be replaced by the sum of that row and a multiple of row i */
+ k = numRows;
+
+ while (k > 0U)
+ {
+ /* Check for the pivot element */
+ if (i == l)
+ {
+ /* If the processing element is the pivot element,
+ only the columns to the right are to be processed */
+ pInT1 += numCols - l;
+
+ pInT2 += numCols;
+ }
+ else
+ {
+ /* Element of the reference row */
+ in = *pInT1;
+
+ /* Working pointers for input and destination pivot rows */
+ pPRT_in = pPivotRowIn;
+ pPRT_pDst = pPivotRowDst;
+
+ /* Loop over the number of columns to the right of the pivot element,
+ to replace the elements in the input matrix */
+ j = (numCols - l);
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ in1 = *pInT1;
+ *pInT1++ = in1 - (in * *pPRT_in++);
+
+ /* Decrement the loop counter */
+ j--;
+ }
+
+ /* Loop over the number of columns to
+ replace the elements in the destination matrix */
+ j = numCols;
+
+ while (j > 0U)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ in1 = *pInT2;
+ *pInT2++ = in1 - (in * *pPRT_pDst++);
+
+ /* Decrement loop counter */
+ j--;
+ }
+
+ }
+
+ /* Increment temporary input pointer */
+ pInT1 = pInT1 + l;
+
+ /* Decrement loop counter */
+ k--;
+
+ /* Increment pivot index */
+ i++;
+ }
+
+ /* Increment the input pointer */
+ pIn++;
+
+ /* Decrement the loop counter */
+ loopCnt--;
+
+ /* Increment the index modifier */
+ l++;
+ }
+
+
+#else
+
+ float64_t Xchg, in = 0.0; /* Temporary input values */
+ uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */
+ arm_status status; /* status of matrix inverse */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pDst->numRows != pDst->numCols) ||
+ (pSrc->numRows != pDst->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+
+ /*--------------------------------------------------------------------------------------------------------------
+ * Matrix Inverse can be solved using elementary row operations.
+ *
+ * Gauss-Jordan Method:
+ *
+ * 1. First combine the identity matrix and the input matrix separated by a bar to form an
+ * augmented matrix as follows:
+ * _ _ _ _ _ _ _ _
+ * | | a11 a12 | | | 1 0 | | | X11 X12 |
+ * | | | | | | | = | |
+ * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
+ *
+ * 2. In our implementation, pDst Matrix is used as identity matrix.
+ *
+ * 3. Begin with the first row. Let i = 1.
+ *
+ * 4. Check to see if the pivot for row i is zero.
+ * The pivot is the element of the main diagonal that is on the current row.
+ * For instance, if working with row i, then the pivot element is aii.
+ * If the pivot is zero, exchange that row with a row below it that does not
+ * contain a zero in column i. If this is not possible, then an inverse
+ * to that matrix does not exist.
+ *
+ * 5. Divide every element of row i by the pivot.
+ *
+ * 6. For every row below and row i, replace that row with the sum of that row and
+ * a multiple of row i so that each new element in column i below row i is zero.
+ *
+ * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
+ * for every element below and above the main diagonal.
+ *
+ * 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
+ * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
+ *----------------------------------------------------------------------------------------------------------------*/
+
+ /* Working pointer for destination matrix */
+ pOutT1 = pOut;
+
+ /* Loop over the number of rows */
+ rowCnt = numRows;
+
+ /* Making the destination matrix as identity matrix */
+ while (rowCnt > 0U)
+ {
+ /* Writing all zeroes in lower triangle of the destination matrix */
+ j = numRows - rowCnt;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0;
+ j--;
+ }
+
+ /* Writing all ones in the diagonal of the destination matrix */
+ *pOutT1++ = 1.0;
+
+ /* Writing all zeroes in upper triangle of the destination matrix */
+ j = rowCnt - 1U;
+ while (j > 0U)
+ {
+ *pOutT1++ = 0.0;
+ j--;
+ }
+
+ /* Decrement loop counter */
+ rowCnt--;
+ }
+
+ /* Loop over the number of columns of the input matrix.
+ All the elements in each column are processed by the row operations */
+ loopCnt = numCols;
+
+ /* Index modifier to navigate through the columns */
+ l = 0U;
+
+ while (loopCnt > 0U)
+ {
+ /* Check if the pivot element is zero..
+ * If it is zero then interchange the row with non zero row below.
+ * If there is no non zero element to replace in the rows below,
+ * then the matrix is Singular. */
+
+ /* Working pointer for the input matrix that points
+ * to the pivot element of the particular row */
+ pInT1 = pIn + (l * numCols);
+
+ /* Working pointer for the destination matrix that points
+ * to the pivot element of the particular row */
+ pOutT1 = pOut + (l * numCols);
+
+ /* Temporary variable to hold the pivot value */
+ in = *pInT1;
+
+ /* Destination pointer modifier */
+ k = 1U;
+
+ /* Check if the pivot element is zero */
+ if (*pInT1 == 0.0)
+ {
+ /* Loop over the number rows present below */
+ for (i = (l + 1U); i < numRows; i++)
+ {
+ /* Update the input and destination pointers */
+ pInT2 = pInT1 + (numCols * l);
+ pOutT2 = pOutT1 + (numCols * k);
+
+ /* Check if there is a non zero pivot element to
+ * replace in the rows below */
+ if (*pInT2 != 0.0)
+ {
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ for (j = 0U; j < (numCols - l); j++)
+ {
+ /* Exchange the row elements of the input matrix */
+ Xchg = *pInT2;
+ *pInT2++ = *pInT1;
+ *pInT1++ = Xchg;
+ }
+
+ for (j = 0U; j < numCols; j++)
+ {
+ Xchg = *pOutT2;
+ *pOutT2++ = *pOutT1;
+ *pOutT1++ = Xchg;
+ }
+
+ /* Flag to indicate whether exchange is done or not */
+ flag = 1U;
+
+ /* Break after exchange is done */
+ break;
+ }
+
+ /* Update the destination pointer modifier */
+ k++;
+ }
+ }
+
+ /* Update the status if the matrix is singular */
+ if ((flag != 1U) && (in == 0.0))
+ {
+ return ARM_MATH_SINGULAR;
+ }
+
+ /* Points to the pivot row of input and destination matrices */
+ pPivotRowIn = pIn + (l * numCols);
+ pPivotRowDst = pOut + (l * numCols);
+
+ /* Temporary pointers to the pivot row pointers */
+ pInT1 = pPivotRowIn;
+ pOutT1 = pPivotRowDst;
+
+ /* Pivot element of the row */
+ in = *(pIn + (l * numCols));
+
+ /* Loop over number of columns
+ * to the right of the pilot element */
+ for (j = 0U; j < (numCols - l); j++)
+ {
+ /* Divide each element of the row of the input matrix
+ * by the pivot element */
+ *pInT1 = *pInT1 / in;
+ pInT1++;
+ }
+ for (j = 0U; j < numCols; j++)
+ {
+ /* Divide each element of the row of the destination matrix
+ * by the pivot element */
+ *pOutT1 = *pOutT1 / in;
+ pOutT1++;
+ }
+
+ /* Replace the rows with the sum of that row and a multiple of row i
+ * so that each new element in column i above row i is zero.*/
+
+ /* Temporary pointers for input and destination matrices */
+ pInT1 = pIn;
+ pOutT1 = pOut;
+
+ for (i = 0U; i < numRows; i++)
+ {
+ /* Check for the pivot element */
+ if (i == l)
+ {
+ /* If the processing element is the pivot element,
+ only the columns to the right are to be processed */
+ pInT1 += numCols - l;
+ pOutT1 += numCols;
+ }
+ else
+ {
+ /* Element of the reference row */
+ in = *pInT1;
+
+ /* Working pointers for input and destination pivot rows */
+ pPRT_in = pPivotRowIn;
+ pPRT_pDst = pPivotRowDst;
+
+ /* Loop over the number of columns to the right of the pivot element,
+ to replace the elements in the input matrix */
+ for (j = 0U; j < (numCols - l); j++)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ *pInT1 = *pInT1 - (in * *pPRT_in++);
+ pInT1++;
+ }
+
+ /* Loop over the number of columns to
+ replace the elements in the destination matrix */
+ for (j = 0U; j < numCols; j++)
+ {
+ /* Replace the element by the sum of that row
+ and a multiple of the reference row */
+ *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
+ pOutT1++;
+ }
+
+ }
+
+ /* Increment temporary input pointer */
+ pInT1 = pInT1 + l;
+ }
+
+ /* Increment the input pointer */
+ pIn++;
+
+ /* Decrement the loop counter */
+ loopCnt--;
+
+ /* Increment the index modifier */
+ l++;
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+
+ if ((flag != 1U) && (in == 0.0))
+ {
+ pIn = pSrc->pData;
+ for (i = 0; i < numRows * numCols; i++)
+ {
+ if (pIn[i] != 0.0)
+ break;
+ }
+
+ if (i == numRows * numCols)
+ status = ARM_MATH_SINGULAR;
+ }
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixInv group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
index d1fd9ea..35517d6 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
@@ -1,1001 +1,534 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_f32.c
- * Description: Floating-point matrix multiplication
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-#if defined(ARM_MATH_NEON)
-#define GROUPOFROWS 8
-#endif
-
-/**
- * @ingroup groupMatrix
- */
-
-/**
- * @defgroup MatrixMult Matrix Multiplication
- *
- * Multiplies two matrices.
- *
- * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
-
- * Matrix multiplication is only defined if the number of columns of the
- * first matrix equals the number of rows of the second matrix.
- * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
- * in an <code>M x P</code> matrix.
- * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
- * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
- * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
- */
-
-
-/**
- * @addtogroup MatrixMult
- * @{
- */
-
-
-
-#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#define MATRIX_DIM3 3
-#define MATRIX_DIM4 4
-
-__STATIC_INLINE arm_status arm_mat_mult_f32_2x2_mve(
- const arm_matrix_instance_f32 *pSrcA,
- const arm_matrix_instance_f32 *pSrcB,
- arm_matrix_instance_f32 *pDst)
-{
- /* {a00, a00, a10, a10} */
- static const uint32_t offsetA0[4] = { 0, 0, 2, 2 };
- /* {b00, b01, b00, b01} */
- static const uint32_t offsetB0[4] = { 0, 1, 0, 1 };
- /* {a01, a01, a11, a11} */
- static const uint32_t offsetA1[4] = { 1, 1, 3, 3 };
- /* {b10, b11, b10, b11} */
- static const uint32_t offsetB1[4] = { 2, 3, 2, 3 };
-
- uint32x4_t vecOffsA, vecOffsB;
- f32x4_t vecInA, vecInB, vecDst;
-
- vecOffsA = vldrwq_u32((uint32_t const *) offsetA0);
- vecOffsB = vldrwq_u32((uint32_t const *) offsetB0);
-
- vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
- vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
-
- vecDst = vmulq(vecInA, vecInB);
-
- vecOffsA = vldrwq_u32((uint32_t const *) offsetA1);
- vecOffsB = vldrwq_u32((uint32_t const *) offsetB1);
-
- vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
- vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
-
- vecDst = vfmaq(vecDst, vecInA, vecInB);
-
- vstrwq_f32(pDst->pData, vecDst);
-
- return (ARM_MATH_SUCCESS);
-
-}
-
-
-/*
- * A = {{a00, a01, a02},
- * {a10, a11, a12},
- * {a20, a21, a22}}
- * B = {{b00, b01, b02},
- * {b10, b11, b12},
- * {b20, b21, b22}}
- *
- * Dst = {{a00 b00 + a01 b10 + a02 b20, a00 b01 + a01 b11 + a02 b21, a00 b02 + a01 b12 + a02 b22},
- * {a10 b00 + a11 b10 + a12 b20, a10 b01 + a11 b11 + a12 b21, a10 b02 + a11 b12 + a12 b22},
- * {a20 b00 + a21 b10 + a22 b20, a20 b01 + a21 b11 + a22 b21, a20 b02 + a21 b12 + a22 b22}}
- */
-__STATIC_INLINE arm_status arm_mat_mult_f32_3x3_mve(
- const arm_matrix_instance_f32 *pSrcA,
- const arm_matrix_instance_f32 *pSrcB,
- arm_matrix_instance_f32 *pDst)
-{
- float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInA0, *pInA1, *pInA2;
- f32x4_t vecMac0, vecMac1, vecMac2;
- f32x4_t vecInB;
- float32_t const *pSrBVec;
-
- pSrBVec = (float32_t const *) pInB;
-
- pInA0 = pInA;
- pInA1 = pInA0 + MATRIX_DIM3;
- pInA2 = pInA1 + MATRIX_DIM3;
- /* enable predication to disable last (4th) vector element */
- mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
-
- /*
- * load {b0,0, b0,1, b0,2, 0}
- */
- vecInB = vldrwq_z_f32(pSrBVec, p0);
- pSrBVec += MATRIX_DIM3;
-
- vecMac0 = vmulq(vecInB, *pInA0++);
- vecMac1 = vmulq(vecInB, *pInA1++);
- vecMac2 = vmulq(vecInB, *pInA2++);
- /*
- * load {b1,0, b1,1, b1,2, 0}
- */
- vecInB = vldrwq_z_f32(pSrBVec, p0);
- pSrBVec += MATRIX_DIM3;
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
- vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
- vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
- /*
- * load {b2,0, b2,1 , b2,2, 0}
- */
- vecInB = vldrwq_z_f32(pSrBVec, p0);
- pSrBVec += MATRIX_DIM3;
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
- vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
- vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
-
- /* partial vector stores */
- vstrwq_p_f32(pOut, vecMac0, p0);
- pOut += MATRIX_DIM3;
- vstrwq_p_f32(pOut, vecMac1, p0);
- pOut += MATRIX_DIM3;
- vstrwq_p_f32(pOut, vecMac2, p0);
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-
-
-__STATIC_INLINE arm_status arm_mat_mult_f32_4x4_mve(
- const arm_matrix_instance_f32 *pSrcA,
- const arm_matrix_instance_f32 *pSrcB,
- arm_matrix_instance_f32 *pDst)
-{
- float32_t const *pSrBVec;
- float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *pInA0, *pInA1, *pInA2, *pInA3;
- f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
- f32x4_t vecInB;
-
- pSrBVec = (float32_t const *) pInB;
-
- pInA0 = pInA;
- pInA1 = pInA0 + MATRIX_DIM4;
- pInA2 = pInA1 + MATRIX_DIM4;
- pInA3 = pInA2 + MATRIX_DIM4;
- /*
- * load {b0,0, b0,1, b0,2, b0,3}
- */
- vecInB = vld1q(pSrBVec);
- pSrBVec += MATRIX_DIM4;
-
- vecMac0 = vmulq(vecInB, *pInA0++);
- vecMac1 = vmulq(vecInB, *pInA1++);
- vecMac2 = vmulq(vecInB, *pInA2++);
- vecMac3 = vmulq(vecInB, *pInA3++);
- /*
- * load {b1,0, b1,1, b1,2, b1,3}
- */
- vecInB = vld1q(pSrBVec);
- pSrBVec += MATRIX_DIM4;
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
- vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
- vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
- vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
- /*
- * load {b2,0, b2,1, b2,2, b2,3}
- */
- vecInB = vld1q(pSrBVec);
- pSrBVec += MATRIX_DIM4;
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
- vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
- vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
- vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
- /*
- * load {b3,0, b3,1, b3,2, b3,3}
- */
- vecInB = vld1q(pSrBVec);
- pSrBVec += MATRIX_DIM4;
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
- vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
- vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
- vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
-
- vst1q(pOut, vecMac0);
- pOut += MATRIX_DIM4;
- vst1q(pOut, vecMac1);
- pOut += MATRIX_DIM4;
- vst1q(pOut, vecMac2);
- pOut += MATRIX_DIM4;
- vst1q(pOut, vecMac3);
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-/**
- * @brief Floating-point matrix multiplication.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
-arm_status arm_mat_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- int numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- int numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint32_t blkCnt; /* loop counters */
- uint32_t i;
- arm_status status;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* small squared matrix specialized routines */
- if(numRowsA == numColsB && numColsB == numColsA) {
- if (numRowsA == 1)
- {
- pOut[0] = pInA[0] * pInB[0];
- return(ARM_MATH_SUCCESS);
- }
- else if(numRowsA == 2)
- return arm_mat_mult_f32_2x2_mve(pSrcA, pSrcB, pDst);
- else if(numRowsA == 3)
- return arm_mat_mult_f32_3x3_mve(pSrcA, pSrcB, pDst);
- else if(numRowsA == 4)
- return arm_mat_mult_f32_4x4_mve(pSrcA, pSrcB, pDst);
- }
-
- /* main loop process 4 rows */
- i = numRowsA >> 2;
- while (i > 0U)
- {
- float32_t *pInA0, *pInA1, *pInA2, *pInA3;
- float32_t *pInB0;
- float32_t *pOut0, *pOut1, *pOut2, *pOut3;
- f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
- f32x4_t vecInB;
-
- /* pointers to 4 consecutive output rows */
- pOut0 = pOut;
- pOut1 = pOut0 + numColsB;
- pOut2 = pOut1 + numColsB;
- pOut3 = pOut2 + numColsB;
- pInB0 = pInB;
-
- uint32_t k = numColsB >> 2;
- while (k > 0U)
- {
- /* pointers to 4 consecutive Matrix A rows */
- pInA0 = pInA;
- pInA1 = pInA0 + numColsA;
- pInA2 = pInA1 + numColsA;
- pInA3 = pInA2 + numColsA;
-
- vecMac0 = vdupq_n_f32(0.0f);
- vecMac1 = vdupq_n_f32(0.0f);
- vecMac2 = vdupq_n_f32(0.0f);
- vecMac3 = vdupq_n_f32(0.0f);
-
- blkCnt = numColsA;
-
- while (blkCnt > 0U)
- {
- /*
- * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
- */
- vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
- vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
- vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
- vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
-
- pInB0 = pInB0 + numColsB;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
-
- /* Store the results (4 x 4 block) in the destination buffer */
- vst1q(pOut0, vecMac0);
- pOut0 += 4;
- vst1q(pOut1, vecMac1);
- pOut1 += 4;
- vst1q(pOut2, vecMac2);
- pOut2 += 4;
- vst1q(pOut3, vecMac3);
- pOut3 += 4;
-
- /*
- * rewind
- */
- pInB0 -= (numColsB * numColsA) - 4;
- k--;
- }
-
- int colBLeft = numColsB & 3;
- if (colBLeft)
- {
- pInA0 = pInA;
- pInA1 = pInA0 + numColsA;
- pInA2 = pInA1 + numColsA;
- pInA3 = pInA2 + numColsA;
- mve_pred16_t p0 = vctp32q(colBLeft);
-
- vecMac0 = vdupq_n_f32(0.0f);
- vecMac1 = vdupq_n_f32(0.0f);
- vecMac2 = vdupq_n_f32(0.0f);
- vecMac3 = vdupq_n_f32(0.0f);
-
- blkCnt = numColsA;
-
- while (blkCnt > 0U)
- {
- /*
- * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
- */
- vecInB = vldrwq_z_f32(pInB0, p0);
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
- vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
- vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
- vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
-
- pInB0 = pInB0 + numColsB;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
-
