summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Include/dsp/svm_functions.h')
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/svm_functions.h299
1 files changed, 299 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h
new file mode 100644
index 0000000..3acc621
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h
@@ -0,0 +1,299 @@
+/******************************************************************************
+ * @file svm_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SVM_FUNCTIONS_H_
+#define _SVM_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/svm_defines.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#define STEP(x) (x) <= 0 ? 0 : 1
+
+/**
+ * @defgroup groupSVM SVM Functions
+ * This set of functions is implementing SVM classification on 2 classes.
+ * The training must be done from scikit-learn. The parameters can be easily
+ * generated from the scikit-learn object. Some examples are given in
+ * DSP/Testing/PatternGeneration/SVM.py
+ *
+ * If more than 2 classes are needed, the functions in this folder
+ * will have to be used, as building blocks, to do multi-class classification.
+ *
+ * No multi-class classification is provided in this SVM folder.
+ *
+ */
+
+/**
+ * @brief Integer exponentiation
+ * @param[in] x value
+ * @param[in] nb integer exponent >= 1
+ * @return x^nb
+ *
+ */
+__STATIC_INLINE float32_t arm_exponent_f32(float32_t x, int32_t nb)
+{
+ float32_t r = x;
+ nb --;
+ while(nb > 0)
+ {
+ r = r * x;
+ nb--;
+ }
+ return(r);
+}
+
+
+
+
+
+/**
+ * @brief Instance structure for linear SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+} arm_svm_linear_instance_f32;
+
+
+/**
+ * @brief Instance structure for polynomial SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ int32_t degree; /**< Polynomial degree */
+ float32_t coef0; /**< Polynomial constant */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_polynomial_instance_f32;
+
+/**
+ * @brief Instance structure for rbf SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_rbf_instance_f32;
+
+/**
+ * @brief Instance structure for sigmoid SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float32_t coef0; /**< Independent constant */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_sigmoid_instance_f32;
+
+/**
+ * @brief SVM linear instance init function
+ * @param[in] S Parameters for SVM functions
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @return none.
+ *
+ */
+
+
+void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes);
+
+/**
+ * @brief SVM linear prediction
+ * @param[in] S Pointer to an instance of the linear SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+
+void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM polynomial instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] degree Polynomial degree
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+
+void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ int32_t degree,
+ float32_t coef0,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM polynomial prediction
+ * @param[in] S Pointer to an instance of the polynomial SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM radial basis function instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM rbf prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult decision value
+ * @return none.
+ *
+ */
+void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+/**
+ * @brief SVM sigmoid instance init function
+ * @param[in] S points to an instance of the rbf SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ float32_t coef0,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM sigmoid prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_sigmoid_predict_f32(const arm_svm_sigmoid_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SVM_FUNCTIONS_H_ */