From 5b81bc8ccbd342b8566d88fc9f17a73aec03b5b6 Mon Sep 17 00:00:00 2001 From: Clyne Sullivan Date: Wed, 29 Jan 2025 21:34:25 -0500 Subject: initial commit --- Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal.c | 787 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc.c | 3089 ++++++++ .../Src/stm32u0xx_hal_adc_ex.c | 409 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_comp.c | 1081 +++ .../Src/stm32u0xx_hal_cortex.c | 445 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc.c | 516 ++ .../Src/stm32u0xx_hal_crc_ex.c | 230 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c | 5619 ++++++++++++++ .../Src/stm32u0xx_hal_cryp_ex.c | 386 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac.c | 1351 ++++ .../Src/stm32u0xx_hal_dac_ex.c | 426 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma.c | 1199 +++ .../Src/stm32u0xx_hal_dma_ex.c | 317 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_exti.c | 654 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash.c | 707 ++ .../Src/stm32u0xx_hal_flash_ex.c | 834 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_gpio.c | 542 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c.c | 7447 ++++++++++++++++++ .../Src/stm32u0xx_hal_i2c_ex.c | 361 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_irda.c | 3015 ++++++++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_iwdg.c | 510 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lcd.c | 614 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lptim.c | 4274 +++++++++++ .../Src/stm32u0xx_hal_msp_template.c | 76 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp.c | 1137 +++ .../Src/stm32u0xx_hal_opamp_ex.c | 436 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd.c | 2256 ++++++ .../Src/stm32u0xx_hal_pcd_ex.c | 331 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr.c | 681 ++ .../Src/stm32u0xx_hal_pwr_ex.c | 1363 ++++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc.c | 1648 ++++ .../Src/stm32u0xx_hal_rcc_ex.c | 1912 +++++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng.c | 1025 +++ .../Src/stm32u0xx_hal_rng_ex.c | 339 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c | 2038 +++++ .../Src/stm32u0xx_hal_rtc_ex.c | 2112 ++++++ .../Src/stm32u0xx_hal_smartcard.c | 3178 ++++++++ .../Src/stm32u0xx_hal_smartcard_ex.c | 495 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi.c | 4429 +++++++++++ .../Src/stm32u0xx_hal_spi_ex.c | 112 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim.c | 7925 ++++++++++++++++++++ .../Src/stm32u0xx_hal_tim_ex.c | 2804 +++++++ .../stm32u0xx_hal_timebase_rtc_alarm_template.c | 298 + .../stm32u0xx_hal_timebase_rtc_wakeup_template.c | 275 + .../Src/stm32u0xx_hal_timebase_tim_template.c | 194 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tsc.c | 1121 +++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart.c | 4762 ++++++++++++ .../Src/stm32u0xx_hal_uart_ex.c | 1092 +++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart.c | 3836 ++++++++++ .../Src/stm32u0xx_hal_usart_ex.c | 541 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_wwdg.c | 420 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_adc.c | 749 ++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_comp.c | 257 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crc.c | 103 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crs.c | 81 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dac.c | 289 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dma.c | 353 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_exti.c | 248 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_gpio.c | 263 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_i2c.c | 229 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lptim.c | 198 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lpuart.c | 320 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_opamp.c | 226 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_pwr.c | 82 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rcc.c | 1116 +++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rng.c | 158 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rtc.c | 868 +++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_spi.c | 295 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_tim.c | 1339 ++++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usart.c | 414 + .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usb.c | 972 +++ .../STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_utils.c | 695 ++ 72 files changed, 90904 insertions(+) create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_comp.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cortex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_exti.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_gpio.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_irda.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_iwdg.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lcd.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lptim.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_msp_template.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_alarm_template.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_wakeup_template.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_tim_template.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tsc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart_ex.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_wwdg.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_adc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_comp.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crs.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dac.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dma.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_exti.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_gpio.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_i2c.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lptim.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lpuart.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_opamp.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_pwr.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rcc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rng.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rtc.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_spi.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_tim.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usart.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usb.c create mode 100644 Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_utils.c (limited to 'Drivers/STM32U0xx_HAL_Driver/Src') diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal.c new file mode 100644 index 0000000..1b89612 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal.c @@ -0,0 +1,787 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal.c + * @author GPM Application Team + * @brief HAL module driver. + * This is the common part of the HAL initialization + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The common HAL driver contains a set of generic and common APIs that can be + used by the PPP peripheral drivers and the user to start using the HAL. + [..] + The HAL contains two APIs categories: + (+) Common HAL APIs + (+) Services HAL APIs + + @endverbatim + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup HAL + * @brief HAL module driver + * @{ + */ + +#ifdef HAL_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup HAL_Private_Constants HAL Private Constants + * @{ + */ +/** + * @brief STM32U0xx HAL Driver version number + */ +#define __STM32U0xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */ +#define __STM32U0xx_HAL_VERSION_SUB1 (0x02U) /*!< [23:16] sub1 version */ +#define __STM32U0xx_HAL_VERSION_SUB2 (0x00U) /*!< [15:8] sub2 version */ +#define __STM32U0xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */ +#define __STM32U0xx_HAL_VERSION ((__STM32U0xx_HAL_VERSION_MAIN << 24U)\ + |(__STM32U0xx_HAL_VERSION_SUB1 << 16U)\ + |(__STM32U0xx_HAL_VERSION_SUB2 << 8U )\ + |(__STM32U0xx_HAL_VERSION_RC)) + +#if defined(VREFBUF) +#define VREFBUF_TIMEOUT_VALUE 10U /*!< 10 ms */ +#endif /* VREFBUF */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Exported variables ---------------------------------------------------------*/ +/** @defgroup HAL_Exported_Variables HAL Exported Variables + * @{ + */ +__IO uint32_t uwTick; +uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */ +uint32_t uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */ +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup HAL_Exported_Functions + * @{ + */ + +/** @addtogroup HAL_Exported_Functions_Group1 + * @brief HAL Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### HAL Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the Flash interface the NVIC allocation and initial time base + clock configuration. + (+) De-initialize common part of the HAL. + (+) Configure the time base source to have 1ms time base with a dedicated + Tick interrupt priority. + (++) SysTick timer is used by default as source of time base, but user + can eventually implement his proper time base source (a general purpose + timer for example or other time source), keeping in mind that Time base + duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and + handled in milliseconds basis. + (++) Time base configuration function (HAL_InitTick ()) is called automatically + at the beginning of the program after reset by HAL_Init() or at any time + when clock is configured, by HAL_RCC_ClockConfig(). + (++) Source of time base is configured to generate interrupts at regular + time intervals. Care must be taken if HAL_Delay() is called from a + peripheral ISR process, the Tick interrupt line must have higher priority + (numerically lower) than the peripheral interrupt. Otherwise the caller + ISR process will be blocked. + (++) functions affecting time base configurations are declared as __weak + to make override possible in case of other implementations in user file. +@endverbatim + * @{ + */ + +/** + * @brief Configure the Flash prefetch and the Instruction cache, + * the time base source, NVIC and any required global low level hardware + * by calling the HAL_MspInit() callback function to be optionally defined in user file + * stm32g0xx_hal_msp.c. + * + * @note HAL_Init() function is called at the beginning of program after reset and before + * the clock configuration. + * + * @note In the default implementation the System Timer (Systick) is used as source of time base. + * The Systick configuration is based on HSI clock, as HSI is the clock + * used after a system Reset. + * Once done, time base tick starts incrementing: the tick variable counter is incremented + * each 1ms in the SysTick_Handler() interrupt handler. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_Init(void) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Configure Flash prefetch, Instruction cache */ + /* Default configuration at reset is: */ + /* - Prefetch disabled */ + /* - Instruction cache enabled */ + +#if (INSTRUCTION_CACHE_ENABLE == 0U) + __HAL_FLASH_INSTRUCTION_CACHE_DISABLE(); +#endif /* INSTRUCTION_CACHE_ENABLE */ + +#if (PREFETCH_ENABLE != 0U) + __HAL_FLASH_PREFETCH_BUFFER_ENABLE(); +#endif /* PREFETCH_ENABLE */ + + /* Use SysTick as time base source and configure 1ms tick (default clock after Reset is HSI) */ + if (HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK) + { + status = HAL_ERROR; + } + else + { + /* Init the low level hardware */ + HAL_MspInit(); + } + + /* Return function status */ + return status; +} + +/** + * @brief This function de-Initializes common part of the HAL and stops the source of time base. + * @note This function is optional. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DeInit(void) +{ + /* Reset of all peripherals */ + __HAL_RCC_APB1_GRP1_FORCE_RESET(); + __HAL_RCC_APB1_GRP1_RELEASE_RESET(); + + __HAL_RCC_APB1_GRP2_FORCE_RESET(); + __HAL_RCC_APB1_GRP2_RELEASE_RESET(); + + __HAL_RCC_AHB_FORCE_RESET(); + __HAL_RCC_AHB_RELEASE_RESET(); + + __HAL_RCC_IOP_FORCE_RESET(); + __HAL_RCC_IOP_RELEASE_RESET(); + /* De-Init the low level hardware */ + HAL_MspDeInit(); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initialize the MSP. + * @retval None + */ +__weak void HAL_MspInit(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the MSP. + * @retval None + */ +__weak void HAL_MspDeInit(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief This function configures the source of the time base: + * The time source is configured to have 1ms time base with a dedicated + * Tick interrupt priority. + * @note This function is called automatically at the beginning of program after + * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig(). + * @note In the default implementation, SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals. + * Care must be taken if HAL_Delay() is called from a peripheral ISR process, + * The SysTick interrupt must have higher priority (numerically lower) + * than the peripheral interrupt. Otherwise the caller ISR process will be blocked. + * The function is declared as __weak to be overwritten in case of other + * implementation in user file. + * @param TickPriority Tick interrupt priority. + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (uwTickFreq != 0U) + { + /*Configure the SysTick to have interrupt in 1ms time basis*/ + if (HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq)) == 0U) + { + /* Configure the SysTick IRQ priority */ + if (TickPriority < (1UL << __NVIC_PRIO_BITS)) + { + HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U); + uwTickPrio = TickPriority; + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @addtogroup HAL_Exported_Functions_Group2 + * @brief HAL Control functions + * +@verbatim + =============================================================================== + ##### HAL Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Provide a tick value in millisecond + (+) Provide a blocking delay in millisecond + (+) Suspend the time base source interrupt + (+) Resume the time base source interrupt + (+) Get the HAL API driver version + (+) Get the device identifier + (+) Get the device revision identifier + +@endverbatim + * @{ + */ + +/** + * @brief This function is called to increment a global variable "uwTick" + * used as application time base. + * @note In the default implementation, this variable is incremented each 1ms + * in SysTick ISR. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_IncTick(void) +{ + uwTick += uwTickFreq; +} + +/** + * @brief Provides a tick value in millisecond. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval tick value + */ +__weak uint32_t HAL_GetTick(void) +{ + return uwTick; +} + +/** + * @brief This function returns a tick priority. + * @retval tick priority + */ +uint32_t HAL_GetTickPrio(void) +{ + return uwTickPrio; +} + +/** + * @brief Set new tick Freq. + * @retval Status + */ +HAL_StatusTypeDef HAL_SetTickFreq(uint32_t Freq) +{ + HAL_StatusTypeDef status = HAL_OK; + assert_param(IS_TICKFREQ(Freq)); + + if (uwTickFreq != Freq) + { + uwTickFreq = Freq; + + /* Apply the new tick Freq */ + status = HAL_InitTick(uwTickPrio); + } + + return status; +} + +/** + * @brief return tick frequency. + * @retval tick period in Hz + */ +uint32_t HAL_GetTickFreq(void) +{ + return uwTickFreq; +} + +/** + * @brief This function provides minimum delay (in milliseconds) based + * on variable incremented. + * @note In the default implementation , SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals where uwTick + * is incremented. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @param Delay specifies the delay time length, in milliseconds. + * @retval None + */ +__weak void HAL_Delay(uint32_t Delay) +{ + uint32_t tickstart = HAL_GetTick(); + uint32_t wait = Delay; + + /* Add a freq to guarantee minimum wait */ + if (wait < HAL_MAX_DELAY) + { + wait += (uint32_t)(uwTickFreq); + } + + while ((HAL_GetTick() - tickstart) < wait) + { + } +} + +/** + * @brief Suspend Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_SuspendTick() + * is called, the SysTick interrupt will be disabled and so Tick increment + * is suspended. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_SuspendTick(void) +{ + /* Disable SysTick Interrupt */ + CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk); +} + +/** + * @brief Resume Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_ResumeTick() + * is called, the SysTick interrupt will be enabled and so Tick increment + * is resumed. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_ResumeTick(void) +{ + /* Enable SysTick Interrupt */ + SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk); +} + +/** + * @brief Returns the HAL revision + * @retval version : 0xXYZR (8bits for each decimal, R for RC) + */ +uint32_t HAL_GetHalVersion(void) +{ + return __STM32U0xx_HAL_VERSION; +} + +/** + * @brief Returns the device revision identifier. + * @retval Device revision identifier + */ +uint32_t HAL_GetREVID(void) +{ + return ((DBGMCU->IDCODE & DBGMCU_IDCODE_REV_ID) >> 16U); +} + +/** + * @brief Returns the device identifier. + * @retval Device identifier + */ +uint32_t HAL_GetDEVID(void) +{ + return ((DBGMCU->IDCODE) & DBGMCU_IDCODE_DEV_ID); +} + +/** + * @brief Return the first word of the unique device identifier (UID based on 96 bits) + * @retval Device identifier + */ +uint32_t HAL_GetUIDw0(void) +{ + return (READ_REG(*((uint32_t *)UID_BASE))); +} + +/** + * @brief Return the second word of the unique device identifier (UID based on 96 bits) + * @retval Device identifier + */ +uint32_t HAL_GetUIDw1(void) +{ + return (READ_REG(*((uint32_t *)(UID_BASE + 4U)))); +} + +/** + * @brief Return the third word of the unique device identifier (UID based on 96 bits) + * @retval Device identifier + */ +uint32_t HAL_GetUIDw2(void) +{ + return (READ_REG(*((uint32_t *)(UID_BASE + 8U)))); +} +/** + * @} + */ + +/** @addtogroup HAL_Exported_Functions_Group3 + * @brief HAL Debug functions + * +@verbatim + =============================================================================== + ##### HAL Debug functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Enable/Disable Debug module during STOP mode + (+) Enable/Disable Debug module during STANDBY mode + +@endverbatim + * @{ + */ + +/** + * @brief Enable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStopMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); +} + +/** + * @brief Disable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStopMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); +} + +/** + * @brief Enable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStandbyMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); +} + +/** + * @brief Disable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStandbyMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); +} + +/** + * @} + */ + +/** @addtogroup HAL_Exported_Functions_Group4 + * @brief SYSCFG configuration functions + * +@verbatim + =============================================================================== + ##### HAL SYSCFG configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Enable/Disable Pin remap + (+) Configure the Voltage reference buffer + (+) Enable/Disable the Voltage reference buffer + (+) Enable/Disable the I/O analog switch voltage booster + (+) Enable/Disable dead battery behavior(*) + (+) Configure Clamping Diode on specific pins(*) + (*) Feature not available on all devices + +@endverbatim + * @{ + */ +#if defined(VREFBUF) +/** + * @brief Configure the internal voltage reference buffer voltage scale. + * @param VoltageScaling specifies the output voltage to achieve + * This parameter can be one of the following values: + * @arg @ref SYSCFG_VREFBUF_VoltageScale + * @retval None + */ +void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling) +{ + /* Check the parameters */ + assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling)); + + MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling); +} + +/** + * @brief Configure the internal voltage reference buffer high impedance mode. + * @param Mode specifies the high impedance mode + * This parameter can be one of the following values: + * @arg @ref SYSCFG_VREFBUF_HighImpedance + * @retval None + */ +void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode) +{ + /* Check the parameters */ + assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode)); + + MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode); +} + +/** + * @brief Tune the Internal Voltage Reference buffer (VREFBUF). + * @retval None + */ +void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue) +{ + /* Check the parameters */ + assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue)); + + MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue); +} + +/** + * @brief Enable the Internal Voltage Reference buffer (VREFBUF). + * @retval HAL_OK/HAL_TIMEOUT + */ +HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void) +{ + uint32_t tickstart; + + SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait for VRR bit */ + while (READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0x00U) + { + if ((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Disable the Internal Voltage Reference buffer (VREFBUF). + * + * @retval None + */ +void HAL_SYSCFG_DisableVREFBUF(void) +{ + CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR); +} +#endif /* VREFBUF */ + +/** + * @brief Enable the I/O analog switch voltage booster + * @retval None + */ +void HAL_SYSCFG_EnableIOAnalogSwitchBooster(void) +{ + SET_BIT(SYSCFG->CFGR1, SYSCFG_CFGR1_BOOSTEN); +} + +/** + * @brief Disable the I/O analog switch voltage booster + * @retval None + */ +void HAL_SYSCFG_DisableIOAnalogSwitchBooster(void) +{ + CLEAR_BIT(SYSCFG->CFGR1, SYSCFG_CFGR1_BOOSTEN); +} + +/** + * @brief Enable the remap on PA11_PA12 + * @param PinRemap specifies which pins have to be remapped + * This parameter can be any combination of the following values: + * @arg @ref SYSCFG_REMAP_PA11 + * @arg @ref SYSCFG_REMAP_PA12 + * @retval None + */ +void HAL_SYSCFG_EnableRemap(uint32_t PinRemap) +{ + /* Check the parameter */ + assert_param(IS_HAL_REMAP_PIN(PinRemap)); + SET_BIT(SYSCFG->CFGR1, PinRemap); +} + +/** + * @brief Disable the remap on PA11_PA12 + * @param PinRemap specifies which pins will behave normally + * This parameter can be any combination of the following values: + * @arg @ref SYSCFG_REMAP_PA11 + * @arg @ref SYSCFG_REMAP_PA12 + * @retval None + */ +void HAL_SYSCFG_DisableRemap(uint32_t PinRemap) +{ + /* Check the parameter */ + assert_param(IS_HAL_REMAP_PIN(PinRemap)); + CLEAR_BIT(SYSCFG->CFGR1, PinRemap); +} + +/** + * @brief Enable TSC Comparator Mode + * @retval None + */ +void HAL_SYSCFG_EnableTSCComparatorMode(void) +{ + SET_BIT(SYSCFG->TSCCR, SYSCFG_TSCCR_TSCIOCTRL); +} + +/** + * @brief Disable TSC Comparator Mode + * @retval None + */ +void HAL_SYSCFG_DisableTSCComparatorMode(void) +{ + CLEAR_BIT(SYSCFG->TSCCR, SYSCFG_TSCCR_TSCIOCTRL); +} + +/** + * @brief Set configuration of TSC comparator mode + * @param CompModeIOGRP specifies which comparator mode group IO will be configured. + * This parameter can be any combination of the following values: + * @arg @ref SYSCFG_COMPMODE_GROUP + * @retval None + */ +void HAL_SYSCFG_SetTSCComparatorModeIO(uint32_t CompModeIOGRP) +{ + /* Check the parameter */ + assert_param(IS_SYSCFG_COMPMODE(CompModeIOGRP)); + + SET_BIT(SYSCFG->TSCCR, CompModeIOGRP); +} + +/** + * @brief Get the configuration of TSC comparator mode + * @param CompModeIOGRP specifies which comparator mode group IO will be configured. + * This parameter can be any combination of the following values: + * @arg @ref SYSCFG_COMPMODE_GROUP + * @retval State of bit (1 or 0). + */ +uint32_t HAL_SYSCFG_GetTSCComparatorModeIO(uint32_t CompModeIOGRP) +{ + /* Check the parameter */ + assert_param(IS_SYSCFG_COMPMODE(CompModeIOGRP)); + + return ((READ_BIT(SYSCFG->TSCCR, CompModeIOGRP) == CompModeIOGRP) ? 1UL : 0UL); +} + +/** + * @brief Clear configuration of TSC comparator mode + * @param CompModeIOGRP specifies which group will + * This parameter can be any combination of the following values: + * @arg @ref SYSCFG_COMPMODE_GROUP + * @retval None + */ +void HAL_SYSCFG_ClearTSCComparatorModeIO(uint32_t CompModeIOGRP) +{ + /* Check the parameter */ + assert_param(IS_SYSCFG_COMPMODE(CompModeIOGRP)); + + CLEAR_BIT(SYSCFG->TSCCR, CompModeIOGRP); +} + +/** + * @brief SRAM2 page write protection lock prior to erase + * @retval None + */ +void HAL_SYSCFG_LockSRAM2(void) +{ + /* Writing a wrong key reactivates the write protection */ + WRITE_REG(SYSCFG->SKR, 0x00); +} + +/** + * @brief SRAM2 page write protection unlock prior to erase + * @retval None + */ +void HAL_SYSCFG_UnlockSRAM2(void) +{ + /* Unlock the write protection of SRAM2 */ + WRITE_REG(SYSCFG->SKR, 0xCA); + WRITE_REG(SYSCFG->SKR, 0x53); +} + +/** + * @brief Start a hardware SRAM2 erase operation. + * @note As long as SRAM2 is not erased the SRAM2ER bit will be set. + * This bit is automatically reset at the end of the SRAM2 erase operation. + * @retval None + */ +void HAL_SYSCFG_EraseSRAM2(void) +{ + /* Starts a hardware SRAM2 erase operation*/ + SET_BIT(SYSCFG->SCSR, SYSCFG_SCSR_SRAM2ER); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc.c new file mode 100644 index 0000000..0201192 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc.c @@ -0,0 +1,3089 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_adc.c + * @author MCD Application Team + * @brief This file provides firmware functions to manage the following + * functionalities of the Analog to Digital Converter (ADC) + * peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * Other functions (extended functions) are available in file + * "stm32u0xx_hal_adc_ex.c". + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### ADC peripheral features ##### + ============================================================================== + [..] + (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution. + + (+) Interrupt generation at the end of regular conversion and in case of + analog watchdog or overrun events. + + (+) Single and continuous conversion modes. + + (+) Scan mode for conversion of several channels sequentially. + + (+) Data alignment with in-built data coherency. + + (+) Programmable sampling time (common to group of channels) + + (+) External trigger (timer or EXTI) with configurable polarity + + (+) DMA request generation for transfer of conversions data of regular group. + + (+) ADC calibration + + (+) ADC conversion of regular group. + + (+) ADC supply requirements: 1.62 V to 3.6 V. + + (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to + Vdda or to an external voltage reference). + + + ##### How to use this driver ##### + ============================================================================== + [..] + + *** Configuration of top level parameters related to ADC *** + ============================================================ + [..] + + (#) Enable the ADC interface + (++) As prerequisite, ADC clock must be configured at RCC top level. + Caution: On this series, ADC clock frequency max is 35MHz (refer + to device datasheet). + Therefore, ADC clock source from RCC and ADC clock + prescaler must be configured to remain below + this maximum frequency. + + (++) Two clock settings are mandatory: + (+++) ADC clock (core clock, also possibly conversion clock). + + (+++) ADC clock (conversions clock). + Four possible clock sources: synchronous clock from APB clock (same as ADC core clock) + or asynchronous clock from RCC level: SYSCLK, HSI16, PLLPCLK. + + (+++) Example: + Into HAL_ADC_MspInit() (recommended code location) or with + other device clock parameters configuration: + (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory: core clock) + (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory) + + (++) ADC clock source and clock prescaler are configured at ADC level with + parameter "ClockPrescaler" using function HAL_ADC_Init(). + + (#) ADC pins configuration + (++) Enable the clock for the ADC GPIOs + using macro __HAL_RCC_GPIOx_CLK_ENABLE() + (++) Configure these ADC pins in analog mode + using function HAL_GPIO_Init() + + (#) Optionally, in case of usage of ADC with interruptions: + (++) Configure the NVIC for ADC + using function HAL_NVIC_EnableIRQ(ADCx_IRQn) + (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() + into the function of corresponding ADC interruption vector + ADCx_IRQHandler(). + + (#) Optionally, in case of usage of DMA: + (++) Configure the DMA (DMA channel, mode normal or circular, ...) + using function HAL_DMA_Init(). + (++) Configure the NVIC for DMA + using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) + (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() + into the function of corresponding DMA interruption vector + DMAx_Channelx_IRQHandler(). + + *** Configuration of ADC, group regular, channels parameters *** + ================================================================ + [..] + + (#) Configure the ADC parameters (resolution, data alignment, ...) + and regular group parameters (conversion trigger, sequencer, ...) + using function HAL_ADC_Init(). + + (#) Configure the channels for regular group parameters (channel number, + channel rank into sequencer, ..., into regular group) + using function HAL_ADC_ConfigChannel(). + + (#) Optionally, configure the analog watchdog parameters (channels + monitored, thresholds, ...) + using function HAL_ADC_AnalogWDGConfig(). + + *** Execution of ADC conversions *** + ==================================== + [..] + + (#) Optionally, perform an automatic ADC calibration to improve the + conversion accuracy + using function HAL_ADCEx_Calibration_Start(). + + (#) ADC driver can be used among three modes: polling, interruption, + transfer by DMA. + + (++) ADC conversion by polling: + (+++) Activate the ADC peripheral and start conversions + using function HAL_ADC_Start() + (+++) Wait for ADC conversion completion + using function HAL_ADC_PollForConversion() + (+++) Retrieve conversion results + using function HAL_ADC_GetValue() + (+++) Stop conversion and disable the ADC peripheral + using function HAL_ADC_Stop() + + (++) ADC conversion by interruption: + (+++) Activate the ADC peripheral and start conversions + using function HAL_ADC_Start_IT() + (+++) Wait for ADC conversion completion by call of function + HAL_ADC_ConvCpltCallback() + (this function must be implemented in user program) + (+++) Retrieve conversion results + using function HAL_ADC_GetValue() + (+++) Stop conversion and disable the ADC peripheral + using function HAL_ADC_Stop_IT() + + (++) ADC conversion with transfer by DMA: + (+++) Activate the ADC peripheral and start conversions + using function HAL_ADC_Start_DMA() + (+++) Wait for ADC conversion completion by call of function + HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() + (these functions must be implemented in user program) + (+++) Conversion results are automatically transferred by DMA into + destination variable address. + (+++) Stop conversion and disable the ADC peripheral + using function HAL_ADC_Stop_DMA() + + [..] + + (@) Callback functions