- /* Store the results (4 x colBLeft block) in the destination buffer */
- vstrwq_p_f32(pOut0, vecMac0, p0);
- vstrwq_p_f32(pOut1, vecMac1, p0);
- vstrwq_p_f32(pOut2, vecMac2, p0);
- vstrwq_p_f32(pOut3, vecMac3, p0);
- }
-
- /* move to next rows */
- pInA += 4 * numColsA;
- pOut += 4 * numColsB;
- i--;
- }
-
- /*
- * non multiple of 4 rows for Matrix A
- * process single row
- */
- if (numRowsA & 3)
- {
- i = numRowsA & 3;
- while (i > 0U)
- {
- float32_t *pInA0;
- float32_t *pInB0;
- float32_t *pOut0;
- f32x4_t vecInB;
- f32x4_t vecMac0;
-
- pOut0 = pOut;
- pInB0 = pInB;
-
- uint32_t k = numColsB >> 2;
- while (k > 0U)
- {
- pInA0 = pInA;
-
- vecMac0 = vdupq_n_f32(0.0f);
- blkCnt = numColsA;
- while (blkCnt > 0U)
- {
- /*
- * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
- */
- vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
-
- pInB0 = pInB0 + numColsB;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
-
- /* Store the results (1 x 4 block) in the destination buffer */
- vst1q(pOut0, vecMac0);
- pOut0 += 4;
-
- /*
- * rewind
- */
- pInB0 -= (numColsB * numColsA) - 4;
- k--;
- }
-
- int colBLeft = numColsB & 3;
- if (colBLeft)
- {
- pInA0 = pInA;
- mve_pred16_t p0 = vctp32q(colBLeft);
-
- vecMac0 = vdupq_n_f32(0.0f);
- blkCnt = numColsA;
- while (blkCnt > 0U)
- {
- /*
- * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
- */
- vecInB = vldrwq_z_f32(pInB0, p0);
-
- vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
-
- pInB0 = pInB0 + numColsB;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /* Store the results (1 x colBLeft block) in the destination buffer */
- vstrwq_p_f32(pOut0, vecMac0, p0);
- }
-
- /* move to next row */
- pInA += 1 * numColsA;
- pOut += 1 * numColsB;
- i--;
- }
-
- }
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-
-#if defined(ARM_MATH_NEON)
-/**
- * @brief Floating-point matrix multiplication.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
-arm_status arm_mat_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- float32_t sum; /* Accumulator */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
-
-
- uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
-
- float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
- float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
- float32x2_t accum = vdup_n_f32(0);
- float32_t *pIn1B = pSrcA->pData;
- float32_t *pIn1C = pSrcA->pData;
- float32_t *pIn1D = pSrcA->pData;
- float32_t *pIn1E = pSrcA->pData;
- float32_t *pIn1F = pSrcA->pData;
- float32_t *pIn1G = pSrcA->pData;
- float32_t *pIn1H = pSrcA->pData;
-
- float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */
- float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* Row loop */
- rowCnt = row >> 3;
-
- while(rowCnt > 0)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + GROUPOFROWS*i;
- pxB = px + numColsB;
- pxC = px + 2*numColsB;
- pxD = px + 3*numColsB;
- pxE = px + 4*numColsB;
- pxF = px + 5*numColsB;
- pxG = px + 6*numColsB;
- pxH = px + 7*numColsB;
-
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
-
- j = 0U;
-
- /* Column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum0 = 0.0f;
- sum1 = 0.0f;
- sum2 = 0.0f;
- sum3 = 0.0f;
- sum4 = 0.0f;
- sum5 = 0.0f;
- sum6 = 0.0f;
- sum7 = 0.0f;
-
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- pIn1B = pIn1 + numColsA;
- pIn1C = pIn1 + 2*numColsA;
- pIn1D = pIn1 + 3*numColsA;
- pIn1E = pIn1 + 4*numColsA;
- pIn1F = pIn1 + 5*numColsA;
- pIn1G = pIn1 + 6*numColsA;
- pIn1H = pIn1 + 7*numColsA;
-
- acc0 = vdupq_n_f32(0.0);
- acc1 = vdupq_n_f32(0.0);
- acc2 = vdupq_n_f32(0.0);
- acc3 = vdupq_n_f32(0.0);
- acc4 = vdupq_n_f32(0.0);
- acc5 = vdupq_n_f32(0.0);
- acc6 = vdupq_n_f32(0.0);
- acc7 = vdupq_n_f32(0.0);
-
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
-
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a0V = vld1q_f32(pIn1);
- a1V = vld1q_f32(pIn1B);
- a2V = vld1q_f32(pIn1C);
- a3V = vld1q_f32(pIn1D);
- a4V = vld1q_f32(pIn1E);
- a5V = vld1q_f32(pIn1F);
- a6V = vld1q_f32(pIn1G);
- a7V = vld1q_f32(pIn1H);
-
- pIn1 += 4;
- pIn1B += 4;
- pIn1C += 4;
- pIn1D += 4;
- pIn1E += 4;
- pIn1F += 4;
- pIn1G += 4;
- pIn1H += 4;
-
- temp = vsetq_lane_f32(*pIn2,temp,0);
- pIn2 += numColsB;
- temp = vsetq_lane_f32(*pIn2,temp,1);
- pIn2 += numColsB;
- temp = vsetq_lane_f32(*pIn2,temp,2);
- pIn2 += numColsB;
- temp = vsetq_lane_f32(*pIn2,temp,3);
- pIn2 += numColsB;
-
- acc0 = vmlaq_f32(acc0,a0V,temp);
- acc1 = vmlaq_f32(acc1,a1V,temp);
- acc2 = vmlaq_f32(acc2,a2V,temp);
- acc3 = vmlaq_f32(acc3,a3V,temp);
- acc4 = vmlaq_f32(acc4,a4V,temp);
- acc5 = vmlaq_f32(acc5,a5V,temp);
- acc6 = vmlaq_f32(acc6,a6V,temp);
- acc7 = vmlaq_f32(acc7,a7V,temp);
-
- /* Decrement the loop count */
- colCnt--;
- }
-
- accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
- sum0 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
- sum1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
- sum2 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
- sum3 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
- sum4 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
- sum5 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
- sum6 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
- sum7 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- sum0 += *pIn1++ * (*pIn2);
- sum1 += *pIn1B++ * (*pIn2);
- sum2 += *pIn1C++ * (*pIn2);
- sum3 += *pIn1D++ * (*pIn2);
- sum4 += *pIn1E++ * (*pIn2);
- sum5 += *pIn1F++ * (*pIn2);
- sum6 += *pIn1G++ * (*pIn2);
- sum7 += *pIn1H++ * (*pIn2);
- pIn2 += numColsB;
-
- /* Decrement the loop counter */
- colCnt--;
- }
-
- /* Store the result in the destination buffer */
- *px++ = sum0;
- *pxB++ = sum1;
- *pxC++ = sum2;
- *pxD++ = sum3;
- *pxE++ = sum4;
- *pxF++ = sum5;
- *pxG++ = sum6;
- *pxH++ = sum7;
-
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + j;
-
- /* Decrement the column loop counter */
- col--;
-
- } while (col > 0U);
-
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + GROUPOFROWS*numColsA;
-
- /* Decrement the row loop counter */
- rowCnt--;
- }
-
- /*
-
- i was the index of a group of rows computed by previous loop.
- Now i is the index of a row since below code is computing row per row
- and no more group of row per group of rows.
-
- */
-
- i = GROUPOFROWS*i;
- rowCnt = row & 7;
-
- while(rowCnt > 0)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + i;
-
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
-
- j = 0U;
-
- /* Column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0.0f;
-
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
-
- acc0 = vdupq_n_f32(0.0);
-
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
-
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- pIn1 += 4;
-
- temp = vsetq_lane_f32(*pIn2,temp,0);
- pIn2 += numColsB;
- temp = vsetq_lane_f32(*pIn2,temp,1);
- pIn2 += numColsB;
- temp = vsetq_lane_f32(*pIn2,temp,2);
- pIn2 += numColsB;
- temp = vsetq_lane_f32(*pIn2,temp,3);
- pIn2 += numColsB;
-
- acc0 = vmlaq_f32(acc0,a0V,temp);
-
- /* Decrement the loop count */
- colCnt--;
- }
-
- accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
- sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
-
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA % 0x4U;
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- sum += *pIn1++ * (*pIn2);
- pIn2 += numColsB;
-
- /* Decrement the loop counter */
- colCnt--;
- }
-
- /* Store the result in the destination buffer */
- *px++ = sum;
-
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + j;
-
- /* Decrement the column loop counter */
- col--;
-
- } while (col > 0U);
-
-
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + numColsA;
-
- /* Decrement the row loop counter */
- rowCnt--;
-
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-/**
- * @brief Floating-point matrix multiplication.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
-arm_status arm_mat_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
- float32_t *pOut = pDst->pData; /* Output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- float32_t sum; /* Accumulator */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of row being processed */
- px = pOut + i;
-
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
- pIn2 = pSrcB->pData;
-
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0.0f;
-
- /* Initialize pointer pIn1 to point to starting address of column being processed */
- pIn1 = pInA;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 MACs at a time. */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
-
- /* Perform the multiply-accumulates */
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Loop unrolling: Compute remaining MACs */
- colCnt = numColsA % 0x4U;
-
-#else
-
- /* Initialize cntCnt with number of columns */
- colCnt = numColsA;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (colCnt > 0U)
- {
- /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
-
- /* Perform the multiply-accumulates */
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Store result in destination buffer */
- *px++ = sum;
-
- /* Decrement column loop counter */
- col--;
-
- /* Update pointer pIn2 to point to starting address of next column */
- pIn2 = pInB + (numColsB - col);
-
- } while (col > 0U);
-
- /* Update pointer pInA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + numColsA;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#endif /* #if defined(ARM_MATH_NEON) */
-#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
-
-/**
- * @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_f32.c
+ * Description: Floating-point matrix multiplication
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @defgroup MatrixMult Matrix Multiplication
+ *
+ * Multiplies two matrices.
+ *
+ * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
+
+ * Matrix multiplication is only defined if the number of columns of the
+ * first matrix equals the number of rows of the second matrix.
+ * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
+ * in an <code>M x P</code> matrix.
+ * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
+ * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
+ * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
+ */
+
+
+/**
+ * @addtogroup MatrixMult
+ * @{
+ */
+
+/**
+ * @brief Floating-point matrix multiplication.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+#if defined(ARM_MATH_NEON)
+
+#define GROUPOFROWS 8
+
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ float32_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+
+
+ float32_t in1, in2, in3, in4;
+ uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+
+ float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
+ float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
+ float32x2_t accum = vdup_n_f32(0);
+ float32_t *pIn1B = pSrcA->pData;
+ float32_t *pIn1C = pSrcA->pData;
+ float32_t *pIn1D = pSrcA->pData;
+ float32_t *pIn1E = pSrcA->pData;
+ float32_t *pIn1F = pSrcA->pData;
+ float32_t *pIn1G = pSrcA->pData;
+ float32_t *pIn1H = pSrcA->pData;
+
+ float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */
+ float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* Row loop */
+ rowCnt = row >> 3;
+
+ while(rowCnt > 0)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + GROUPOFROWS*i;
+ pxB = px + numColsB;
+ pxC = px + 2*numColsB;
+ pxD = px + 3*numColsB;
+ pxE = px + 4*numColsB;
+ pxF = px + 5*numColsB;
+ pxG = px + 6*numColsB;
+ pxH = px + 7*numColsB;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum0 = 0.0f;
+ sum1 = 0.0f;
+ sum2 = 0.0f;
+ sum3 = 0.0f;
+ sum4 = 0.0f;
+ sum5 = 0.0f;
+ sum6 = 0.0f;
+ sum7 = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+ pIn1B = pIn1 + numColsA;
+ pIn1C = pIn1 + 2*numColsA;
+ pIn1D = pIn1 + 3*numColsA;
+ pIn1E = pIn1 + 4*numColsA;
+ pIn1F = pIn1 + 5*numColsA;
+ pIn1G = pIn1 + 6*numColsA;
+ pIn1H = pIn1 + 7*numColsA;
+
+ acc0 = vdupq_n_f32(0.0);
+ acc1 = vdupq_n_f32(0.0);
+ acc2 = vdupq_n_f32(0.0);
+ acc3 = vdupq_n_f32(0.0);
+ acc4 = vdupq_n_f32(0.0);
+ acc5 = vdupq_n_f32(0.0);
+ acc6 = vdupq_n_f32(0.0);
+ acc7 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a0V = vld1q_f32(pIn1);
+ a1V = vld1q_f32(pIn1B);
+ a2V = vld1q_f32(pIn1C);
+ a3V = vld1q_f32(pIn1D);
+ a4V = vld1q_f32(pIn1E);
+ a5V = vld1q_f32(pIn1F);
+ a6V = vld1q_f32(pIn1G);
+ a7V = vld1q_f32(pIn1H);
+
+ pIn1 += 4;
+ pIn1B += 4;
+ pIn1C += 4;
+ pIn1D += 4;
+ pIn1E += 4;
+ pIn1F += 4;
+ pIn1G += 4;
+ pIn1H += 4;
+
+ temp[0] = *pIn2;
+ pIn2 += numColsB;
+ temp[1] = *pIn2;
+ pIn2 += numColsB;
+ temp[2] = *pIn2;
+ pIn2 += numColsB;
+ temp[3] = *pIn2;
+ pIn2 += numColsB;
+
+ acc0 = vmlaq_f32(acc0,a0V,temp);
+ acc1 = vmlaq_f32(acc1,a1V,temp);
+ acc2 = vmlaq_f32(acc2,a2V,temp);
+ acc3 = vmlaq_f32(acc3,a3V,temp);
+ acc4 = vmlaq_f32(acc4,a4V,temp);
+ acc5 = vmlaq_f32(acc5,a5V,temp);
+ acc6 = vmlaq_f32(acc6,a6V,temp);
+ acc7 = vmlaq_f32(acc7,a7V,temp);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
+ sum0 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
+ sum1 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
+ sum2 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
+ sum3 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
+ sum4 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
+ sum5 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
+ sum6 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
+ sum7 += accum[0] + accum[1];
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA & 3;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ sum0 += *pIn1++ * (*pIn2);
+ sum1 += *pIn1B++ * (*pIn2);
+ sum2 += *pIn1C++ * (*pIn2);
+ sum3 += *pIn1D++ * (*pIn2);
+ sum4 += *pIn1E++ * (*pIn2);
+ sum5 += *pIn1F++ * (*pIn2);
+ sum6 += *pIn1G++ * (*pIn2);
+ sum7 += *pIn1H++ * (*pIn2);
+ pIn2 += numColsB;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ /* Store the result in the destination buffer */
+ *px++ = sum0;
+ *pxB++ = sum1;
+ *pxC++ = sum2;
+ *pxD++ = sum3;
+ *pxE++ = sum4;
+ *pxF++ = sum5;
+ *pxG++ = sum6;
+ *pxH++ = sum7;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + j;
+
+ /* Decrement the column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ /* Update the pointer pInA to point to the starting address of the next row */
+ i = i + numColsB;
+ pInA = pInA + GROUPOFROWS*numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+ }
+
+ /*
+
+ i was the index of a group of rows computed by previous loop.
+ Now i is the index of a row since below code is computing row per row
+ and no more group of row per group of rows.
+
+ */
+
+ i = GROUPOFROWS*i;
+ rowCnt = row & 7;
+
+ while(rowCnt > 0)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+
+ acc0 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
+ pIn1 += 4;
+
+ temp[0] = *pIn2;
+ pIn2 += numColsB;
+ temp[1] = *pIn2;
+ pIn2 += numColsB;
+ temp[2] = *pIn2;
+ pIn2 += numColsB;
+ temp[3] = *pIn2;
+ pIn2 += numColsB;
+
+ acc0 = vmlaq_f32(acc0,a0V,temp);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
+ sum += accum[0] + accum[1];
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA % 0x4U;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ sum += *pIn1++ * (*pIn2);
+ pIn2 += numColsB;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ /* Store the result in the destination buffer */
+ *px++ = sum;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + j;
+
+ /* Decrement the column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+
+ /* Update the pointer pInA to point to the starting address of the next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+
+ }
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pOut = pDst->pData; /* Output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ float32_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0.0f;
+
+ /* Initialize pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 MACs at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining MACs */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize cntCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = sum;
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#endif /* #if defined(ARM_MATH_NEON) */
+
+/**
+ * @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
index 314b80e..384974e 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
@@ -1,483 +1,483 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_fast_q15.c
- * Description: Q15 matrix multiplication (fast variant)
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixMult
- @{
- */
-
-/**
- @brief Q15 matrix multiplication (fast variant).
- @param[in] pSrcA points to the first input matrix structure
- @param[in] pSrcB points to the second input matrix structure
- @param[out] pDst points to output matrix structure
- @param[in] pState points to the array for storing intermediate results
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The difference between the function \ref arm_mat_mult_q15() and this fast variant is that
- the fast variant use a 32-bit rather than a 64-bit accumulator.
- The result of each 1.15 x 1.15 multiplication is truncated to
- 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
- format. Finally, the accumulator is saturated and converted to a 1.15 result.
- @par
- The fast version has the same overflow behavior as the standard version but provides
- less precision since it discards the low 16 bits of each multiplication result.
- In order to avoid overflows completely the input signals must be scaled down.
- Scale down one of the input matrices by log2(numColsA) bits to avoid overflows,
- as a total of numColsA additions are computed internally for each output element.
- @remark
- Refer to \ref arm_mat_mult_q15() for a slower implementation of this function
- which uses 64-bit accumulation to provide higher precision.
- */
-
-arm_status arm_mat_mult_fast_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState)
-{
- q31_t sum; /* Accumulator */
- q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
- q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
- q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
- q15_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix B */
- uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
-
-#if defined (ARM_MATH_DSP)
- q31_t in; /* Temporary variable to hold the input value */
- q31_t inA1, inB1, inA2, inB2;
- q31_t sum2, sum3, sum4;
- q15_t *pInA2, *pInB2, *px2;
- uint32_t j = 0;
-#else
- q15_t in; /* Temporary variable to hold the input value */
- q15_t inA1, inB1, inA2, inB2;
-#endif /* #if defined (ARM_MATH_DSP) */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Matrix transpose */
- do
- {
- /* The pointer px is set to starting address of column being processed */
- px = pSrcBT + i;
-
- /* Apply loop unrolling and exchange columns with row elements */
- col = numColsB >> 2U;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (col > 0U)
- {
-
-#if defined (ARM_MATH_DSP)
-
- /* Read two elements from row */
- in = read_q15x2_ia (&pInB);
-
- /* Unpack and store one element in destination */
-#ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) in;
-#else
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB;
-
- /* Unpack and store second element in destination */
-#ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-#else
- *px = (q15_t) in;
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB;
-
- in = read_q15x2_ia (&pInB);
-#ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) in;
-#else
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- px += numRowsB;
-
-#ifndef ARM_MATH_BIG_ENDIAN
- *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-#else
- *px = (q15_t) in;
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- px += numRowsB;
-
-#else /* #if defined (ARM_MATH_DSP) */
-
- /* Read one element from row */
- in = *pInB++;
-
- /* Store one element in destination */
- *px = in;
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB;
-
- in = *pInB++;
- *px = in;
- px += numRowsB;
-
- in = *pInB++;
- *px = in;
- px += numRowsB;
-
- in = *pInB++;
- *px = in;
- px += numRowsB;
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Decrement column loop counter */
- col--;
- }
-
- /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- col = numColsB % 0x4U;
-
- while (col > 0U)
- {
- /* Read and store input element in destination */
- *px = *pInB++;
-
- /* Update pointer px to point to next row of transposed matrix */
- px += numRowsB;
-
- /* Decrement column loop counter */
- col--;
- }
-
- i++;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Reset variables for usage in following multiplication process */
- row = numRowsA;
- i = 0U;
- px = pDst->pData;
-
-#if defined (ARM_MATH_DSP)
- /* Process two rows from matrix A at a time and output two rows at a time */
- row = row >> 1U;
- px2 = px + numColsB;
-#endif
-
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- while (row > 0U)
- {
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
- pInB = pSrcBT;
-
-#if defined (ARM_MATH_DSP)
- /* Process two (transposed) columns from matrix B at a time */
- col = col >> 1U;
- j = 0;
-#endif
-
- /* column loop */
- while (col > 0U)
- {
- /* Set variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Initiate pointer pInA to point to starting address of column being processed */
- pInA = pSrcA->pData + i;
-
-#if defined (ARM_MATH_DSP)
- sum2 = 0;
- sum3 = 0;
- sum4 = 0;
- pInB = pSrcBT + j;
- pInA2 = pInA + numColsA;
- pInB2 = pInB + numRowsB;
-
- /* Read in two elements at once - allows dual MAC instruction */
- colCnt = numColsA >> 1U;
-#else
- colCnt = numColsA >> 2U;
-#endif
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
-#if defined (ARM_MATH_DSP)
- /* read real and imag values from pSrcA and pSrcB buffer */
- inA1 = read_q15x2_ia (&pInA);
- inB1 = read_q15x2_ia (&pInB);
-
- inA2 = read_q15x2_ia (&pInA2);
- inB2 = read_q15x2_ia (&pInB2);
-
- /* Multiply and Accumulates */
- sum = __SMLAD(inA1, inB1, sum);
- sum2 = __SMLAD(inA1, inB2, sum2);
- sum3 = __SMLAD(inA2, inB1, sum3);
- sum4 = __SMLAD(inA2, inB2, sum4);
-#else
- /* read real and imag values from pSrcA and pSrcB buffer */
- inA1 = *pInA++;
- inB1 = *pInB++;
- /* Multiply and Accumulates */
- sum += inA1 * inB1;
-
- inA2 = *pInA++;
- inB2 = *pInB++;
- sum += inA2 * inB2;
-
- inA1 = *pInA++;
- inB1 = *pInB++;
- sum += inA1 * inB1;
-
- inA2 = *pInA++;
- inB2 = *pInB++;
- sum += inA2 * inB2;
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* process odd column samples */
-#if defined (ARM_MATH_DSP)
- if (numColsA & 1U) {
- inA1 = *pInA++;
- inB1 = *pInB++;
- inA2 = *pInA2++;
- inB2 = *pInB2++;
- sum += inA1 * inB1;
- sum2 += inA1 * inB2;
- sum3 += inA2 * inB1;
- sum4 += inA2 * inB2;
- }
-#else
- colCnt = numColsA % 0x4U;
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- sum += (q31_t) *pInA++ * *pInB++;
-
- /* Decrement loop counter */
- colCnt--;
- }
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Saturate and store result in destination buffer */
- *px++ = (q15_t) (sum >> 15);
-
-#if defined (ARM_MATH_DSP)
- *px++ = (q15_t) (sum2 >> 15);
- *px2++ = (q15_t) (sum3 >> 15);
- *px2++ = (q15_t) (sum4 >> 15);
- j += numRowsB * 2;
-#endif
-
- /* Decrement column loop counter */
- col--;
-
- }
-
- i = i + numColsA;
-
-#if defined (ARM_MATH_DSP)
- i = i + numColsA;
- px = px2 + (numColsB & 1U);
- px2 = px + numColsB;
-#endif
-
- /* Decrement row loop counter */
- row--;
-
- }
-
- /* Compute any remaining odd row/column below */
-
-#if defined (ARM_MATH_DSP)
-
- /* Compute remaining output column */
- if (numColsB & 1U) {
-
- /* Avoid redundant computation of last element */
- row = numRowsA & (~0x1);
-
- /* Point to remaining unfilled column in output matrix */
- px = pDst->pData + numColsB-1;
- pInA = pSrcA->pData;
-
- /* row loop */
- while (row > 0)
- {
-
- /* point to last column in matrix B */
- pInB = pSrcBT + numRowsB * (numColsB-1);
-
- /* Set variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Compute 4 columns at once */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- inA1 = read_q15x2_ia (&pInA);
- inA2 = read_q15x2_ia (&pInA);
- inB1 = read_q15x2_ia (&pInB);
- inB2 = read_q15x2_ia (&pInB);
-
- sum = __SMLAD(inA1, inB1, sum);
- sum = __SMLAD(inA2, inB2, sum);
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- colCnt = numColsA & 3U;
- while (colCnt > 0U) {
- sum += (q31_t) (*pInA++) * (*pInB++);
- colCnt--;
- }
-
- /* Store result in destination buffer */
- *px = (q15_t) (sum >> 15);
- px += numColsB;
-
- /* Decrement row loop counter */
- row--;
- }
- }
-
- /* Compute remaining output row */
- if (numRowsA & 1U) {
-
- /* point to last row in output matrix */
- px = pDst->pData + (numColsB) * (numRowsA-1);
-
- pInB = pSrcBT;
- col = numColsB;
- i = 0U;
-
- /* col loop */
- while (col > 0)
- {
- /* point to last row in matrix A */
- pInA = pSrcA->pData + (numRowsA-1) * numColsA;
-
- /* Set variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Compute 4 columns at once */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- inA1 = read_q15x2_ia (&pInA);
- inA2 = read_q15x2_ia (&pInA);
- inB1 = read_q15x2_ia (&pInB);
- inB2 = read_q15x2_ia (&pInB);
-
- sum = __SMLAD(inA1, inB1, sum);
- sum = __SMLAD(inA2, inB2, sum);
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- colCnt = numColsA % 4U;
- while (colCnt > 0U) {
- sum += (q31_t) (*pInA++) * (*pInB++);
-
- colCnt--;
- }
-
- /* Store result in destination buffer */
- *px++ = (q15_t) (sum >> 15);
-
- /* Decrement column loop counter */
- col--;
- }
- }
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-/**
- @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_fast_q15.c
+ * Description: Q15 matrix multiplication (fast variant)
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixMult
+ @{
+ */
+
+/**
+ @brief Q15 matrix multiplication (fast variant).
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @param[in] pState points to the array for storing intermediate results
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The difference between the function \ref arm_mat_mult_q15() and this fast variant is that
+ the fast variant use a 32-bit rather than a 64-bit accumulator.
+ The result of each 1.15 x 1.15 multiplication is truncated to
+ 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
+ format. Finally, the accumulator is saturated and converted to a 1.15 result.
+ @par
+ The fast version has the same overflow behavior as the standard version but provides
+ less precision since it discards the low 16 bits of each multiplication result.
+ In order to avoid overflows completely the input signals must be scaled down.
+ Scale down one of the input matrices by log2(numColsA) bits to avoid overflows,
+ as a total of numColsA additions are computed internally for each output element.
+ @remark
+ Refer to \ref arm_mat_mult_q15() for a slower implementation of this function
+ which uses 64-bit accumulation to provide higher precision.
+ */
+
+arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState)
+{
+ q31_t sum; /* Accumulator */
+ q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
+ q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
+ q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
+ q15_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix A */
+ uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#if defined (ARM_MATH_DSP)
+ q31_t in; /* Temporary variable to hold the input value */
+ q31_t inA1, inB1, inA2, inB2;
+ q31_t sum2, sum3, sum4;
+ q15_t *pInA2, *pInB2, *px2;
+ uint32_t j = 0;
+#else
+ q15_t in; /* Temporary variable to hold the input value */
+ q15_t inA1, inB1, inA2, inB2;
+#endif /* #if defined (ARM_MATH_DSP) */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Matrix transpose */
+ do
+ {
+ /* The pointer px is set to starting address of column being processed */
+ px = pSrcBT + i;
+
+ /* Apply loop unrolling and exchange columns with row elements */
+ col = numColsB >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (col > 0U)
+ {
+
+#if defined (ARM_MATH_DSP)
+
+ /* Read two elements from row */
+ in = read_q15x2_ia ((q15_t **) &pInB);
+
+ /* Unpack and store one element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) in;
+#else
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB;
+
+ /* Unpack and store second element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#else
+ *px = (q15_t) in;
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB;
+
+ in = read_q15x2_ia ((q15_t **) &pInB);
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) in;
+#else
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ px += numRowsB;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#else
+ *px = (q15_t) in;
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ px += numRowsB;
+
+#else /* #if defined (ARM_MATH_DSP) */
+
+ /* Read one element from row */
+ in = *pInB++;
+
+ /* Store one element in destination */
+ *px = in;
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB;
+
+ in = *pInB++;
+ *px = in;
+ px += numRowsB;
+
+ in = *pInB++;
+ *px = in;
+ px += numRowsB;
+
+ in = *pInB++;
+ *px = in;
+ px += numRowsB;
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ col = numColsB % 0x4U;
+
+ while (col > 0U)
+ {
+ /* Read and store input element in destination */
+ *px = *pInB++;
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ i++;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Reset variables for usage in following multiplication process */
+ row = numRowsA;
+ i = 0U;
+ px = pDst->pData;
+
+#if defined (ARM_MATH_DSP)
+ /* Process two rows from matrix A at a time and output two rows at a time */
+ row = row >> 1U;
+ px2 = px + numColsB;
+#endif
+
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ while (row > 0U)
+ {
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
+ pInB = pSrcBT;
+
+#if defined (ARM_MATH_DSP)
+ /* Process two (transposed) columns from matrix B at a time */
+ col = col >> 1U;
+ j = 0;
+#endif
+
+ /* column loop */
+ while (col > 0U)
+ {
+ /* Set variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initiate pointer pInA to point to starting address of column being processed */
+ pInA = pSrcA->pData + i;
+
+#if defined (ARM_MATH_DSP)
+ sum2 = 0;
+ sum3 = 0;
+ sum4 = 0;
+ pInB = pSrcBT + j;
+ pInA2 = pInA + numColsA;
+ pInB2 = pInB + numRowsB;
+
+ /* Read in two elements at once - alows dual MAC instruction */
+ colCnt = numColsA >> 1U;
+#else
+ colCnt = numColsA >> 2U;
+#endif
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+#if defined (ARM_MATH_DSP)
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ inA1 = read_q15x2_ia ((q15_t **) &pInA);
+ inB1 = read_q15x2_ia ((q15_t **) &pInB);
+
+ inA2 = read_q15x2_ia ((q15_t **) &pInA2);
+ inB2 = read_q15x2_ia ((q15_t **) &pInB2);
+
+ /* Multiply and Accumlates */
+ sum = __SMLAD(inA1, inB1, sum);
+ sum2 = __SMLAD(inA1, inB2, sum2);
+ sum3 = __SMLAD(inA2, inB1, sum3);
+ sum4 = __SMLAD(inA2, inB2, sum4);
+#else
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ inA1 = *pInA++;
+ inB1 = *pInB++;
+ /* Multiply and Accumlates */
+ sum += inA1 * inB1;
+
+ inA2 = *pInA++;
+ inB2 = *pInB++;
+ sum += inA2 * inB2;
+
+ inA1 = *pInA++;
+ inB1 = *pInB++;
+ sum += inA1 * inB1;
+
+ inA2 = *pInA++;
+ inB2 = *pInB++;
+ sum += inA2 * inB2;
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* process odd column samples */
+#if defined (ARM_MATH_DSP)
+ if (numColsA & 1U) {
+ inA1 = *pInA++;
+ inB1 = *pInB++;
+ inA2 = *pInA2++;
+ inB2 = *pInB2++;
+ sum += inA1 * inB1;
+ sum2 += inA1 * inB2;
+ sum3 += inA2 * inB1;
+ sum4 += inA2 * inB2;
+ }
+#else
+ colCnt = numColsA % 0x4U;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+ sum += (q31_t) *pInA++ * *pInB++;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Saturate and store result in destination buffer */
+ *px++ = (q15_t) (sum >> 15);
+
+#if defined (ARM_MATH_DSP)
+ *px++ = (q15_t) (sum2 >> 15);
+ *px2++ = (q15_t) (sum3 >> 15);
+ *px2++ = (q15_t) (sum4 >> 15);
+ j += numRowsB * 2;
+#endif
+
+ /* Decrement column loop counter */
+ col--;
+
+ }
+
+ i = i + numColsA;
+
+#if defined (ARM_MATH_DSP)
+ i = i + numColsA;
+ px = px2 + (numColsB & 1U);
+ px2 = px + numColsB;
+#endif
+
+ /* Decrement row loop counter */
+ row--;
+
+ }
+
+ /* Compute any remaining odd row/column below */
+
+#if defined (ARM_MATH_DSP)
+
+ /* Compute remaining output column */
+ if (numColsB & 1U) {
+
+ /* Avoid redundant computation of last element */
+ row = numRowsA & (~0x1);
+
+ /* Point to remaining unfilled column in output matrix */
+ px = pDst->pData + numColsB-1;
+ pInA = pSrcA->pData;
+
+ /* row loop */
+ while (row > 0)
+ {
+
+ /* point to last column in matrix B */
+ pInB = pSrcBT + numRowsB * (numColsB-1);
+
+ /* Set variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Compute 4 columns at once */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ inA1 = read_q15x2_ia ((q15_t **) &pInA);
+ inA2 = read_q15x2_ia ((q15_t **) &pInA);
+ inB1 = read_q15x2_ia ((q15_t **) &pInB);
+ inB2 = read_q15x2_ia ((q15_t **) &pInB);
+
+ sum = __SMLAD(inA1, inB1, sum);
+ sum = __SMLAD(inA2, inB2, sum);
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ colCnt = numColsA & 3U;
+ while (colCnt > 0U) {
+ sum += (q31_t) (*pInA++) * (*pInB++);
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px = (q15_t) (sum >> 15);
+ px += numColsB;
+
+ /* Decrement row loop counter */
+ row--;
+ }
+ }
+
+ /* Compute remaining output row */
+ if (numRowsA & 1U) {
+
+ /* point to last row in output matrix */
+ px = pDst->pData + (numColsB) * (numRowsA-1);
+
+ pInB = pSrcBT;
+ col = numColsB;
+ i = 0U;
+
+ /* col loop */
+ while (col > 0)
+ {
+ /* point to last row in matrix A */
+ pInA = pSrcA->pData + (numRowsA-1) * numColsA;
+
+ /* Set variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Compute 4 columns at once */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ inA1 = read_q15x2_ia ((q15_t **) &pInA);
+ inA2 = read_q15x2_ia ((q15_t **) &pInA);
+ inB1 = read_q15x2_ia ((q15_t **) &pInB);
+ inB2 = read_q15x2_ia ((q15_t **) &pInB);
+
+ sum = __SMLAD(inA1, inB1, sum);
+ sum = __SMLAD(inA2, inB2, sum);
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ colCnt = numColsA % 4U;
+ while (colCnt > 0U) {
+ sum += (q31_t) (*pInA++) * (*pInB++);
+
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = (q15_t) (sum >> 15);
+
+ /* Decrement column loop counter */
+ col--;
+ }
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
index 99a4232..0d753f7 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
@@ -1,374 +1,374 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_fast_q31.c
- * Description: Q31 matrix multiplication (fast variant)
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixMult
- @{
- */
-
-/**
- @brief Q31 matrix multiplication (fast variant).
- @param[in] pSrcA points to the first input matrix structure
- @param[in] pSrcB points to the second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The difference between the function \ref arm_mat_mult_q31() and this fast variant is that
- the fast variant use a 32-bit rather than a 64-bit accumulator.
- The result of each 1.31 x 1.31 multiplication is truncated to
- 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
- format. Finally, the accumulator is saturated and converted to a 1.31 result.
- @par
- The fast version has the same overflow behavior as the standard version but provides
- less precision since it discards the low 32 bits of each multiplication result.
- In order to avoid overflows completely the input signals must be scaled down.
- Scale down one of the input matrices by log2(numColsA) bits to avoid overflows,
- as a total of numColsA additions are computed internally for each output element.
- @remark
- Refer to \ref arm_mat_mult_q31() for a slower implementation of this function
- which uses 64-bit accumulation to provide higher precision.
- */
-
-arm_status arm_mat_mult_fast_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
- q31_t *pInA2;
- q31_t *px; /* Temporary output data matrix pointer */
- q31_t *px2;
- q31_t sum1, sum2, sum3, sum4; /* Accumulator */
- q31_t inA1, inA2, inB1, inB2;
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
-
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- px = pDst->pData;
-
- row = row >> 1U;
- px2 = px + numColsB;
-
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- while (row > 0U)
- {
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
- pInB = pSrcB->pData;
-
- j = 0U;
-
- col = col >> 1U;
-
- /* column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum1 = 0;
- sum2 = 0;
- sum3 = 0;
- sum4 = 0;
-
- /* Initiate data pointers */
- pInA = pSrcA->pData + i;
- pInB = pSrcB->pData + j;
- pInA2 = pInA + numColsA;
-
- colCnt = numColsA;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- inA1 = *pInA++;
- inB1 = pInB[0];
- inA2 = *pInA2++;
- inB2 = pInB[1];
- pInB += numColsB;
-
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(inA1, inB1, sum1);
- sum2 = __SMMLA(inA1, inB2, sum2);
- sum3 = __SMMLA(inA2, inB1, sum3);
- sum4 = __SMMLA(inA2, inB2, sum4);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
- sum2 = (q31_t) ((((q63_t) sum2 << 32) + ((q63_t) inA1 * inB2)) >> 32);
- sum3 = (q31_t) ((((q63_t) sum3 << 32) + ((q63_t) inA2 * inB1)) >> 32);
- sum4 = (q31_t) ((((q63_t) sum4 << 32) + ((q63_t) inA2 * inB2)) >> 32);
-#endif
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
- *px++ = sum1 << 1;
- *px++ = sum2 << 1;
- *px2++ = sum3 << 1;
- *px2++ = sum4 << 1;
-
- j += 2;
-
- /* Decrement column loop counter */
- col--;
- }
-
- i = i + (numColsA << 1U);
- px = px2 + (numColsB & 1U);
- px2 = px + numColsB;
-
- /* Decrement row loop counter */
- row--;
- }
-
- /* Compute any remaining odd row/column below */
-
- /* Compute remaining output column */
- if (numColsB & 1U) {
-
- /* Avoid redundant computation of last element */
- row = numRowsA & (~1U);
-
- /* Point to remaining unfilled column in output matrix */
- px = pDst->pData + numColsB-1;
- pInA = pSrcA->pData;
-
- /* row loop */
- while (row > 0)
- {
-
- /* point to last column in matrix B */
- pInB = pSrcB->pData + numColsB-1;
-
- /* Set variable sum1, that acts as accumulator, to zero */
- sum1 = 0;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 columns at a time. */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(*pInA++, *pInB, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
-#endif
- pInB += numColsB;
-
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(*pInA++, *pInB, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
-#endif
- pInB += numColsB;
-
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(*pInA++, *pInB, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
-#endif
- pInB += numColsB;
-
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(*pInA++, *pInB, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
-#endif
- pInB += numColsB;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Loop unrolling: Compute remaining column */
- colCnt = numColsA % 4U;
-
-#else
-
- /* Initialize colCnt with number of columns */
- colCnt = numColsA;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (colCnt > 0U) {
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(*pInA++, *pInB, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
-#endif
- pInB += numColsB;
-
- colCnt--;
- }
-
- /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
- *px = sum1 << 1;
- px += numColsB;
-
- /* Decrement row loop counter */
- row--;
- }
- }
-
- /* Compute remaining output row */
- if (numRowsA & 1U) {
-
- /* point to last row in output matrix */
- px = pDst->pData + (numColsB) * (numRowsA-1);
-
- col = numColsB;
- i = 0U;
-
- /* col loop */
- while (col > 0)
- {
-
- /* point to last row in matrix A */
- pInA = pSrcA->pData + (numRowsA-1) * numColsA;
- pInB = pSrcB->pData + i;
-
- /* Set variable sum1, that acts as accumulator, to zero */
- sum1 = 0;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 columns at a time. */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- inA1 = *pInA++;
- inA2 = *pInA++;
- inB1 = *pInB;
- pInB += numColsB;
- inB2 = *pInB;
- pInB += numColsB;
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(inA1, inB1, sum1);
- sum1 = __SMMLA(inA2, inB2, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32);
-#endif
-
- inA1 = *pInA++;
- inA2 = *pInA++;
- inB1 = *pInB;
- pInB += numColsB;
- inB2 = *pInB;
- pInB += numColsB;
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(inA1, inB1, sum1);
- sum1 = __SMMLA(inA2, inB2, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32);
-#endif
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Loop unrolling: Compute remaining column */
- colCnt = numColsA % 4U;
-
-#else
-
- /* Initialize colCnt with number of columns */
- colCnt = numColsA;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (colCnt > 0U) {
-#if defined (ARM_MATH_DSP)
- sum1 = __SMMLA(*pInA++, *pInB, sum1);
-#else
- sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
-#endif
- pInB += numColsB;
-
- colCnt--;
- }
-
- /* Saturate and store the result in the destination buffer */
- *px++ = sum1 << 1;
- i++;
-
- /* Decrement col loop counter */
- col--;
- }
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-/**
- @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_fast_q31.c
+ * Description: Q31 matrix multiplication (fast variant)
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixMult
+ @{
+ */
+
+/**
+ @brief Q31 matrix multiplication (fast variant).
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The difference between the function \ref arm_mat_mult_q31() and this fast variant is that
+ the fast variant use a 32-bit rather than a 64-bit accumulator.
+ The result of each 1.31 x 1.31 multiplication is truncated to
+ 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
+ format. Finally, the accumulator is saturated and converted to a 1.31 result.
+ @par
+ The fast version has the same overflow behavior as the standard version but provides
+ less precision since it discards the low 32 bits of each multiplication result.
+ In order to avoid overflows completely the input signals must be scaled down.
+ Scale down one of the input matrices by log2(numColsA) bits to avoid overflows,
+ as a total of numColsA additions are computed internally for each output element.
+ @remark
+ Refer to \ref arm_mat_mult_q31() for a slower implementation of this function
+ which uses 64-bit accumulation to provide higher precision.
+ */
+
+arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
+ q31_t *pInA2;
+ q31_t *px; /* Temporary output data matrix pointer */
+ q31_t *px2;
+ q31_t sum1, sum2, sum3, sum4; /* Accumulator */
+ q31_t inA1, inA2, inB1, inB2;
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ px = pDst->pData;
+
+ row = row >> 1U;
+ px2 = px + numColsB;
+
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ while (row > 0U)
+ {
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pInB = pSrcB->pData;
+
+ j = 0U;
+
+ col = col >> 1U;
+
+ /* column loop */
+ while (col > 0U)
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum1 = 0;
+ sum2 = 0;
+ sum3 = 0;
+ sum4 = 0;
+
+ /* Initiate data pointers */
+ pInA = pSrcA->pData + i;
+ pInB = pSrcB->pData + j;
+ pInA2 = pInA + numColsA;
+
+ colCnt = numColsA;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ inA1 = *pInA++;
+ inB1 = pInB[0];
+ inA2 = *pInA2++;
+ inB2 = pInB[1];
+ pInB += numColsB;
+
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(inA1, inB1, sum1);
+ sum2 = __SMMLA(inA1, inB2, sum2);
+ sum3 = __SMMLA(inA2, inB1, sum3);
+ sum4 = __SMMLA(inA2, inB2, sum4);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
+ sum2 = (q31_t) ((((q63_t) sum2 << 32) + ((q63_t) inA1 * inB2)) >> 32);
+ sum3 = (q31_t) ((((q63_t) sum3 << 32) + ((q63_t) inA2 * inB1)) >> 32);
+ sum4 = (q31_t) ((((q63_t) sum4 << 32) + ((q63_t) inA2 * inB2)) >> 32);
+#endif
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
+ *px++ = sum1 << 1;
+ *px++ = sum2 << 1;
+ *px2++ = sum3 << 1;
+ *px2++ = sum4 << 1;
+
+ j += 2;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ i = i + (numColsA << 1U);
+ px = px2 + (numColsB & 1U);
+ px2 = px + numColsB;
+
+ /* Decrement row loop counter */
+ row--;
+ }
+
+ /* Compute any remaining odd row/column below */
+
+ /* Compute remaining output column */
+ if (numColsB & 1U) {
+
+ /* Avoid redundant computation of last element */
+ row = numRowsA & (~1U);
+
+ /* Point to remaining unfilled column in output matrix */
+ px = pDst->pData + numColsB-1;
+ pInA = pSrcA->pData;
+
+ /* row loop */
+ while (row > 0)
+ {
+
+ /* point to last column in matrix B */
+ pInB = pSrcB->pData + numColsB-1;
+
+ /* Set variable sum1, that acts as accumulator, to zero */
+ sum1 = 0;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 columns at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(*pInA++, *pInB, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
+#endif
+ pInB += numColsB;
+
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(*pInA++, *pInB, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
+#endif
+ pInB += numColsB;
+
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(*pInA++, *pInB, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
+#endif
+ pInB += numColsB;
+
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(*pInA++, *pInB, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
+#endif
+ pInB += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining column */
+ colCnt = numColsA % 4U;
+
+#else
+
+ /* Initialize colCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U) {
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(*pInA++, *pInB, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
+#endif
+ pInB += numColsB;
+
+ colCnt--;
+ }
+
+ /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
+ *px = sum1 << 1;
+ px += numColsB;
+
+ /* Decrement row loop counter */
+ row--;
+ }
+ }
+
+ /* Compute remaining output row */
+ if (numRowsA & 1U) {
+
+ /* point to last row in output matrix */
+ px = pDst->pData + (numColsB) * (numRowsA-1);
+
+ col = numColsB;
+ i = 0U;
+
+ /* col loop */
+ while (col > 0)
+ {
+
+ /* point to last row in matrix A */
+ pInA = pSrcA->pData + (numRowsA-1) * numColsA;
+ pInB = pSrcB->pData + i;
+
+ /* Set variable sum1, that acts as accumulator, to zero */
+ sum1 = 0;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 columns at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ inA1 = *pInA++;
+ inA2 = *pInA++;
+ inB1 = *pInB;
+ pInB += numColsB;
+ inB2 = *pInB;
+ pInB += numColsB;
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(inA1, inB1, sum1);
+ sum1 = __SMMLA(inA2, inB2, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32);
+#endif
+
+ inA1 = *pInA++;
+ inA2 = *pInA++;
+ inB1 = *pInB;
+ pInB += numColsB;
+ inB2 = *pInB;
+ pInB += numColsB;
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(inA1, inB1, sum1);
+ sum1 = __SMMLA(inA2, inB2, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32);
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32);
+#endif
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining column */
+ colCnt = numColsA % 4U;
+
+#else
+
+ /* Initialize colCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U) {
+#if defined (ARM_MATH_DSP)
+ sum1 = __SMMLA(*pInA++, *pInB, sum1);
+#else
+ sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32);
+#endif
+ pInB += numColsB;
+
+ colCnt--;
+ }
+
+ /* Saturate and store the result in the destination buffer */
+ *px++ = sum1 << 1;
+ i++;
+
+ /* Decrement col loop counter */
+ col--;
+ }
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c
index e078681..4a3bde8 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c
@@ -1,843 +1,357 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_q15.c
- * Description: Q15 matrix multiplication
- *
- * $Date: 3 Nov 2021
- * $Revision: V1.10.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixMult
- @{
- */
-
-/**
- @brief Q15 matrix multiplication.
- @param[in] pSrcA points to the first input matrix structure
- @param[in] pSrcB points to the second input matrix structure
- @param[out] pDst points to output matrix structure
- @param[in] pState points to the array for storing intermediate results
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The function is implemented using an internal 64-bit accumulator. The inputs to the
- multiplications are in 1.15 format and multiplications yield a 2.30 result.
- The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- This approach provides 33 guard bits and there is no risk of overflow.
- The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits
- and then saturated to 1.15 format.
- @par
- Refer to \ref arm_mat_mult_fast_q15() for a faster but less precise version of this function.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
-
-#define MATRIX_DIM2 2
-#define MATRIX_DIM3 3
-#define MATRIX_DIM4 4
-
-__STATIC_INLINE arm_status arm_mat_mult_q15_2x2_mve(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst)
-{
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q15_t *pOut = pDst->pData; /* output data matrix pointer */
- uint16x8_t vecColBOffs;
- q15_t *pInA0 = pInA;
- q15_t *pInA1 = pInA0 + MATRIX_DIM2;
- q63_t acc0, acc1;
- q15x8_t vecB, vecA0, vecA1;
- mve_pred16_t p0 = vctp16q(MATRIX_DIM2);
-
- vecColBOffs = vidupq_u16((uint32_t)0, 2); /* MATRIX_DIM2 */
-
- pInB = pSrcB->pData;
-
- vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
-
- vecA0 = vldrhq_s16(pInA0);
- vecA1 = vldrhq_s16(pInA1);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
-
- pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
-
- pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
-
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-
-__STATIC_INLINE arm_status arm_mat_mult_q15_3x3_mve(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst)
-{
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q15_t *pOut = pDst->pData; /* output data matrix pointer */
- uint16x8_t vecColBOffs;
- q15_t *pInA0 = pInA;
- q15_t *pInA1 = pInA0 + MATRIX_DIM3;
- q15_t *pInA2 = pInA1 + MATRIX_DIM3;
- q63_t acc0, acc1, acc2;
- q15x8_t vecB, vecA0, vecA1, vecA2;
- mve_pred16_t p0 = vctp16q(MATRIX_DIM3);
-
- vecColBOffs = vidupq_u16((uint32_t)0, 1);
- vecColBOffs = vecColBOffs * MATRIX_DIM3;
-
- pInB = pSrcB->pData;
-
- vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
-
- vecA0 = vldrhq_s16(pInA0);
- vecA1 = vldrhq_s16(pInA1);
- vecA2 = vldrhq_s16(pInA2);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
- acc2 = vmlaldavq(vecA2, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
- acc2 = asrl(acc2, 15);
-
- pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
- pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
- acc2 = vmlaldavq(vecA2, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
- acc2 = asrl(acc2, 15);
-
- pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
- pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
- acc2 = vmlaldavq(vecA2, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
- acc2 = asrl(acc2, 15);
-
- pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
- pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-__STATIC_INLINE arm_status arm_mat_mult_q15_4x4_mve(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst)
-{
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q15_t *pOut = pDst->pData; /* output data matrix pointer */
- uint16x8_t vecColBOffs;
- q15_t *pInA0 = pInA;
- q15_t *pInA1 = pInA0 + MATRIX_DIM4;
- q15_t *pInA2 = pInA1 + MATRIX_DIM4;
- q15_t *pInA3 = pInA2 + MATRIX_DIM4;
- q63_t acc0, acc1, acc2, acc3;
- q15x8_t vecB, vecA0, vecA1, vecA2, vecA3;
- mve_pred16_t p0 = vctp16q(MATRIX_DIM4);
-
- vecColBOffs = vidupq_u16((uint32_t)0, 4);
-
- pInB = pSrcB->pData;
-
- vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
-
- vecA0 = vldrhq_s16(pInA0);
- vecA1 = vldrhq_s16(pInA1);
- vecA2 = vldrhq_s16(pInA2);
- vecA3 = vldrhq_s16(pInA3);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
- acc2 = vmlaldavq(vecA2, vecB);
- acc3 = vmlaldavq(vecA3, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
- acc2 = asrl(acc2, 15);
- acc3 = asrl(acc3, 15);
-
- pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
- pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
- pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
- acc2 = vmlaldavq(vecA2, vecB);
- acc3 = vmlaldavq(vecA3, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
- acc2 = asrl(acc2, 15);
- acc3 = asrl(acc3, 15);
-
- pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
- pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
- pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
-
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
- acc2 = vmlaldavq(vecA2, vecB);
- acc3 = vmlaldavq(vecA3, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
- acc2 = asrl(acc2, 15);
- acc3 = asrl(acc3, 15);
-
- pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
- pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
- pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
-
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
-
- acc0 = vmlaldavq(vecA0, vecB);
- acc1 = vmlaldavq(vecA1, vecB);
- acc2 = vmlaldavq(vecA2, vecB);
- acc3 = vmlaldavq(vecA3, vecB);
-
- acc0 = asrl(acc0, 15);
- acc1 = asrl(acc1, 15);
- acc2 = asrl(acc2, 15);
- acc3 = asrl(acc3, 15);
-
- pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
- pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
- pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
- pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-arm_status arm_mat_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState)
-{
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q15_t *pInA2;
- q15_t *pInB2;
- q15_t *px; /* Temporary output data matrix pointer */
- q15_t *px2; /* Temporary output data matrix pointer */
- uint32_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint32_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint32_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint32_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
- uint32_t col, i = 0u, j, row = numRowsB; /* loop counters */
- q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* Status of matrix multiplication */
- arm_matrix_instance_q15 BT;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif
- {
- /* small squared matrix specialized routines */
- if (numRowsA == numColsB && numColsB == numColsA) {
-
- if (numRowsA == 1) {
- q63_t sum;
- sum = pInA[0] * pInB[0];
- pDst->pData[0] = (q15_t) __SSAT((sum >> 15), 16);
- return (ARM_MATH_SUCCESS);
- } else if (numRowsA == 2)
- return arm_mat_mult_q15_2x2_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 3)
- return arm_mat_mult_q15_3x3_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 4)
- return arm_mat_mult_q15_4x4_mve(pSrcA, pSrcB, pDst);
- }
-
- /*
- * Matrix transpose
- */
-
- BT.numRows = numColsB;
- BT.numCols = numRowsB;
- BT.pData = pSrcBT;
-
- arm_mat_trans_q15(pSrcB, &BT);
-
-
- /*
- * Reset the variables for the usage in the following multiplication process
- */
- i = 0;
- row = numRowsA >> 1;
- px = pDst->pData;
- px2 = px + numColsB;
-
- /*
- * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
- */
-
- /*
- * row loop
- */
- while (row > 0u) {
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB >> 1;
- /*
- * For every row wise process, the pIn2 pointer is set
- * to the starting address of the transposed pSrcB data
- */
- pInB = pSrcBT;
- pInB2 = pInB + numRowsB;
- j = 0;
-
- /*
- * column loop
- */
- while (col > 0u) {
- q15_t const *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec;
- q15x8_t vecA, vecA2, vecB, vecB2;
- q63_t acc0, acc1, acc2, acc3;
-
- /*
- * Initiate the pointer pIn1 to point to the starting address of the column being processed
- */
- pInA = pSrcA->pData + i;
- pInA2 = pInA + numColsA;
- pInB = pSrcBT + j;
- pInB2 = pInB + numRowsB;
-
-
- pSrcAVec = (q15_t const *) pInA;
- pSrcA2Vec = (q15_t const *) pInA2;
- pSrcBVec = (q15_t const *) pInB;
- pSrcB2Vec = (q15_t const *) pInB2;
-
- acc0 = 0LL;
- acc1 = 0LL;
- acc2 = 0LL;
- acc3 = 0LL;
-
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 8;
-
- blkCnt = numColsA / 8;
- while (blkCnt > 0U) {
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 8;
- acc0 = vmlaldavaq(acc0, vecA, vecB);
- vecA2 = vld1q(pSrcA2Vec);
- pSrcA2Vec += 8;
- acc1 = vmlaldavaq(acc1, vecA2, vecB);
- vecB2 = vld1q(pSrcB2Vec);
- pSrcB2Vec += 8;
- acc2 = vmlaldavaq(acc2, vecA, vecB2);
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 8;
- acc3 = vmlaldavaq(acc3, vecA2, vecB2);
-
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numColsA & 7;
- if (blkCnt > 0U) {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecB = vld1q(pSrcBVec);
- acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
- vecA2 = vld1q(pSrcA2Vec);
- acc1 = vmlaldavaq_p(acc1, vecA2, vecB, p0);
- vecB2 = vld1q(pSrcB2Vec);
- acc2 = vmlaldavaq_p(acc2, vecA, vecB2, p0);
- vecA = vld1q(pSrcAVec);
- acc3 = vmlaldavaq_p(acc3, vecA2, vecB2, p0);
- }
-
- *px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
- *px++ = (q15_t) MVE_ASRL_SAT16(acc2, 15);
- *px2++ = (q15_t) MVE_ASRL_SAT16(acc1, 15);
- *px2++ = (q15_t) MVE_ASRL_SAT16(acc3, 15);
- j += numRowsB * 2;
- /*
- * Decrement the column loop counter
- */
- col--;
-
- }
-
- i = i + numColsA * 2;
- px = px2 + (numColsB & 1u);
- px2 = px + numColsB;
- /*
- * Decrement the row loop counter
- */
- row--;
- }
-
- /*
- * Compute remaining row and/or column below
- */
-
- if (numColsB & 1u) {
- row = numRowsA & (~0x1); //avoid redundant computation
- px = pDst->pData + numColsB - 1;
- i = 0;
-
- /*
- * row loop
- */
- while (row > 0) {
- q15_t const *pSrcAVec, *pSrcBVec;
- q15x8_t vecA, vecB;
- q63_t acc0;
-
- /*
- * point to last column in matrix B
- */
- pInB = pSrcBT + numRowsB * (numColsB - 1);
- pInA = pSrcA->pData + i;
-
- pSrcAVec = (q15_t const *) pInA;
- pSrcBVec = (q15_t const *) pInB;
-
- acc0 = 0LL;
- blkCnt = (numColsA) / 8;
- while (blkCnt > 0U) {
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 8;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 8;
- acc0 = vmlaldavaq(acc0, vecA, vecB);
-
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = (numColsA & 7);
- if (blkCnt > 0U) {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecA = vld1q(pSrcAVec);
- vecB = vld1q(pSrcBVec);
- acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
- }
-
- *px = (q15_t) MVE_ASRL_SAT16(acc0, 15);
-
- px += numColsB;
-
- i += numColsA;
- /*
- * Decrement the row loop counter
- */
- row--;
- }
- }
-
- if (numRowsA & 1u) {
- col = numColsB;
- i = 0u;
- /*
- * point to last row in output matrix
- */
- px = pDst->pData + (numColsB) * (numRowsA - 1);
- /*
- * col loop
- */
- while (col > 0) {
- q15_t const *pSrcAVec, *pSrcBVec;
- q15x8_t vecA, vecB;
- q63_t acc0;
-
- /*
- * point to last row in matrix A
- */
- pInA = pSrcA->pData + (numRowsA - 1) * numColsA;
- pInB = pSrcBT + i;
-
- /*
- * Set the variable sum, that acts as accumulator, to zero
- */
- pSrcAVec = (q15_t const *) pInA;
- pSrcBVec = (q15_t const *) pInB;
- acc0 = 0LL;
-
- blkCnt = ((numColsA) / 8);
- while (blkCnt > 0U) {
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 8;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 8;
- acc0 = vmlaldavaq(acc0, vecA, vecB);
-
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = (numColsA & 7);
- if (blkCnt > 0U) {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecA = vld1q(pSrcAVec);
- vecB = vld1q(pSrcBVec);
- acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
- }
-
- *px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
-
- i += numColsA;
-
- /*
- * Decrement the col loop counter
- */
- col--;
- }
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState)
-{
- q63_t sum; /* Accumulator */
-
-#if defined (ARM_MATH_DSP) /* != CM0 */
-
- q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
- q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
- q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
- q15_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix B */
- uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
-
- q31_t inA1, inB1, inA2, inB2;
- arm_matrix_instance_q15 BT;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
-
- BT.numRows = numColsB;
- BT.numCols = numRowsB;
- BT.pData = pSrcBT;
-
- arm_mat_trans_q15(pSrcB,&BT);
- /* Reset variables for usage in following multiplication process */
- row = numRowsA;
- i = 0U;
- px = pDst->pData;
-
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
- pInB = pSrcBT;
-
- /* column loop */
- do
- {
- /* Set variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Initiate pointer pInA to point to starting address of column being processed */
- pInA = pSrcA->pData + i;
-
- /* Apply loop unrolling and compute 2 MACs simultaneously. */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- /* read real and imag values from pSrcA and pSrcB buffer */
- inA1 = read_q15x2_ia (&pInA);
- inB1 = read_q15x2_ia (&pInB);
-
- inA2 = read_q15x2_ia (&pInA);
- inB2 = read_q15x2_ia (&pInB);
-
- /* Multiply and Accumulates */
- sum = __SMLALD(inA1, inB1, sum);
- sum = __SMLALD(inA2, inB2, sum);
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* process remaining column samples */
- colCnt = numColsA % 0x4U;
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- sum += *pInA++ * *pInB++;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Saturate and store result in destination buffer */
- *px = (q15_t) (__SSAT((sum >> 15), 16));
- px++;
-
- /* Decrement column loop counter */
- col--;
-
- } while (col > 0U);
-
- i = i + numColsA;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
-#else /* #if defined (ARM_MATH_DSP) */
-
- q15_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- q15_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
- q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
- q15_t *pOut = pDst->pData; /* Output data matrix pointer */
- q15_t *px; /* Temporary output data matrix pointer */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
- (void)pState;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + i;
-
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
- pIn2 = pSrcB->pData;
-
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Initiate pointer pIn1 to point to starting address of pSrcA */
- pIn1 = pInA;
-
- /* Matrix A columns number of MAC operations are to be performed */
- colCnt = numColsA;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- /* Perform multiply-accumulates */
- sum += (q31_t) * pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Convert result from 34.30 to 1.15 format and store saturated value in destination buffer */
-
- /* Saturate and store result in destination buffer */
- *px++ = (q15_t) __SSAT((sum >> 15), 16);
-
- /* Decrement column loop counter */
- col--;
-
- /* Update pointer pIn2 to point to starting address of next column */
- pIn2 = pInB + (numColsB - col);
-
- } while (col > 0U);
-
- /* Update pointer pSrcA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + numColsA;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
-#endif /* #if defined (ARM_MATH_DSP) */
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_q15.c
+ * Description: Q15 matrix multiplication
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixMult
+ @{
+ */
+
+/**
+ @brief Q15 matrix multiplication.
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @param[in] pState points to the array for storing intermediate results (Unused)
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator. The inputs to the
+ multiplications are in 1.15 format and multiplications yield a 2.30 result.
+ The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ This approach provides 33 guard bits and there is no risk of overflow.
+ The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits
+ and then saturated to 1.15 format.
+ @par
+ Refer to \ref arm_mat_mult_fast_q15() for a faster but less precise version of this function.
+ */
+
+arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState)
+{
+ q63_t sum; /* Accumulator */
+
+#if defined (ARM_MATH_DSP) /* != CM0 */
+
+ q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
+ q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
+ q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
+ q15_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix A */
+ uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+ q31_t in; /* Temporary variable to hold the input value */
+ q31_t inA1, inB1, inA2, inB2;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Matrix transpose */
+ do
+ {
+ /* The pointer px is set to starting address of column being processed */
+ px = pSrcBT + i;
+
+ /* Apply loop unrolling and exchange columns with row elements */
+ col = numColsB >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (col > 0U)
+ {
+ /* Read two elements from row */
+ in = read_q15x2_ia ((q15_t **) &pInB);
+
+ /* Unpack and store one element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) in;
+#else
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB;
+
+ /* Unpack and store second element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#else
+ *px = (q15_t) in;
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB;
+
+ /* Read two elements from row */
+ in = read_q15x2_ia ((q15_t **) &pInB);
+
+ /* Unpack and store one element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) in;
+#else
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ px += numRowsB;
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#else
+ *px = (q15_t) in;
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+ px += numRowsB;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ col = numColsB % 0x4U;
+
+ while (col > 0U)
+ {
+ /* Read and store input element in destination */
+ *px = *pInB++;
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += numRowsB;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ i++;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Reset variables for usage in following multiplication process */
+ row = numRowsA;
+ i = 0U;
+ px = pDst->pData;
+
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
+ pInB = pSrcBT;
+
+ /* column loop */
+ do
+ {
+ /* Set variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initiate pointer pInA to point to starting address of column being processed */
+ pInA = pSrcA->pData + i;
+
+ /* Apply loop unrolling and compute 2 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ inA1 = read_q15x2_ia ((q15_t **) &pInA);
+ inB1 = read_q15x2_ia ((q15_t **) &pInB);
+
+ inA2 = read_q15x2_ia ((q15_t **) &pInA);
+ inB2 = read_q15x2_ia ((q15_t **) &pInB);
+
+ /* Multiply and Accumlates */
+ sum = __SMLALD(inA1, inB1, sum);
+ sum = __SMLALD(inA2, inB2, sum);
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* process remaining column samples */
+ colCnt = numColsA % 0x4U;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+ sum += *pInA++ * *pInB++;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Saturate and store result in destination buffer */
+ *px = (q15_t) (__SSAT((sum >> 15), 16));
+ px++;
+
+ /* Decrement column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ i = i + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+#else /* #if defined (ARM_MATH_DSP) */
+
+ q15_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ q15_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
+ q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
+ q15_t *pOut = pDst->pData; /* Output data matrix pointer */
+ q15_t *px; /* Temporary output data matrix pointer */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initiate pointer pIn1 to point to starting address of pSrcA */
+ pIn1 = pInA;
+
+ /* Matrix A columns number of MAC operations are to be performed */
+ colCnt = numColsA;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform multiply-accumulates */
+ sum += (q31_t) * pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Convert result from 34.30 to 1.15 format and store saturated value in destination buffer */
+
+ /* Saturate and store result in destination buffer */
+ *px++ = (q15_t) __SSAT((sum >> 15), 16);
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pSrcA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c
index 1873827..88c8791 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c
@@ -1,761 +1,196 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_q31.c
- * Description: Q31 matrix multiplication
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixMult
- @{
- */
-
-/**
- @brief Q31 matrix multiplication.
- @param[in] pSrcA points to the first input matrix structure
- @param[in] pSrcB points to the second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The function is implemented using an internal 64-bit accumulator.
- The accumulator has a 2.62 format and maintains full precision of the intermediate
- multiplication results but provides only a single guard bit. There is no saturation
- on intermediate additions. Thus, if the accumulator overflows it wraps around and
- distorts the result. The input signals should be scaled down to avoid intermediate
- overflows. The input is thus scaled down by log2(numColsA) bits
- to avoid overflows, as a total of numColsA additions are performed internally.
- The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
- @remark
- Refer to \ref arm_mat_mult_fast_q31() for a faster but less precise implementation of this function.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#define MATRIX_DIM2 2
-#define MATRIX_DIM3 3
-#define MATRIX_DIM4 4
-
-__STATIC_INLINE arm_status arm_mat_mult_q31_2x2_mve(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs;
- q31_t *pInA0 = pInA;
- q31_t *pInA1 = pInA0 + MATRIX_DIM2;
- q63_t acc0, acc1;
- q31x4_t vecB, vecA0, vecA1;
- /* enable predication to disable half of vector elements */
- mve_pred16_t p0 = vctp32q(MATRIX_DIM2);
-
- vecColBOffs = vidupq_u32((uint32_t)0, 1);
- vecColBOffs = vecColBOffs * MATRIX_DIM2;
-
- pInB = pSrcB->pData;
-
- /* load 1st B column (partial load) */
- vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
-
- /* load A rows */
- vecA0 = vldrwq_s32(pInA0);
- vecA1 = vldrwq_s32(pInA1);
-
- acc0 = vrmlaldavhq(vecA0, vecB);
- acc1 = vrmlaldavhq(vecA1, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
-
- pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
-
- acc0 = vrmlaldavhq(vecA0, vecB);
- acc1 = vrmlaldavhq(vecA1, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
-
- pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-
-
-__STATIC_INLINE arm_status arm_mat_mult_q31_3x3_mve(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs;
- q31_t *pInA0 = pInA;
- q31_t *pInA1 = pInA0 + MATRIX_DIM3;
- q31_t *pInA2 = pInA1 + MATRIX_DIM3;
- q63_t acc0, acc1, acc2;
- q31x4_t vecB, vecA;
- /* enable predication to disable last (4th) vector element */
- mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
-
- vecColBOffs = vidupq_u32((uint32_t)0, 1);
- vecColBOffs = vecColBOffs * MATRIX_DIM3;
-
- pInB = pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA1);
- acc1 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA2);
- acc2 = vrmlaldavhq(vecA, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
-
- pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
- pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA1);
- acc1 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA2);
- acc2 = vrmlaldavhq(vecA, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
-
- pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
- pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA1);
- acc1 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA2);
- acc2 = vrmlaldavhq(vecA, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
-
- pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
- pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-__STATIC_INLINE arm_status arm_mat_mult_q31_4x4_mve(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32x4_t vecColBOffs;
- q31_t *pInA0 = pInA;
- q31_t *pInA1 = pInA0 + MATRIX_DIM4;
- q31_t *pInA2 = pInA1 + MATRIX_DIM4;
- q31_t *pInA3 = pInA2 + MATRIX_DIM4;
- q63_t acc0, acc1, acc2, acc3;
- q31x4_t vecB, vecA;
-
- vecColBOffs = vidupq_u32((uint32_t)0, 4);
-
- pInB = pSrcB->pData;
-
- vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA1);
- acc1 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA2);
- acc2 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA3);
- acc3 = vrmlaldavhq(vecA, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
- acc3 = asrl(acc3, 23);
-
- pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
- pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
- pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA1);
- acc1 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA2);
- acc2 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA3);
- acc3 = vrmlaldavhq(vecA, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
- acc3 = asrl(acc3, 23);
-
- pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
- pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
- pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
-
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA1);
- acc1 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA2);
- acc2 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA3);
- acc3 = vrmlaldavhq(vecA, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
- acc3 = asrl(acc3, 23);
-
- pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
- pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
- pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
-
- pOut++;
-
- /* move to next B column */
- pInB = pInB + 1;
-
- vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
-
- vecA = vldrwq_s32(pInA0);
- acc0 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA1);
- acc1 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA2);
- acc2 = vrmlaldavhq(vecA, vecB);
- vecA = vldrwq_s32(pInA3);
- acc3 = vrmlaldavhq(vecA, vecB);
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
- acc3 = asrl(acc3, 23);
-
- pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
- pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
- pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
- pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
- /*
- * Return to application
- */
- return (ARM_MATH_SUCCESS);
-}
-
-arm_status arm_mat_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t const *pInB = (q31_t const *)pSrcB->pData; /* input data matrix pointer B */
- q31_t const *pInA = (q31_t const *)pSrcA->pData; /* input data matrix pointer A */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- q31_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- uint16_t col, i = 0U, row = numRowsA; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- uint32x4_t vecOffs, vecColBOffs;
- uint32_t blkCnt, rowCnt; /* loop counters */
-
- #ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* small squared matrix specialized routines */
- if(numRowsA == numColsB && numColsB == numColsA) {
- if (numRowsA == 1)
- {
- q63_t sum = (q63_t) *pInA * *pInB;
- pOut[0] = (q31_t)(sum >> 31);
- return (ARM_MATH_SUCCESS);
- }
- else if(numRowsA == 2)
- return arm_mat_mult_q31_2x2_mve(pSrcA, pSrcB, pDst);
- else if(numRowsA == 3)
- return arm_mat_mult_q31_3x3_mve(pSrcA, pSrcB, pDst);
- else if (numRowsA == 4)
- return arm_mat_mult_q31_4x4_mve(pSrcA, pSrcB, pDst);
- }
-
- vecColBOffs = vidupq_u32((uint32_t)0, 1);
- vecColBOffs = vecColBOffs * (uint32_t) (numColsB);
-
- /*
- * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
- */
-
- /*
- * row loop
- */
- rowCnt = row >> 2;
- while (rowCnt > 0U)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i;
- i = i + 4 * numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (q31_t const *)pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0U)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
-
- q31_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec;
- q31_t const *pInA0 = pInA;
- q31_t const *pInA1 = pInA0 + numColsA;
- q31_t const *pInA2 = pInA1 + numColsA;
- q31_t const *pInA3 = pInA2 + numColsA;
- q63_t acc0, acc1, acc2, acc3;
-
- acc0 = 0LL;
- acc1 = 0LL;
- acc2 = 0LL;
- acc3 = 0LL;
-
- pSrcA0Vec = (q31_t const *) pInA0;
- pSrcA1Vec = (q31_t const *) pInA1;
- pSrcA2Vec = (q31_t const *) pInA2;
- pSrcA3Vec = (q31_t const *) pInA3;
-
- vecOffs = vecColBOffs;
-
- /* process 1 x 4 block output */
- blkCnt = numColsA >> 2;
- while (blkCnt > 0U)
- {
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /* move Matrix B read offsets, 4 rows down */
- vecOffs = vecOffs + (uint32_t) (numColsB * 4);
-
- vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
- acc0 = vrmlaldavhaq(acc0, vecA, vecB);
- vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
- acc1 = vrmlaldavhaq(acc1, vecA, vecB);
- vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
- acc2 = vrmlaldavhaq(acc2, vecA, vecB);
- vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
- acc3 = vrmlaldavhaq(acc3, vecA, vecB);
- blkCnt--;
- }
-
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numColsA & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
- //vecOffs = vecOffs + (uint32_t) (numColsB * 4);
-
- vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
- acc0 = vrmlaldavhaq(acc0, vecA, vecB);
- vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
- acc1 = vrmlaldavhaq(acc1, vecA, vecB);
- vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
- acc2 = vrmlaldavhaq(acc2, vecA, vecB);
- vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
- acc3 = vrmlaldavhaq(acc3, vecA, vecB);
- }
-
- acc0 = asrl(acc0, 23);
- acc1 = asrl(acc1, 23);
- acc2 = asrl(acc2, 23);
- acc3 = asrl(acc3, 23);
-
- px[0] = (q31_t) acc0;
- px[1 * numColsB] = (q31_t) acc1;
- px[2 * numColsB] = (q31_t) acc2;
- px[3 * numColsB] = (q31_t) acc3;
- px++;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (q31_t const *)pSrcB->pData + (numColsB - col);
- }
-
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += (numColsA * 4);
- /*
- * Decrement the row loop counter
- */
- rowCnt --;
-
- }
- rowCnt = row & 3;
- while (rowCnt > 0U)
- {
- /*
- * Output pointer is set to starting address of the row being processed
- */
- px = pOut + i;
- i = i + numColsB;
- /*
- * For every row wise process, the column loop counter is to be initiated
- */
- col = numColsB;
- /*
- * For every row wise process, the pInB pointer is set
- * to the starting address of the pSrcB data
- */
- pInB = (q31_t const *)pSrcB->pData;
- /*
- * column loop
- */
- while (col > 0U)
- {
- /*
- * generate 4 columns elements
- */
- /*
- * Matrix A columns number of MAC operations are to be performed
- */
-
- q31_t const *pSrcA0Vec;
- q31_t const *pInA0 = pInA;
- q63_t acc0;
-
- acc0 = 0LL;
-
-
- pSrcA0Vec = (q31_t const *) pInA0;
-
- vecOffs = vecColBOffs;
-
- /* process 1 x 4 block output */
- blkCnt = numColsA >> 2;
- while (blkCnt > 0U)
- {
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
- /* move Matrix B read offsets, 4 rows down */
- vecOffs = vecOffs + (uint32_t) (numColsB * 4);
-
- vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
- acc0 = vrmlaldavhaq(acc0, vecA, vecB);
-
- blkCnt--;
- }
-
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numColsA & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- q31x4_t vecB, vecA;
-
- vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
- //vecOffs = vecOffs + (uint32_t) (numColsB * 4);
-
- vecA = vld1q(pSrcA0Vec);
- pSrcA0Vec += 4;
- acc0 = vrmlaldavhaq(acc0, vecA, vecB);
-
- }
-
- acc0 = asrl(acc0, 23);
-
-
- px[0] = (q31_t) acc0;
- px++;
- /*
- * Decrement the column loop counter
- */
- col--;
- /*
- * Update the pointer pInB to point to the starting address of the next column
- */
- pInB = (q31_t const *)pSrcB->pData + (numColsB - col);
- }
-
- /*
- * Update the pointer pInA to point to the starting address of the next row
- */
- pInA += numColsA;
- /*
- * Decrement the row loop counter
- */
- rowCnt--;
- }
-
- /*
- * set status as ARM_MATH_SUCCESS
- */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
- q31_t *pOut = pDst->pData; /* Output data matrix pointer */
- q31_t *px; /* Temporary output data matrix pointer */
- q63_t sum; /* Accumulator */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of row being processed */
- px = pOut + i;
-
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
-
- /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
- pIn2 = pSrcB->pData;
-
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0;
-
- /* Initialize pointer pIn1 to point to starting address of column being processed */
- pIn1 = pInA;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 MACs at a time. */
- colCnt = numColsA >> 2U;
-
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- /* Perform the multiply-accumulates */
- sum += (q63_t) *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- sum += (q63_t) *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- sum += (q63_t) *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- sum += (q63_t) *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Loop unrolling: Compute remaining MACs */
- colCnt = numColsA % 0x4U;
-
-#else
-
- /* Initialize cntCnt with number of columns */
- colCnt = numColsA;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
-
- /* Perform the multiply-accumulates */
- sum += (q63_t) *pIn1++ * *pIn2;
- pIn2 += numColsB;
-
- /* Decrement loop counter */
- colCnt--;
- }
-
- /* Convert result from 2.62 to 1.31 format and store in destination buffer */
- *px++ = (q31_t) (sum >> 31);
-
- /* Decrement column loop counter */
- col--;
-
- /* Update pointer pIn2 to point to starting address of next column */
- pIn2 = pInB + (numColsB - col);
-
- } while (col > 0U);
-
- /* Update pointer pInA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + numColsA;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U);
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixMult group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_q31.c
+ * Description: Q31 matrix multiplication
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixMult
+ @{
+ */
+
+/**
+ @brief Q31 matrix multiplication.
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator.
+ The accumulator has a 2.62 format and maintains full precision of the intermediate
+ multiplication results but provides only a single guard bit. There is no saturation
+ on intermediate additions. Thus, if the accumulator overflows it wraps around and
+ distorts the result. The input signals should be scaled down to avoid intermediate
+ overflows. The input is thus scaled down by log2(numColsA) bits
+ to avoid overflows, as a total of numColsA additions are performed internally.
+ The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+ @remark
+ Refer to \ref arm_mat_mult_fast_q31() for a faster but less precise implementation of this function.
+ */
+
+arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
+ q31_t *pOut = pDst->pData; /* Output data matrix pointer */
+ q31_t *px; /* Temporary output data matrix pointer */
+ q63_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initialize pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 MACs at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining MACs */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize cntCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Convert result from 2.62 to 1.31 format and store in destination buffer */
+ *px++ = (q31_t) (sum >> 31);
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixMult group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c
index daebbb3..91c56b1 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c
@@ -1,287 +1,221 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_scale_f32.c
- * Description: Multiplies a floating-point matrix by a scalar
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup MatrixScale Matrix Scale
-
- Multiplies a matrix by a scalar. This is accomplished by multiplying each element in the
- matrix by the scalar. For example:
- \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix"
-
- The function checks to make sure that the input and output matrices are of the same size.
-
- In the fixed-point Q15 and Q31 functions, <code>scale</code> is represented by
- a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
- The shift allows the gain of the scaling operation to exceed 1.0.
- The overall scale factor applied to the fixed-point data is
- <pre>
- scale = scaleFract * 2^shift.
- </pre>
- */
-
-/**
- @addtogroup MatrixScale
- @{
- */
-
-/**
- @brief Floating-point matrix scaling.
- @param[in] pSrc points to input matrix
- @param[in] scale scale factor to be applied
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
-#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
-arm_status arm_mat_scale_f32(
- const arm_matrix_instance_f32 * pSrc,
- float32_t scale,
- arm_matrix_instance_f32 * pDst)
-{
- arm_status status; /* status of matrix scaling */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- f32x4_t vecIn, vecOut;
- float32_t const *pInVec;
-
- pInVec = (float32_t const *) pIn;
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
- blkCnt = numSamples >> 2;
- while (blkCnt > 0U)
- {
- /*
- * C(m,n) = A(m,n) * scale
- * Scaling and results are stored in the destination buffer.
- */
- vecIn = vld1q(pInVec);
- pInVec += 4;
-
- vecOut = vecIn * scale;
-
- vst1q(pOut, vecOut);
- pOut += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numSamples & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecIn = vld1q(pInVec);
- vecOut = vecIn * scale;
-
- vstrwq_p(pOut, vecOut, p0);
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-
-}
-#else
-#if defined(ARM_MATH_NEON_EXPERIMENTAL)
-arm_status arm_mat_scale_f32(
- const arm_matrix_instance_f32 * pSrc,
- float32_t scale,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix scaling */
-
-
-#ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- float32x4_t vec1;
- float32x4_t res;
-
- /* Total number of samples in the input matrix */
- numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
-
- blkCnt = numSamples >> 2;
-
- /* Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * scale */
- /* Scaling and results are stored in the destination buffer. */
- vec1 = vld1q_f32(pIn);
- res = vmulq_f32(vec1, vdupq_n_f32(scale));
- vst1q_f32(pOut, res);
-
- /* update pointers to process next sampels */
- pIn += 4U;
- pOut += 4U;
-
- /* Decrement the numSamples loop counter */
- blkCnt--;
- }
-
- /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = numSamples % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * scale */
- /* The results are stored in the destination buffer. */
- *pOut++ = (*pIn++) * scale;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_scale_f32(
- const arm_matrix_instance_f32 * pSrc,
- float32_t scale,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn = pSrc->pData; /* Input data matrix pointer */
- float32_t *pOut = pDst->pData; /* Output data matrix pointer */
- uint32_t numSamples; /* Total number of elements in the matrix */
- uint32_t blkCnt; /* Loop counters */
- arm_status status; /* Status of matrix scaling */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numRows) ||
- (pSrc->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * scale */
-
- /* Scale and store result in destination buffer. */
- *pOut++ = (*pIn++) * scale;
- *pOut++ = (*pIn++) * scale;
- *pOut++ = (*pIn++) * scale;
- *pOut++ = (*pIn++) * scale;
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * scale */
-
- /* Scale and store result in destination buffer. */
- *pOut++ = (*pIn++) * scale;
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* #if defined(ARM_MATH_NEON) */
-#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
-
-/**
- @} end of MatrixScale group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_scale_f32.c
+ * Description: Multiplies a floating-point matrix by a scalar
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup MatrixScale Matrix Scale
+
+ Multiplies a matrix by a scalar. This is accomplished by multiplying each element in the
+ matrix by the scalar. For example:
+ \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix"
+
+ The function checks to make sure that the input and output matrices are of the same size.
+
+ In the fixed-point Q15 and Q31 functions, <code>scale</code> is represented by
+ a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
+ The shift allows the gain of the scaling operation to exceed 1.0.
+ The overall scale factor applied to the fixed-point data is
+ <pre>
+ scale = scaleFract * 2^shift.
+ </pre>
+ */
+
+/**
+ @addtogroup MatrixScale
+ @{
+ */
+
+/**
+ @brief Floating-point matrix scaling.
+ @param[in] pSrc points to input matrix
+ @param[in] scale scale factor to be applied
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ */
+#if defined(ARM_MATH_NEON_EXPERIMENTAL)
+arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn = pSrc->pData; /* input data matrix pointer */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix scaling */
+
+
+ float32_t in1, in2, in3, in4; /* temporary variables */
+ float32_t out1, out2, out3, out4; /* temporary variables */
+
+
+#ifdef ARM_MATH_MATRIX_CHECK
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+ {
+ float32x4_t vec1;
+ float32x4_t res;
+
+ /* Total number of samples in the input matrix */
+ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
+
+ blkCnt = numSamples >> 2;
+
+ /* Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * scale */
+ /* Scaling and results are stored in the destination buffer. */
+ vec1 = vld1q_f32(pIn);
+ res = vmulq_f32(vec1, vdupq_n_f32(scale));
+ vst1q_f32(pOut, res);
+
+ /* update pointers to process next sampels */
+ pIn += 4U;
+ pOut += 4U;
+
+ /* Decrement the numSamples loop counter */
+ blkCnt--;
+ }
+
+ /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = numSamples % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * scale */
+ /* The results are stored in the destination buffer. */
+ *pOut++ = (*pIn++) * scale;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn = pSrc->pData; /* Input data matrix pointer */
+ float32_t *pOut = pDst->pData; /* Output data matrix pointer */
+ uint32_t numSamples; /* Total number of elements in the matrix */
+ uint32_t blkCnt; /* Loop counters */
+ arm_status status; /* Status of matrix scaling */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numRows) ||
+ (pSrc->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * scale */
+
+ /* Scale and store result in destination buffer. */
+ *pOut++ = (*pIn++) * scale;
+ *pOut++ = (*pIn++) * scale;
+ *pOut++ = (*pIn++) * scale;
+ *pOut++ = (*pIn++) * scale;
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * scale */
+
+ /* Scale and store result in destination buffer. */
+ *pOut++ = (*pIn++) * scale;
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#endif /* #if defined(ARM_MATH_NEON) */
+
+/**
+ @} end of MatrixScale group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c
index e43de0a..7956670 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c
@@ -1,249 +1,170 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_scale_q15.c
- * Description: Multiplies a Q15 matrix by a scalar
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixScale
- @{
- */
-
-/**
- @brief Q15 matrix scaling.
- @param[in] pSrc points to input matrix
- @param[in] scaleFract fractional portion of the scale factor
- @param[in] shift number of bits to shift the result by
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
- These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-arm_status arm_mat_scale_q15(
- const arm_matrix_instance_q15 * pSrc,
- q15_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q15 * pDst)
-{
- arm_status status; /* Status of matrix scaling */
- q15_t *pIn = pSrc->pData; /* input data matrix pointer */
- q15_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- q15x8_t vecIn, vecOut;
- q15_t const *pInVec;
- int32_t totShift = shift + 1; /* shift to apply after scaling */
-
- pInVec = (q15_t const *) pIn;
-
- #ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numRows) ||
- (pSrc->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
- blkCnt = numSamples >> 3;
- while (blkCnt > 0U)
- {
- /*
- * C(m,n) = A(m,n) * scale
- * Scaling and results are stored in the destination buffer.
- */
- vecIn = vld1q(pInVec); pInVec += 8;
-
- /* multiply input with scaler value */
- vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract));
- /* apply shifting */
- vecOut = vqshlq_r(vecOut, totShift);
-
- vst1q(pOut, vecOut); pOut += 8;
-
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numSamples & 7;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecIn = vld1q(pInVec); pInVec += 8;
- vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract));
- vecOut = vqshlq_r(vecOut, totShift);
- vstrhq_p(pOut, vecOut, p0);
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_scale_q15(
- const arm_matrix_instance_q15 * pSrc,
- q15_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q15 * pDst)
-{
- q15_t *pIn = pSrc->pData; /* Input data matrix pointer */
- q15_t *pOut = pDst->pData; /* Output data matrix pointer */
- uint32_t numSamples; /* Total number of elements in the matrix */
- uint32_t blkCnt; /* Loop counter */
- arm_status status; /* Status of matrix scaling */
- int32_t kShift = 15 - shift; /* Total shift to apply after scaling */
-
-#if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP)
- q31_t inA1, inA2;
- q31_t out1, out2, out3, out4; /* Temporary output variables */
- q15_t in1, in2, in3, in4; /* Temporary input variables */
-#endif
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numRows) ||
- (pSrc->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * k */
-
-#if defined (ARM_MATH_DSP)
- /* read 2 times 2 samples at a time from source */
- inA1 = read_q15x2_ia (&pIn);
- inA2 = read_q15x2_ia (&pIn);
-
- /* Scale inputs and store result in temporary variables
- * in single cycle by packing the outputs */
- out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
- out2 = (q31_t) ((q15_t) (inA1 ) * scaleFract);
- out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
- out4 = (q31_t) ((q15_t) (inA2 ) * scaleFract);
-
- /* apply shifting */
- out1 = out1 >> kShift;
- out2 = out2 >> kShift;
- out3 = out3 >> kShift;
- out4 = out4 >> kShift;
-
- /* saturate the output */
- in1 = (q15_t) (__SSAT(out1, 16));
- in2 = (q15_t) (__SSAT(out2, 16));
- in3 = (q15_t) (__SSAT(out3, 16));
- in4 = (q15_t) (__SSAT(out4, 16));
-
- /* store result to destination */
- write_q15x2_ia (&pOut, __PKHBT(in2, in1, 16));
- write_q15x2_ia (&pOut, __PKHBT(in4, in3, 16));
-
-#else
- *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
- *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
- *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
- *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
-#endif
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * k */
-
- /* Scale, saturate and store result in destination buffer. */
- *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixScale group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_scale_q15.c
+ * Description: Multiplies a Q15 matrix by a scalar
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixScale
+ @{
+ */
+
+/**
+ @brief Q15 matrix scaling.
+ @param[in] pSrc points to input matrix
+ @param[in] scaleFract fractional portion of the scale factor
+ @param[in] shift number of bits to shift the result by
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
+ These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
+ */
+
+arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst)
+{
+ q15_t *pIn = pSrc->pData; /* Input data matrix pointer */
+ q15_t *pOut = pDst->pData; /* Output data matrix pointer */
+ uint32_t numSamples; /* Total number of elements in the matrix */
+ uint32_t blkCnt; /* Loop counter */
+ arm_status status; /* Status of matrix scaling */
+ int32_t kShift = 15 - shift; /* Total shift to apply after scaling */
+
+#if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP)
+ q31_t inA1, inA2;
+ q31_t out1, out2, out3, out4; /* Temporary output variables */
+ q15_t in1, in2, in3, in4; /* Temporary input variables */
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numRows) ||
+ (pSrc->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * k */
+
+#if defined (ARM_MATH_DSP)
+ /* read 2 times 2 samples at a time from source */
+ inA1 = read_q15x2_ia ((q15_t **) &pIn);
+ inA2 = read_q15x2_ia ((q15_t **) &pIn);
+
+ /* Scale inputs and store result in temporary variables
+ * in single cycle by packing the outputs */
+ out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
+ out2 = (q31_t) ((q15_t) (inA1 ) * scaleFract);
+ out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
+ out4 = (q31_t) ((q15_t) (inA2 ) * scaleFract);
+
+ /* apply shifting */
+ out1 = out1 >> kShift;
+ out2 = out2 >> kShift;
+ out3 = out3 >> kShift;
+ out4 = out4 >> kShift;
+
+ /* saturate the output */
+ in1 = (q15_t) (__SSAT(out1, 16));
+ in2 = (q15_t) (__SSAT(out2, 16));
+ in3 = (q15_t) (__SSAT(out3, 16));
+ in4 = (q15_t) (__SSAT(out4, 16));
+
+ /* store result to destination */
+ write_q15x2_ia (&pOut, __PKHBT(in2, in1, 16));
+ write_q15x2_ia (&pOut, __PKHBT(in4, in3, 16));
+
+#else
+ *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
+ *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
+ *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
+ *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
+#endif
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * k */
+
+ /* Scale, saturate and store result in destination buffer. */
+ *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixScale group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c
index 33c0868..7f2fe8b 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c
@@ -1,242 +1,164 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_scale_q31.c
- * Description: Multiplies a Q31 matrix by a scalar
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixScale
- @{
- */
-
-/**
- @brief Q31 matrix scaling.
- @param[in] pSrc points to input matrix
- @param[in] scaleFract fractional portion of the scale factor
- @param[in] shift number of bits to shift the result by
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
- These are multiplied to yield a 2.62 intermediate result which is shifted with saturation to 1.31 format.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-arm_status arm_mat_scale_q31(
- const arm_matrix_instance_q31 * pSrc,
- q31_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pIn = pSrc->pData; /* input data matrix pointer */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- q31x4_t vecIn, vecOut;
- q31_t const *pInVec;
- int32_t totShift = shift + 1; /* shift to apply after scaling */
- arm_status status; /* Status of matrix scaling */
-
- pInVec = (q31_t const *) pIn;
- #ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numRows) ||
- (pSrc->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
-
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
- blkCnt = numSamples >> 2;
- while (blkCnt > 0U)
- {
- /*
- * C(m,n) = A(m,n) * scale
- * Scaling and results are stored in the destination buffer.
- */
- vecIn = vld1q(pInVec);
- pInVec += 4;
- /* multiply input with scaler value */
- vecOut = vmulhq(vecIn, vdupq_n_s32(scaleFract));
- /* apply shifting */
- vecOut = vqshlq_r(vecOut, totShift);
-
- vst1q(pOut, vecOut);
- pOut += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numSamples & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecIn = vld1q(pInVec);
- pInVec += 4;
- vecOut = vmulhq(vecIn, vdupq_n_s32(scaleFract));
- vecOut = vqshlq_r(vecOut, totShift);
- vstrwq_p(pOut, vecOut, p0);
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_scale_q31(
- const arm_matrix_instance_q31 * pSrc,
- q31_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pIn = pSrc->pData; /* Input data matrix pointer */
- q31_t *pOut = pDst->pData; /* Output data matrix pointer */
- uint32_t numSamples; /* Total number of elements in the matrix */
- uint32_t blkCnt; /* Loop counter */
- arm_status status; /* Status of matrix scaling */
- int32_t kShift = shift + 1; /* Shift to apply after scaling */
- q31_t in, out; /* Temporary variabels */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numRows) ||
- (pSrc->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * k */
-
- /* Scale, saturate and store result in destination buffer. */
- in = *pIn++; /* read four inputs from source */
- in = ((q63_t) in * scaleFract) >> 32; /* multiply input with scaler value */
- out = in << kShift; /* apply shifting */
- if (in != (out >> kShift)) /* saturate the results. */
- out = 0x7FFFFFFF ^ (in >> 31);
- *pOut++ = out; /* Store result destination */
-
- in = *pIn++;
- in = ((q63_t) in * scaleFract) >> 32;
- out = in << kShift;
- if (in != (out >> kShift))
- out = 0x7FFFFFFF ^ (in >> 31);
- *pOut++ = out;
-
- in = *pIn++;
- in = ((q63_t) in * scaleFract) >> 32;
- out = in << kShift;
- if (in != (out >> kShift))
- out = 0x7FFFFFFF ^ (in >> 31);
- *pOut++ = out;
-
- in = *pIn++;
- in = ((q63_t) in * scaleFract) >> 32;
- out = in << kShift;
- if (in != (out >> kShift))
- out = 0x7FFFFFFF ^ (in >> 31);
- *pOut++ = out;
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) * k */
-
- /* Scale, saturate and store result in destination buffer. */
- in = *pIn++;
- in = ((q63_t) in * scaleFract) >> 32;
- out = in << kShift;
- if (in != (out >> kShift))
- out = 0x7FFFFFFF ^ (in >> 31);
- *pOut++ = out;
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixScale group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_scale_q31.c
+ * Description: Multiplies a Q31 matrix by a scalar
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixScale
+ @{
+ */
+
+/**
+ @brief Q31 matrix scaling.
+ @param[in] pSrc points to input matrix
+ @param[in] scaleFract fractional portion of the scale factor
+ @param[in] shift number of bits to shift the result by
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
+ These are multiplied to yield a 2.62 intermediate result which is shifted with saturation to 1.31 format.
+ */
+
+arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pIn = pSrc->pData; /* Input data matrix pointer */
+ q31_t *pOut = pDst->pData; /* Output data matrix pointer */
+ uint32_t numSamples; /* Total number of elements in the matrix */
+ uint32_t blkCnt; /* Loop counter */
+ arm_status status; /* Status of matrix scaling */
+ int32_t kShift = shift + 1; /* Shift to apply after scaling */
+ q31_t in, out; /* Temporary variabels */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numRows) ||
+ (pSrc->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * k */
+
+ /* Scale, saturate and store result in destination buffer. */
+ in = *pIn++; /* read four inputs from source */
+ in = ((q63_t) in * scaleFract) >> 32; /* multiply input with scaler value */
+ out = in << kShift; /* apply shifting */
+ if (in != (out >> kShift)) /* saturate the results. */
+ out = 0x7FFFFFFF ^ (in >> 31);
+ *pOut++ = out; /* Store result destination */
+
+ in = *pIn++;
+ in = ((q63_t) in * scaleFract) >> 32;
+ out = in << kShift;
+ if (in != (out >> kShift))
+ out = 0x7FFFFFFF ^ (in >> 31);
+ *pOut++ = out;
+
+ in = *pIn++;
+ in = ((q63_t) in * scaleFract) >> 32;
+ out = in << kShift;
+ if (in != (out >> kShift))
+ out = 0x7FFFFFFF ^ (in >> 31);
+ *pOut++ = out;
+
+ in = *pIn++;
+ in = ((q63_t) in * scaleFract) >> 32;
+ out = in << kShift;
+ if (in != (out >> kShift))
+ out = 0x7FFFFFFF ^ (in >> 31);
+ *pOut++ = out;
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) * k */
+
+ /* Scale, saturate and store result in destination buffer. */
+ in = *pIn++;
+ in = ((q63_t) in * scaleFract) >> 32;
+ out = in << kShift;
+ if (in != (out >> kShift))
+ out = 0x7FFFFFFF ^ (in >> 31);
+ *pOut++ = out;
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixScale group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c
index e9a17d1..4f812a6 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c
@@ -1,298 +1,226 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_sub_f32.c
- * Description: Floating-point matrix subtraction
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup MatrixSub Matrix Subtraction
-
- Subtract two matrices.
- \image html MatrixSubtraction.gif "Subraction of two 3 x 3 matrices"
-
- The functions check to make sure that
- <code>pSrcA</code>, <code>pSrcB</code>, and <code>pDst</code> have the same
- number of rows and columns.
- */
-
-/**
- @addtogroup MatrixSub
- @{
- */
-
-/**
- @brief Floating-point matrix subtraction.
- @param[in] pSrcA points to the first input matrix structure
- @param[in] pSrcB points to the second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
-#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
-arm_status arm_mat_sub_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- arm_status status; /* status of matrix subtraction */
- uint32_t numSamples; /* total number of elements in the matrix */
- float32_t *pDataA, *pDataB, *pDataDst;
- f32x4_t vecA, vecB, vecDst;
- float32_t const *pSrcAVec;
- float32_t const *pSrcBVec;
- uint32_t blkCnt; /* loop counters */
-
- pDataA = pSrcA->pData;
- pDataB = pSrcB->pData;
- pDataDst = pDst->pData;
- pSrcAVec = (float32_t const *) pDataA;
- pSrcBVec = (float32_t const *) pDataB;
-
-#ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
- blkCnt = numSamples >> 2;
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* sub and then store the results in the destination buffer. */
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 4;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 4;
- vecDst = vsubq(vecA, vecB);
- vst1q(pDataDst, vecDst);
- pDataDst += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- * (will be merged thru tail predication)
- */
- blkCnt = numSamples & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vld1q(pSrcAVec);
- vecB = vld1q(pSrcBVec);
- vecDst = vsubq_m(vecDst, vecA, vecB, p0);
- vstrwq_p(pDataDst, vecDst, p0);
- }
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-#if defined(ARM_MATH_NEON)
-arm_status arm_mat_sub_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
-
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix subtraction */
-
-#ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- float32x4_t vec1;
- float32x4_t vec2;
- float32x4_t res;
-
- /* Total number of samples in the input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
- blkCnt = numSamples >> 2U;
-
- /* Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
- /* Subtract and then store the results in the destination buffer. */
- /* Read values from source A */
- vec1 = vld1q_f32(pIn1);
- vec2 = vld1q_f32(pIn2);
- res = vsubq_f32(vec1, vec2);
- vst1q_f32(pOut, res);
-
- /* Update pointers to process next samples */
- pIn1 += 4U;
- pIn2 += 4U;
- pOut += 4U;
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- blkCnt = numSamples % 0x4U;
-
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
- /* Subtract and then store the results in the destination buffer. */
- *pOut++ = (*pIn1++) - (*pIn2++);
-
- /* Decrement the loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_sub_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix subtraction */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
-
- /* Subtract and store result in destination buffer. */
- *pOut++ = (*pInA++) - (*pInB++);
- *pOut++ = (*pInA++) - (*pInB++);
- *pOut++ = (*pInA++) - (*pInB++);
- *pOut++ = (*pInA++) - (*pInB++);
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
-
- /* Subtract and store result in destination buffer. */
- *pOut++ = (*pInA++) - (*pInB++);
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* #if defined(ARM_MATH_NEON) */
-#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
-
-/**
- @} end of MatrixSub group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_sub_f32.c
+ * Description: Floating-point matrix subtraction
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup MatrixSub Matrix Subtraction
+
+ Subtract two matrices.
+ \image html MatrixSubtraction.gif "Subraction of two 3 x 3 matrices"
+
+ The functions check to make sure that
+ <code>pSrcA</code>, <code>pSrcB</code>, and <code>pDst</code> have the same
+ number of rows and columns.
+ */
+
+/**
+ @addtogroup MatrixSub
+ @{
+ */
+
+/**
+ @brief Floating-point matrix subtraction.
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ */
+
+#if defined(ARM_MATH_NEON)
+arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+
+
+ float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */
+
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix subtraction */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+ {
+ float32x4_t vec1;
+ float32x4_t vec2;
+ float32x4_t res;
+
+ /* Total number of samples in the input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+ blkCnt = numSamples >> 2U;
+
+ /* Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+ /* Subtract and then store the results in the destination buffer. */
+ /* Read values from source A */
+ vec1 = vld1q_f32(pIn1);
+ vec2 = vld1q_f32(pIn2);
+ res = vsubq_f32(vec1, vec2);
+ vst1q_f32(pOut, res);
+
+ /* Update pointers to process next samples */
+ pIn1 += 4U;
+ pIn2 += 4U;
+ pOut += 4U;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = numSamples % 0x4U;
+
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+ /* Subtract and then store the results in the destination buffer. */
+ *pOut++ = (*pIn1++) - (*pIn2++);
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix subtraction */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcA->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+
+ /* Subtract and store result in destination buffer. */
+ *pOut++ = (*pInA++) - (*pInB++);
+ *pOut++ = (*pInA++) - (*pInB++);
+ *pOut++ = (*pInA++) - (*pInB++);
+ *pOut++ = (*pInA++) - (*pInB++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+
+ /* Subtract and store result in destination buffer. */
+ *pOut++ = (*pInA++) - (*pInB++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#endif /* #if defined(ARM_MATH_NEON) */
+/**
+ @} end of MatrixSub group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c
index c379996..37496ea 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c
@@ -1,219 +1,144 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_sub_q15.c
- * Description: Q15 Matrix subtraction
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixSub
- @{
- */
-
-/**
- @brief Q15 matrix subtraction.
- @param[in] pSrcA points to the first input matrix structure
- @param[in] pSrcB points to the second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The function uses saturating arithmetic.
- Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-arm_status arm_mat_sub_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst)
-{
- uint32_t numSamples; /* total number of elements in the matrix */
- q15_t *pDataA, *pDataB, *pDataDst;
- q15x8_t vecA, vecB, vecDst;
- q15_t const *pSrcAVec;
- q15_t const *pSrcBVec;
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix subtraction */
-
-
- pDataA = pSrcA->pData;
- pDataB = pSrcB->pData;
- pDataDst = pDst->pData;
- pSrcAVec = (q15_t const *) pDataA;
- pSrcBVec = (q15_t const *) pDataB;
-
- #ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
- blkCnt = numSamples >> 3;
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* sub and then store the results in the destination buffer. */
- vecA = vld1q(pSrcAVec); pSrcAVec += 8;
- vecB = vld1q(pSrcBVec); pSrcBVec += 8;
- vecDst = vqsubq(vecA, vecB);
- vst1q(pDataDst, vecDst); pDataDst += 8;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numSamples & 7;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp16q(blkCnt);
- vecA = vld1q(pSrcAVec); pSrcAVec += 8;
- vecB = vld1q(pSrcBVec); pSrcBVec += 8;
- vecDst = vqsubq_m(vecDst, vecA, vecB, p0);
- vstrhq_p(pDataDst, vecDst, p0);
- }
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_sub_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst)
-{
- q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q15_t *pOut = pDst->pData; /* output data matrix pointer */
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix subtraction */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
-
- /* Subtract, Saturate and store result in destination buffer. */
-#if defined (ARM_MATH_DSP)
- write_q15x2_ia (&pOut, __QSUB16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB)));
- write_q15x2_ia (&pOut, __QSUB16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB)));
-#else
- *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
- *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
- *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
- *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
-#endif
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
-
- /* Subtract and store result in destination buffer. */
-#if defined (ARM_MATH_DSP)
- *pOut++ = (q15_t) __QSUB16(*pInA++, *pInB++);
-#else
- *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
-#endif
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixSub group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_sub_q15.c
+ * Description: Q15 Matrix subtraction
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixSub
+ @{
+ */
+
+/**
+ @brief Q15 matrix subtraction.
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function uses saturating arithmetic.
+ Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
+ */
+
+arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst)
+{
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q15_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix subtraction */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcA->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+
+ /* Subtract, Saturate and store result in destination buffer. */
+#if defined (ARM_MATH_DSP)
+ write_q15x2_ia (&pOut, __QSUB16(read_q15x2_ia ((q15_t **) &pInA), read_q15x2_ia ((q15_t **) &pInB)));
+ write_q15x2_ia (&pOut, __QSUB16(read_q15x2_ia ((q15_t **) &pInA), read_q15x2_ia ((q15_t **) &pInB)));
+#else
+ *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
+ *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
+ *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
+ *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
+#endif
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+
+ /* Subtract and store result in destination buffer. */
+#if defined (ARM_MATH_DSP)
+ *pOut++ = (q15_t) __QSUB16(*pInA++, *pInB++);
+#else
+ *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16);
+#endif
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixSub group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c
index 5045b29..8a5e693 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c
@@ -1,218 +1,139 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_sub_q31.c
- * Description: Q31 matrix subtraction
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixSub
- @{
- */
-
-/**
- @brief Q31 matrix subtraction.
- @param[in] pSrcA points to the first input matrix structure
- @param[in] pSrcB points to the second input matrix structure
- @param[out] pDst points to output matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
-
- @par Scaling and Overflow Behavior
- The function uses saturating arithmetic.
- Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-arm_status arm_mat_sub_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- uint32_t numSamples; /* total number of elements in the matrix */
- q31_t *pDataA, *pDataB, *pDataDst;
- q31x4_t vecA, vecB, vecDst;
- q31_t const *pSrcAVec;
- q31_t const *pSrcBVec;
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix subtraction */
-
- pDataA = pSrcA->pData;
- pDataB = pSrcB->pData;
- pDataDst = pDst->pData;
- pSrcAVec = (q31_t const *) pDataA;
- pSrcBVec = (q31_t const *) pDataB;
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
-
- /*
- * Total number of samples in the input matrix
- */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
- blkCnt = numSamples >> 2;
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) + B(m,n) */
- /* sub and then store the results in the destination buffer. */
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 4;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 4;
- vecDst = vqsubq(vecA, vecB);
- vst1q(pDataDst, vecDst);
- pDataDst += 4;
- /*
- * Decrement the blockSize loop counter
- */
- blkCnt--;
- }
- /*
- * tail
- */
- blkCnt = numSamples & 3;
- if (blkCnt > 0U)
- {
- mve_pred16_t p0 = vctp32q(blkCnt);
- vecA = vld1q(pSrcAVec);
- pSrcAVec += 4;
- vecB = vld1q(pSrcBVec);
- pSrcBVec += 4;
- vecDst = vqsubq_m(vecDst, vecA, vecB, p0);
- vstrwq_p(pDataDst, vecDst, p0);
- }
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-arm_status arm_mat_sub_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
-
- uint32_t numSamples; /* total number of elements in the matrix */
- uint32_t blkCnt; /* loop counters */
- arm_status status; /* status of matrix subtraction */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrcA->numRows != pSrcB->numRows) ||
- (pSrcA->numCols != pSrcB->numCols) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcA->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Total number of samples in input matrix */
- numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
-
- /* Subtract, saturate and then store the results in the destination buffer. */
- *pOut++ = __QSUB(*pInA++, *pInB++);
-
- *pOut++ = __QSUB(*pInA++, *pInB++);
-
- *pOut++ = __QSUB(*pInA++, *pInB++);
-
- *pOut++ = __QSUB(*pInA++, *pInB++);
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
-
-#else
-
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (blkCnt > 0U)
- {
- /* C(m,n) = A(m,n) - B(m,n) */
-
- /* Subtract, saturate and store result in destination buffer. */
- *pOut++ = __QSUB(*pInA++, *pInB++);
-
- /* Decrement loop counter */
- blkCnt--;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixSub group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_sub_q31.c
+ * Description: Q31 matrix subtraction
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixSub
+ @{
+ */
+
+/**
+ @brief Q31 matrix subtraction.
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function uses saturating arithmetic.
+ Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
+ */
+
+arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q31_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ uint32_t numSamples; /* total number of elements in the matrix */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* status of matrix subtraction */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numRows != pSrcB->numRows) ||
+ (pSrcA->numCols != pSrcB->numCols) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcA->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Total number of samples in input matrix */
+ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+
+ /* Subtract, saturate and then store the results in the destination buffer. */
+ *pOut++ = __QSUB(*pInA++, *pInB++);
+
+ *pOut++ = __QSUB(*pInA++, *pInB++);
+
+ *pOut++ = __QSUB(*pInA++, *pInB++);
+
+ *pOut++ = __QSUB(*pInA++, *pInB++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* C(m,n) = A(m,n) - B(m,n) */
+
+ /* Subtract, saturate and store result in destination buffer. */
+ *pOut++ = __QSUB(*pInA++, *pInB++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixSub group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c
index b411663..f002949 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c
@@ -1,325 +1,284 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_trans_f32.c
- * Description: Floating-point matrix transpose
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @defgroup MatrixTrans Matrix Transpose
-
- Tranposes a matrix.
-
- Transposing an <code>M x N</code> matrix flips it around the center diagonal and results in an <code>N x M</code> matrix.
- \image html MatrixTranspose.gif "Transpose of a 3 x 3 matrix"
- */
-
-/**
- @addtogroup MatrixTrans
- @{
- */
-
-/**
- @brief Floating-point matrix transpose.
- @param[in] pSrc points to input matrix
- @param[out] pDst points to output matrix
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
-#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#include "arm_helium_utils.h"
-
-arm_status arm_mat_trans_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
-{
- arm_status status; /* status of matrix transpose */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- if (pDst->numRows == pDst->numCols)
- {
- if (pDst->numCols == 2)
- return arm_mat_trans_32bit_2x2_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- if (pDst->numCols == 3)
- return arm_mat_trans_32bit_3x3_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- if (pDst->numCols == 4)
- return arm_mat_trans_32bit_4x4_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- }
-
- arm_mat_trans_32bit_generic_mve(pSrc->numRows, pSrc->numCols, (uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-
-#else
-#if defined(ARM_MATH_NEON)
-
-arm_status arm_mat_trans_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t nRows = pSrc->numRows; /* number of rows */
- uint16_t nColumns = pSrc->numCols; /* number of columns */
-
- uint16_t blkCnt, rowCnt, i = 0U, row = nRows; /* loop counters */
- arm_status status; /* status of matrix transpose */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Matrix transpose by exchanging the rows with columns */
- /* Row loop */
- rowCnt = row >> 2;
- while (rowCnt > 0U)
- {
- float32x4_t row0V,row1V,row2V,row3V;
- float32x4x2_t ra0,ra1,rb0,rb1;
-
- blkCnt = nColumns >> 2;
-
- /* The pointer px is set to starting address of the column being processed */
- px = pOut + i;
-
- /* Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while (blkCnt > 0U) /* Column loop */
- {
- row0V = vld1q_f32(pIn);
- row1V = vld1q_f32(pIn + 1 * nColumns);
- row2V = vld1q_f32(pIn + 2 * nColumns);
- row3V = vld1q_f32(pIn + 3 * nColumns);
- pIn += 4;
-
- ra0 = vzipq_f32(row0V,row2V);
- ra1 = vzipq_f32(row1V,row3V);
-
- rb0 = vzipq_f32(ra0.val[0],ra1.val[0]);
- rb1 = vzipq_f32(ra0.val[1],ra1.val[1]);
-
- vst1q_f32(px,rb0.val[0]);
- px += nRows;
-
- vst1q_f32(px,rb0.val[1]);
- px += nRows;
-
- vst1q_f32(px,rb1.val[0]);
- px += nRows;
-
- vst1q_f32(px,rb1.val[1]);
- px += nRows;
-
- /* Decrement the column loop counter */
- blkCnt--;
- }
-
- /* Perform matrix transpose for last 3 samples here. */
- blkCnt = nColumns % 0x4U;
-
- while (blkCnt > 0U)
- {
- /* Read and store the input element in the destination */
- *px++ = *pIn;
- *px++ = *(pIn + 1 * nColumns);
- *px++ = *(pIn + 2 * nColumns);
- *px++ = *(pIn + 3 * nColumns);
-
- px += (nRows - 4);
- pIn++;
-
- /* Decrement the column loop counter */
- blkCnt--;
- }
-
- i += 4;
- pIn += 3 * nColumns;
-
- /* Decrement the row loop counter */
- rowCnt--;
-
- } /* Row loop end */
-
- rowCnt = row & 3;
- while (rowCnt > 0U)
- {
- blkCnt = nColumns ;
- /* The pointer px is set to starting address of the column being processed */
- px = pOut + i;
-
- while (blkCnt > 0U)
- {
- /* Read and store the input element in the destination */
- *px = *pIn++;
-
- /* Update the pointer px to point to the next row of the transposed matrix */
- px += nRows;
-
- /* Decrement the column loop counter */
- blkCnt--;
- }
- i++;
- rowCnt -- ;
- }
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_trans_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst)
-{
- float32_t *pIn = pSrc->pData; /* input data matrix pointer */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t nRows = pSrc->numRows; /* number of rows */
- uint16_t nCols = pSrc->numCols; /* number of columns */
- uint32_t col, row = nRows, i = 0U; /* Loop counters */
- arm_status status; /* status of matrix transpose */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numCols) ||
- (pSrc->numCols != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Matrix transpose by exchanging the rows with columns */
- /* row loop */
- do
- {
- /* Pointer px is set to starting address of column being processed */
- px = pOut + i;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- col = nCols >> 2U;
-
- while (col > 0U) /* column loop */
- {
- /* Read and store input element in destination */
- *px = *pIn++;
- /* Update pointer px to point to next row of transposed matrix */
- px += nRows;
-
- *px = *pIn++;
- px += nRows;
-
- *px = *pIn++;
- px += nRows;
-
- *px = *pIn++;
- px += nRows;
-
- /* Decrement column loop counter */
- col--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- col = nCols % 0x4U;
-
-#else
-
- /* Initialize col with number of samples */
- col = nCols;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (col > 0U)
- {
- /* Read and store input element in destination */
- *px = *pIn++;
-
- /* Update pointer px to point to next row of transposed matrix */
- px += nRows;
-
- /* Decrement column loop counter */
- col--;
- }
-
- i++;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U); /* row loop end */
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* #if defined(ARM_MATH_NEON) */
-#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
-
-/**
- * @} end of MatrixTrans group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_trans_f32.c
+ * Description: Floating-point matrix transpose
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @defgroup MatrixTrans Matrix Transpose
+
+ Tranposes a matrix.
+
+ Transposing an <code>M x N</code> matrix flips it around the center diagonal and results in an <code>N x M</code> matrix.
+ \image html MatrixTranspose.gif "Transpose of a 3 x 3 matrix"
+ */
+
+/**
+ @addtogroup MatrixTrans
+ @{
+ */
+
+/**
+ @brief Floating-point matrix transpose.
+ @param[in] pSrc points to input matrix
+ @param[out] pDst points to output matrix
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ */
+
+#if defined(ARM_MATH_NEON)
+
+arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn = pSrc->pData; /* input data matrix pointer */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ uint16_t nRows = pSrc->numRows; /* number of rows */
+ uint16_t nColumns = pSrc->numCols; /* number of columns */
+
+ uint16_t blkCnt, rowCnt, i = 0U, row = nRows; /* loop counters */
+ arm_status status; /* status of matrix transpose */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Matrix transpose by exchanging the rows with columns */
+ /* Row loop */
+ rowCnt = row >> 2;
+ while (rowCnt > 0U)
+ {
+ float32x4_t row0V,row1V,row2V,row3V;
+ float32x4x2_t ra0,ra1,rb0,rb1;
+
+ blkCnt = nColumns >> 2;
+
+ /* The pointer px is set to starting address of the column being processed */
+ px = pOut + i;
+
+ /* Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U) /* Column loop */
+ {
+ row0V = vld1q_f32(pIn);
+ row1V = vld1q_f32(pIn + 1 * nColumns);
+ row2V = vld1q_f32(pIn + 2 * nColumns);
+ row3V = vld1q_f32(pIn + 3 * nColumns);
+ pIn += 4;
+
+ ra0 = vzipq_f32(row0V,row2V);
+ ra1 = vzipq_f32(row1V,row3V);
+
+ rb0 = vzipq_f32(ra0.val[0],ra1.val[0]);
+ rb1 = vzipq_f32(ra0.val[1],ra1.val[1]);
+
+ vst1q_f32(px,rb0.val[0]);
+ px += nRows;
+
+ vst1q_f32(px,rb0.val[1]);
+ px += nRows;
+
+ vst1q_f32(px,rb1.val[0]);
+ px += nRows;
+
+ vst1q_f32(px,rb1.val[1]);
+ px += nRows;
+
+ /* Decrement the column loop counter */
+ blkCnt--;
+ }
+
+ /* Perform matrix transpose for last 3 samples here. */
+ blkCnt = nColumns % 0x4U;
+
+ while (blkCnt > 0U)
+ {
+ /* Read and store the input element in the destination */
+ *px++ = *pIn;
+ *px++ = *(pIn + 1 * nColumns);
+ *px++ = *(pIn + 2 * nColumns);
+ *px++ = *(pIn + 3 * nColumns);
+
+ px += (nRows - 4);
+ pIn++;
+
+ /* Decrement the column loop counter */
+ blkCnt--;
+ }
+
+ i += 4;
+ pIn += 3 * nColumns;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+
+ } /* Row loop end */
+
+ rowCnt = row & 3;
+ while (rowCnt > 0U)
+ {
+ blkCnt = nColumns ;
+ /* The pointer px is set to starting address of the column being processed */
+ px = pOut + i;
+
+ while (blkCnt > 0U)
+ {
+ /* Read and store the input element in the destination */
+ *px = *pIn++;
+
+ /* Update the pointer px to point to the next row of the transposed matrix */
+ px += nRows;
+
+ /* Decrement the column loop counter */
+ blkCnt--;
+ }
+ i++;
+ rowCnt -- ;
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn = pSrc->pData; /* input data matrix pointer */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ uint16_t nRows = pSrc->numRows; /* number of rows */
+ uint16_t nCols = pSrc->numCols; /* number of columns */
+ uint32_t col, row = nRows, i = 0U; /* Loop counters */
+ arm_status status; /* status of matrix transpose */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numCols) ||
+ (pSrc->numCols != pDst->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Matrix transpose by exchanging the rows with columns */
+ /* row loop */
+ do
+ {
+ /* Pointer px is set to starting address of column being processed */
+ px = pOut + i;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ col = nCols >> 2U;
+
+ while (col > 0U) /* column loop */
+ {
+ /* Read and store input element in destination */
+ *px = *pIn++;
+ /* Update pointer px to point to next row of transposed matrix */
+ px += nRows;
+
+ *px = *pIn++;
+ px += nRows;
+
+ *px = *pIn++;
+ px += nRows;
+
+ *px = *pIn++;
+ px += nRows;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ col = nCols % 0x4U;
+
+#else
+
+ /* Initialize col with number of samples */
+ col = nCols;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (col > 0U)
+ {
+ /* Read and store input element in destination */
+ *px = *pIn++;
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += nRows;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ i++;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U); /* row loop end */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#endif /* #if defined(ARM_MATH_NEON) */
+
+/**
+ * @} end of MatrixTrans group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c
index e740922..3774e83 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c
@@ -1,233 +1,182 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_trans_q15.c
- * Description: Q15 matrix transpose
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixTrans
- @{
- */
-
-/**
- @brief Q15 matrix transpose.
- @param[in] pSrc points to input matrix
- @param[out] pDst points to output matrix
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
-
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#include "arm_helium_utils.h"
-
-
-
-arm_status arm_mat_trans_q15(
- const arm_matrix_instance_q15 * pSrc,
- arm_matrix_instance_q15 * pDst)
-{
- arm_status status; /* status of matrix transpose */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numCols) ||
- (pSrc->numCols != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- if (pDst->numRows == pDst->numCols)
- {
- if (pDst->numCols == 1)
- {
- pDst->pData[0] = pSrc->pData[0];
- return(ARM_MATH_SUCCESS);
- }
- if (pDst->numCols == 2)
- return arm_mat_trans_16bit_2x2((uint16_t *)pSrc->pData, (uint16_t *)pDst->pData);
- if (pDst->numCols == 3)
- return arm_mat_trans_16bit_3x3_mve((uint16_t *)pSrc->pData, (uint16_t *)pDst->pData);
- if (pDst->numCols == 4)
- return arm_mat_trans_16bit_4x4_mve((uint16_t *)pSrc->pData, (uint16_t *)pDst->pData);
- }
-
- arm_mat_trans_16bit_generic(pSrc->numRows, pSrc->numCols, (uint16_t *)pSrc->pData, (uint16_t *)pDst->pData);
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_trans_q15(
- const arm_matrix_instance_q15 * pSrc,
- arm_matrix_instance_q15 * pDst)
-{
- q15_t *pIn = pSrc->pData; /* input data matrix pointer */
- q15_t *pOut = pDst->pData; /* output data matrix pointer */
- uint16_t nRows = pSrc->numRows; /* number of rows */
- uint16_t nCols = pSrc->numCols; /* number of columns */
- uint32_t col, row = nRows, i = 0U; /* Loop counters */
- arm_status status; /* status of matrix transpose */
-
-#if defined (ARM_MATH_LOOPUNROLL)
- q31_t in; /* variable to hold temporary output */
-#endif
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numCols) ||
- (pSrc->numCols != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Matrix transpose by exchanging the rows with columns */
- /* row loop */
- do
- {
- /* Pointer pOut is set to starting address of column being processed */
- pOut = pDst->pData + i;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- col = nCols >> 2U;
-
- while (col > 0U) /* column loop */
- {
- /* Read two elements from row */
- in = read_q15x2_ia (&pIn);
-
- /* Unpack and store one element in destination */
-#ifndef ARM_MATH_BIG_ENDIAN
- *pOut = (q15_t) in;
-#else
- *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update pointer pOut to point to next row of transposed matrix */
- pOut += nRows;
-
- /* Unpack and store second element in destination */
-#ifndef ARM_MATH_BIG_ENDIAN
- *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-#else
- *pOut = (q15_t) in;
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update pointer pOut to point to next row of transposed matrix */
- pOut += nRows;
-
- /* Read two elements from row */
- in = read_q15x2_ia (&pIn);
-
- /* Unpack and store one element in destination */
-#ifndef ARM_MATH_BIG_ENDIAN
- *pOut = (q15_t) in;
-#else
- *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update pointer pOut to point to next row of transposed matrix */
- pOut += nRows;
-
- /* Unpack and store second element in destination */
-#ifndef ARM_MATH_BIG_ENDIAN
- *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
-#else
- *pOut = (q15_t) in;
-#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
-
- /* Update pointer pOut to point to next row of transposed matrix */
- pOut += nRows;
-
- /* Decrement column loop counter */
- col--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- col = nCols % 0x4U;
-
-#else
-
- /* Initialize col with number of samples */
- col = nCols;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (col > 0U)
- {
- /* Read and store input element in destination */
- *pOut = *pIn++;
-
- /* Update pointer pOut to point to next row of transposed matrix */
- pOut += nRows;
-
- /* Decrement column loop counter */
- col--;
- }
-
- i++;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U); /* row loop end */
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixTrans group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_trans_q15.c
+ * Description: Q15 matrix transpose
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixTrans
+ @{
+ */
+
+/**
+ @brief Q15 matrix transpose.
+ @param[in] pSrc points to input matrix
+ @param[out] pDst points to output matrix
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ */
+
+arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst)
+{
+ q15_t *pIn = pSrc->pData; /* input data matrix pointer */
+ q15_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint16_t nRows = pSrc->numRows; /* number of rows */
+ uint16_t nCols = pSrc->numCols; /* number of columns */
+ uint32_t col, row = nRows, i = 0U; /* Loop counters */
+ arm_status status; /* status of matrix transpose */
+
+#if defined (ARM_MATH_LOOPUNROLL)
+ q31_t in; /* variable to hold temporary output */
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numCols) ||
+ (pSrc->numCols != pDst->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Matrix transpose by exchanging the rows with columns */
+ /* row loop */
+ do
+ {
+ /* Pointer pOut is set to starting address of column being processed */
+ pOut = pDst->pData + i;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ col = nCols >> 2U;
+
+ while (col > 0U) /* column loop */
+ {
+ /* Read two elements from row */
+ in = read_q15x2_ia ((q15_t **) &pIn);
+
+ /* Unpack and store one element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *pOut = (q15_t) in;
+#else
+ *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer pOut to point to next row of transposed matrix */
+ pOut += nRows;
+
+ /* Unpack and store second element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#else
+ *pOut = (q15_t) in;
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer pOut to point to next row of transposed matrix */
+ pOut += nRows;
+
+ /* Read two elements from row */
+ in = read_q15x2_ia ((q15_t **) &pIn);
+
+ /* Unpack and store one element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *pOut = (q15_t) in;
+#else
+ *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer pOut to point to next row of transposed matrix */
+ pOut += nRows;
+
+ /* Unpack and store second element in destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+ *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+#else
+ *pOut = (q15_t) in;
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Update pointer pOut to point to next row of transposed matrix */
+ pOut += nRows;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ col = nCols % 0x4U;
+
+#else
+
+ /* Initialize col with number of samples */
+ col = nCols;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (col > 0U)
+ {
+ /* Read and store input element in destination */
+ *pOut = *pIn++;
+
+ /* Update pointer pOut to point to next row of transposed matrix */
+ pOut += nRows;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ i++;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U); /* row loop end */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixTrans group
+ */
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c
index 2c77254..d6efd59 100644
--- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c
@@ -1,191 +1,146 @@
-/* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_trans_q31.c
- * Description: Q31 matrix transpose
- *
- * $Date: 23 April 2021
- * $Revision: V1.9.0
- *
- * Target Processor: Cortex-M and Cortex-A cores
- * -------------------------------------------------------------------- */
-/*
- * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "dsp/matrix_functions.h"
-
-/**
- @ingroup groupMatrix
- */
-
-/**
- @addtogroup MatrixTrans
- @{
- */
-
-/**
- @brief Q31 matrix transpose.
- @param[in] pSrc points to input matrix
- @param[out] pDst points to output matrix
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
-#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
-
-#include "arm_helium_utils.h"
-
-arm_status arm_mat_trans_q31(
- const arm_matrix_instance_q31 * pSrc,
- arm_matrix_instance_q31 * pDst)
-{
- arm_status status; /* status of matrix transpose */
- #ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numCols) ||
- (pSrc->numCols != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- if (pDst->numRows == pDst->numCols)
- {
- if (pDst->numCols == 2)
- return arm_mat_trans_32bit_2x2_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- if (pDst->numCols == 3)
- return arm_mat_trans_32bit_3x3_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- if (pDst->numCols == 4)
- return arm_mat_trans_32bit_4x4_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- }
-
- arm_mat_trans_32bit_generic_mve(pSrc->numRows, pSrc->numCols, (uint32_t *)pSrc->pData, (uint32_t *)pDst->pData);
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#else
-arm_status arm_mat_trans_q31(
- const arm_matrix_instance_q31 * pSrc,
- arm_matrix_instance_q31 * pDst)
-{
- q31_t *pIn = pSrc->pData; /* input data matrix pointer */
- q31_t *pOut = pDst->pData; /* output data matrix pointer */
- q31_t *px; /* Temporary output data matrix pointer */
- uint16_t nRows = pSrc->numRows; /* number of rows */
- uint16_t nCols = pSrc->numCols; /* number of columns */
- uint32_t col, row = nRows, i = 0U; /* Loop counters */
- arm_status status; /* status of matrix transpose */
-
-#ifdef ARM_MATH_MATRIX_CHECK
-
- /* Check for matrix mismatch condition */
- if ((pSrc->numRows != pDst->numCols) ||
- (pSrc->numCols != pDst->numRows) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
-
-#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
-
- {
- /* Matrix transpose by exchanging the rows with columns */
- /* row loop */
- do
- {
- /* Pointer px is set to starting address of column being processed */
- px = pOut + i;
-
-#if defined (ARM_MATH_LOOPUNROLL)
-
- /* Loop unrolling: Compute 4 outputs at a time */
- col = nCols >> 2U;
-
- while (col > 0U) /* column loop */
- {
- /* Read and store input element in destination */
- *px = *pIn++;
- /* Update pointer px to point to next row of transposed matrix */
- px += nRows;
-
- *px = *pIn++;
- px += nRows;
-
- *px = *pIn++;
- px += nRows;
-
- *px = *pIn++;
- px += nRows;
-
- /* Decrement column loop counter */
- col--;
- }
-
- /* Loop unrolling: Compute remaining outputs */
- col = nCols % 0x4U;
-
-#else
-
- /* Initialize col with number of samples */
- col = nCols;
-
-#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
-
- while (col > 0U)
- {
- /* Read and store input element in destination */
- *px = *pIn++;
-
- /* Update pointer px to point to next row of transposed matrix */
- px += nRows;
-
- /* Decrement column loop counter */
- col--;
- }
-
- i++;
-
- /* Decrement row loop counter */
- row--;
-
- } while (row > 0U); /* row loop end */
-
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
-
- /* Return to application */
- return (status);
-}
-#endif /* defined(ARM_MATH_MVEI) */
-
-/**
- @} end of MatrixTrans group
- */
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_trans_q31.c
+ * Description: Q31 matrix transpose
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixTrans
+ @{
+ */
+
+/**
+ @brief Q31 matrix transpose.
+ @param[in] pSrc points to input matrix
+ @param[out] pDst points to output matrix
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ */
+
+arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pIn = pSrc->pData; /* input data matrix pointer */
+ q31_t *pOut = pDst->pData; /* output data matrix pointer */
+ q31_t *px; /* Temporary output data matrix pointer */
+ uint16_t nRows = pSrc->numRows; /* number of rows */
+ uint16_t nCols = pSrc->numCols; /* number of columns */
+ uint32_t col, row = nRows, i = 0U; /* Loop counters */
+ arm_status status; /* status of matrix transpose */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pDst->numCols) ||
+ (pSrc->numCols != pDst->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* Matrix transpose by exchanging the rows with columns */
+ /* row loop */
+ do
+ {
+ /* Pointer px is set to starting address of column being processed */
+ px = pOut + i;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ col = nCols >> 2U;
+
+ while (col > 0U) /* column loop */
+ {
+ /* Read and store input element in destination */
+ *px = *pIn++;
+ /* Update pointer px to point to next row of transposed matrix */
+ px += nRows;
+
+ *px = *pIn++;
+ px += nRows;
+
+ *px = *pIn++;
+ px += nRows;
+
+ *px = *pIn++;
+ px += nRows;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ col = nCols % 0x4U;
+
+#else
+
+ /* Initialize col with number of samples */
+ col = nCols;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (col > 0U)
+ {
+ /* Read and store input element in destination */
+ *px = *pIn++;
+
+ /* Update pointer px to point to next row of transposed matrix */
+ px += nRows;
+
+ /* Decrement column loop counter */
+ col--;
+ }
+
+ i++;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U); /* row loop end */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+/**
+ @} end of MatrixTrans group
+ */