must be implemented in user program: + (+@) HAL_ADC_ErrorCallback() + (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) + (+@) HAL_ADC_ConvCpltCallback() + (+@) HAL_ADC_ConvHalfCpltCallback + + *** Deinitialization of ADC *** + ============================================================ + [..] + + (#) Disable the ADC interface + (++) ADC clock can be hard reset and disabled at RCC top level. + (++) Hard reset of ADC peripherals + using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET(). + (++) ADC clock disable + using the equivalent macro/functions as configuration step. + (+++) Example: + Into HAL_ADC_MspDeInit() (recommended code location) or with + other device clock parameters configuration: + (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; + (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock) + (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); + + (#) ADC pins configuration + (++) Disable the clock for the ADC GPIOs + using macro __HAL_RCC_GPIOx_CLK_DISABLE() + + (#) Optionally, in case of usage of ADC with interruptions: + (++) Disable the NVIC for ADC + using function HAL_NVIC_EnableIRQ(ADCx_IRQn) + + (#) Optionally, in case of usage of DMA: + (++) Deinitialize the DMA + using function HAL_DMA_Init(). + (++) Disable the NVIC for DMA + using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) + + [..] + + *** Callback registration *** + ============================================= + [..] + + The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_ADC_RegisterCallback() + to register an interrupt callback. + [..] + + Function HAL_ADC_RegisterCallback() allows to register following callbacks: + (+) ConvCpltCallback : ADC conversion complete callback + (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback + (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback + (+) ErrorCallback : ADC error callback + (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback + (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback + (+) EndOfSamplingCallback : ADC end of sampling callback + (+) MspInitCallback : ADC Msp Init callback + (+) MspDeInitCallback : ADC Msp DeInit callback + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + [..] + + Use function HAL_ADC_UnRegisterCallback to reset a callback to the default + weak function. + [..] + + HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) ConvCpltCallback : ADC conversion complete callback + (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback + (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback + (+) ErrorCallback : ADC error callback + (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback + (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback + (+) EndOfSamplingCallback : ADC end of sampling callback + (+) MspInitCallback : ADC Msp Init callback + (+) MspDeInitCallback : ADC Msp DeInit callback + [..] + + By default, after the HAL_ADC_Init() and when the state is HAL_ADC_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_ADC_ConvCpltCallback(), HAL_ADC_ErrorCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the HAL_ADC_Init()/ HAL_ADC_DeInit() only when + these callbacks are null (not registered beforehand). + [..] + + If MspInit or MspDeInit are not null, the HAL_ADC_Init()/ HAL_ADC_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + [..] + + Callbacks can be registered/unregistered in HAL_ADC_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in HAL_ADC_STATE_READY or HAL_ADC_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + [..] + + Then, the user first registers the MspInit/MspDeInit user callbacks + using HAL_ADC_RegisterCallback() before calling HAL_ADC_DeInit() + or HAL_ADC_Init() function. + [..] + + When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup ADC ADC + * @brief ADC HAL module driver + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup ADC_Private_Constants ADC Private Constants + * @{ + */ + +/* Fixed timeout values for ADC calibration, enable settling time, disable */ +/* settling time. */ +/* Values defined to be higher than worst cases: low clock frequency, */ +/* maximum prescaler. */ +/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */ +/* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits. */ +/* Unit: ms */ +#define ADC_ENABLE_TIMEOUT (2UL) +#define ADC_DISABLE_TIMEOUT (2UL) +#define ADC_STOP_CONVERSION_TIMEOUT (2UL) +#define ADC_CHANNEL_CONF_RDY_TIMEOUT (1UL) + +/* Register CHSELR bits corresponding to ranks 2 to 8 . */ +#define ADC_CHSELR_SQ2_TO_SQ8 (ADC_CHSELR_SQ2 | ADC_CHSELR_SQ3 | ADC_CHSELR_SQ4 | \ + ADC_CHSELR_SQ5 | ADC_CHSELR_SQ6 | ADC_CHSELR_SQ7 | ADC_CHSELR_SQ8) + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup ADC_Private_Functions ADC Private Functions + * @{ + */ +static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); +static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); +static void ADC_DMAError(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup ADC_Exported_Functions ADC Exported Functions + * @{ + */ + +/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief ADC Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the ADC. + (+) De-initialize the ADC. +@endverbatim + * @{ + */ + +/** + * @brief Initialize the ADC peripheral and regular group according to + * parameters specified in structure "ADC_InitTypeDef". + * @note As prerequisite, ADC clock must be configured at RCC top level + * (refer to description of RCC configuration for ADC + * in header of this file). + * @note Possibility to update parameters on the fly: + * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when + * coming from ADC state reset. Following calls to this function can + * be used to reconfigure some parameters of ADC_InitTypeDef + * structure on the fly, without modifying MSP configuration. If ADC + * MSP has to be modified again, HAL_ADC_DeInit() must be called + * before HAL_ADC_Init(). + * The setting of these parameters is conditioned to ADC state. + * For parameters constraints, see comments of structure + * "ADC_InitTypeDef". + * @note This function configures the ADC within 2 scopes: scope of entire + * ADC and scope of regular group. For parameters details, see comments + * of structure "ADC_InitTypeDef". + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmp_cfgr1 = 0UL; + uint32_t tmp_cfgr2 = 0UL; + uint32_t tmp_adc_reg_is_conversion_on_going; + __IO uint32_t wait_loop_index = 0UL; + + /* Check ADC handle */ + if (hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); + assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); + assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); + assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); + assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); + assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff)); + assert_param(IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon1)); + assert_param(IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon2)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode)); + if (hadc->Init.OversamplingMode == ENABLE) + { + assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio)); + assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift)); + assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode)); + } + assert_param(IS_ADC_TRIGGER_FREQ(hadc->Init.TriggerFrequencyMode)); + + if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) + { + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); + + if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE) + { + assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); + } + } + + /* ADC group regular discontinuous mode can be enabled only if */ + /* continuous mode is disabled. */ + assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE))); + + /* Actions performed only if ADC is coming from state reset: */ + /* - Initialization of ADC MSP */ + if (hadc->State == HAL_ADC_STATE_RESET) + { +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + /* Init the ADC Callback settings */ + hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ + hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ + hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ + hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ + hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */ + hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */ + hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */ + hadc->CalibrationCpltCallback = HAL_ADC_CalibrationCpltCallback; /* Legacy weak callback */ + hadc->ADCReadyCallback = HAL_ADC_ADCReadyCallback; /* Legacy weak callback */ + hadc->ChannelConfigReadyCallback = HAL_ADCEx_ChannelConfigReadyCallback; /* Legacy weak callback */ + + if (hadc->MspInitCallback == NULL) + { + hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware */ + hadc->MspInitCallback(hadc); +#else + /* Init the low level hardware */ + HAL_ADC_MspInit(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Initialize Lock */ + hadc->Lock = HAL_UNLOCKED; + } + + if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) + { + /* Enable ADC internal voltage regulator */ + LL_ADC_EnableInternalRegulator(hadc->Instance); + + /* Delay for ADC stabilization time */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + + /* Verification that ADC voltage regulator is correctly enabled, whether */ + /* or not ADC is coming from state reset (if any potential problem of */ + /* clocking, voltage regulator would not be enabled). */ + if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + tmp_hal_status = HAL_ERROR; + } + + /* Configuration of ADC parameters if previous preliminary actions are */ + /* correctly completed and if there is no conversion on going on regular */ + /* group (ADC may already be enabled at this point if HAL_ADC_Init() is */ + /* called to update a parameter on the fly). */ + tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + + if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + && (tmp_adc_reg_is_conversion_on_going == 0UL) + ) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_BUSY_INTERNAL); + + /* Configuration of common ADC parameters */ + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated only when ADC is disabled: */ + /* - Internal voltage regulator (no parameter in HAL ADC init structure) */ + /* - Clock configuration */ + /* - ADC resolution */ + /* - Oversampling */ + /* - discontinuous mode */ + /* - LowPowerAutoWait mode */ + /* - LowPowerAutoPowerOff mode */ + /* - continuous conversion mode */ + /* - overrun */ + /* - external trigger to start conversion */ + /* - external trigger polarity */ + /* - data alignment */ + /* - resolution */ + /* - scan direction */ + /* - DMA continuous request */ + /* - Trigger frequency mode */ + /* Note: If low power mode AutoPowerOff is enabled, ADC enable */ + /* and disable phases are performed automatically by hardware */ + /* (in this case, flag ADC_FLAG_RDY is not set). */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + /* Some parameters of this register are not reset, since they are set */ + /* by other functions and must be kept in case of usage of this */ + /* function on the fly (update of a parameter of ADC_InitTypeDef */ + /* without needing to reconfigure all other ADC groups/channels */ + /* parameters): */ + /* - internal measurement paths (VrefInt, ...) */ + /* (set into HAL_ADC_ConfigChannel() ) */ + + tmp_cfgr1 |= (hadc->Init.Resolution | + ADC_CFGR1_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | + ADC_CFGR1_AUTOOFF((uint32_t)hadc->Init.LowPowerAutoPowerOff) | + ADC_CFGR1_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | + ADC_CFGR1_OVERRUN(hadc->Init.Overrun) | + hadc->Init.DataAlign | + ADC_SCAN_SEQ_MODE(hadc->Init.ScanConvMode) | + ADC_CFGR1_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests)); + + /* Update setting of discontinuous mode only if continuous mode is disabled */ + if (hadc->Init.DiscontinuousConvMode == ENABLE) + { + if (hadc->Init.ContinuousConvMode == DISABLE) + { + /* Enable the selected ADC group regular discontinuous mode */ + tmp_cfgr1 |= ADC_CFGR1_DISCEN; + } + else + { + /* ADC regular group discontinuous was intended to be enabled, */ + /* but ADC regular group modes continuous and sequencer discontinuous */ + /* cannot be enabled simultaneously. */ + + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + } + } + + /* Enable external trigger if trigger selection is different of software */ + /* start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) + { + tmp_cfgr1 |= ((hadc->Init.ExternalTrigConv & ADC_CFGR1_EXTSEL) | + hadc->Init.ExternalTrigConvEdge); + } + + /* Update ADC configuration register with previous settings */ + MODIFY_REG(hadc->Instance->CFGR1, + ADC_CFGR1_RES | + ADC_CFGR1_DISCEN | + ADC_CFGR1_CHSELRMOD | + ADC_CFGR1_AUTOFF | + ADC_CFGR1_WAIT | + ADC_CFGR1_CONT | + ADC_CFGR1_OVRMOD | + ADC_CFGR1_EXTSEL | + ADC_CFGR1_EXTEN | + ADC_CFGR1_ALIGN | + ADC_CFGR1_SCANDIR | + ADC_CFGR1_DMACFG, + tmp_cfgr1); + + tmp_cfgr2 |= ((hadc->Init.ClockPrescaler & ADC_CFGR2_CKMODE) | + hadc->Init.TriggerFrequencyMode + ); + + if (hadc->Init.OversamplingMode == ENABLE) + { + tmp_cfgr2 |= (ADC_CFGR2_OVSE | + (hadc->Init.ClockPrescaler & ADC_CFGR2_CKMODE) | + hadc->Init.Oversampling.Ratio | + hadc->Init.Oversampling.RightBitShift | + hadc->Init.Oversampling.TriggeredMode + ); + } + + MODIFY_REG(hadc->Instance->CFGR2, + ADC_CFGR2_CKMODE | + ADC_CFGR2_LFTRIG | + ADC_CFGR2_OVSE | + ADC_CFGR2_OVSR | + ADC_CFGR2_OVSS | + ADC_CFGR2_TOVS, + tmp_cfgr2); + + /* Configuration of ADC clock mode: asynchronous clock source */ + /* with selectable prescaler. */ + if (((hadc->Init.ClockPrescaler) != ADC_CLOCK_SYNC_PCLK_DIV1) && + ((hadc->Init.ClockPrescaler) != ADC_CLOCK_SYNC_PCLK_DIV2) && + ((hadc->Init.ClockPrescaler) != ADC_CLOCK_SYNC_PCLK_DIV4)) + { + MODIFY_REG(ADC1_COMMON->CCR, + ADC_CCR_PRESC, + hadc->Init.ClockPrescaler & ADC_CCR_PRESC); + } + } + + /* Channel sampling time configuration */ + LL_ADC_SetSamplingTimeCommonChannels(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_1, hadc->Init.SamplingTimeCommon1); + LL_ADC_SetSamplingTimeCommonChannels(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_2, hadc->Init.SamplingTimeCommon2); + + /* Configuration of regular group sequencer: */ + /* - if scan mode is disabled, regular channels sequence length is set to */ + /* 0x00: 1 channel converted (channel on regular rank 1) */ + /* Parameter "NbrOfConversion" is discarded. */ + /* Note: Scan mode is not present by hardware on this device, but */ + /* emulated by software for alignment over all STM32 devices. */ + /* - if scan mode is enabled, regular channels sequence length is set to */ + /* parameter "NbrOfConversion". */ + /* Channels must be configured into each rank using function */ + /* "HAL_ADC_ConfigChannel()". */ + if (hadc->Init.ScanConvMode == ADC_SCAN_DISABLE) + { + /* Set sequencer scan length by clearing ranks above rank 1 */ + /* and do not modify rank 1 value. */ + SET_BIT(hadc->Instance->CHSELR, + ADC_CHSELR_SQ2_TO_SQ8); + } + else if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE) + { + /* Set ADC group regular sequencer: */ + /* - Set ADC group regular sequencer to value memorized */ + /* in HAL ADC handle */ + /* Note: This value maybe be initialized at a unknown value, */ + /* therefore after the first call of "HAL_ADC_Init()", */ + /* each rank corresponding to parameter "NbrOfConversion" */ + /* must be set using "HAL_ADC_ConfigChannel()". */ + /* - Set sequencer scan length by clearing ranks above maximum rank */ + /* and do not modify other ranks value. */ + MODIFY_REG(hadc->Instance->CHSELR, + ADC_CHSELR_SQ_ALL, + (ADC_CHSELR_SQ2_TO_SQ8 << (((hadc->Init.NbrOfConversion - 1UL) * ADC_REGULAR_RANK_2) & 0x1FUL)) + | (hadc->ADCGroupRegularSequencerRanks) + ); + } + else + { + /* Nothing to do */ + } + + /* Check back that ADC registers have effectively been configured to */ + /* ensure of no potential problem of ADC core peripheral clocking. */ + if (LL_ADC_GetSamplingTimeCommonChannels(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_1) + == hadc->Init.SamplingTimeCommon1) + { + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Set the ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_BUSY_INTERNAL, + HAL_ADC_STATE_READY); + } + else + { + /* Update ADC state machine to error */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_BUSY_INTERNAL, + HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + tmp_hal_status = HAL_ERROR; + } + + } + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + tmp_hal_status = HAL_ERROR; + } + + return tmp_hal_status; +} + +/** + * @brief Deinitialize the ADC peripheral registers to their default reset + * values, with deinitialization of the ADC MSP. + * @note For devices with several ADCs: reset of ADC common registers is done + * only if all ADCs sharing the same common group are disabled. + * (function "HAL_ADC_MspDeInit()" is also called under the same conditions: + * all ADC instances use the same core clock at RCC level, disabling + * the core clock reset all ADC instances). + * If this is not the case, reset of these common parameters reset is + * bypassed without error reporting: it can be the intended behavior in + * case of reset of a single ADC while the other ADCs sharing the same + * common group is still running. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check ADC handle */ + if (hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); + + /* Stop potential conversion on going, on regular group */ + tmp_hal_status = ADC_ConversionStop(hadc); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + } + + /* Disable ADC internal voltage regulator */ + LL_ADC_DisableInternalRegulator(hadc->Instance); + } + + /* Note: HAL ADC deInit is done independently of ADC conversion stop */ + /* and disable return status. In case of status fail, attempt to */ + /* perform deinitialization anyway and it is up user code in */ + /* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */ + /* system RCC hard reset. */ + + /* ========== Reset ADC registers ========== */ + /* Reset register IER */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | + ADC_IT_AWD1 | ADC_IT_OVR | + ADC_IT_EOS | ADC_IT_EOC | + ADC_IT_EOCAL | ADC_IT_EOSMP | ADC_IT_RDY)); + + /* Reset register ISR */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | + ADC_FLAG_AWD1 | ADC_FLAG_OVR | + ADC_FLAG_EOS | ADC_FLAG_EOC | + ADC_FLAG_EOCAL | ADC_FLAG_EOSMP | ADC_FLAG_RDY)); + + /* Reset register CR */ + /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */ + /* "read-set": no direct reset applicable. */ + + /* Reset register CFGR1 */ + hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWD1CH | ADC_CFGR1_AWD1EN | ADC_CFGR1_AWD1SGL | ADC_CFGR1_DISCEN | + ADC_CFGR1_CHSELRMOD | ADC_CFGR1_AUTOFF | + ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | + ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | + ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN); + + /* Reset register SMPR */ + hadc->Instance->SMPR &= ~ADC_SMPR_SMP1; + + /* Reset register CHSELR */ + hadc->Instance->CHSELR &= ~(ADC_CHSELR_SQ_ALL); + + /* Reset register DR */ + /* bits in access mode read only, no direct reset applicable */ + + /* Reset registers AWDxTR */ + hadc->Instance->AWD1TR &= ~(ADC_AWD1TR_HT1 | ADC_AWD1TR_LT1); + hadc->Instance->AWD2TR &= ~(ADC_AWD2TR_HT2 | ADC_AWD2TR_LT2); + hadc->Instance->AWD3TR &= ~(ADC_AWD3TR_HT3 | ADC_AWD3TR_LT3); + + /* Reset register CFGR2 */ + /* Note: CFGR2 reset done at the end of de-initialization due to */ + /* clock source reset */ + /* Note: Update of ADC clock mode is conditioned to ADC state disabled: */ + /* already done above. */ + hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE; + + /* Reset register CCR */ + ADC1_COMMON->CCR &= ~(ADC_CCR_VBATEN | ADC_CCR_TSEN | ADC_CCR_VREFEN | ADC_CCR_PRESC); + + /* ========== Hard reset ADC peripheral ========== */ + /* Performs a global reset of the entire ADC peripheral: ADC state is */ + /* forced to a similar state after device power-on. */ + /* Note: A possible implementation is to add RCC bus reset of ADC */ + /* (for example, using macro */ + /* __HAL_RCC_ADC..._FORCE_RESET()/..._RELEASE_RESET()/..._CLK_DISABLE()) */ + /* in function "void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)": */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + if (hadc->MspDeInitCallback == NULL) + { + hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware */ + hadc->MspDeInitCallback(hadc); +#else + /* DeInit the low level hardware */ + HAL_ADC_MspDeInit(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Reset HAL ADC handle variable */ + hadc->ADCGroupRegularSequencerRanks = 0x00000000UL; + + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Set ADC state */ + hadc->State = HAL_ADC_STATE_RESET; + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + +/** + * @brief Initialize the ADC MSP. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_MspInit must be implemented in the user file. + */ +} + +/** + * @brief DeInitialize the ADC MSP. + * @param hadc ADC handle + * @note All ADC instances use the same core clock at RCC level, disabling + * the core clock reset all ADC instances). + * @retval None + */ +__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_MspDeInit must be implemented in the user file. + */ +} + +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User ADC Callback + * To be used instead of the weak predefined callback + * @param hadc Pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID + * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID + * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID + * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID + * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID + * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID + * @arg @ref HAL_ADC_END_OF_CALIBRATION_CB_ID ADC end of calibration callback ID + * @arg @ref HAL_ADC_ADC_READY_CB_ID ADC Ready callback ID + * @arg @ref HAL_ADC_CONFIG_CHANNEL_ID ADC config channel callback ID + * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, + pADC_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) + { + switch (CallbackID) + { + case HAL_ADC_CONVERSION_COMPLETE_CB_ID : + hadc->ConvCpltCallback = pCallback; + break; + + case HAL_ADC_CONVERSION_HALF_CB_ID : + hadc->ConvHalfCpltCallback = pCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : + hadc->LevelOutOfWindowCallback = pCallback; + break; + + case HAL_ADC_ERROR_CB_ID : + hadc->ErrorCallback = pCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : + hadc->LevelOutOfWindow2Callback = pCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : + hadc->LevelOutOfWindow3Callback = pCallback; + break; + + case HAL_ADC_END_OF_SAMPLING_CB_ID : + hadc->EndOfSamplingCallback = pCallback; + break; + + case HAL_ADC_END_OF_CALIBRATION_CB_ID : + hadc->CalibrationCpltCallback = pCallback; + break; + + case HAL_ADC_ADC_READY_CB_ID : + hadc->ADCReadyCallback = pCallback; + break; + + case HAL_ADC_CONFIG_CHANNEL_ID : + hadc->ChannelConfigReadyCallback = pCallback; + break; + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = pCallback; + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_ADC_STATE_RESET == hadc->State) + { + switch (CallbackID) + { + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = pCallback; + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister a ADC Callback + * ADC callback is redirected to the weak predefined callback + * @param hadc Pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID + * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID + * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID + * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID + * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID + * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID + * @arg @ref HAL_ADC_END_OF_CALIBRATION_CB_ID ADC end of calibration callback ID + * @arg @ref HAL_ADC_ADC_READY_CB_ID ADC Ready callback ID + * @arg @ref HAL_ADC_CONFIG_CHANNEL_ID ADC config channel callback ID + * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) + { + switch (CallbackID) + { + case HAL_ADC_CONVERSION_COMPLETE_CB_ID : + hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; + break; + + case HAL_ADC_CONVERSION_HALF_CB_ID : + hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : + hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; + break; + + case HAL_ADC_ERROR_CB_ID : + hadc->ErrorCallback = HAL_ADC_ErrorCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : + hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : + hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; + break; + + case HAL_ADC_END_OF_SAMPLING_CB_ID : + hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; + break; + case HAL_ADC_END_OF_CALIBRATION_CB_ID : + hadc->CalibrationCpltCallback = HAL_ADC_CalibrationCpltCallback; + break; + + case HAL_ADC_ADC_READY_CB_ID : + hadc->ADCReadyCallback = HAL_ADC_ADCReadyCallback; + break; + + case HAL_ADC_CONFIG_CHANNEL_ID : + hadc->ChannelConfigReadyCallback = HAL_ADCEx_ChannelConfigReadyCallback; + break; + + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_ADC_STATE_RESET == hadc->State) + { + switch (CallbackID) + { + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions + * @brief ADC IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion of regular group. + (+) Stop conversion of regular group. + (+) Poll for conversion complete on regular group. + (+) Poll for conversion event. + (+) Get result of regular channel conversion. + (+) Start conversion of regular group and enable interruptions. + (+) Stop conversion of regular group and disable interruptions. + (+) Handle ADC interrupt request + (+) Start conversion of regular group and enable DMA transfer. + (+) Stop conversion of regular group and disable ADC DMA transfer. +@endverbatim + * @{ + */ + +/** + * @brief Enable ADC, start conversion of regular group. + * @note Interruptions enabled in this function: None. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Perform ADC enable and conversion start if no conversion is on going */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, + HAL_ADC_STATE_REG_BUSY); + + /* Set ADC error code */ + /* Reset all ADC error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Clear ADC group regular conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Enable conversion of regular group. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Start ADC group regular conversion */ + LL_ADC_REG_StartConversion(hadc->Instance); + } + else + { + __HAL_UNLOCK(hadc); + } + } + else + { + tmp_hal_status = HAL_BUSY; + } + + return tmp_hal_status; +} + +/** + * @brief Stop ADC conversion of regular group (and injected channels in + * case of auto_injection mode), disable ADC peripheral. + * @note: ADC peripheral disable is forcing stop of potential + * conversion on injected group. If injected group is under use, it + * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + __HAL_LOCK(hadc); + + /* 1. Stop potential conversion on going, on ADC group regular */ + tmp_hal_status = ADC_ConversionStop(hadc); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* 2. Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_READY); + } + } + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + +/** + * @brief Wait for regular group conversion to be completed. + * @note ADC conversion flags EOS (end of sequence) and EOC (end of + * conversion) are cleared by this function, with an exception: + * if low power feature "LowPowerAutoWait" is enabled, flags are + * not cleared to not interfere with this feature until data register + * is read using function HAL_ADC_GetValue(). + * @note This function cannot be used in a particular setup: ADC configured + * in DMA mode and polling for end of each conversion (ADC init + * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). + * In this case, DMA resets the flag EOC and polling cannot be + * performed on each conversion. Nevertheless, polling can still + * be performed on the complete sequence (ADC init + * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). + * @param hadc ADC handle + * @param Timeout Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t tmp_flag_end; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* If end of conversion selected to end of sequence conversions */ + if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) + { + tmp_flag_end = ADC_FLAG_EOS; + } + /* If end of conversion selected to end of unitary conversion */ + else /* ADC_EOC_SINGLE_CONV */ + { + /* Verification that ADC configuration is compliant with polling for */ + /* each conversion: */ + /* Particular case is ADC configured in DMA mode and ADC sequencer with */ + /* several ranks and polling for end of each conversion. */ + /* For code simplicity sake, this particular case is generalized to */ + /* ADC configured in DMA mode and and polling for end of each conversion. */ + if ((hadc->Instance->CFGR1 & ADC_CFGR1_DMAEN) != 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + return HAL_ERROR; + } + else + { + tmp_flag_end = (ADC_FLAG_EOC); + } + } + + /* Get tick count */ + tickstart = HAL_GetTick(); + + /* Wait until End of unitary conversion or sequence conversions flag is raised */ + while ((hadc->Instance->ISR & tmp_flag_end) == 0UL) + { + /* Check if timeout is disabled (set to infinite wait) */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) + { + /* New check to avoid false timeout detection in case of preemption */ + if ((hadc->Instance->ISR & tmp_flag_end) == 0UL) + { + /* Update ADC state machine to timeout */ + SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); + + __HAL_UNLOCK(hadc); + + return HAL_TIMEOUT; + } + } + } + } + + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going. */ + if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) + && (hadc->Init.ContinuousConvMode == DISABLE) + ) + { + /* Check whether end of sequence is reached */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) + { + /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ + /* ADSTART==0 (no conversion on going) */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Disable ADC end of single conversion interrupt on group regular */ + /* Note: Overrun interrupt was enabled with EOC interrupt in */ + /* HAL_Start_IT(), but is not disabled here because can be used */ + /* by overrun IRQ process below. */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_READY); + } + else + { + /* Change ADC state to error state */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + } + } + } + + /* Clear end of conversion flag of regular group if low power feature */ + /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ + /* until data register is read using function HAL_ADC_GetValue(). */ + if (hadc->Init.LowPowerAutoWait == DISABLE) + { + /* Clear regular group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Poll for ADC event. + * @param hadc ADC handle + * @param EventType the ADC event type. + * This parameter can be one of the following values: + * @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event + * @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on + * all STM32 series) + * @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on + * all STM32 series) + * @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on + * all STM32 series) + * @arg @ref ADC_OVR_EVENT ADC Overrun event + * @param Timeout Timeout value in millisecond. + * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR. + * Indeed, the latter is reset only if hadc->Init.Overrun field is set + * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten + * by a new converted data as soon as OVR is cleared. + * To reset OVR flag once the preserved data is retrieved, the user can resort + * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_EVENT_TYPE(EventType)); + + /* Get tick count */ + tickstart = HAL_GetTick(); + + /* Check selected event flag */ + while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL) + { + /* Check if timeout is disabled (set to infinite wait) */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) + { + /* New check to avoid false timeout detection in case of preemption */ + if (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL) + { + /* Update ADC state machine to timeout */ + SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); + + __HAL_UNLOCK(hadc); + + return HAL_TIMEOUT; + } + } + } + } + + switch (EventType) + { + /* End Of Sampling event */ + case ADC_EOSMP_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); + + /* Clear the End Of Sampling flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); + + break; + + /* Analog watchdog (level out of window) event */ + /* Note: In case of several analog watchdog enabled, if needed to know */ + /* which one triggered and on which ADCx, test ADC state of analog watchdog */ + /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */ + /* For example: */ + /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */ + /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */ + /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */ + + /* Check analog watchdog 1 flag */ + case ADC_AWD_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); + + break; + + /* Check analog watchdog 2 flag */ + case ADC_AWD2_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); + + break; + + /* Check analog watchdog 3 flag */ + case ADC_AWD3_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); + + break; + + /* Overrun event */ + default: /* Case ADC_OVR_EVENT */ + /* If overrun is set to overwrite previous data, overrun event is not */ + /* considered as an error. */ + /* (cf ref manual "Managing conversions without using the DMA and without */ + /* overrun ") */ + if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); + + /* Set ADC error code to overrun */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); + } + else + { + /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN + otherwise, data register is potentially overwritten by new converted data as soon + as OVR is cleared. */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + } + break; + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enable ADC, start conversion of regular group with interruption. + * @note Interruptions enabled in this function according to initialization + * setting : EOC (end of conversion), EOS (end of sequence), + * OVR overrun. + * Each of these interruptions has its dedicated callback function. + * @note To guarantee a proper reset of all interruptions once all the needed + * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure + * a correct stop of the IT-based conversions. + * @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling + * interruption. If required (e.g. in case of oversampling with trigger + * mode), the user must: + * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP) + * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP) + * before calling HAL_ADC_Start_IT(). + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Perform ADC enable and conversion start if no conversion is on going */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, + HAL_ADC_STATE_REG_BUSY); + + + /* Set ADC error code */ + /* Reset all ADC error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Clear ADC group regular conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Disable all interruptions before enabling the desired ones */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); + + /* Enable ADC end of conversion interrupt */ + switch (hadc->Init.EOCSelection) + { + case ADC_EOC_SEQ_CONV: + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS); + break; + /* case ADC_EOC_SINGLE_CONV */ + default: + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC); + break; + } + + /* Enable ADC overrun interrupt */ + /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is + ADC_IT_OVR enabled; otherwise data overwrite is considered as normal + behavior and no CPU time is lost for a non-processed interruption */ + if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) + { + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + } + + /* Enable conversion of regular group. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Start ADC group regular conversion */ + LL_ADC_REG_StartConversion(hadc->Instance); + } + else + { + __HAL_UNLOCK(hadc); + } + + } + else + { + tmp_hal_status = HAL_BUSY; + } + + return tmp_hal_status; +} + +/** + * @brief Stop ADC conversion of regular group (and injected group in + * case of auto_injection mode), disable interrution of + * end-of-conversion, disable ADC peripheral. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + __HAL_LOCK(hadc); + + /* 1. Stop potential conversion on going, on ADC group regular */ + tmp_hal_status = ADC_ConversionStop(hadc); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Disable ADC end of conversion interrupt for regular group */ + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); + + /* 2. Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_READY); + } + } + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + +/** + * @brief Enable ADC, start conversion of regular group and transfer result through DMA. + * @note Interruptions enabled in this function: + * overrun (if applicable), DMA half transfer, DMA transfer complete. + * Each of these interruptions has its dedicated callback function. + * @param hadc ADC handle + * @param pData Destination Buffer address. + * @param Length Number of data to be transferred from ADC peripheral to memory + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Perform ADC enable and conversion start if no conversion is on going */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + __HAL_LOCK(hadc); + + /* Specific case for first call occurrence of this function (DMA transfer */ + /* not activated and ADC disabled), DMA transfer must be activated */ + /* with ADC disabled. */ + if ((hadc->Instance->CFGR1 & ADC_CFGR1_DMAEN) == 0UL) + { + if (LL_ADC_IsEnabled(hadc->Instance) != 0UL) + { + /* Disable ADC */ + LL_ADC_Disable(hadc->Instance); + } + + /* Enable ADC DMA mode */ + hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN; + } + + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, + HAL_ADC_STATE_REG_BUSY); + + /* Set ADC error code */ + /* Reset all ADC error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Set the DMA transfer complete callback */ + hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; + + /* Set the DMA half transfer complete callback */ + hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; + + /* Set the DMA error callback */ + hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; + + + /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ + /* start (in case of SW start): */ + + /* Clear regular group conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC */ + /* operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Enable ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + /* Start the DMA channel */ + tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); + + /* Enable conversion of regular group. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Start ADC group regular conversion */ + LL_ADC_REG_StartConversion(hadc->Instance); + } + } + else + { + tmp_hal_status = HAL_BUSY; + } + + return tmp_hal_status; +} + +/** + * @brief Stop ADC conversion of regular group (and injected group in + * case of auto_injection mode), disable ADC DMA transfer, disable + * ADC peripheral. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + __HAL_LOCK(hadc); + + /* 1. Stop potential ADC group regular conversion on going */ + tmp_hal_status = ADC_ConversionStop(hadc); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Disable the DMA channel (in case of DMA in circular mode or stop */ + /* while DMA transfer is on going) */ + if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) + { + tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); + + /* Check if DMA channel effectively disabled */ + if (tmp_hal_status != HAL_OK) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); + } + } + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* 2. Disable the ADC peripheral */ + /* Update "tmp_hal_status" only if DMA channel disabling passed, */ + /* to keep in memory a potential failing status. */ + if (tmp_hal_status == HAL_OK) + { + tmp_hal_status = ADC_Disable(hadc); + } + else + { + (void)ADC_Disable(hadc); + } + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_READY); + } + + /* Disable ADC DMA (ADC DMA configuration of continuous requests is kept) */ + CLEAR_BIT(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN); + } + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + +/** + * @brief Get ADC regular group conversion result. + * @note Reading register DR automatically clears ADC flag EOC + * (ADC group regular end of unitary conversion). + * @note This function does not clear ADC flag EOS + * (ADC group regular end of sequence conversion). + * Occurrence of flag EOS rising: + * - If sequencer is composed of 1 rank, flag EOS is equivalent + * to flag EOC. + * - If sequencer is composed of several ranks, during the scan + * sequence flag EOC only is raised, at the end of the scan sequence + * both flags EOC and EOS are raised. + * To clear this flag, either use function: + * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming + * model polling: @ref HAL_ADC_PollForConversion() + * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). + * @param hadc ADC handle + * @retval ADC group regular conversion data + */ +uint32_t HAL_ADC_GetValue(const ADC_HandleTypeDef *hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Note: EOC flag is not cleared here by software because automatically */ + /* cleared by hardware when reading register DR. */ + + /* Return ADC converted value */ + return hadc->Instance->DR; +} + +/** + * @brief Handle ADC interrupt request. + * @param hadc ADC handle + * @retval None + */ +void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc) +{ + uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */ + uint32_t tmp_isr = hadc->Instance->ISR; + uint32_t tmp_ier = hadc->Instance->IER; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); + + /* ========== Check End of Sampling flag for ADC group regular ========== */ + if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP)) + { + /* Update state machine on end of sampling status if not in error state */ + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); + } + + /* End Of Sampling callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->EndOfSamplingCallback(hadc); +#else + HAL_ADCEx_EndOfSamplingCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear regular group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); + } + + /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */ + if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) || + (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS))) + { + /* Update state machine on conversion status if not in error state */ + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + } + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going */ + /* to disable interruption. */ + if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) + && (hadc->Init.ContinuousConvMode == DISABLE) + ) + { + /* If End of Sequence is reached, disable interrupts */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) + { + /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ + /* ADSTART==0 (no conversion on going) */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Disable ADC end of single conversion interrupt on group regular */ + /* Note: Overrun interrupt was enabled with EOC interrupt in */ + /* HAL_Start_IT(), but is not disabled here because can be used */ + /* by overrun IRQ process below. */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_READY); + } + else + { + /* Change ADC state to error state */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + } + } + } + + /* Conversion complete callback */ + /* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */ + /* to determine if conversion has been triggered from EOC or EOS, */ + /* possibility to use: */ + /* " if ( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ConvCpltCallback(hadc); +#else + HAL_ADC_ConvCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear regular group conversion flag */ + /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ + /* conversion flags clear induces the release of the preserved data.*/ + /* Therefore, if the preserved data value is needed, it must be */ + /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); + } + + /* ========== Check Analog watchdog 1 flag ========== */ + if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Level out of window 1 callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->LevelOutOfWindowCallback(hadc); +#else + HAL_ADC_LevelOutOfWindowCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); + } + + /* ========== Check analog watchdog 2 flag ========== */ + if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); + + /* Level out of window 2 callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->LevelOutOfWindow2Callback(hadc); +#else + HAL_ADCEx_LevelOutOfWindow2Callback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); + } + + /* ========== Check analog watchdog 3 flag ========== */ + if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); + + /* Level out of window 3 callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->LevelOutOfWindow3Callback(hadc); +#else + HAL_ADCEx_LevelOutOfWindow3Callback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); + } + + /* ========== Check Overrun flag ========== */ + if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR)) + { + /* If overrun is set to overwrite previous data (default setting), */ + /* overrun event is not considered as an error. */ + /* (cf ref manual "Managing conversions without using the DMA and without */ + /* overrun ") */ + /* Exception for usage with DMA overrun event always considered as an */ + /* error. */ + if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) + { + overrun_error = 1UL; + } + else + { + /* Check DMA configuration */ + if (LL_ADC_REG_GetDMATransfer(hadc->Instance) != LL_ADC_REG_DMA_TRANSFER_NONE) + { + overrun_error = 1UL; + } + } + + if (overrun_error == 1UL) + { + /* Change ADC state to error state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); + + /* Set ADC error code to overrun */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); + + /* Error callback */ + /* Note: In case of overrun, ADC conversion data is preserved until */ + /* flag OVR is reset. */ + /* Therefore, old ADC conversion data can be retrieved in */ + /* function "HAL_ADC_ErrorCallback()". */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ErrorCallback(hadc); +#else + HAL_ADC_ErrorCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + } + + /* Clear ADC overrun flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + } + + /* ========== Check ADC Ready flag ========== */ + if (((tmp_isr & ADC_FLAG_RDY) == ADC_FLAG_RDY) && ((tmp_ier & ADC_IT_RDY) == ADC_IT_RDY)) + { + /* Update state machine on end of sampling status if not in error state */ + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + + /* ADC Ready callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ADCReadyCallback(hadc); +#else + HAL_ADC_ADCReadyCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Leave ADRDY flag up (used by HAL), disable interrupt source instead */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_RDY); + } + + /* ========== Check End of Calibration flag ========== */ + if (((tmp_isr & ADC_FLAG_EOCAL) == ADC_FLAG_EOCAL) && ((tmp_ier & ADC_IT_EOCAL) == ADC_IT_EOCAL)) + { + /* End Of Calibration callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->CalibrationCpltCallback(hadc); +#else + HAL_ADC_CalibrationCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear end of calibration flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOCAL); + } + + /* ========== Check channel configuration ready flag ========== */ + if (((tmp_isr & ADC_FLAG_CCRDY) == ADC_FLAG_CCRDY) && ((tmp_ier & ADC_IT_CCRDY) == ADC_IT_CCRDY)) + { + /* Channel configuration ready callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ChannelConfigReadyCallback(hadc); +#else + HAL_ADCEx_ChannelConfigReadyCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_CCRDY); + } +} + +/** + * @brief Conversion complete callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_ConvCpltCallback must be implemented in the user file. + */ +} + +/** + * @brief Conversion DMA half-transfer callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. + */ +} + +/** + * @brief Analog watchdog 1 callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file. + */ +} + +/** + * @brief ADC error callback in non-blocking mode + * (ADC conversion with interruption or transfer by DMA). + * @note In case of error due to overrun when using ADC with DMA transfer + * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"): + * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". + * - If needed, restart a new ADC conversion using function + * "HAL_ADC_Start_DMA()" + * (this function is also clearing overrun flag) + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_ErrorCallback must be implemented in the user file. + */ +} + +/** + * @brief Calibration complete callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_CalibrationCpltCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_CalibrationCpltCallback must be implemented in the user file. + */ +} + + +/** + * @brief ADC Ready callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_ADCReadyCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_ADCReadyCallback must be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure channels on regular group + (+) Configure the analog watchdog + +@endverbatim + * @{ + */ + +/** + * @brief Configure a channel to be assigned to ADC group regular. + * @note In case of usage of internal measurement channels: + * Vbat/VrefInt/TempSensor. + * These internal paths can be disabled using function + * HAL_ADC_DeInit(). + * @note Possibility to update parameters on the fly: + * This function initializes channel into ADC group regular, + * following calls to this function can be used to reconfigure + * some parameters of structure "ADC_ChannelConfTypeDef" on the fly, + * without resetting the ADC. + * The setting of these parameters is conditioned to ADC state: + * Refer to comments of structure "ADC_ChannelConfTypeDef". + * @param hadc ADC handle + * @param pConfig Structure of ADC channel assigned to ADC group regular. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, const ADC_ChannelConfTypeDef *pConfig) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmp_config_internal_channel; + __IO uint32_t wait_loop_index = 0UL; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_CHANNEL(pConfig->Channel)); + assert_param(IS_ADC_SAMPLING_TIME_COMMON(pConfig->SamplingTime)); + + if ((hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED) || + (hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED_BACKWARD)) + { + assert_param(IS_ADC_REGULAR_RANK_SEQ_FIXED(pConfig->Rank)); + } + else + { + assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); + + assert_param(IS_ADC_REGULAR_RANK(pConfig->Rank)); + } + + __HAL_LOCK(hadc); + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on regular group: */ + /* - Channel number */ + /* - Channel sampling time */ + /* - Management of internal measurement channels: VrefInt/TempSensor/Vbat */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Configure channel: depending on rank setting, add it or remove it from */ + /* ADC sequencer. */ + /* If sequencer set to not fully configurable with channel rank set to */ + /* none, remove the channel from the sequencer. */ + /* Otherwise (sequencer set to fully configurable or to to not fully */ + /* configurable with channel rank to be set), configure the selected */ + /* channel. */ + if (pConfig->Rank != ADC_RANK_NONE) + { + /* Regular sequence configuration */ + /* Note: ADC channel configuration requires few ADC clock cycles */ + /* to be ready. Processing of ADC settings in this function */ + /* induce that a specific wait time is not necessary. */ + /* For more details on ADC channel configuration ready, */ + /* refer to function "LL_ADC_IsActiveFlag_CCRDY()". */ + if ((hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED) || + (hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED_BACKWARD)) + { + /* Sequencer set to not fully configurable: */ + /* Set the channel by enabling the corresponding bitfield. */ + LL_ADC_REG_SetSequencerChAdd(hadc->Instance, pConfig->Channel); + } + else + { + /* Sequencer set to fully configurable: */ + /* Set the channel by entering it into the selected rank. */ + + /* Memorize the channel set into variable in HAL ADC handle */ + MODIFY_REG(hadc->ADCGroupRegularSequencerRanks, + ADC_CHSELR_SQ1 << (pConfig->Rank & 0x1FUL), + __LL_ADC_CHANNEL_TO_DECIMAL_NB(pConfig->Channel) << (pConfig->Rank & 0x1FUL)); + + /* If the selected rank is below ADC group regular sequencer length, */ + /* apply the configuration in ADC register. */ + /* Note: Otherwise, configuration is not applied. */ + /* To apply it, parameter'NbrOfConversion' must be increased. */ + if (((pConfig->Rank >> 2UL) + 1UL) <= hadc->Init.NbrOfConversion) + { + LL_ADC_REG_SetSequencerRanks(hadc->Instance, pConfig->Rank, pConfig->Channel); + } + } + + /* Set sampling time of the selected ADC channel */ + LL_ADC_SetChannelSamplingTime(hadc->Instance, pConfig->Channel, pConfig->SamplingTime); + + /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */ + /* internal measurement paths enable: If internal channel selected, */ + /* enable dedicated internal buffers and path. */ + /* Note: these internal measurement paths can be disabled using */ + /* HAL_ADC_DeInit() or removing the channel from sequencer with */ + /* channel configuration parameter "Rank". */ + if (__LL_ADC_IS_CHANNEL_INTERNAL(pConfig->Channel)) + { + tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* If the requested internal measurement path has already been enabled, */ + /* bypass the configuration processing. */ + if ((pConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && + ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), + LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel); + + /* Delay for temperature sensor stabilization time */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + else if ((pConfig->Channel == ADC_CHANNEL_VBAT) + && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), + LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel); + } + else if ((pConfig->Channel == ADC_CHANNEL_VREFINT) && + ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), + LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel); + } + else + { + /* nothing to do */ + } + } + } + else + { + /* Regular sequencer configuration */ + /* Note: Case of sequencer set to fully configurable: */ + /* Sequencer rank cannot be disabled, only affected to */ + /* another channel. */ + /* To remove a rank, use parameter 'NbrOfConversion". */ + if ((hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED) || + (hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED_BACKWARD)) + { + /* Sequencer set to not fully configurable: */ + /* Reset the channel by disabling the corresponding bitfield. */ + LL_ADC_REG_SetSequencerChRem(hadc->Instance, pConfig->Channel); + } + + /* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */ + /* If internal channel selected, enable dedicated internal buffers and */ + /* paths. */ + if (__LL_ADC_IS_CHANNEL_INTERNAL(pConfig->Channel)) + { + tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + if (pConfig->Channel == ADC_CHANNEL_TEMPSENSOR) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), + ~LL_ADC_PATH_INTERNAL_TEMPSENSOR & tmp_config_internal_channel); + } + else if (pConfig->Channel == ADC_CHANNEL_VBAT) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), + ~LL_ADC_PATH_INTERNAL_VBAT & tmp_config_internal_channel); + } + else if (pConfig->Channel == ADC_CHANNEL_VREFINT) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), + ~LL_ADC_PATH_INTERNAL_VREFINT & tmp_config_internal_channel); + } + else + { + /* nothing to do */ + } + } + } + } + + /* If a conversion is on going on regular group, no update on regular */ + /* channel could be done on neither of the channel configuration structure */ + /* parameters. */ + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + +/** + * @brief Configure the analog watchdog. + * @note Possibility to update parameters on the fly: + * This function initializes the selected analog watchdog, successive + * calls to this function can be used to reconfigure some parameters + * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting + * the ADC. + * The setting of these parameters is conditioned to ADC state. + * For parameters constraints, see comments of structure + * "ADC_AnalogWDGConfTypeDef". + * @note On this STM32 series, analog watchdog thresholds can be modified + * while ADC conversion is on going. + * In this case, some constraints must be taken into account: + * the programmed threshold values are effective from the next + * ADC EOC (end of unitary conversion). + * Considering that registers write delay may happen due to + * bus activity, this might cause an uncertainty on the + * effective timing of the new programmed threshold values. + * @param hadc ADC handle + * @param pAnalogWDGConfig Structure of ADC analog watchdog configuration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, const ADC_AnalogWDGConfTypeDef *pAnalogWDGConfig) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmp_awd_high_threshold_shifted; + uint32_t tmp_awd_low_threshold_shifted; + uint32_t backup_setting_adc_enable_state = 0UL; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(pAnalogWDGConfig->WatchdogNumber)); + assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(pAnalogWDGConfig->WatchdogMode)); + assert_param(IS_FUNCTIONAL_STATE(pAnalogWDGConfig->ITMode)); + + if (pAnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) + { + assert_param(IS_ADC_CHANNEL(pAnalogWDGConfig->Channel)); + } + + /* Verify thresholds range */ + if (hadc->Init.OversamplingMode == ENABLE) + { + /* Case of oversampling enabled: depending on ratio and shift configuration, + analog watchdog thresholds can be higher than ADC resolution. + Verify if thresholds are within maximum thresholds range. */ + assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, pAnalogWDGConfig->HighThreshold)); + assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, pAnalogWDGConfig->LowThreshold)); + } + else + { + /* Verify if thresholds are within the selected ADC resolution */ + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), pAnalogWDGConfig->HighThreshold)); + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), pAnalogWDGConfig->LowThreshold)); + } + + __HAL_LOCK(hadc); + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on ADC group regular: */ + /* - Analog watchdog channels */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Analog watchdog configuration */ + if (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) + { + /* Constraint of ADC on this STM32 series: ADC must be disable + to modify bitfields of register ADC_CFGR1 */ + if (LL_ADC_IsEnabled(hadc->Instance) != 0UL) + { + backup_setting_adc_enable_state = 1UL; + tmp_hal_status = ADC_Disable(hadc); + } + + /* Configuration of analog watchdog: */ + /* - Set the analog watchdog enable mode: one or overall group of */ + /* channels. */ + switch (pAnalogWDGConfig->WatchdogMode) + { + case ADC_ANALOGWATCHDOG_SINGLE_REG: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, + __LL_ADC_ANALOGWD_CHANNEL_GROUP(pAnalogWDGConfig->Channel, + LL_ADC_GROUP_REGULAR)); + break; + + case ADC_ANALOGWATCHDOG_ALL_REG: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG); + break; + + default: /* ADC_ANALOGWATCHDOG_NONE */ + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE); + break; + } + + if (backup_setting_adc_enable_state == 1UL) + { + if (tmp_hal_status == HAL_OK) + { + tmp_hal_status = ADC_Enable(hadc); + } + } + + /* Update state, clear previous result related to AWD1 */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Clear flag ADC analog watchdog */ + /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ + /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ + /* (in case left enabled by previous ADC operations). */ + LL_ADC_ClearFlag_AWD1(hadc->Instance); + + /* Configure ADC analog watchdog interrupt */ + if (pAnalogWDGConfig->ITMode == ENABLE) + { + LL_ADC_EnableIT_AWD1(hadc->Instance); + } + else + { + LL_ADC_DisableIT_AWD1(hadc->Instance); + } + } + /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */ + else + { + switch (pAnalogWDGConfig->WatchdogMode) + { + case ADC_ANALOGWATCHDOG_SINGLE_REG: + /* Update AWD by bitfield to keep the possibility to monitor */ + /* several channels by successive calls of this function. */ + if (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) + { + SET_BIT(hadc->Instance->AWD2CR, (1UL << __LL_ADC_CHANNEL_TO_DECIMAL_NB(pAnalogWDGConfig->Channel))); + } + else + { + SET_BIT(hadc->Instance->AWD3CR, (1UL << __LL_ADC_CHANNEL_TO_DECIMAL_NB(pAnalogWDGConfig->Channel))); + } + break; + + case ADC_ANALOGWATCHDOG_ALL_REG: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, + pAnalogWDGConfig->WatchdogNumber, + LL_ADC_AWD_ALL_CHANNELS_REG); + break; + + default: /* ADC_ANALOGWATCHDOG_NONE */ + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, pAnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE); + break; + } + + if (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) + { + /* Update state, clear previous result related to AWD2 */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2); + + /* Clear flag ADC analog watchdog */ + /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ + /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ + /* (in case left enabled by previous ADC operations). */ + LL_ADC_ClearFlag_AWD2(hadc->Instance); + + /* Configure ADC analog watchdog interrupt */ + if (pAnalogWDGConfig->ITMode == ENABLE) + { + LL_ADC_EnableIT_AWD2(hadc->Instance); + } + else + { + LL_ADC_DisableIT_AWD2(hadc->Instance); + } + } + /* (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */ + else + { + /* Update state, clear previous result related to AWD3 */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3); + + /* Clear flag ADC analog watchdog */ + /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ + /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ + /* (in case left enabled by previous ADC operations). */ + LL_ADC_ClearFlag_AWD3(hadc->Instance); + + /* Configure ADC analog watchdog interrupt */ + if (pAnalogWDGConfig->ITMode == ENABLE) + { + LL_ADC_EnableIT_AWD3(hadc->Instance); + } + else + { + LL_ADC_DisableIT_AWD3(hadc->Instance); + } + } + } + + } + + /* Analog watchdog thresholds configuration */ + if (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) + { + /* Shift the offset with respect to the selected ADC resolution: */ + /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */ + /* are set to 0. */ + tmp_awd_high_threshold_shifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, pAnalogWDGConfig->HighThreshold); + tmp_awd_low_threshold_shifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, pAnalogWDGConfig->LowThreshold); + } + /* Case of ADC_ANALOGWATCHDOG_2 and ADC_ANALOGWATCHDOG_3 */ + else + { + /* No need to shift the offset with respect to the selected ADC resolution: */ + /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */ + /* are set to 0. */ + tmp_awd_high_threshold_shifted = pAnalogWDGConfig->HighThreshold; + tmp_awd_low_threshold_shifted = pAnalogWDGConfig->LowThreshold; + } + + /* Set ADC analog watchdog thresholds value of both thresholds high and low */ + LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, pAnalogWDGConfig->WatchdogNumber, tmp_awd_high_threshold_shifted, + tmp_awd_low_threshold_shifted); + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions + * @brief ADC Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral state and errors functions ##### + =============================================================================== + [..] + This subsection provides functions to get in run-time the status of the + peripheral. + (+) Check the ADC state + (+) Check the ADC error code + +@endverbatim + * @{ + */ + +/** + * @brief Return the ADC handle state. + * @note ADC state machine is managed by bitfields, ADC status must be + * compared with states bits. + * For example: + * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) " + * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " + * @param hadc ADC handle + * @retval ADC handle state (bitfield on 32 bits) + */ +uint32_t HAL_ADC_GetState(const ADC_HandleTypeDef *hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Return ADC handle state */ + return hadc->State; +} + +/** + * @brief Return the ADC error code. + * @param hadc ADC handle + * @retval ADC error code (bitfield on 32 bits) + */ +uint32_t HAL_ADC_GetError(const ADC_HandleTypeDef *hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + return hadc->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup ADC_Private_Functions ADC Private Functions + * @{ + */ + +/** + * @brief Stop ADC conversion. + * @note Prerequisite condition to use this function: ADC conversions must be + * stopped to disable the ADC. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Verification if ADC is not already stopped on regular group to bypass */ + /* this function if not needed. */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) + { + /* Stop potential conversion on going on regular group */ + /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ + if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) + { + /* Stop ADC group regular conversion */ + LL_ADC_REG_StopConversion(hadc->Instance); + } + + /* Wait for conversion effectively stopped */ + /* Get tick count */ + tickstart = HAL_GetTick(); + + while ((hadc->Instance->CR & ADC_CR_ADSTART) != 0UL) + { + if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) + { + /* New check to avoid false timeout detection in case of preemption */ + if ((hadc->Instance->CR & ADC_CR_ADSTART) != 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + } + } + + } + + /* Return HAL status */ + return HAL_OK; +} + +/** + * @brief Enable the selected ADC. + * @note Prerequisite condition to use this function: ADC must be disabled + * and voltage regulator must be enabled (done into HAL_ADC_Init()). + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc) +{ + uint32_t tickstart; + __IO uint32_t wait_loop_index = 0UL; + + /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ + /* enabling phase not yet completed: flag ADC ready not yet set). */ + /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ + /* causes: ADC clock not running, ...). */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + /* Check if conditions to enable the ADC are fulfilled */ + if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + + /* Enable the ADC peripheral */ + LL_ADC_Enable(hadc->Instance); + + if ((LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) & LL_ADC_PATH_INTERNAL_TEMPSENSOR) + != 0UL) + { + /* Delay for temperature sensor buffer stabilization time */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_BUFFER_STAB_US / 10UL) + * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + + /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ + /* performed automatically by hardware and flag ADC ready is not set. */ + if (hadc->Init.LowPowerAutoPowerOff != ENABLE) + { + /* Wait for ADC effectively enabled */ + tickstart = HAL_GetTick(); + + while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL) + { + /* If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit + has been cleared (after a calibration), ADEN bit is reset by the + calibration logic. + The workaround is to continue setting ADEN until ADRDY is becomes 1. + Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this + 4 ADC clock cycle duration */ + /* Note: Test of ADC enabled required due to hardware constraint to */ + /* not enable ADC if already enabled. */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + LL_ADC_Enable(hadc->Instance); + } + + if ((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) + { + /* New check to avoid false timeout detection in case of preemption */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + } + } + } + } + + /* Return HAL status */ + return HAL_OK; +} + +/** + * @brief Disable the selected ADC. + * @note Prerequisite condition to use this function: ADC conversions must be + * stopped. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc) +{ + uint32_t tickstart; + const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance); + + /* Verification if ADC is not already disabled: */ + /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ + /* disabled. */ + if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL) + && (tmp_adc_is_disable_on_going == 0UL) + ) + { + /* Check if conditions to disable the ADC are fulfilled */ + if ((hadc->Instance->CR & (ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN) + { + /* Disable the ADC peripheral */ + LL_ADC_Disable(hadc->Instance); + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY)); + } + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + + /* Wait for ADC effectively disabled */ + /* Get tick count */ + tickstart = HAL_GetTick(); + + while ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL) + { + if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) + { + /* New check to avoid false timeout detection in case of preemption */ + if ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + } + } + } + + /* Return HAL status */ + return HAL_OK; +} + +/** + * @brief DMA transfer complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Update state machine on conversion status if not in error state */ + if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going */ + /* to disable interruption. */ + if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) + && (hadc->Init.ContinuousConvMode == DISABLE) + ) + { + /* If End of Sequence is reached, disable interrupts */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) + { + /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ + /* ADSTART==0 (no conversion on going) */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Disable ADC end of single conversion interrupt on group regular */ + /* Note: Overrun interrupt was enabled with EOC interrupt in */ + /* HAL_Start_IT(), but is not disabled here because can be used */ + /* by overrun IRQ process below. */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_READY); + } + else + { + /* Change ADC state to error state */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + } + } + } + + /* Conversion complete callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ConvCpltCallback(hadc); +#else + HAL_ADC_ConvCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + } + else /* DMA and-or internal error occurred */ + { + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL) + { + /* Call HAL ADC Error Callback function */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ErrorCallback(hadc); +#else + HAL_ADC_ErrorCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + } + else + { + /* Call ADC DMA error callback */ + hadc->DMA_Handle->XferErrorCallback(hdma); + } + } +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Half conversion callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ConvHalfCpltCallback(hadc); +#else + HAL_ADC_ConvHalfCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA error callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void ADC_DMAError(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); + + /* Set ADC error code to DMA error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); + + /* Error callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ErrorCallback(hadc); +#else + HAL_ADC_ErrorCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ +} + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc_ex.c new file mode 100644 index 0000000..a402a68 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_adc_ex.c @@ -0,0 +1,409 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_adc_ex.c + * @author MCD Application Team + * @brief This file provides firmware functions to manage the following + * functionalities of the Analog to Digital Converter (ADC) + * peripheral: + * + Peripheral Control functions + * Other functions (generic functions) are available in file + * "stm32u0xx_hal_adc.c". + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + [..] + (@) Sections "ADC peripheral features" and "How to use this driver" are + available in file of generic functions "stm32u0xx_hal_adc.c". + [..] + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup ADCEx ADCEx + * @brief ADC Extended HAL module driver + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup ADCEx_Private_Constants ADC Extended Private Constants + * @{ + */ + +/* Fixed timeout value for ADC calibration. */ +/* Values defined to be higher than worst cases: maximum ratio between ADC */ +/* and CPU clock frequencies. */ +/* Example of profile low frequency : ADC frequency at 31.25kHz (ADC clock */ +/* source PLL 8MHz, ADC clock prescaler 256), CPU frequency 48MHz. */ +/* Calibration time max = 116 / fADC (refer to datasheet) */ +/* = 178 176 CPU cycles */ +#define ADC_CALIBRATION_TIMEOUT (178176UL) /*!< ADC calibration time-out value (unit: CPU cycles) */ +#define ADC_DISABLE_TIMEOUT (2UL) + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup ADCEx_Exported_Functions ADC Extended Exported Functions + * @{ + */ + +/** @defgroup ADCEx_Exported_Functions_Group1 Extended Input and Output operation functions + * @brief Extended IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + + (+) Perform the ADC self-calibration. + (+) Get calibration factors. + (+) Set calibration factors. + +@endverbatim + * @{ + */ + +/** + * @brief Perform an ADC automatic self-calibration + * Calibration prerequisite: ADC must be disabled (execute this + * function before HAL_ADC_Start() or after HAL_ADC_Stop() ). + * @note Calibration factor can be read after calibration, using function + * HAL_ADC_GetValue() (value on 7 bits: from DR[6;0]). + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + __IO uint32_t wait_loop_index = 0UL; + uint32_t backup_setting_cfgr1; + uint32_t calibration_index; + uint32_t calibration_factor_accumulated = 0; + uint32_t tickstart; + uint32_t adc_clk_async_presc; + __IO uint32_t delay_cpu_cycles; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + __HAL_LOCK(hadc); + + /* Calibration prerequisite: ADC must be disabled. */ + + /* Disable the ADC (if not already disabled) */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_BUSY_INTERNAL); + + /* Manage settings impacting calibration */ + /* - Disable ADC mode auto power-off */ + /* - Disable ADC DMA transfer request during calibration */ + /* Note: Specificity of this STM32 series: Calibration factor is */ + /* available in data register and also transferred by DMA. */ + /* To not insert ADC calibration factor among ADC conversion data */ + /* in array variable, DMA transfer must be disabled during */ + /* calibration. */ + backup_setting_cfgr1 = READ_BIT(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_AUTOFF); + CLEAR_BIT(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_AUTOFF); + + /* ADC calibration procedure */ + /* Note: Perform an averaging of 8 calibrations for optimized accuracy */ + for (calibration_index = 0UL; calibration_index < 8UL; calibration_index++) + { + /* Start ADC calibration */ + LL_ADC_StartCalibration(hadc->Instance); + + /* Wait for calibration completion */ + while (LL_ADC_IsCalibrationOnGoing(hadc->Instance) != 0UL) + { + wait_loop_index++; + if (wait_loop_index >= ADC_CALIBRATION_TIMEOUT) + { + /* Update ADC state machine to error */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_BUSY_INTERNAL, + HAL_ADC_STATE_ERROR_INTERNAL); + + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + } + + calibration_factor_accumulated += LL_ADC_GetCalibrationFactor(hadc->Instance); + } + /* Compute average */ + calibration_factor_accumulated /= calibration_index; + + /* Apply calibration factor (requires ADC enable and disable process) */ + LL_ADC_Enable(hadc->Instance); + + /* Case of ADC clocked at low frequency: Delay required between ADC enable and disable actions */ + if (LL_ADC_GetClock(hadc->Instance) == LL_ADC_CLOCK_ASYNC) + { + adc_clk_async_presc = LL_ADC_GetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + if (adc_clk_async_presc >= LL_ADC_CLOCK_ASYNC_DIV16) + { + /* Delay loop initialization and execution */ + /* Delay depends on ADC clock prescaler: Compute ADC clock asynchronous prescaler to decimal format */ + delay_cpu_cycles = (1UL << ((adc_clk_async_presc >> ADC_CCR_PRESC_Pos) - 3UL)); + /* Divide variable by 2 to compensate partially CPU processing cycles */ + delay_cpu_cycles >>= 1UL; + + while (delay_cpu_cycles != 0UL) + { + delay_cpu_cycles--; + } + } + } + + LL_ADC_SetCalibrationFactor(hadc->Instance, calibration_factor_accumulated); + LL_ADC_Disable(hadc->Instance); + + /* Wait for ADC effectively disabled before changing configuration */ + /* Get tick count */ + tickstart = HAL_GetTick(); + + while (LL_ADC_IsEnabled(hadc->Instance) != 0UL) + { + if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) + { + /* New check to avoid false timeout detection in case of preemption */ + if (LL_ADC_IsEnabled(hadc->Instance) != 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + } + } + + /* Restore configuration after calibration */ + SET_BIT(hadc->Instance->CFGR1, backup_setting_cfgr1); + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_BUSY_INTERNAL, + HAL_ADC_STATE_READY); + } + else + { + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Note: No need to update variable "tmp_hal_status" here: already set */ + /* to state "HAL_ERROR" by function disabling the ADC. */ + } + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + +/** + * @brief Get the calibration factor. + * @param hadc ADC handle. + * @retval Calibration value. + */ +uint32_t HAL_ADCEx_Calibration_GetValue(const ADC_HandleTypeDef *hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Return the selected ADC calibration value */ + return ((hadc->Instance->CALFACT) & 0x0000007FU); +} + +/** + * @brief Set the calibration factor to overwrite automatic conversion result. + * ADC must be enabled and no conversion is ongoing. + * @param hadc ADC handle + * @param CalibrationFactor Calibration factor (coded on 7 bits maximum) + * @retval HAL state + */ +HAL_StatusTypeDef HAL_ADCEx_Calibration_SetValue(ADC_HandleTypeDef *hadc, uint32_t CalibrationFactor) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmp_adc_is_conversion_on_going_regular; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_CALFACT(CalibrationFactor)); + + __HAL_LOCK(hadc); + + /* Verification of hardware constraints before modifying the calibration */ + /* factors register: ADC must be enabled, no conversion on going. */ + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + + if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL) + && (tmp_adc_is_conversion_on_going_regular == 0UL) + ) + { + hadc->Instance->CALFACT &= ~ADC_CALFACT_CALFACT; + hadc->Instance->CALFACT |= CalibrationFactor; + } + else + { + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + /* Update ADC error code */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + /* Update ADC state machine to error */ + tmp_hal_status = HAL_ERROR; + } + + __HAL_UNLOCK(hadc); + + return tmp_hal_status; +} + +/** + * @brief Analog watchdog 2 callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_LevelOutOfWindow2Callback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_LevelOutOfWindow2Callback must be implemented in the user file. + */ +} + +/** + * @brief Analog watchdog 3 callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_LevelOutOfWindow3Callback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_LevelOutOfWindow3Callback must be implemented in the user file. + */ +} + + +/** + * @brief End Of Sampling callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_EndOfSamplingCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_EndOfSamplingCallback must be implemented in the user file. + */ +} + +/** + * @brief ADC channel configuration ready callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_ChannelConfigReadyCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_ChannelConfigReadyCallback must be implemented in the user file. + */ +} + +/** + * @} + */ + +/** + * @brief Disable ADC voltage regulator. + * @note Disabling voltage regulator allows to save power. This operation can + * be carried out only when ADC is disabled. + * @note To enable again the voltage regulator, the user is expected to + * resort to HAL_ADC_Init() API. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_DisableVoltageRegulator(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Setting of this feature is conditioned to ADC state: ADC must be ADC disabled */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + LL_ADC_DisableInternalRegulator(hadc->Instance); + tmp_hal_status = HAL_OK; + } + else + { + tmp_hal_status = HAL_ERROR; + } + + return tmp_hal_status; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_comp.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_comp.c new file mode 100644 index 0000000..25d3e3e --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_comp.c @@ -0,0 +1,1081 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_comp.c + * @author MCD Application Team + * @brief COMP HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the COMP peripheral: + * + Initialization and de-initialization functions + * + Peripheral control functions + * + Peripheral state functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### COMP Peripheral features ##### + ============================================================================== + + [..] + The STM32U0xx device family integrates two analog comparators instances: + COMP1, COMP2 except for the products featuring only + one instance: COMP1 (in this case, all comments related to pair of comparators are not applicable) + (#) Comparators input minus (inverting input) and input plus (non inverting input) + can be set to internal references or to GPIO pins + (refer to GPIO list in reference manual). + + (#) Comparators output level is available using HAL_COMP_GetOutputLevel() + and can be redirected to other peripherals: GPIO pins (in mode + alternate functions for comparator), timers. + (refer to GPIO list in reference manual). + + (#) The comparators have interrupt capability through the EXTI controller + with wake-up from sleep and stop modes. + + (#) Pairs of comparators instances can be combined in window mode + (2 consecutive instances odd and even COMP and COMP). + + From the corresponding IRQ handler, the right interrupt source can be retrieved + using macro __HAL_COMP_COMPx_EXTI_GET_FLAG(). + + ##### How to use this driver ##### + ============================================================================== + [..] + This driver provides functions to configure and program the comparator instances + of STM32U0xx devices. + + To use the comparator, perform the following steps: + + (#) Initialize the COMP low level resources by implementing the HAL_COMP_MspInit(): + (++) Configure the GPIO connected to comparator inputs plus and minus in analog mode + using HAL_GPIO_Init(). + (++) If needed, configure the GPIO connected to comparator output in alternate function mode + using HAL_GPIO_Init(). + (++) If required enable the COMP interrupt by configuring and enabling EXTI line in Interrupt mode and + selecting the desired sensitivity level using HAL_GPIO_Init() function. After that enable the comparator + interrupt vector using HAL_NVIC_EnableIRQ() function. + + (#) Configure the comparator using HAL_COMP_Init() function: + (++) Select the input minus (inverting input) + (++) Select the input plus (non-inverting input) + (++) Select the hysteresis + (++) Select the blanking source + (++) Select the output polarity + (++) Select the power mode + (++) Select the window mode + + -@@- HAL_COMP_Init() calls internally __HAL_RCC_SYSCFG_CLK_ENABLE() + to enable internal control clock of the comparators. + However, this is a legacy strategy. In future STM32 families, + COMP clock enable must be implemented by user in "HAL_COMP_MspInit()". + Therefore, for compatibility anticipation, it is recommended to + implement __HAL_RCC_SYSCFG_CLK_ENABLE() in "HAL_COMP_MspInit()". + + (#) Reconfiguration on-the-fly of comparator can be done by calling again + function HAL_COMP_Init() with new input structure parameters values. + + (#) Enable the comparator using HAL_COMP_Start() function. + + (#) Use HAL_COMP_TriggerCallback() or HAL_COMP_GetOutputLevel() functions + to manage comparator outputs (events and output level). + + (#) Disable the comparator using HAL_COMP_Stop() function. + + (#) De-initialize the comparator using HAL_COMP_DeInit() function. + + (#) For safety purpose, comparator configuration can be locked using HAL_COMP_Lock() function. + The only way to unlock the comparator is a device hardware reset. + + *** Callback registration *** + ============================================= + [..] + + The compilation flag USE_HAL_COMP_REGISTER_CALLBACKS, when set to 1, + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_COMP_RegisterCallback() + to register an interrupt callback. + [..] + + Function HAL_COMP_RegisterCallback() allows to register following callbacks: + (+) TriggerCallback : callback for COMP trigger. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + [..] + + Use function HAL_COMP_UnRegisterCallback to reset a callback to the default + weak function. + [..] + + HAL_COMP_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TriggerCallback : callback for COMP trigger. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + [..] + + By default, after the HAL_COMP_Init() and when the state is HAL_COMP_STATE_RESET + all callbacks are set to the corresponding weak functions: + example HAL_COMP_TriggerCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the HAL_COMP_Init()/ HAL_COMP_DeInit() only when + these callbacks are null (not registered beforehand). + [..] + + If MspInit or MspDeInit are not null, the HAL_COMP_Init()/ HAL_COMP_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + [..] + + Callbacks can be registered/unregistered in HAL_COMP_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in HAL_COMP_STATE_READY or HAL_COMP_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + [..] + + Then, the user first registers the MspInit/MspDeInit user callbacks + using HAL_COMP_RegisterCallback() before calling HAL_COMP_DeInit() + or HAL_COMP_Init() function. + [..] + + When the compilation flag USE_HAL_COMP_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#ifdef HAL_COMP_MODULE_ENABLED + +#if defined (COMP1) || defined (COMP2) + +/** @defgroup COMP COMP + * @brief COMP HAL module driver + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup COMP_Private_Constants + * @{ + */ + +/* Delay for COMP startup time. */ +/* Note: Delay required to reach propagation delay specification. */ +/* Literal set to maximum value (refer to device datasheet, */ +/* parameter "tSTART"). */ +/* Unit: us */ +#define COMP_DELAY_STARTUP_US (80UL) /*!< Delay for COMP startup time */ + +/* Delay for COMP voltage scaler stabilization time. */ +/* Literal set to maximum value (refer to device datasheet, */ +/* parameter "tSTART_SCALER"). */ +/* Unit: us */ +#define COMP_DELAY_VOLTAGE_SCALER_STAB_US (200UL) /*!< Delay for COMP voltage scaler stabilization time */ + +#define COMP_OUTPUT_LEVEL_BITOFFSET_POS (30UL) + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup COMP_Exported_Functions COMP Exported Functions + * @{ + */ + +/** @defgroup COMP_Exported_Functions_Group1 Initialization/de-initialization functions + * @brief Initialization and de-initialization functions. + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions to initialize and de-initialize comparators + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the COMP according to the specified + * parameters in the COMP_InitTypeDef and initialize the associated handle. + * @note If the selected comparator is locked, initialization can't be performed. + * To unlock the configuration, perform a system reset. + * @param hcomp COMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_COMP_Init(COMP_HandleTypeDef *hcomp) +{ + uint32_t tmp_csr; + uint32_t exti_line; + uint32_t comp_voltage_scaler_initialized; /* Value "0" if comparator voltage scaler is not initialized */ + __IO uint32_t wait_loop_index = 0UL; + HAL_StatusTypeDef status = HAL_OK; + + /* Check the COMP handle allocation and lock status */ + if (hcomp == NULL) + { + status = HAL_ERROR; + } + else if (__HAL_COMP_IS_LOCKED(hcomp)) + { + status = HAL_ERROR; + } + else + { + /* Check the parameters */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + assert_param(IS_COMP_INPUT_PLUS(hcomp->Instance, hcomp->Init.InputPlus)); + assert_param(IS_COMP_INPUT_MINUS(hcomp->Instance, hcomp->Init.InputMinus)); + assert_param(IS_COMP_OUTPUTPOL(hcomp->Init.OutputPol)); + assert_param(IS_COMP_POWERMODE(hcomp->Init.Mode)); + assert_param(IS_COMP_HYSTERESIS(hcomp->Init.Hysteresis)); + assert_param(IS_COMP_BLANKINGSRCE(hcomp->Init.BlankingSrce)); + assert_param(IS_COMP_TRIGGERMODE(hcomp->Init.TriggerMode)); + +#if defined(COMP2) + assert_param(IS_COMP_WINDOWMODE(hcomp->Instance, hcomp->Init.WindowMode)); +#endif /* COMP2 */ +#if defined(COMP2) + if (hcomp->Init.WindowMode != COMP_WINDOWMODE_DISABLE) + { + assert_param(IS_COMP_WINDOWOUTPUT(hcomp->Init.WindowOutput)); + } +#endif /* COMP2 */ + + + if (hcomp->State == HAL_COMP_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcomp->Lock = HAL_UNLOCKED; + + /* Set COMP error code to none */ + COMP_CLEAR_ERRORCODE(hcomp); + +#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) + /* Init the COMP Callback settings */ + hcomp->TriggerCallback = HAL_COMP_TriggerCallback; /* Legacy weak callback */ + + if (hcomp->MspInitCallback == NULL) + { + hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware */ + /* Note: Internal control clock of the comparators must */ + /* be enabled in "HAL_COMP_MspInit()" */ + /* using "__HAL_RCC_SYSCFG_CLK_ENABLE()". */ + hcomp->MspInitCallback(hcomp); +#else + /* Init the low level hardware */ + /* Note: Internal control clock of the comparators must */ + /* be enabled in "HAL_COMP_MspInit()" */ + /* using "__HAL_RCC_SYSCFG_CLK_ENABLE()". */ + HAL_COMP_MspInit(hcomp); +#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ + } + + /* Memorize voltage scaler state before initialization */ + comp_voltage_scaler_initialized = READ_BIT(hcomp->Instance->CSR, (COMP_CSR_INMSEL_1 | COMP_CSR_INMSEL_0)); + + /* Set COMP parameters */ + tmp_csr = (hcomp->Init.InputMinus + | hcomp->Init.InputPlus + | hcomp->Init.BlankingSrce + | hcomp->Init.Hysteresis + | hcomp->Init.OutputPol + | hcomp->Init.Mode + ); + + /* Set parameters in COMP register */ + /* Note: Update all bits except read-only, lock and enable bits */ + MODIFY_REG(hcomp->Instance->CSR, + COMP_CSR_PWRMODE | COMP_CSR_INMSEL | COMP_CSR_INPSEL | + COMP_CSR_WINMODE | COMP_CSR_POLARITY | COMP_CSR_HYST | + COMP_CSR_BLANKSEL, + tmp_csr + ); + + + /* Set window mode */ + /* Note: Window mode bit is located into 1 out of the 2 pairs of COMP */ + /* instances. Therefore, this function can update another COMP */ + /* instance that the one currently selected. */ + +#if defined(COMP2) + if (hcomp->Init.WindowMode == COMP_WINDOWMODE_COMP1_INPUT_PLUS_COMMON) + { + CLEAR_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINMODE); + SET_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINMODE); + } + else if (hcomp->Init.WindowMode == COMP_WINDOWMODE_COMP2_INPUT_PLUS_COMMON) + { + SET_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINMODE); + CLEAR_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINMODE); + } + else + { + CLEAR_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINMODE); + CLEAR_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINMODE); + } +#else + CLEAR_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINMODE); + CLEAR_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINMODE); +#endif /* COMP2 */ + + /* Set window mode output */ + /* Note: Window mode mode output can also be used when window mode */ + /* is disabled, to use comparators in independent mode with their */ + /* output connected through exclusive-or circuitry. */ + switch (hcomp->Init.WindowOutput) + { + case COMP_WINDOWOUTPUT_COMP1: + SET_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINOUT); + CLEAR_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINOUT); + break; + + case COMP_WINDOWOUTPUT_COMP2: + CLEAR_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINOUT); + SET_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINOUT); + break; + + case COMP_WINDOWOUTPUT_BOTH: + SET_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINOUT); + SET_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINOUT); + break; + + default: /* COMP_WINDOWOUTPUT_EACH_COMP */ + CLEAR_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINOUT); + CLEAR_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINOUT); + break; + } + + + /* Delay for COMP scaler bridge voltage stabilization */ + /* Apply the delay if voltage scaler bridge is required and not already enabled */ + if ((READ_BIT(hcomp->Instance->CSR, (COMP_CSR_INMSEL_1 | COMP_CSR_INMSEL_0)) != 0UL) && + (comp_voltage_scaler_initialized == 0UL)) + { + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((COMP_DELAY_VOLTAGE_SCALER_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + + /* Get the EXTI line corresponding to the selected COMP instance */ + exti_line = COMP_GET_EXTI_LINE(hcomp->Instance); + + /* Manage EXTI settings */ + if ((hcomp->Init.TriggerMode & (COMP_EXTI_IT | COMP_EXTI_EVENT)) != 0UL) + { + /* Configure EXTI rising edge */ + if ((hcomp->Init.TriggerMode & COMP_EXTI_RISING) != 0UL) + { + LL_EXTI_EnableRisingTrig_0_31(exti_line); + } + else + { + LL_EXTI_DisableRisingTrig_0_31(exti_line); + } + + /* Configure EXTI falling edge */ + if ((hcomp->Init.TriggerMode & COMP_EXTI_FALLING) != 0UL) + { + LL_EXTI_EnableFallingTrig_0_31(exti_line); + } + else + { + LL_EXTI_DisableFallingTrig_0_31(exti_line); + } + + /* Clear COMP EXTI pending bit (if any) */ + LL_EXTI_ClearRisingFlag_0_31(exti_line); + LL_EXTI_ClearFallingFlag_0_31(exti_line); + + /* Configure EXTI event mode */ + if ((hcomp->Init.TriggerMode & COMP_EXTI_EVENT) != 0UL) + { + LL_EXTI_EnableEvent_0_31(exti_line); + } + else + { + LL_EXTI_DisableEvent_0_31(exti_line); + } + + /* Configure EXTI interrupt mode */ + if ((hcomp->Init.TriggerMode & COMP_EXTI_IT) != 0UL) + { + LL_EXTI_EnableIT_0_31(exti_line); + } + else + { + LL_EXTI_DisableIT_0_31(exti_line); + } + } + else + { + /* Disable EXTI event mode */ + LL_EXTI_DisableEvent_0_31(exti_line); + + /* Disable EXTI interrupt mode */ + LL_EXTI_DisableIT_0_31(exti_line); + } + + /* Set HAL COMP handle state */ + /* Note: Transition from state reset to state ready, */ + /* otherwise (coming from state ready or busy) no state update. */ + if (hcomp->State == HAL_COMP_STATE_RESET) + { + hcomp->State = HAL_COMP_STATE_READY; + } + } + + return status; +} + +/** + * @brief DeInitialize the COMP peripheral. + * @note Deinitialization cannot be performed if the COMP configuration is locked. + * To unlock the configuration, perform a system reset. + * @param hcomp COMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_COMP_DeInit(COMP_HandleTypeDef *hcomp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the COMP handle allocation and lock status */ + if (hcomp == NULL) + { + status = HAL_ERROR; + } + else if (__HAL_COMP_IS_LOCKED(hcomp)) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + + /* Set COMP_CSR register to reset value */ + WRITE_REG(hcomp->Instance->CSR, 0x00000000UL); + +#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) + if (hcomp->MspDeInitCallback == NULL) + { + hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: GPIO, RCC clock, NVIC */ + hcomp->MspDeInitCallback(hcomp); +#else + /* DeInit the low level hardware: GPIO, RCC clock, NVIC */ + HAL_COMP_MspDeInit(hcomp); +#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ + + /* Set HAL COMP handle state */ + hcomp->State = HAL_COMP_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hcomp); + } + + return status; +} + +/** + * @brief Initialize the COMP MSP. + * @param hcomp COMP handle + * @retval None + */ +__weak void HAL_COMP_MspInit(COMP_HandleTypeDef *hcomp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcomp); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_COMP_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the COMP MSP. + * @param hcomp COMP handle + * @retval None + */ +__weak void HAL_COMP_MspDeInit(COMP_HandleTypeDef *hcomp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcomp); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_COMP_MspDeInit could be implemented in the user file + */ +} + +#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User COMP Callback + * To be used instead of the weak predefined callback + * @param hcomp Pointer to a COMP_HandleTypeDef structure that contains + * the configuration information for the specified COMP. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_COMP_TRIGGER_CB_ID Trigger callback ID + * @arg @ref HAL_COMP_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_COMP_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_COMP_RegisterCallback(COMP_HandleTypeDef *hcomp, HAL_COMP_CallbackIDTypeDef CallbackID, + pCOMP_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (HAL_COMP_STATE_READY == hcomp->State) + { + switch (CallbackID) + { + case HAL_COMP_TRIGGER_CB_ID : + hcomp->TriggerCallback = pCallback; + break; + + case HAL_COMP_MSPINIT_CB_ID : + hcomp->MspInitCallback = pCallback; + break; + + case HAL_COMP_MSPDEINIT_CB_ID : + hcomp->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_COMP_STATE_RESET == hcomp->State) + { + switch (CallbackID) + { + case HAL_COMP_MSPINIT_CB_ID : + hcomp->MspInitCallback = pCallback; + break; + + case HAL_COMP_MSPDEINIT_CB_ID : + hcomp->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister a COMP Callback + * COMP callback is redirected to the weak predefined callback + * @param hcomp Pointer to a COMP_HandleTypeDef structure that contains + * the configuration information for the specified COMP. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_COMP_TRIGGER_CB_ID Trigger callback ID + * @arg @ref HAL_COMP_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_COMP_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_COMP_UnRegisterCallback(COMP_HandleTypeDef *hcomp, HAL_COMP_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_COMP_STATE_READY == hcomp->State) + { + switch (CallbackID) + { + case HAL_COMP_TRIGGER_CB_ID : + hcomp->TriggerCallback = HAL_COMP_TriggerCallback; /* Legacy weak callback */ + break; + + case HAL_COMP_MSPINIT_CB_ID : + hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_COMP_MSPDEINIT_CB_ID : + hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_COMP_STATE_RESET == hcomp->State) + { + switch (CallbackID) + { + case HAL_COMP_MSPINIT_CB_ID : + hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_COMP_MSPDEINIT_CB_ID : + hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup COMP_Exported_Functions_Group2 Start-Stop operation functions + * @brief Start-Stop operation functions. + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start a comparator instance. + (+) Stop a comparator instance. + +@endverbatim + * @{ + */ + +/** + * @brief Start the comparator. + * @param hcomp COMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_COMP_Start(COMP_HandleTypeDef *hcomp) +{ + __IO uint32_t wait_loop_index = 0UL; + HAL_StatusTypeDef status = HAL_OK; + + /* Check the COMP handle allocation and lock status */ + if (hcomp == NULL) + { + status = HAL_ERROR; + } + else if (__HAL_COMP_IS_LOCKED(hcomp)) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + + if (hcomp->State == HAL_COMP_STATE_READY) + { + /* Enable the selected comparator */ + SET_BIT(hcomp->Instance->CSR, COMP_CSR_EN); + + /* Set HAL COMP handle state */ + hcomp->State = HAL_COMP_STATE_BUSY; + + /* Delay for COMP startup time */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((COMP_DELAY_STARTUP_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + else + { + status = HAL_ERROR; + } + } + + return status; +} + +/** + * @brief Stop the comparator. + * @param hcomp COMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_COMP_Stop(COMP_HandleTypeDef *hcomp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the COMP handle allocation and lock status */ + if (hcomp == NULL) + { + status = HAL_ERROR; + } + else if (__HAL_COMP_IS_LOCKED(hcomp)) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + + /* Check compliant states: HAL_COMP_STATE_READY or HAL_COMP_STATE_BUSY */ + /* (all states except HAL_COMP_STATE_RESET and except locked status. */ + if (hcomp->State != HAL_COMP_STATE_RESET) + { + /* Disable the selected comparator */ + CLEAR_BIT(hcomp->Instance->CSR, COMP_CSR_EN); + + /* Set HAL COMP handle state */ + hcomp->State = HAL_COMP_STATE_READY; + } + else + { + status = HAL_ERROR; + } + } + + return status; +} + +/** + * @brief Comparator IRQ handler. + * @param hcomp COMP handle + * @retval None + */ +void HAL_COMP_IRQHandler(COMP_HandleTypeDef *hcomp) +{ + /* Get the EXTI line corresponding to the selected COMP instance */ + uint32_t exti_line = COMP_GET_EXTI_LINE(hcomp->Instance); +#if defined(COMP2) + uint32_t comparator_window_mode; + uint32_t comparator_window_exti_lines; + + comparator_window_mode = READ_BIT(COMP12_COMMON->CSR_ODD, COMP_CSR_WINMODE); + comparator_window_mode |= READ_BIT(COMP12_COMMON->CSR_EVEN, COMP_CSR_WINMODE); + comparator_window_exti_lines = (COMP_EXTI_LINE_COMP1 | COMP_EXTI_LINE_COMP2); +#endif /* COMP2 */ + + + /* Check COMP EXTI flag */ + if (LL_EXTI_IsActiveRisingFlag_0_31(exti_line) != 0UL) + { +#if defined(COMP2) + /* Check whether comparator is in independent or window mode */ + if (comparator_window_mode != 0UL) + { + /* Clear COMP EXTI line pending bit of the pair of comparators */ + /* in window mode. */ + /* Note: Pair of comparators in window mode can both trig IRQ when */ + /* input voltage is changing from "out of window" area */ + /* (low or high ) to the other "out of window" area (high or low).*/ + /* Both flags must be cleared to call comparator trigger */ + /* callback is called once. */ + LL_EXTI_ClearRisingFlag_0_31(comparator_window_exti_lines); + } + else +#endif /* COMP2 */ + { + /* Clear COMP EXTI line pending bit */ + LL_EXTI_ClearRisingFlag_0_31(exti_line); + } + + /* COMP trigger user callback */ +#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) + hcomp->TriggerCallback(hcomp); +#else + HAL_COMP_TriggerCallback(hcomp); +#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ + } + else if (LL_EXTI_IsActiveFallingFlag_0_31(exti_line) != 0UL) + { +#if defined(COMP2) + /* Check whether comparator is in independent or window mode */ + if (comparator_window_mode != 0UL) + { + /* Clear COMP EXTI line pending bit of the pair of comparators */ + /* in window mode. */ + /* Note: Pair of comparators in window mode can both trig IRQ when */ + /* input voltage is changing from "out of window" area */ + /* (low or high ) to the other "out of window" area (high or low).*/ + /* Both flags must be cleared to call comparator trigger */ + /* callback is called once. */ + LL_EXTI_ClearFallingFlag_0_31(comparator_window_exti_lines); + } + else +#endif /* COMP2 */ + { + /* Clear COMP EXTI line pending bit */ + LL_EXTI_ClearFallingFlag_0_31(exti_line); + } + + /* COMP trigger callback */ +#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) + hcomp->TriggerCallback(hcomp); +#else + HAL_COMP_TriggerCallback(hcomp); +#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ + } + else + { + /* nothing to do */ + } +} + +/** + * @} + */ + +/** @defgroup COMP_Exported_Functions_Group3 Peripheral Control functions + * @brief Management functions. + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the comparators. + +@endverbatim + * @{ + */ + +/** + * @brief Lock the selected comparator configuration. + * @note A system reset is required to unlock the comparator configuration. + * @note Locking the comparator from reset state is possible + * if __HAL_RCC_SYSCFG_CLK_ENABLE() is being called before. + * @param hcomp COMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_COMP_Lock(COMP_HandleTypeDef *hcomp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the COMP handle allocation and lock status */ + if (hcomp == NULL) + { + status = HAL_ERROR; + } + else if (__HAL_COMP_IS_LOCKED(hcomp)) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + + /* Set HAL COMP handle state */ + switch (hcomp->State) + { + case HAL_COMP_STATE_RESET: + hcomp->State = HAL_COMP_STATE_RESET_LOCKED; + break; + case HAL_COMP_STATE_READY: + hcomp->State = HAL_COMP_STATE_READY_LOCKED; + break; + default: /* HAL_COMP_STATE_BUSY */ + hcomp->State = HAL_COMP_STATE_BUSY_LOCKED; + break; + } + + /* Set the lock bit corresponding to selected comparator */ + __HAL_COMP_LOCK(hcomp); + } + + return status; +} + +/** + * @brief Return the output level (high or low) of the selected comparator. + * The output level depends on the selected polarity. + * If the polarity is not inverted: + * - Comparator output is low when the input plus is at a lower + * voltage than the input minus + * - Comparator output is high when the input plus is at a higher + * voltage than the input minus + * If the polarity is inverted: + * - Comparator output is high when the input plus is at a lower + * voltage than the input minus + * - Comparator output is low when the input plus is at a higher + * voltage than the input minus + * @param hcomp COMP handle + * @retval Returns the selected comparator output level: + * @arg COMP_OUTPUT_LEVEL_LOW + * @arg COMP_OUTPUT_LEVEL_HIGH + * + */ +uint32_t HAL_COMP_GetOutputLevel(const COMP_HandleTypeDef *hcomp) +{ + /* Check the parameter */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + + return (uint32_t)(READ_BIT(hcomp->Instance->CSR, COMP_CSR_VALUE) + >> COMP_OUTPUT_LEVEL_BITOFFSET_POS); +} + +/** + * @brief Comparator trigger callback. + * @param hcomp COMP handle + * @retval None + */ +__weak void HAL_COMP_TriggerCallback(COMP_HandleTypeDef *hcomp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcomp); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_COMP_TriggerCallback should be implemented in the user file + */ +} + + +/** + * @} + */ + +/** @defgroup COMP_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permit to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Return the COMP handle state. + * @param hcomp COMP handle + * @retval HAL state + */ +HAL_COMP_StateTypeDef HAL_COMP_GetState(const COMP_HandleTypeDef *hcomp) +{ + /* Check the COMP handle allocation */ + if (hcomp == NULL) + { + return HAL_COMP_STATE_RESET; + } + + /* Check the parameter */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + + /* Return HAL COMP handle state */ + return hcomp->State; +} + +/** + * @brief Return the COMP error code. + * @param hcomp COMP handle + * @retval COMP error code + */ +uint32_t HAL_COMP_GetError(const COMP_HandleTypeDef *hcomp) +{ + /* Check the parameters */ + assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); + + return hcomp->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* COMP1 || COMP2 */ + +#endif /* HAL_COMP_MODULE_ENABLED */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cortex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cortex.c new file mode 100644 index 0000000..abbd6ea --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cortex.c @@ -0,0 +1,445 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_cortex.c + * @author GPM Application Team + * @brief CORTEX HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the CORTEX: + * + Initialization and Configuration functions + * + Peripheral Control functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + *** How to configure Interrupts using CORTEX HAL driver *** + =========================================================== + [..] + This section provides functions allowing to configure the NVIC interrupts (IRQ). + The Cortex M0+ exceptions are managed by CMSIS functions. + (#) Enable and Configure the priority of the selected IRQ Channels. + The priority can be 0..3. + + -@- Lower priority values gives higher priority. + -@- Priority Order: + (#@) Lowest priority. + (#@) Lowest hardware priority (IRQn position). + + (#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority() + + (#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ() + + -@- Negative value of IRQn_Type are not allowed. + + *** How to configure Systick using CORTEX HAL driver *** + ======================================================== + [..] + Setup SysTick Timer for time base. + + (+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which + is a CMSIS function that: + (++) Configures the SysTick Reload register with value passed as function parameter. + (++) Configures the SysTick IRQ priority to the lowest value (0x03). + (++) Resets the SysTick Counter register. + (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK). + (++) Enables the SysTick Interrupt. + (++) Starts the SysTick Counter. + + (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro + __HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the + HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined + inside the stm32u0xx_hal_cortex.h file. + + (+) You can change the SysTick IRQ priority by calling the + HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function + call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function. + + (+) To adjust the SysTick time base, use the following formula: + + Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s) + (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function + (++) Reload Value should not exceed 0xFFFFFF + + @endverbatim + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup CORTEX + * @{ + */ + +#ifdef HAL_CORTEX_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup CORTEX_Exported_Functions + * @{ + */ + +/** @addtogroup CORTEX_Exported_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This section provides the CORTEX HAL driver functions allowing to configure Interrupts + Systick functionalities + +@endverbatim + * @{ + */ + +/** + * @brief Sets the priority of an interrupt. + * @param IRQn External interrupt number . + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to stm32u0xx.h file) + * @param PreemptPriority The preemption priority for the IRQn channel. + * This parameter can be a value between 0 and 3. + * A lower priority value indicates a higher priority + * @param SubPriority the subpriority level for the IRQ channel. + * with stm32u0xx devices, this parameter is a dummy value and it is ignored, because + * no subpriority supported in Cortex M0+ based products. + * @retval None + */ +void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority) +{ + /* Prevent unused argument(s) compilation warning */ + (void)(SubPriority); + /* Check the parameters */ + assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority)); + NVIC_SetPriority(IRQn, PreemptPriority); +} + +/** + * @brief Enable a device specific interrupt in the NVIC interrupt controller. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate + * CMSIS device file (stm32u0xxxx.h)) + * @retval None + */ +void HAL_NVIC_EnableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Enable interrupt */ + NVIC_EnableIRQ(IRQn); +} + +/** + * @brief Disable a device specific interrupt in the NVIC interrupt controller. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate + * CMSIS device file (stm32u0xxxx.h)) + * @retval None + */ +void HAL_NVIC_DisableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Disable interrupt */ + NVIC_DisableIRQ(IRQn); +} + +/** + * @brief Initiate a system reset request to reset the MCU. + * @retval None + */ +void HAL_NVIC_SystemReset(void) +{ + /* System Reset */ + NVIC_SystemReset(); +} + +/** + * @brief Initialize the System Timer with interrupt enabled and start the System Tick Timer (SysTick): + * Counter is in free running mode to generate periodic interrupts. + * @param TicksNumb Specifies the ticks Number of ticks between two interrupts. + * @retval status: - 0 Function succeeded. + * - 1 Function failed. + */ +uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb) +{ + return SysTick_Config(TicksNumb); +} +/** + * @} + */ + +/** @addtogroup CORTEX_Exported_Functions_Group2 + * @brief Cortex control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the CORTEX + (NVIC, SYSTICK, MPU) functionalities. + + +@endverbatim + * @{ + */ + +/** + * @brief Get the priority of an interrupt. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate + * CMSIS device file (stm32u0xxxx.h)) + * @retval None + */ +uint32_t HAL_NVIC_GetPriority(IRQn_Type IRQn) +{ + /* Get priority for Cortex-M system or device specific interrupts */ + return NVIC_GetPriority(IRQn); +} + +/** + * @brief Set Pending bit of an external interrupt. + * @param IRQn External interrupt number + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate + * CMSIS device file (stm32u0xxxx.h)) + * @retval None + */ +void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Set interrupt pending */ + NVIC_SetPendingIRQ(IRQn); +} + +/** + * @brief Get Pending Interrupt (read the pending register in the NVIC + * and return the pending bit for the specified interrupt). + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate + * CMSIS device file (stm32u0xxxx.h)) + * @retval status: - 0 Interrupt status is not pending. + * - 1 Interrupt status is pending. + */ +uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Return 1 if pending else 0 */ + return NVIC_GetPendingIRQ(IRQn); +} + +/** + * @brief Clear the pending bit of an external interrupt. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate + * CMSIS device file (stm32u0xxxx.h)) + * @retval None + */ +void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Clear pending interrupt */ + NVIC_ClearPendingIRQ(IRQn); +} + +/** + * @brief Configure the SysTick clock source. + * @param CLKSource specifies the SysTick clock source. + * This parameter can be one of the following values: + * @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source. + * @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source. + * @retval None + */ +void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource) +{ + /* Check the parameters */ + assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource)); + if (CLKSource == SYSTICK_CLKSOURCE_HCLK) + { + SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK; + } + else + { + SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK; + } +} + +/** + * @brief Handle SYSTICK interrupt request. + * @retval None + */ +void HAL_SYSTICK_IRQHandler(void) +{ + HAL_SYSTICK_Callback(); +} + +/** + * @brief SYSTICK callback. + * @retval None + */ +__weak void HAL_SYSTICK_Callback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SYSTICK_Callback could be implemented in the user file + */ +} + +#if (__MPU_PRESENT == 1U) +/** + * @brief Enable the MPU. + * @param MPU_Control Specifies the control mode of the MPU during hard fault, + * NMI, FAULTMASK and privileged access to the default memory + * This parameter can be one of the following values: + * @arg MPU_HFNMI_PRIVDEF_NONE + * @arg MPU_HARDFAULT_NMI + * @arg MPU_PRIVILEGED_DEFAULT + * @arg MPU_HFNMI_PRIVDEF + * @retval None + */ +void HAL_MPU_Enable(uint32_t MPU_Control) +{ + /* Enable the MPU */ + MPU->CTRL = (MPU_Control | MPU_CTRL_ENABLE_Msk); + + /* Ensure MPU setting take effects */ + __DSB(); + __ISB(); +} + +/** + * @brief Disable the MPU. + * @retval None + */ +void HAL_MPU_Disable(void) +{ + /* Make sure outstanding transfers are done */ + __DMB(); + + /* Disable the MPU and clear the control register*/ + MPU->CTRL = 0; +} + +/** + * @brief Enable the MPU Region. + * @retval None + */ +void HAL_MPU_EnableRegion(uint32_t RegionNumber) +{ + /* Check the parameters */ + assert_param(IS_MPU_REGION_NUMBER(RegionNumber)); + + /* Set the Region number */ + MPU->RNR = RegionNumber; + + /* Enable the Region */ + SET_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk); +} + +/** + * @brief Disable the MPU Region. + * @retval None + */ +void HAL_MPU_DisableRegion(uint32_t RegionNumber) +{ + /* Check the parameters */ + assert_param(IS_MPU_REGION_NUMBER(RegionNumber)); + + /* Set the Region number */ + MPU->RNR = RegionNumber; + + /* Disable the Region */ + CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk); +} + +/** + * @brief Initialize and configure the Region and the memory to be protected. + * @param MPU_Init Pointer to a MPU_Region_InitTypeDef structure that contains + * the initialization and configuration information. + * @retval None + */ +void HAL_MPU_ConfigRegion(const MPU_Region_InitTypeDef *const MPU_Init) +{ + /* Check the parameters */ + assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number)); + assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable)); + assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec)); + assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission)); + assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField)); + assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable)); + assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable)); + assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable)); + assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable)); + assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size)); + + /* Set the Region number */ + MPU->RNR = MPU_Init->Number; + + /* Disable the Region */ + CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk); + + /* Apply configuration */ + MPU->RBAR = MPU_Init->BaseAddress; + MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) | + ((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) | + ((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) | + ((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) | + ((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) | + ((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) | + ((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) | + ((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) | + ((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos); +} +#endif /* __MPU_PRESENT */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CORTEX_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc.c new file mode 100644 index 0000000..9d1d858 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc.c @@ -0,0 +1,516 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_crc.c + * @author MCD Application Team + * @brief CRC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Cyclic Redundancy Check (CRC) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + (+) Enable CRC AHB clock using __HAL_RCC_CRC_CLK_ENABLE(); + (+) Initialize CRC calculator + (++) specify generating polynomial (peripheral default or non-default one) + (++) specify initialization value (peripheral default or non-default one) + (++) specify input data format + (++) specify input or output data inversion mode if any + (+) Use HAL_CRC_Accumulate() function to compute the CRC value of the + input data buffer starting with the previously computed CRC as + initialization value + (+) Use HAL_CRC_Calculate() function to compute the CRC value of the + input data buffer starting with the defined initialization value + (default or non-default) to initiate CRC calculation + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup CRC CRC + * @brief CRC HAL module driver. + * @{ + */ + +#ifdef HAL_CRC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup CRC_Private_Functions CRC Private Functions + * @{ + */ +static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength); +static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup CRC_Exported_Functions CRC Exported Functions + * @{ + */ + +/** @defgroup CRC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the CRC according to the specified parameters + in the CRC_InitTypeDef and create the associated handle + (+) DeInitialize the CRC peripheral + (+) Initialize the CRC MSP (MCU Specific Package) + (+) DeInitialize the CRC MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the CRC according to the specified + * parameters in the CRC_InitTypeDef and create the associated handle. + * @param hcrc CRC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc) +{ + /* Check the CRC handle allocation */ + if (hcrc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); + + if (hcrc->State == HAL_CRC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcrc->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_CRC_MspInit(hcrc); + } + + hcrc->State = HAL_CRC_STATE_BUSY; + + /* check whether or not non-default generating polynomial has been + * picked up by user */ + assert_param(IS_DEFAULT_POLYNOMIAL(hcrc->Init.DefaultPolynomialUse)); + if (hcrc->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_ENABLE) + { + /* initialize peripheral with default generating polynomial */ + WRITE_REG(hcrc->Instance->POL, DEFAULT_CRC32_POLY); + MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, CRC_POLYLENGTH_32B); + } + else + { + /* initialize CRC peripheral with generating polynomial defined by user */ + if (HAL_CRCEx_Polynomial_Set(hcrc, hcrc->Init.GeneratingPolynomial, hcrc->Init.CRCLength) != HAL_OK) + { + return HAL_ERROR; + } + } + + /* check whether or not non-default CRC initial value has been + * picked up by user */ + assert_param(IS_DEFAULT_INIT_VALUE(hcrc->Init.DefaultInitValueUse)); + if (hcrc->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_ENABLE) + { + WRITE_REG(hcrc->Instance->INIT, DEFAULT_CRC_INITVALUE); + } + else + { + WRITE_REG(hcrc->Instance->INIT, hcrc->Init.InitValue); + } + + + /* set input data inversion mode */ + assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(hcrc->Init.InputDataInversionMode)); + MODIFY_REG(hcrc->Instance->CR, (CRC_CR_RTYPE_IN | CRC_CR_REV_IN), hcrc->Init.InputDataInversionMode); + + /* set output data inversion mode */ + assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(hcrc->Init.OutputDataInversionMode)); + MODIFY_REG(hcrc->Instance->CR, (CRC_CR_RTYPE_OUT | CRC_CR_REV_OUT), hcrc->Init.OutputDataInversionMode); + + /* makes sure the input data format (bytes, halfwords or words stream) + * is properly specified by user */ + assert_param(IS_CRC_INPUTDATA_FORMAT(hcrc->InputDataFormat)); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitialize the CRC peripheral. + * @param hcrc CRC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc) +{ + /* Check the CRC handle allocation */ + if (hcrc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); + + /* Check the CRC peripheral state */ + if (hcrc->State == HAL_CRC_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* Reset CRC calculation unit */ + __HAL_CRC_DR_RESET(hcrc); + + /* Reset IDR register content */ + CLEAR_REG(hcrc->Instance->IDR); + + /* DeInit the low level hardware */ + HAL_CRC_MspDeInit(hcrc); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_RESET; + + /* Process unlocked */ + __HAL_UNLOCK(hcrc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRC MSP. + * @param hcrc CRC handle + * @retval None + */ +__weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcrc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CRC_MspInit can be implemented in the user file + */ +} + +/** + * @brief DeInitialize the CRC MSP. + * @param hcrc CRC handle + * @retval None + */ +__weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcrc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CRC_MspDeInit can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CRC_Exported_Functions_Group2 Peripheral Control functions + * @brief management functions. + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + using combination of the previous CRC value and the new one. + + [..] or + + (+) compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + independently of the previous CRC value. + +@endverbatim + * @{ + */ + +/** + * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + * starting with the previously computed CRC as initialization value. + * @param hcrc CRC handle + * @param pBuffer pointer to the input data buffer, exact input data format is + * provided by hcrc->InputDataFormat. + * @param BufferLength input data buffer length (number of bytes if pBuffer + * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, + * number of words if pBuffer type is * uint32_t). + * @note By default, the API expects a uint32_t pointer as input buffer parameter. + * Input buffer pointers with other types simply need to be cast in uint32_t + * and the API will internally adjust its input data processing based on the + * handle field hcrc->InputDataFormat. + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) +{ + uint32_t index; /* CRC input data buffer index */ + uint32_t temp = 0U; /* CRC output (read from hcrc->Instance->DR register) */ + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + switch (hcrc->InputDataFormat) + { + case CRC_INPUTDATA_FORMAT_WORDS: + /* Enter Data to the CRC calculator */ + for (index = 0U; index < BufferLength; index++) + { + hcrc->Instance->DR = pBuffer[index]; + } + temp = hcrc->Instance->DR; + break; + + case CRC_INPUTDATA_FORMAT_BYTES: + temp = CRC_Handle_8(hcrc, (uint8_t *)pBuffer, BufferLength); + break; + + case CRC_INPUTDATA_FORMAT_HALFWORDS: + temp = CRC_Handle_16(hcrc, (uint16_t *)(void *)pBuffer, BufferLength); /* Derogation MisraC2012 R.11.5 */ + break; + default: + break; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return the CRC computed value */ + return temp; +} + +/** + * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer + * starting with hcrc->Instance->INIT as initialization value. + * @param hcrc CRC handle + * @param pBuffer pointer to the input data buffer, exact input data format is + * provided by hcrc->InputDataFormat. + * @param BufferLength input data buffer length (number of bytes if pBuffer + * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, + * number of words if pBuffer type is * uint32_t). + * @note By default, the API expects a uint32_t pointer as input buffer parameter. + * Input buffer pointers with other types simply need to be cast in uint32_t + * and the API will internally adjust its input data processing based on the + * handle field hcrc->InputDataFormat. + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) +{ + uint32_t index; /* CRC input data buffer index */ + uint32_t temp = 0U; /* CRC output (read from hcrc->Instance->DR register) */ + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* Reset CRC Calculation Unit (hcrc->Instance->INIT is + * written in hcrc->Instance->DR) */ + __HAL_CRC_DR_RESET(hcrc); + + switch (hcrc->InputDataFormat) + { + case CRC_INPUTDATA_FORMAT_WORDS: + /* Enter 32-bit input data to the CRC calculator */ + for (index = 0U; index < BufferLength; index++) + { + hcrc->Instance->DR = pBuffer[index]; + } + temp = hcrc->Instance->DR; + break; + + case CRC_INPUTDATA_FORMAT_BYTES: + /* Specific 8-bit input data handling */ + temp = CRC_Handle_8(hcrc, (uint8_t *)pBuffer, BufferLength); + break; + + case CRC_INPUTDATA_FORMAT_HALFWORDS: + /* Specific 16-bit input data handling */ + temp = CRC_Handle_16(hcrc, (uint16_t *)(void *)pBuffer, BufferLength); /* Derogation MisraC2012 R.11.5 */ + break; + + default: + break; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return the CRC computed value */ + return temp; +} + +/** + * @} + */ + +/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Return the CRC handle state. + * @param hcrc CRC handle + * @retval HAL state + */ +HAL_CRC_StateTypeDef HAL_CRC_GetState(const CRC_HandleTypeDef *hcrc) +{ + /* Return CRC handle state */ + return hcrc->State; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup CRC_Private_Functions + * @{ + */ + +/** + * @brief Enter 8-bit input data to the CRC calculator. + * Specific data handling to optimize processing time. + * @param hcrc CRC handle + * @param pBuffer pointer to the input data buffer + * @param BufferLength input data buffer length + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength) +{ + uint32_t i; /* input data buffer index */ + uint16_t data; + __IO uint16_t *pReg; + + /* Processing time optimization: 4 bytes are entered in a row with a single word write, + * last bytes must be carefully fed to the CRC calculator to ensure a correct type + * handling by the peripheral */ + for (i = 0U; i < (BufferLength / 4U); i++) + { + hcrc->Instance->DR = ((uint32_t)pBuffer[4U * i] << 24U) | \ + ((uint32_t)pBuffer[(4U * i) + 1U] << 16U) | \ + ((uint32_t)pBuffer[(4U * i) + 2U] << 8U) | \ + (uint32_t)pBuffer[(4U * i) + 3U]; + } + /* last bytes specific handling */ + if ((BufferLength % 4U) != 0U) + { + if ((BufferLength % 4U) == 1U) + { + *(__IO uint8_t *)(__IO void *)(&hcrc->Instance->DR) = pBuffer[4U * i]; /* Derogation MisraC2012 R.11.5 */ + } + if ((BufferLength % 4U) == 2U) + { + data = ((uint16_t)(pBuffer[4U * i]) << 8U) | (uint16_t)pBuffer[(4U * i) + 1U]; + pReg = (__IO uint16_t *)(__IO void *)(&hcrc->Instance->DR); /* Derogation MisraC2012 R.11.5 */ + *pReg = data; + } + if ((BufferLength % 4U) == 3U) + { + data = ((uint16_t)(pBuffer[4U * i]) << 8U) | (uint16_t)pBuffer[(4U * i) + 1U]; + pReg = (__IO uint16_t *)(__IO void *)(&hcrc->Instance->DR); /* Derogation MisraC2012 R.11.5 */ + *pReg = data; + + *(__IO uint8_t *)(__IO void *)(&hcrc->Instance->DR) = pBuffer[(4U * i) + 2U]; /* Derogation MisraC2012 R.11.5 */ + } + } + + /* Return the CRC computed value */ + return hcrc->Instance->DR; +} + +/** + * @brief Enter 16-bit input data to the CRC calculator. + * Specific data handling to optimize processing time. + * @param hcrc CRC handle + * @param pBuffer pointer to the input data buffer + * @param BufferLength input data buffer length + * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) + */ +static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength) +{ + uint32_t i; /* input data buffer index */ + __IO uint16_t *pReg; + + /* Processing time optimization: 2 HalfWords are entered in a row with a single word write, + * in case of odd length, last HalfWord must be carefully fed to the CRC calculator to ensure + * a correct type handling by the peripheral */ + for (i = 0U; i < (BufferLength / 2U); i++) + { + hcrc->Instance->DR = ((uint32_t)pBuffer[2U * i] << 16U) | (uint32_t)pBuffer[(2U * i) + 1U]; + } + if ((BufferLength % 2U) != 0U) + { + pReg = (__IO uint16_t *)(__IO void *)(&hcrc->Instance->DR); /* Derogation MisraC2012 R.11.5 */ + *pReg = pBuffer[2U * i]; + } + + /* Return the CRC computed value */ + return hcrc->Instance->DR; +} + +/** + * @} + */ + +#endif /* HAL_CRC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc_ex.c new file mode 100644 index 0000000..271eacb --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_crc_ex.c @@ -0,0 +1,230 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_crc_ex.c + * @author MCD Application Team + * @brief Extended CRC HAL module driver. + * This file provides firmware functions to manage the extended + * functionalities of the CRC peripheral. + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim +================================================================================ + ##### How to use this driver ##### +================================================================================ + [..] + (+) Set user-defined generating polynomial through HAL_CRCEx_Polynomial_Set() + (+) Configure Input or Output data inversion + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup CRCEx CRCEx + * @brief CRC Extended HAL module driver + * @{ + */ + +#ifdef HAL_CRC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup CRCEx_Exported_Functions CRC Extended Exported Functions + * @{ + */ + +/** @defgroup CRCEx_Exported_Functions_Group1 Extended Initialization/de-initialization functions + * @brief Extended Initialization and Configuration functions. + * +@verbatim + =============================================================================== + ##### Extended configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the generating polynomial + (+) Configure the input data inversion + (+) Configure the output data inversion + +@endverbatim + * @{ + */ + + +/** + * @brief Initialize the CRC polynomial if different from default one. + * @param hcrc CRC handle + * @param Pol CRC generating polynomial (7, 8, 16 or 32-bit long). + * This parameter is written in normal representation, e.g. + * @arg for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65 + * @arg for a polynomial of degree 16, X^16 + X^12 + X^5 + 1 is written 0x1021 + * @param PolyLength CRC polynomial length. + * This parameter can be one of the following values: + * @arg @ref CRC_POLYLENGTH_7B 7-bit long CRC (generating polynomial of degree 7) + * @arg @ref CRC_POLYLENGTH_8B 8-bit long CRC (generating polynomial of degree 8) + * @arg @ref CRC_POLYLENGTH_16B 16-bit long CRC (generating polynomial of degree 16) + * @arg @ref CRC_POLYLENGTH_32B 32-bit long CRC (generating polynomial of degree 32) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRCEx_Polynomial_Set(CRC_HandleTypeDef *hcrc, uint32_t Pol, uint32_t PolyLength) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t msb = 31U; /* polynomial degree is 32 at most, so msb is initialized to max value */ + + /* Check the parameters */ + assert_param(IS_CRC_POL_LENGTH(PolyLength)); + + /* Ensure that the generating polynomial is odd */ + if ((Pol & (uint32_t)(0x1U)) == 0U) + { + status = HAL_ERROR; + } + else + { + /* check polynomial definition vs polynomial size: + * polynomial length must be aligned with polynomial + * definition. HAL_ERROR is reported if Pol degree is + * larger than that indicated by PolyLength. + * Look for MSB position: msb will contain the degree of + * the second to the largest polynomial member. E.g., for + * X^7 + X^6 + X^5 + X^2 + 1, msb = 6. */ + while ((msb-- > 0U) && ((Pol & ((uint32_t)(0x1U) << (msb & 0x1FU))) == 0U)) + { + } + + switch (PolyLength) + { + + case CRC_POLYLENGTH_7B: + if (msb >= HAL_CRC_LENGTH_7B) + { + status = HAL_ERROR; + } + break; + case CRC_POLYLENGTH_8B: + if (msb >= HAL_CRC_LENGTH_8B) + { + status = HAL_ERROR; + } + break; + case CRC_POLYLENGTH_16B: + if (msb >= HAL_CRC_LENGTH_16B) + { + status = HAL_ERROR; + } + break; + + case CRC_POLYLENGTH_32B: + /* no polynomial definition vs. polynomial length issue possible */ + break; + default: + status = HAL_ERROR; + break; + } + } + if (status == HAL_OK) + { + /* set generating polynomial */ + WRITE_REG(hcrc->Instance->POL, Pol); + + /* set generating polynomial size */ + MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, PolyLength); + } + /* Return function status */ + return status; +} + +/** + * @brief Set the Reverse Input data mode. + * @param hcrc CRC handle + * @param InputReverseMode Input Data inversion mode. + * This parameter can be one of the following values: + * @arg @ref CRC_INPUTDATA_INVERSION_NONE no change in bit order (default value) + * @arg @ref CRC_INPUTDATA_INVERSION_BYTE Byte-wise bit reversal + * @arg @ref CRC_INPUTDATA_INVERSION_HALFWORD HalfWord-wise bit reversal + * @arg @ref CRC_INPUTDATA_INVERSION_WORD Word-wise bit reversal + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRCEx_Input_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t InputReverseMode) +{ + /* Check the parameters */ + assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(InputReverseMode)); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* set input data inversion mode */ + MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, InputReverseMode); + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the Reverse Output data mode. + * @param hcrc CRC handle + * @param OutputReverseMode Output Data inversion mode. + * This parameter can be one of the following values: + * @arg @ref CRC_OUTPUTDATA_INVERSION_DISABLE no CRC inversion (default value) + * @arg @ref CRC_OUTPUTDATA_INVERSION_ENABLE bit-level inversion (e.g. for a 8-bit CRC: 0xB5 becomes 0xAD) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRCEx_Output_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t OutputReverseMode) +{ + /* Check the parameters */ + assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(OutputReverseMode)); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* set output data inversion mode */ + MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, OutputReverseMode); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ + + +/** + * @} + */ + + +#endif /* HAL_CRC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c new file mode 100644 index 0000000..c30a418 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c @@ -0,0 +1,5619 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_cryp.c + * @author MCD Application Team + * @brief CRYP HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Cryptography (CRYP) peripheral: + * + Initialization, de-initialization, set config and get config functions + * + AES processing functions + * + DMA callback functions + * + CRYP IRQ handler management + * + Peripheral State functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The CRYP HAL driver can be used in CRYP or TinyAES peripheral as follows: + + (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): + (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() + or __HAL_RCC_AES_CLK_ENABLE for TinyAES peripheral + (##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT()) + (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA()) + (+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams one for managing data transfer from + memory to peripheral (input stream) and another stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA channels. The output channel should have higher + priority than the input channel HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). + + (#)Initialize the CRYP according to the specified parameters : + (##) The data type: 1-bit, 8-bit, 16-bit or 32-bit. + (##) The key size: 128, 192 or 256. + (##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM. + (##) The initialization vector (counter). It is not used in ECB mode. + (##) The key buffer used for encryption/decryption. + (+++) In some specific configurations, the key is written by the application + code out of the HAL scope. In that case, user can still resort to the + HAL APIs as usual but must make sure that pKey pointer is set to NULL. + (##) The DataWidthUnit field. It specifies whether the data length (or the payload length for authentication + algorithms) is in words or bytes. + (##) The Header used only in AES GCM and CCM Algorithm for authentication. + (##) The HeaderSize providing the size of the header buffer in words or bytes, + depending upon HeaderWidthUnit field. + (##) The HeaderWidthUnit field. It specifies whether the header length (for authentication algorithms) + is in words or bytes. + (##) The B0 block is the first authentication block used only in AES CCM mode. + (##) The KeyIVConfigSkip used to process several messages in a row (please see more information below). + + (#)Three processing (encryption/decryption) functions are available: + (##) Polling mode: encryption and decryption APIs are blocking functions + i.e. they process the data and wait till the processing is finished, + e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt, + e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT + (##) DMA mode: encryption and decryption APIs are not blocking functions + i.e. the data transfer is ensured by DMA, + e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA + + (#)When the processing function is called at first time after HAL_CRYP_Init() + the CRYP peripheral is configured and processes the buffer in input. + At second call, no need to Initialize the CRYP, user have to get current configuration via + HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set + new parameters, finally user can start encryption/decryption. + + (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. + + (#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt() + without having to configure again the Key or the Initialization Vector between each API call, + the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE. + Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA() + or HAL_CRYP_Decrypt_DMA(). + + [..] + The cryptographic processor supports following standards: + (#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 peripheral: + (##)64-bit data block processing + (##) chaining modes supported : + (+++) Electronic Code Book(ECB) + (+++) Cipher Block Chaining (CBC) + (##) keys length supported :64-bit, 128-bit and 192-bit. + (#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES peripheral: + (##)128-bit data block processing + (##) chaining modes supported : + (+++) Electronic Code Book(ECB) + (+++) Cipher Block Chaining (CBC) + (+++) Counter mode (CTR) + (+++) Galois/counter mode (GCM/GMAC) + (+++) Counter with Cipher Block Chaining-Message(CCM) + (##) keys length Supported : + (+++) for CRYP1 peripheral: 128-bit, 192-bit and 256-bit. + (+++) for TinyAES peripheral: 128-bit and 256-bit + + [..] + (@) Specific care must be taken to format the key and the Initialization Vector IV! + + [..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where + b127 is the MSB and b0 the LSB, the key must be stored in MCU memory + (+) as a sequence of words where the MSB word comes first (occupies the + lowest memory address) + (++) address n+0 : 0b b127 .. b120 b119 .. b112 b111 .. b104 b103 .. b96 + (++) address n+4 : 0b b95 .. b88 b87 .. b80 b79 .. b72 b71 .. b64 + (++) address n+8 : 0b b63 .. b56 b55 .. b48 b47 .. b40 b39 .. b32 + (++) address n+C : 0b b31 .. b24 b23 .. b16 b15 .. b8 b7 .. b0 + [..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}. + The 4 32-bit words that make the key must be stored as follows in MCU memory: + (+) address n+0 : 0x B15 B14 B13 B12 + (+) address n+4 : 0x B11 B10 B9 B8 + (+) address n+8 : 0x B7 B6 B5 B4 + (+) address n+C : 0x B3 B2 B1 B0 + [..] which leads to the expected setting + (+) AES_KEYR3 = 0x B15 B14 B13 B12 + (+) AES_KEYR2 = 0x B11 B10 B9 B8 + (+) AES_KEYR1 = 0x B7 B6 B5 B4 + (+) AES_KEYR0 = 0x B3 B2 B1 B0 + + [..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}. + The 8 32-bit words that make the key must be stored as follows in MCU memory: + (+) address n+00 : 0x B31 B30 B29 B28 + (+) address n+04 : 0x B27 B26 B25 B24 + (+) address n+08 : 0x B23 B22 B21 B20 + (+) address n+0C : 0x B19 B18 B17 B16 + (+) address n+10 : 0x B15 B14 B13 B12 + (+) address n+14 : 0x B11 B10 B9 B8 + (+) address n+18 : 0x B7 B6 B5 B4 + (+) address n+1C : 0x B3 B2 B1 B0 + [..] which leads to the expected setting + (+) AES_KEYR7 = 0x B31 B30 B29 B28 + (+) AES_KEYR6 = 0x B27 B26 B25 B24 + (+) AES_KEYR5 = 0x B23 B22 B21 B20 + (+) AES_KEYR4 = 0x B19 B18 B17 B16 + (+) AES_KEYR3 = 0x B15 B14 B13 B12 + (+) AES_KEYR2 = 0x B11 B10 B9 B8 + (+) AES_KEYR1 = 0x B7 B6 B5 B4 + (+) AES_KEYR0 = 0x B3 B2 B1 B0 + + [..] Initialization Vector IV (4 32-bit words) format must follow the same as + that of a 128-bit long key. + + [..] Note that key and IV registers are not sensitive to swap mode selection. + + [..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 and TinyAES peripherals: + (#) Algorithm supported : + (##) Galois/counter mode (GCM) + (##) Galois message authentication code (GMAC) :is exactly the same as + GCM algorithm composed only by an header. + (#) Four phases are performed in GCM : + (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing + (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash + computation only. + (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream + encryption + data XORing. It works in a similar way for ciphertext (C). + (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. + (#) structure of message construction in GCM is defined as below : + (##) 16 bytes Initial Counter Block (ICB)composed of IV and counter + (##) The authenticated header A (also knows as Additional Authentication Data AAD) + this part of the message is only authenticated, not encrypted. + (##) The plaintext message P is both authenticated and encrypted as ciphertext. + GCM standard specifies that ciphertext has same bit length as the plaintext. + (##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext + (on 64 bits) + + [..] A more detailed description of the GCM message structure is available below. + + [..] This section describe The AES Counter with Cipher Block Chaining-Message + Authentication Code (CCM) supported by both CRYP1 and TinyAES peripheral: + (#) Specific parameters for CCM : + + (##) B0 block : follows NIST Special Publication 800-38C, + (##) B1 block (header) + (##) CTRx block : control blocks + + [..] A detailed description of the CCM message structure is available below. + + (#) Four phases are performed in CCM for CRYP1 peripheral: + (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing + (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash + computation only. + (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream + encryption + data XORing. It works in a similar way for ciphertext (C). + (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. + (#) CCM in TinyAES peripheral: + (##) To perform message payload encryption or decryption AES is configured in CTR mode. + (##) For authentication two phases are performed : + - Header phase: peripheral processes the Additional Authenticated Data (AAD) first, then the cleartext message + only cleartext payload (not the ciphertext payload) is used and no output. + (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. + + *** Callback registration *** + ============================= + + [..] + The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback() + to register an interrupt callback. + + [..] + Function HAL_CRYP_RegisterCallback() allows to register following callbacks: + (+) InCpltCallback : Input FIFO transfer completed callback. + (+) OutCpltCallback : Output FIFO transfer completed callback. + (+) ErrorCallback : callback for error detection. + (+) MspInitCallback : CRYP MspInit. + (+) MspDeInitCallback : CRYP MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function HAL_CRYP_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) InCpltCallback : Input FIFO transfer completed callback. + (+) OutCpltCallback : Output FIFO transfer completed callback. + (+) ErrorCallback : callback for error detection. + (+) MspInitCallback : CRYP MspInit. + (+) MspDeInitCallback : CRYP MspDeInit. + + [..] + By default, after the HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET + all callbacks are set to the corresponding weak functions : + examples HAL_CRYP_InCpltCallback() , HAL_CRYP_OutCpltCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak function in the HAL_CRYP_Init()/ HAL_CRYP_DeInit() only when + these callbacks are null (not registered beforehand). + if not, MspInit or MspDeInit are not null, the HAL_CRYP_Init() / HAL_CRYP_DeInit() + keep and use the user MspInit/MspDeInit functions (registered beforehand) + + [..] + Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only. + Exception done MspInit/MspDeInit callbacks that can be registered/unregistered + in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_CRYP_RegisterCallback() before calling HAL_CRYP_DeInit() + or HAL_CRYP_Init() function. + + [..] + When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + + *** Suspend/Resume feature *** + ============================== + + [..] + The compilation define USE_HAL_CRYP_SUSPEND_RESUME when set to 1 + allows the user to resort to the suspend/resume feature. + A low priority block processing can be suspended to process a high priority block + instead. When the high priority block processing is over, the low priority block + processing can be resumed, restarting from the point where it was suspended. This + feature is applicable only in non-blocking interrupt mode. + + [..] User must resort to HAL_CRYP_Suspend() to suspend the low priority block + processing. This API manages the hardware block processing suspension and saves all the + internal data that will be needed to restart later on. Upon HAL_CRYP_Suspend() completion, + the user can launch the processing of any other block (high priority block processing). + + [..] When the high priority block processing is over, user must invoke HAL_CRYP_Resume() + to resume the low priority block processing. Ciphering (or deciphering) restarts from + the suspension point and ends as usual. + + [..] HAL_CRYP_Suspend() reports an error when the suspension request is sent too late + (i.e when the low priority block processing is about to end). There is no use to + suspend the tag generation processing for authentication algorithms. + + [..] + (@) If the key is written out of HAL scope (case pKey pointer set to NULL by the user), + the block processing suspension/resumption mechanism is NOT applicable. + + [..] + (@) If the Key and Initialization Vector are configured only once and configuration is + skipped for consecutive processings (case KeyIVConfigSkip set to CRYP_KEYIVCONFIG_ONCE), + the block processing suspension/resumption mechanism is NOT applicable. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup CRYP + * @{ + */ + +#if defined(AES) +#ifdef HAL_CRYP_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CRYP_Private_Defines + * @{ + */ +#define CRYP_TIMEOUT_KEYPREPARATION 82U /* The latency of key preparation operation is 82 clock cycles.*/ +#define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey + is 299 clock cycles.*/ +#define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/ + +#define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */ +#define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */ +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) +#define CRYP_PHASE_HEADER_SUSPENDED 0x00000004U /*!< GCM/GMAC/CCM header phase is suspended */ +#define CRYP_PHASE_PAYLOAD_SUSPENDED 0x00000005U /*!< GCM/CCM payload phase is suspended */ +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ +#define CRYP_PHASE_HEADER_DMA_FEED 0x00000006U /*!< GCM/GMAC/CCM header is fed to the peripheral in DMA mode */ + +#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */ +#define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */ +#define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */ +#define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */ +#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */ +#define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */ +#define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */ +#define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */ + +/* CTR1 information to use in CCM algorithm */ +#define CRYP_CCM_CTR1_0 0x07FFFFFFU +#define CRYP_CCM_CTR1_1 0xFFFFFF00U +#define CRYP_CCM_CTR1_2 0x00000001U + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/** @addtogroup CRYP_Private_Macros + * @{ + */ + +#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) MODIFY_REG((__HANDLE__)->Instance->CR,\ + AES_CR_GCMPH, (uint32_t)(__PHASE__)) + +/** + * @} + */ + +/* Private struct -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup CRYP_Private_Functions + * @{ + */ + +static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); +static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size); +static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); +static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); +static void CRYP_DMAError(DMA_HandleTypeDef *hdma); +static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize); +static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); +static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp); +static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); +static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); +static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp); +static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout); +static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); +static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); +static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp); +static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); +static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) +static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output); +static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input); +static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output); +static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input); +static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize); +static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize); +static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp); +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @addtogroup CRYP_Exported_Functions + * @{ + */ + +/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + ======================================================================================== + ##### Initialization, de-initialization and Set and Get configuration functions ##### + ======================================================================================== + [..] This section provides functions allowing to: + (+) Initialize the CRYP + (+) DeInitialize the CRYP + (+) Initialize the CRYP MSP + (+) DeInitialize the CRYP MSP + (+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef + Parameters which are configured in This section are : + (++) Key size + (++) Data Type : 32,16, 8 or 1bit + (++) AlgoMode : + (+++) for CRYP1 peripheral : + ECB and CBC in DES/TDES Standard + ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard. + (+++) for TinyAES2 peripheral, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported. + (+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP according to the specified + * parameters in the CRYP_ConfigTypeDef and creates the associated handle. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) +{ + /* Check the CRYP handle allocation */ + if (hcryp == NULL) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); + assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); + assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm)); + assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip)); + +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + if (hcryp->State == HAL_CRYP_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcryp->Lock = HAL_UNLOCKED; + + hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */ + hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */ + hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */ + + if (hcryp->MspInitCallback == NULL) + { + hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware */ + hcryp->MspInitCallback(hcryp); + } +#else + if (hcryp->State == HAL_CRYP_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcryp->Lock = HAL_UNLOCKED; + + /* Init the low level hardware */ + HAL_CRYP_MspInit(hcryp); + } +#endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */ + + /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and Algorithm */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, + hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm); + + /* Reset Error Code field */ + hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; + + /* Reset peripheral Key and IV configuration flag */ + hcryp->KeyIVConfig = 0U; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Set the default CRYP phase */ + hcryp->Phase = CRYP_PHASE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief De-Initializes the CRYP peripheral. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) +{ + /* Check the CRYP handle allocation */ + if (hcryp == NULL) + { + return HAL_ERROR; + } + + /* Set the default CRYP phase */ + hcryp->Phase = CRYP_PHASE_READY; + + /* Reset CrypInCount and CrypOutCount */ + hcryp->CrypInCount = 0; + hcryp->CrypOutCount = 0; + hcryp->CrypHeaderCount = 0; + + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + + if (hcryp->MspDeInitCallback == NULL) + { + hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */ + } + /* DeInit the low level hardware */ + hcryp->MspDeInitCallback(hcryp); + +#else + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + HAL_CRYP_MspDeInit(hcryp); + +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configure the CRYP according to the specified + * parameters in the CRYP_ConfigTypeDef + * @param hcryp pointer to a CRYP_HandleTypeDef structure + * @param pConf pointer to a CRYP_ConfigTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf) +{ + /* Check the CRYP handle allocation */ + if ((hcryp == NULL) || (pConf == NULL)) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_CRYP_KEYSIZE(pConf->KeySize)); + assert_param(IS_CRYP_DATATYPE(pConf->DataType)); + assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm)); + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Set CRYP parameters */ + hcryp->Init.DataType = pConf->DataType; + hcryp->Init.pKey = pConf->pKey; + hcryp->Init.Algorithm = pConf->Algorithm; + hcryp->Init.KeySize = pConf->KeySize; + hcryp->Init.pInitVect = pConf->pInitVect; + hcryp->Init.Header = pConf->Header; + hcryp->Init.HeaderSize = pConf->HeaderSize; + hcryp->Init.B0 = pConf->B0; + hcryp->Init.DataWidthUnit = pConf->DataWidthUnit; + hcryp->Init.HeaderWidthUnit = pConf->HeaderWidthUnit; + hcryp->Init.KeyIVConfigSkip = pConf->KeyIVConfigSkip; + + /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, + hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm); + + /*clear error flags*/ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Reset Error Code field */ + hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Set the default CRYP phase */ + hcryp->Phase = CRYP_PHASE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + return HAL_ERROR; + } +} + +/** + * @brief Get CRYP Configuration parameters in associated handle. + * @param pConf pointer to a CRYP_ConfigTypeDef structure + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf) +{ + /* Check the CRYP handle allocation */ + if ((hcryp == NULL) || (pConf == NULL)) + { + return HAL_ERROR; + } + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Get CRYP parameters */ + pConf->DataType = hcryp->Init.DataType; + pConf->pKey = hcryp->Init.pKey; + pConf->Algorithm = hcryp->Init.Algorithm; + pConf->KeySize = hcryp->Init.KeySize ; + pConf->pInitVect = hcryp->Init.pInitVect; + pConf->Header = hcryp->Init.Header ; + pConf->HeaderSize = hcryp->Init.HeaderSize; + pConf->B0 = hcryp->Init.B0; + pConf->DataWidthUnit = hcryp->Init.DataWidthUnit; + pConf->HeaderWidthUnit = hcryp->Init.HeaderWidthUnit; + pConf->KeyIVConfigSkip = hcryp->Init.KeyIVConfigSkip; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + return HAL_ERROR; + } +} +/** + * @brief Initializes the CRYP MSP. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_CRYP_MspInit can be implemented in the user file + */ +} + +/** + * @brief DeInitializes CRYP MSP. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_CRYP_MspDeInit can be implemented in the user file + */ +} + +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) +/** + * @brief Register a User CRYP Callback + * To be used instead of the weak predefined callback + * @param hcryp cryp handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID + * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID + * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID + * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval status + */ +HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID, + pCRYP_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hcryp); + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + switch (CallbackID) + { + case HAL_CRYP_INPUT_COMPLETE_CB_ID : + hcryp->InCpltCallback = pCallback; + break; + + case HAL_CRYP_OUTPUT_COMPLETE_CB_ID : + hcryp->OutCpltCallback = pCallback; + break; + + case HAL_CRYP_ERROR_CB_ID : + hcryp->ErrorCallback = pCallback; + break; + + case HAL_CRYP_MSPINIT_CB_ID : + hcryp->MspInitCallback = pCallback; + break; + + case HAL_CRYP_MSPDEINIT_CB_ID : + hcryp->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hcryp->State == HAL_CRYP_STATE_RESET) + { + switch (CallbackID) + { + case HAL_CRYP_MSPINIT_CB_ID : + hcryp->MspInitCallback = pCallback; + break; + + case HAL_CRYP_MSPDEINIT_CB_ID : + hcryp->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hcryp); + + return status; +} + +/** + * @brief Unregister an CRYP Callback + * CRYP callback is redirected to the weak predefined callback + * @param hcryp cryp handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID + * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID + * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID + * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hcryp); + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + switch (CallbackID) + { + case HAL_CRYP_INPUT_COMPLETE_CB_ID : + hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */ + break; + + case HAL_CRYP_OUTPUT_COMPLETE_CB_ID : + hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */ + break; + + case HAL_CRYP_ERROR_CB_ID : + hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_CRYP_MSPINIT_CB_ID : + hcryp->MspInitCallback = HAL_CRYP_MspInit; + break; + + case HAL_CRYP_MSPDEINIT_CB_ID : + hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; + break; + + default : + /* Update the error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hcryp->State == HAL_CRYP_STATE_RESET) + { + switch (CallbackID) + { + case HAL_CRYP_MSPINIT_CB_ID : + hcryp->MspInitCallback = HAL_CRYP_MspInit; + break; + + case HAL_CRYP_MSPDEINIT_CB_ID : + hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; + break; + + default : + /* Update the error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;; + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hcryp); + + return status; +} +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) +/** + * @brief Request CRYP processing suspension when in interruption mode. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @note Set the handle field SuspendRequest to the appropriate value so that + * the on-going CRYP processing is suspended as soon as the required + * conditions are met. + * @note HAL_CRYP_ProcessSuspend() can only be invoked when the processing is done + * in non-blocking interrupt mode. + * @note It is advised not to suspend the CRYP processing when the DMA controller + * is managing the data transfer. + * @retval None + */ +void HAL_CRYP_ProcessSuspend(CRYP_HandleTypeDef *hcryp) +{ + /* Set Handle SuspendRequest field */ + hcryp->SuspendRequest = HAL_CRYP_SUSPEND; +} + +/** + * @brief CRYP processing suspension and peripheral internal parameters storage. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @note peripheral internal parameters are stored to be readily available when + * suspended processing is resumed later on. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Suspend(CRYP_HandleTypeDef *hcryp) +{ + HAL_CRYP_STATETypeDef state; + + /* Request suspension */ + HAL_CRYP_ProcessSuspend(hcryp); + + do + { + state = HAL_CRYP_GetState(hcryp); + } while ((state != HAL_CRYP_STATE_SUSPENDED) && (state != HAL_CRYP_STATE_READY)); + + if (HAL_CRYP_GetState(hcryp) == HAL_CRYP_STATE_READY) + { + /* Processing was already over or was about to end. No suspension done */ + return HAL_ERROR; + } + else + { + /* Suspend Processing */ + + /* If authentication algorithms on-going, carry out first saving steps + before disable the peripheral */ + if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || \ + (hcryp->Init.Algorithm == CRYP_AES_CCM)) + { + /* Save Suspension registers */ + CRYP_Read_SuspendRegisters(hcryp, hcryp->SUSPxR_saved); + /* Save Key */ + CRYP_Read_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize); + /* Save IV */ + CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved); + } + /* Disable AES */ + __HAL_CRYP_DISABLE(hcryp); + + /* Save low-priority block CRYP handle parameters */ + hcryp->Init_saved = hcryp->Init; + hcryp->pCrypInBuffPtr_saved = hcryp->pCrypInBuffPtr; + hcryp->pCrypOutBuffPtr_saved = hcryp->pCrypOutBuffPtr; + hcryp->CrypInCount_saved = hcryp->CrypInCount; + hcryp->CrypOutCount_saved = hcryp->CrypOutCount; + hcryp->Phase_saved = hcryp->Phase; + hcryp->State_saved = hcryp->State; + hcryp->Size_saved = ((hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) ? \ + (hcryp->Size / 4U) : hcryp->Size); + hcryp->SizesSum_saved = hcryp->SizesSum; + hcryp->AutoKeyDerivation_saved = hcryp->AutoKeyDerivation; + hcryp->CrypHeaderCount_saved = hcryp->CrypHeaderCount; + hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; + + if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \ + (hcryp->Init.Algorithm == CRYP_AES_CTR)) + { + /* Save Initialisation Vector registers */ + CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved); + } + + /* Save Control register */ + hcryp->CR_saved = hcryp->Instance->CR; + + } + return HAL_OK; +} + + +/** + * @brief CRYP processing resumption. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @note Processing restarts at the exact point where it was suspended, based + * on the parameters saved at suspension time. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Resume(CRYP_HandleTypeDef *hcryp) +{ + /* Check the CRYP handle allocation */ + if (hcryp == NULL) + { + return HAL_ERROR; + } + + if (hcryp->State_saved != HAL_CRYP_STATE_SUSPENDED) + { + /* CRYP was not suspended */ + return HAL_ERROR; + } + else + { + + /* Restore low-priority block CRYP handle parameters */ + hcryp->Init = hcryp->Init_saved; + hcryp->State = hcryp->State_saved; + + /* Chaining algorithms case */ + if ((hcryp->Init_saved.Algorithm == CRYP_AES_ECB) || \ + (hcryp->Init_saved.Algorithm == CRYP_AES_CBC) || \ + (hcryp->Init_saved.Algorithm == CRYP_AES_CTR)) + { + /* Restore low-priority block CRYP handle parameters */ + hcryp->AutoKeyDerivation = hcryp->AutoKeyDerivation_saved; + + if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \ + (hcryp->Init.Algorithm == CRYP_AES_CTR)) + { + hcryp->Init.pInitVect = hcryp->IV_saved; + } + __HAL_CRYP_DISABLE(hcryp); + (void) HAL_CRYP_Init(hcryp); + } + else /* Authentication algorithms case */ + { + /* Restore low-priority block CRYP handle parameters */ + hcryp->Phase = hcryp->Phase_saved; + hcryp->CrypHeaderCount = hcryp->CrypHeaderCount_saved; + hcryp->SizesSum = hcryp->SizesSum_saved; + + /* Disable AES and write-back SUSPxR registers */; + __HAL_CRYP_DISABLE(hcryp); + /* Restore AES Suspend Registers */ + CRYP_Write_SuspendRegisters(hcryp, hcryp->SUSPxR_saved); + /* Restore Control, Key and IV Registers, then enable AES */ + hcryp->Instance->CR = hcryp->CR_saved; + CRYP_Write_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize); + CRYP_Write_IVRegisters(hcryp, hcryp->IV_saved); + + /* At the same time, set handle state back to READY to be able to resume the AES calculations + without the processing APIs returning HAL_BUSY when called. */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + + /* Resume low-priority block processing under IT */ + hcryp->ResumingFlag = 1U; + if (READ_BIT(hcryp->CR_saved, AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) + { + if (HAL_CRYP_Encrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \ + hcryp->pCrypOutBuffPtr_saved) != HAL_OK) + { + return HAL_ERROR; + } + } + else + { + if (HAL_CRYP_Decrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \ + hcryp->pCrypOutBuffPtr_saved) != HAL_OK) + { + return HAL_ERROR; + } + } + } + return HAL_OK; +} +#endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */ + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group2 Encryption Decryption functions + * @brief Encryption Decryption functions. + * +@verbatim + ============================================================================== + ##### Encrypt Decrypt functions ##### + ============================================================================== + [..] This section provides API allowing to Encrypt/Decrypt Data following + Standard DES/TDES or AES, and Algorithm configured by the user: + (+) Standard DES/TDES only supported by CRYP1 peripheral, below list of Algorithm supported : + - Electronic Code Book(ECB) + - Cipher Block Chaining (CBC) + (+) Standard AES supported by CRYP1 peripheral & TinyAES, list of Algorithm supported: + - Electronic Code Book(ECB) + - Cipher Block Chaining (CBC) + - Counter mode (CTR) + - Cipher Block Chaining (CBC) + - Counter mode (CTR) + - Galois/counter mode (GCM) + - Counter with Cipher Block Chaining-Message(CCM) + [..] Three processing functions are available: + (+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt + (+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT + (+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA + +@endverbatim + * @{ + */ + +/* GCM message structure additional details + + ICB + +-------------------------------------------------------+ + | Initialization vector (IV) | Counter | + |----------------|----------------|-----------|---------| + 127 95 63 31 0 + + + Bit Number Register Contents + ---------- --------------- ----------- + 127 ...96 CRYP_IV1R[31:0] ICB[127:96] + 95 ...64 CRYP_IV1L[31:0] B0[95:64] + 63 ... 32 CRYP_IV0R[31:0] ICB[63:32] + 31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2 + + + + GCM last block definition + +-------------------------------------------------------------------+ + | Bit[0] | Bit[32] | Bit[64] | Bit[96] | + |-----------|--------------------|-----------|----------------------| + | 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] | + |-----------|--------------------|-----------|----------------------| + +*/ + +/* CCM message blocks description + + (##) B0 block : According to NIST Special Publication 800-38C, + The first block B0 is formatted as follows, where l(m) is encoded in + most-significant-byte first order: + + Octet Number Contents + ------------ --------- + 0 Flags + 1 ... 15-q Nonce N + 16-q ... 15 Q + + the Flags field is formatted as follows: + + Bit Number Contents + ---------- ---------------------- + 7 Reserved (always zero) + 6 Adata + 5 ... 3 (t-2)/2 + 2 ... 0 [q-1]3 + + - Q: a bit string representation of the octet length of P (plaintext) + - q The octet length of the binary representation of the octet length of the payload + - A nonce (N), n The octet length of the where n+q=15. + - Flags: most significant octet containing four flags for control information, + - t The octet length of the MAC. + (##) B1 block (header) : associated data length(a) concatenated with Associated Data (A) + the associated data length expressed in bytes (a) defined as below: + - If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets + - If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets + - If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets + (##) CTRx block : control blocks + - Generation of CTR1 from first block B0 information : + equal to B0 with first 5 bits zeroed and most significant bits storing octet + length of P also zeroed, then incremented by one + + Bit Number Register Contents + ---------- --------------- ----------- + 127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for + bit 0 that is set to 1 + 95 ...64 CRYP_IV1L[31:0] B0[95:64] + 63 ... 32 CRYP_IV0R[31:0] B0[63:32] + 31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0 + + - Generation of CTR0: same as CTR1 with bit[0] set to zero. + +*/ + +/** + * @brief Encryption mode. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input Pointer to the input buffer (plaintext) + * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) + * @param Output Pointer to the output buffer(ciphertext) + * @param Timeout Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, + uint32_t Timeout) +{ + uint32_t algo; + HAL_StatusTypeDef status; +#ifdef USE_FULL_ASSERT + uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; + + /* Check input buffer size */ + assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); +#endif /* USE_FULL_ASSERT */ + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Change state Busy */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + hcryp->pCrypInBuffPtr = Input; + hcryp->pCrypOutBuffPtr = Output; + + /* Calculate Size parameter in Byte*/ + if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) + { + hcryp->Size = Size * 4U; + } + else + { + hcryp->Size = Size; + } + + /* Set the operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); + + /* algo get algorithm selected */ + algo = hcryp->Instance->CR & AES_CR_CHMOD; + + switch (algo) + { + + case CRYP_AES_ECB: + case CRYP_AES_CBC: + case CRYP_AES_CTR: + + /* AES encryption */ + status = CRYP_AES_Encrypt(hcryp, Timeout); + break; + + case CRYP_AES_GCM_GMAC: + + /* AES GCM encryption */ + status = CRYP_AESGCM_Process(hcryp, Timeout) ; + break; + + case CRYP_AES_CCM: + + /* AES CCM encryption */ + status = CRYP_AESCCM_Process(hcryp, Timeout); + break; + + default: + hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @brief Decryption mode. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input Pointer to the input buffer (ciphertext ) + * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) + * @param Output Pointer to the output buffer(plaintext) + * @param Timeout Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, + uint32_t Timeout) +{ + HAL_StatusTypeDef status; + uint32_t algo; +#ifdef USE_FULL_ASSERT + uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; + + /* Check input buffer size */ + assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); +#endif /* USE_FULL_ASSERT */ + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Change state Busy */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + hcryp->pCrypInBuffPtr = Input; + hcryp->pCrypOutBuffPtr = Output; + + /* Calculate Size parameter in Byte*/ + if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) + { + hcryp->Size = Size * 4U; + } + else + { + hcryp->Size = Size; + } + + /* Set Decryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); + + /* algo get algorithm selected */ + algo = hcryp->Instance->CR & AES_CR_CHMOD; + + switch (algo) + { + + case CRYP_AES_ECB: + case CRYP_AES_CBC: + case CRYP_AES_CTR: + + /* AES decryption */ + status = CRYP_AES_Decrypt(hcryp, Timeout); + break; + + case CRYP_AES_GCM_GMAC: + + /* AES GCM decryption */ + status = CRYP_AESGCM_Process(hcryp, Timeout) ; + break; + + case CRYP_AES_CCM: + + /* AES CCM decryption */ + status = CRYP_AESCCM_Process(hcryp, Timeout); + break; + + default: + hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @brief Encryption in interrupt mode. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input Pointer to the input buffer (plaintext) + * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) + * @param Output Pointer to the output buffer(ciphertext) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) +{ + HAL_StatusTypeDef status; + uint32_t algo; +#ifdef USE_FULL_ASSERT + uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; + + /* Check input buffer size */ + assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); +#endif /* USE_FULL_ASSERT */ + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Change state Busy */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) + if (hcryp->ResumingFlag == 1U) + { + hcryp->ResumingFlag = 0U; + if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED) + { + hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved; + hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved; + } + else + { + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + } + } + else +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + { + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + } + + hcryp->pCrypInBuffPtr = Input; + hcryp->pCrypOutBuffPtr = Output; + + /* Calculate Size parameter in Byte*/ + if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) + { + hcryp->Size = Size * 4U; + } + else + { + hcryp->Size = Size; + } + + /* Set encryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); + + /* algo get algorithm selected */ + algo = hcryp->Instance->CR & AES_CR_CHMOD; + + switch (algo) + { + + case CRYP_AES_ECB: + case CRYP_AES_CBC: + case CRYP_AES_CTR: + + /* AES encryption */ + status = CRYP_AES_Encrypt_IT(hcryp); + break; + + case CRYP_AES_GCM_GMAC: + + /* AES GCM encryption */ + status = CRYP_AESGCM_Process_IT(hcryp) ; + break; + + case CRYP_AES_CCM: + + /* AES CCM encryption */ + status = CRYP_AESCCM_Process_IT(hcryp); + break; + + default: + hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + break; + } + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @brief Decryption in interrupt mode. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input Pointer to the input buffer (ciphertext ) + * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) + * @param Output Pointer to the output buffer(plaintext) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) +{ + HAL_StatusTypeDef status; + uint32_t algo; +#ifdef USE_FULL_ASSERT + uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; + + /* Check input buffer size */ + assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); +#endif /* USE_FULL_ASSERT */ + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Change state Busy */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) + if (hcryp->ResumingFlag == 1U) + { + hcryp->ResumingFlag = 0U; + if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED) + { + hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved; + hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved; + } + else + { + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + } + } + else +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + { + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + } + hcryp->pCrypInBuffPtr = Input; + hcryp->pCrypOutBuffPtr = Output; + + /* Calculate Size parameter in Byte*/ + if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) + { + hcryp->Size = Size * 4U; + } + else + { + hcryp->Size = Size; + } + + /* Set decryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); + + /* algo get algorithm selected */ + algo = hcryp->Instance->CR & AES_CR_CHMOD; + + switch (algo) + { + + case CRYP_AES_ECB: + case CRYP_AES_CBC: + case CRYP_AES_CTR: + + /* AES decryption */ + status = CRYP_AES_Decrypt_IT(hcryp); + break; + + case CRYP_AES_GCM_GMAC: + + /* AES GCM decryption */ + status = CRYP_AESGCM_Process_IT(hcryp) ; + break; + + case CRYP_AES_CCM: + + /* AES CCM decryption */ + status = CRYP_AESCCM_Process_IT(hcryp); + break; + + default: + hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + break; + } + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @brief Encryption in DMA mode. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input Pointer to the input buffer (plaintext) + * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) + * @param Output Pointer to the output buffer(ciphertext) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) +{ + HAL_StatusTypeDef status; + uint32_t algo; + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ +#ifdef USE_FULL_ASSERT + uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; + + /* Check input buffer size */ + assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); +#endif /* USE_FULL_ASSERT */ + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Change state Busy */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + hcryp->pCrypInBuffPtr = Input; + hcryp->pCrypOutBuffPtr = Output; + + /* Calculate Size parameter in Byte*/ + if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) + { + hcryp->Size = Size * 4U; + } + else + { + hcryp->Size = Size; + } + + /* Set encryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); + + /* algo get algorithm selected */ + algo = hcryp->Instance->CR & AES_CR_CHMOD; + + switch (algo) + { + + case CRYP_AES_ECB: + case CRYP_AES_CBC: + case CRYP_AES_CTR: + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + } + } + + if (DoKeyIVConfig == 1U) + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set the Initialization Vector*/ + if (hcryp->Init.Algorithm != CRYP_AES_ECB) + { + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Start DMA process transfer for AES */ + CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), \ + (uint32_t)(hcryp->pCrypOutBuffPtr)); + status = HAL_OK; + break; + + case CRYP_AES_GCM_GMAC: + + /* AES GCM encryption */ + status = CRYP_AESGCM_Process_DMA(hcryp) ; + break; + + case CRYP_AES_CCM: + + /* AES CCM encryption */ + status = CRYP_AESCCM_Process_DMA(hcryp); + break; + + default: + hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + break; + } + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return function status */ + return status; +} + +/** + * @brief Decryption in DMA mode. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input Pointer to the input buffer (ciphertext ) + * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field) + * @param Output Pointer to the output buffer(plaintext) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) +{ + HAL_StatusTypeDef status; + uint32_t algo; +#ifdef USE_FULL_ASSERT + uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD; + + /* Check input buffer size */ + assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size)); +#endif /* USE_FULL_ASSERT */ + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + + /* Change state Busy */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/ + hcryp->CrypInCount = 0U; + hcryp->CrypOutCount = 0U; + hcryp->pCrypInBuffPtr = Input; + hcryp->pCrypOutBuffPtr = Output; + + /* Calculate Size parameter in Byte*/ + if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) + { + hcryp->Size = Size * 4U; + } + else + { + hcryp->Size = Size; + } + + /* Set decryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); + + /* algo get algorithm selected */ + algo = hcryp->Instance->CR & AES_CR_CHMOD; + + switch (algo) + { + + case CRYP_AES_ECB: + case CRYP_AES_CBC: + case CRYP_AES_CTR: + + /* AES decryption */ + status = CRYP_AES_Decrypt_DMA(hcryp); + break; + + case CRYP_AES_GCM_GMAC: + + /* AES GCM decryption */ + status = CRYP_AESGCM_Process_DMA(hcryp) ; + break; + + case CRYP_AES_CCM: + + /* AES CCM decryption */ + status = CRYP_AESCCM_Process_DMA(hcryp); + break; + + default: + hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + break; + } + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + status = HAL_ERROR; + } + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management + * @brief CRYP IRQ handler. + * +@verbatim + ============================================================================== + ##### CRYP IRQ handler management ##### + ============================================================================== +[..] This section provides CRYP IRQ handler and callback functions. + (+) HAL_CRYP_IRQHandler CRYP interrupt request + (+) HAL_CRYP_InCpltCallback input data transfer complete callback + (+) HAL_CRYP_OutCpltCallback output data transfer complete callback + (+) HAL_CRYP_ErrorCallback CRYP error callback + (+) HAL_CRYP_GetState return the CRYP state + (+) HAL_CRYP_GetError return the CRYP error code +@endverbatim + * @{ + */ + +/** + * @brief This function handles cryptographic interrupt request. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) +{ + uint32_t itsource = hcryp->Instance->CR; + uint32_t itflag = hcryp->Instance->SR; + + /* Check if error occurred */ + if ((itsource & CRYP_IT_ERRIE) == CRYP_IT_ERRIE) + { + /* If write Error occurred */ + if ((itflag & CRYP_IT_WRERR) == CRYP_IT_WRERR) + { + hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE; + } + /* If read Error occurred */ + if ((itflag & CRYP_IT_RDERR) == CRYP_IT_RDERR) + { + hcryp->ErrorCode |= HAL_CRYP_ERROR_READ; + } + } + + if ((itflag & CRYP_IT_CCF) == CRYP_IT_CCF) + { + if ((itsource & CRYP_IT_CCFIE) == CRYP_IT_CCFIE) + { + /* Clear computation complete flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || (hcryp->Init.Algorithm == CRYP_AES_CCM)) + { + + /* if header phase */ + if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER) + { + CRYP_GCMCCM_SetHeaderPhase_IT(hcryp); + } + else /* if payload phase */ + { + CRYP_GCMCCM_SetPayloadPhase_IT(hcryp); + } + } + else /* AES Algorithm ECB,CBC or CTR*/ + { + CRYP_AES_IT(hcryp); + } + } + } +} + +/** + * @brief Return the CRYP error code. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for the CRYP peripheral + * @retval CRYP error code + */ +uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp) +{ + return hcryp->ErrorCode; +} + +/** + * @brief Returns the CRYP state. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @retval HAL state + */ +HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) +{ + return hcryp->State; +} + +/** + * @brief Input FIFO transfer completed callback. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @retval None + */ +__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_CRYP_InCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Output FIFO transfer completed callback. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @retval None + */ +__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_CRYP_OutCpltCallback can be implemented in the user file + */ +} + +/** + * @brief CRYP error callback. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @retval None + */ +__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hcryp); + + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_CRYP_ErrorCallback can be implemented in the user file + */ +} +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup CRYP_Private_Functions + * @{ + */ + +/** + * @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard + * @param hcryp pointer to a CRYP_HandleTypeDef structure + * @param Timeout specify Timeout value + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + uint16_t incount; /* Temporary CrypInCount Value */ + uint16_t outcount; /* Temporary CrypOutCount Value */ + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + } + } + + if (DoKeyIVConfig == 1U) + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + if (hcryp->Init.Algorithm != CRYP_AES_ECB) + { + /* Set the Initialization Vector*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U))) + { + /* Write plain Ddta and get cipher data */ + CRYP_AES_ProcessData(hcryp, Timeout); + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + } + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp) +{ + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + } + } + + if (DoKeyIVConfig == 1U) + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + if (hcryp->Init.Algorithm != CRYP_AES_ECB) + { + /* Set the Initialization Vector*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + if (hcryp->Size != 0U) + { + + /* Enable computation complete flag and error interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Increment the pointer before writing the input block in the IN FIFO to make sure that + when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value + and it is ready for the next operation. */ + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + } + else + { + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Decryption in ECB/CBC & CTR mode with AES Standard + * @param hcryp pointer to a CRYP_HandleTypeDef structure + * @param Timeout Specify Timeout value + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + uint16_t incount; /* Temporary CrypInCount Value */ + uint16_t outcount; /* Temporary CrypOutCount Value */ + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + } + } + + if (DoKeyIVConfig == 1U) + { + /* Key preparation for ECB/CBC */ + if (hcryp->Init.Algorithm != CRYP_AES_CTR) /*ECB or CBC*/ + { + if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/ + { + /* Set key preparation for decryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); + + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Wait for CCF flag to be raised */ + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state & error code*/ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* Return to decryption operating mode(Mode 3)*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); + } + else /*Mode 4 : decryption & Key preparation*/ + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set decryption & Key preparation operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); + } + } + else /*Algorithm CTR */ + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + } + + /* Set IV */ + if (hcryp->Init.Algorithm != CRYP_AES_ECB) + { + /* Set the Initialization Vector*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U))) + { + /* Write plain data and get cipher data */ + CRYP_AES_ProcessData(hcryp, Timeout); + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + } + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp) +{ + __IO uint32_t count = 0U; + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + } + } + + if (DoKeyIVConfig == 1U) + { + /* Key preparation for ECB/CBC */ + if (hcryp->Init.Algorithm != CRYP_AES_CTR) + { + if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/ + { + /* Set key preparation for decryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); + + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Wait for CCF flag to be raised */ + count = CRYP_TIMEOUT_KEYPREPARATION; + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* Return to decryption operating mode(Mode 3)*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); + } + else /*Mode 4 : decryption & key preparation*/ + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set decryption & key preparation operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); + } + } + else /*Algorithm CTR */ + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + } + + /* Set IV */ + if (hcryp->Init.Algorithm != CRYP_AES_ECB) + { + /* Set the Initialization Vector*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + if (hcryp->Size != 0U) + { + /* Enable computation complete flag and error interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Increment the pointer before writing the input block in the IN FIFO to make sure that + when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value + and it is ready for the next operation. */ + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + } + else + { + /* Process locked */ + __HAL_UNLOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; +} +/** + * @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp) +{ + __IO uint32_t count = 0U; + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + } + } + + if (DoKeyIVConfig == 1U) + { + /* Key preparation for ECB/CBC */ + if (hcryp->Init.Algorithm != CRYP_AES_CTR) + { + if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/ + { + /* Set key preparation for decryption operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); + + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Wait for CCF flag to be raised */ + count = CRYP_TIMEOUT_KEYPREPARATION; + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* Return to decryption operating mode(Mode 3)*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); + } + else /*Mode 4 : decryption & key preparation*/ + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set decryption & Key preparation operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); + } + } + else /*Algorithm CTR */ + { + /* Set the Key*/ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + } + + if (hcryp->Init.Algorithm != CRYP_AES_ECB) + { + /* Set the Initialization Vector*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + if (hcryp->Size != 0U) + { + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr)); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief DMA CRYP input data process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + uint32_t loopcounter; + uint32_t headersize_in_bytes; + uint32_t tmp; + static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ + 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ + 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU + }; /* 8-bit data type */ + + /* Stop the DMA transfers to the IN FIFO by clearing to "0" the DMAINEN */ + CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN); + + if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED) + { + /* DMA is disabled, CCF is meaningful. Wait for computation completion before moving forward */ + CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE); + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) + { + headersize_in_bytes = hcryp->Init.HeaderSize * 4U; + } + else + { + headersize_in_bytes = hcryp->Init.HeaderSize; + } + + if ((headersize_in_bytes % 16U) != 0U) + { + /* Write last words that couldn't be fed by DMA */ + hcryp->CrypHeaderCount = (uint16_t)((headersize_in_bytes / 16U) * 4U); + for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + } + /* If the header size is a multiple of words */ + if ((headersize_in_bytes % 4U) == 0U) + { + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + else + { + /* Enter last bytes, padded with zeros */ + tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; + hcryp->Instance->DINR = tmp; + loopcounter++; + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + + /* Wait for computation completion before moving forward */ + CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE); + } /* if ((headersize_in_bytes % 16U) != 0U) */ + + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + /* Select payload phase once the header phase is performed */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Initiate payload DMA IN and processed data DMA OUT transfers */ + (void)CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp); + } + else + { + uint32_t algo; + /* ECB, CBC or CTR end of input data feeding + or + end of GCM/CCM payload data feeding through DMA */ + algo = hcryp->Instance->CR & AES_CR_CHMOD; + + /* Don't call input data transfer complete callback only if + it remains some input data to write to the peripheral. + This case can only occur for GCM and CCM with a payload length + not a multiple of 16 bytes */ + if (!(((algo == CRYP_AES_GCM_GMAC) || (algo == CRYP_AES_CCM)) && \ + (((hcryp->Size) % 16U) != 0U))) + { + /* Call input data transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } /* if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED) */ +} + +/** + * @brief DMA CRYP output data process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) +{ + uint32_t count; + uint32_t npblb; + uint32_t lastwordsize; + uint32_t temp[4]; /* Temporary CrypOutBuff */ + uint32_t mode; + + CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Stop the DMA transfers to the OUT FIFO by clearing to "0" the DMAOUTEN */ + CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN); + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* Last block transfer in case of GCM or CCM with Size not %16*/ + if (((hcryp->Size) % 16U) != 0U) + { + /* set CrypInCount and CrypOutCount to exact number of word already computed via DMA */ + hcryp->CrypInCount = (hcryp->Size / 16U) * 4U; + hcryp->CrypOutCount = hcryp->CrypInCount; + + /* Compute the number of padding bytes in last block of payload */ + npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); + + mode = hcryp->Instance->CR & AES_CR_MODE; + if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || + ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) + { + /* Specify the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* Last block optionally pad the data with zeros*/ + for (count = 0U; count < lastwordsize; count++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (count < 4U) + { + /* Pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + count++; + } + /* Call input data transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + + /*Wait on CCF flag*/ + CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE); + + /*Read the output block from the output FIFO */ + for (count = 0U; count < 4U; count++) + { + /* Read the output block from the output FIFO and put them in temporary buffer + then get CrypOutBuff from temporary buffer */ + temp[count] = hcryp->Instance->DOUTR; + } + + count = 0U; + while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (count < 4U)) + { + *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[count]; + hcryp->CrypOutCount++; + count++; + } + } + + if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) + && ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM)) + { + /* Disable CRYP (not allowed in GCM)*/ + __HAL_CRYP_DISABLE(hcryp); + } + + /* Change the CRYP state to ready */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + + /* Call output data transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Output complete callback*/ + hcryp->OutCpltCallback(hcryp); +#else + /*Call legacy weak Output complete callback*/ + HAL_CRYP_OutCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA CRYP communication error callback. + * @param hdma DMA handle + * @retval None + */ +static void CRYP_DMAError(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* DMA error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* Call error callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered error callback*/ + hcryp->ErrorCallback(hcryp); +#else + /*Call legacy weak error callback*/ + HAL_CRYP_ErrorCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ +} + +/** + * @brief Set the DMA configuration and start the DMA transfer + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param inputaddr address of the input buffer + * @param Size size of the input and output buffers in words, must be a multiple of 4 + * @param outputaddr address of the output buffer + * @retval None + */ +static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) +{ + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; + + /* Set the DMA input error callback */ + hcryp->hdmain->XferErrorCallback = CRYP_DMAError; + + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; + + /* Set the DMA output error callback */ + hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; + + if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) + { + /* Enable CRYP (not allowed in GCM & CCM)*/ + __HAL_CRYP_ENABLE(hcryp); + } + + /* Enable the DMA input stream */ + if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK) + { + /* DMA error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; + + /* Call error callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered error callback*/ + hcryp->ErrorCallback(hcryp); +#else + /*Call legacy weak error callback*/ + HAL_CRYP_ErrorCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + /* Enable the DMA output stream */ + if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK) + { + /* DMA error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; + + /* Call error callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered error callback*/ + hcryp->ErrorCallback(hcryp); +#else + /*Call legacy weak error callback*/ + HAL_CRYP_ErrorCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + /* Enable In and Out DMA requests */ + SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN)); +} + +/** + * @brief Set the DMA configuration and start the header DMA transfer + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param inputaddr address of the input buffer + * @param Size size of the input buffer in words, must be a multiple of 4 + * @retval None + */ +static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size) +{ + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; + + /* Set the DMA input error callback */ + hcryp->hdmain->XferErrorCallback = CRYP_DMAError; + + /* Mark that header is fed to the peripheral in DMA mode */ + hcryp->Phase = CRYP_PHASE_HEADER_DMA_FEED; + /* Enable the DMA input stream */ + if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK) + { + /* DMA error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + /* Call error callback */ + } + + /* Enable IN DMA requests */ + SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN); + + return HAL_OK; +} + +/** + * @brief Process Data: Write Input data in polling mode and used in AES functions. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Timeout Specify Timeout value + * @retval None + */ +static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + + uint32_t temp[4]; /* Temporary CrypOutBuff */ + uint32_t i; + + /* Write the input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + + /* Wait for CCF flag to be raised */ + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + /*Call registered error callback*/ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + hcryp->ErrorCallback(hcryp); +#else + /*Call legacy weak error callback*/ + HAL_CRYP_ErrorCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* Read the output block from the output FIFO and put them in temporary buffer + then get CrypOutBuff from temporary buffer*/ + for (i = 0U; i < 4U; i++) + { + temp[i] = hcryp->Instance->DOUTR; + } + i = 0U; + while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U)) + { + *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i]; + hcryp->CrypOutCount++; + i++; + } +} + +/** + * @brief Handle CRYP block input/output data handling under interruption. + * @note The function is called under interruption only, once + * interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @retval HAL status + */ +static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp) +{ + uint32_t temp[4]; /* Temporary CrypOutBuff */ + uint32_t i; + + if (hcryp->State == HAL_CRYP_STATE_BUSY) + { + /* Read the output block from the output FIFO and put them in temporary buffer + then get CrypOutBuff from temporary buffer*/ + for (i = 0U; i < 4U; i++) + { + temp[i] = hcryp->Instance->DOUTR; + } + i = 0U; + while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U)) + { + *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i]; + hcryp->CrypOutCount++; + i++; + } + if (hcryp->CrypOutCount == (hcryp->Size / 4U)) + { + /* Disable Computation Complete flag and errors interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Call Output transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Output complete callback*/ + hcryp->OutCpltCallback(hcryp); +#else + /*Call legacy weak Output complete callback*/ + HAL_CRYP_OutCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + else + { +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) + /* If suspension flag has been raised, suspend processing + only if not already at the end of the payload */ + if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) + { + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* reset SuspendRequest */ + hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; + /* Disable Computation Complete Flag and Errors Interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_SUSPENDED; + /* Mark that the payload phase is suspended */ + hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + } + else +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + { + /* Write the input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + + if (hcryp->CrypInCount == (hcryp->Size / 4U)) + { + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + } + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered error callback*/ + hcryp->ErrorCallback(hcryp); +#else + /*Call legacy weak error callback*/ + HAL_CRYP_ErrorCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } +} + +/** + * @brief Writes Key in Key registers. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param KeySize Size of Key + * @note If pKey is NULL, the Key registers are not written. This configuration + * occurs when the key is written out of HAL scope. + * @retval None + */ +static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize) +{ + if (hcryp->Init.pKey != NULL) + { + switch (KeySize) + { + case CRYP_KEYSIZE_256B: + hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey); + hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1U); + hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2U); + hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3U); + hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4U); + hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5U); + hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6U); + hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7U); + break; + case CRYP_KEYSIZE_128B: + hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey); + hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1U); + hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2U); + hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3U); + + break; + default: + break; + } + } +} + +/** + * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Timeout Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ; + uint32_t npblb; + uint32_t temp[4]; /* Temporary CrypOutBuff */ + uint32_t index; + uint32_t lastwordsize; + uint32_t incount; /* Temporary CrypInCount Value */ + uint32_t outcount; /* Temporary CrypOutCount Value */ + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ + } + } + else + { + hcryp->SizesSum = hcryp->Size; + } + + if (DoKeyIVConfig == 1U) + { + + /* Reset CrypHeaderCount */ + hcryp->CrypHeaderCount = 0U; + + /****************************** Init phase **********************************/ + + CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* just wait for hash computation */ + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked & return error */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /************************ Header phase *************************************/ + + if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK) + { + return HAL_ERROR; + } + + /*************************Payload phase ************************************/ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Select payload phase once the header phase is performed */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + } /* if (DoKeyIVConfig == 1U) */ + + if ((hcryp->Size % 16U) != 0U) + { + /* recalculate wordsize */ + wordsize = ((wordsize / 4U) * 4U) ; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Write input data and get output Data */ + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + while ((incount < wordsize) && (outcount < wordsize)) + { + /* Write plain data and get cipher data */ + CRYP_AES_ProcessData(hcryp, Timeout); + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state & error code */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + } + + if ((hcryp->Size % 16U) != 0U) + { + /* Compute the number of padding bytes in last block of payload */ + npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); + + /* Set Npblb in case of AES GCM payload encryption to get right tag*/ + if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) + { + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + /* last block optionally pad the data with zeros*/ + for (index = 0U; index < lastwordsize; index ++) + { + /* Write the last Input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (index < 4U) + { + /* pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0U; + index++; + } + /* Wait for CCF flag to be raised */ + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + hcryp->State = HAL_CRYP_STATE_READY; + __HAL_UNLOCK(hcryp); + +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered error callback*/ + hcryp->ErrorCallback(hcryp); +#else + /*Call legacy weak error callback*/ + HAL_CRYP_ErrorCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /*Read the output block from the output FIFO */ + for (index = 0U; index < 4U; index++) + { + /* Read the output block from the output FIFO and put them in temporary buffer + then get CrypOutBuff from temporary buffer */ + temp[index] = hcryp->Instance->DOUTR; + } + for (index = 0U; index < lastwordsize; index++) + { + *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp[index]; + hcryp->CrypOutCount++; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp) +{ + __IO uint32_t count = 0U; + uint32_t loopcounter; + uint32_t lastwordsize; + uint32_t npblb; + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + uint32_t headersize_in_bytes; + uint32_t tmp; + static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ + 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ + 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU + }; /* 8-bit data type */ + + +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) + if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)) + { + CRYP_PhaseProcessingResume(hcryp); + return HAL_OK; + } +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + + /* Manage header size given in bytes to handle cases where + header size is not a multiple of 4 bytes */ + if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) + { + headersize_in_bytes = hcryp->Init.HeaderSize * 4U; + } + else + { + headersize_in_bytes = hcryp->Init.HeaderSize; + } + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ + } + } + else + { + hcryp->SizesSum = hcryp->Size; + } + + /* Configure Key, IV and process message (header and payload) */ + if (DoKeyIVConfig == 1U) + { + /* Reset CrypHeaderCount */ + hcryp->CrypHeaderCount = 0U; + + /******************************* Init phase *********************************/ + + CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* just wait for hash computation */ + count = CRYP_TIMEOUT_GCMCCMINITPHASE; + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /***************************** Header phase *********************************/ + + /* Select header phase */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable computation complete flag and error interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/ + { + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Select payload phase once the header phase is performed */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); + + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + /* Write the payload Input block in the IN FIFO */ + if (hcryp->Size == 0U) + { + /* Disable interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + else if (hcryp->Size >= 16U) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) + { + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + else /* Size < 16Bytes : first block is the last block*/ + { + /* Workaround not implemented for TinyAES2*/ + /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption: + Workaround is implemented in polling mode, so if last block of + payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */ + + + /* Compute the number of padding bytes in last block of payload */ + npblb = 16U - ((uint32_t)hcryp->Size); + + if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) + { + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (loopcounter < 4U) + { + /* pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + /* Enter header data */ + /* Cher first whether header length is small enough to enter the full header in one shot */ + else if (headersize_in_bytes <= 16U) + { + /* Write header data, padded with zeros if need be */ + for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + } + /* If the header size is a multiple of words */ + if ((headersize_in_bytes % 4U) == 0U) + { + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + hcryp->CrypHeaderCount++; + } + } + else + { + /* Enter last bytes, padded with zeros */ + tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; + hcryp->Instance->DINR = tmp; + loopcounter++; + hcryp->CrypHeaderCount++ ; + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + hcryp->CrypHeaderCount++; + } + } + } + else + { + /* Write the first input header block in the Input FIFO, + the following header data will be fed after interrupt occurrence */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + } + + } /* end of if (DoKeyIVConfig == 1U) */ + else /* Key and IV have already been configured, + header has already been processed; + only process here message payload */ + { + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + /* Write the payload Input block in the IN FIFO */ + if (hcryp->Size == 0U) + { + /* Disable interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + else if (hcryp->Size >= 16U) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) + { + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + + /* Enable computation complete flag and error interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + } + else /* Size < 16Bytes : first block is the last block*/ + { + /* Workaround not implemented for TinyAES2*/ + /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption: + Workaround is implemented in polling mode, so if last block of + payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */ + + + /* Compute the number of padding bytes in last block of payload */ + npblb = 16U - ((uint32_t)hcryp->Size); + + if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) + { + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (loopcounter < 4U) + { + /* pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + + /* Enable computation complete flag and error interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + } + } + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp) +{ + uint32_t count; + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ + } + } + else + { + hcryp->SizesSum = hcryp->Size; + } + + if (DoKeyIVConfig == 1U) + { + + /* Reset CrypHeaderCount */ + hcryp->CrypHeaderCount = 0U; + + /*************************** Init phase ************************************/ + + CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* just wait for hash computation */ + count = CRYP_TIMEOUT_GCMCCMINITPHASE; + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /************************ Header phase *************************************/ + + if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK) + { + return HAL_ERROR; + } + + } + else + { + /* Initialization and header phases already done, only do payload phase */ + if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK) + { + return HAL_ERROR; + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief AES CCM encryption/decryption processing in polling mode + * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Timeout Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ; + uint32_t loopcounter; + uint32_t npblb; + uint32_t lastwordsize; + uint32_t temp[4] ; /* Temporary CrypOutBuff */ + uint32_t incount; /* Temporary CrypInCount Value */ + uint32_t outcount; /* Temporary CrypOutCount Value */ + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ + } + } + else + { + hcryp->SizesSum = hcryp->Size; + } + + if (DoKeyIVConfig == 1U) + { + /* Reset CrypHeaderCount */ + hcryp->CrypHeaderCount = 0U; + + /********************** Init phase ******************************************/ + + CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set the initialization vector (IV) with B0 */ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* just wait for hash computation */ + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked & return error */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /************************ Header phase *************************************/ + /* Header block(B1) : associated data length expressed in bytes concatenated + with Associated Data (A)*/ + if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK) + { + return HAL_ERROR; + } + + /*************************Payload phase ************************************/ + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Select payload phase once the header phase is performed */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); + + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + } /* if (DoKeyIVConfig == 1U) */ + + if ((hcryp->Size % 16U) != 0U) + { + /* recalculate wordsize */ + wordsize = ((wordsize / 4U) * 4U) ; + } + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Write input data and get output data */ + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + while ((incount < wordsize) && (outcount < wordsize)) + { + /* Write plain data and get cipher data */ + CRYP_AES_ProcessData(hcryp, Timeout); + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + } + + if ((hcryp->Size % 16U) != 0U) + { + /* Compute the number of padding bytes in last block of payload */ + npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); + + if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) + { + /* Set Npblb in case of AES CCM payload decryption to get right tag */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20); + + } + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* Write the last input block in the IN FIFO */ + for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0U; + loopcounter++; + } + /* just wait for hash computation */ + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked & return error */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + for (loopcounter = 0U; loopcounter < 4U; loopcounter++) + { + /* Read the output block from the output FIFO and put them in temporary buffer + then get CrypOutBuff from temporary buffer */ + temp[loopcounter] = hcryp->Instance->DOUTR; + } + for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) + { + *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[loopcounter]; + hcryp->CrypOutCount++; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief AES CCM encryption/decryption process in interrupt mode + * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp) +{ + __IO uint32_t count = 0U; + uint32_t loopcounter; + uint32_t lastwordsize; + uint32_t npblb; + uint32_t mode; + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + uint32_t headersize_in_bytes; + uint32_t tmp; + static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ + 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ + 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU + }; /* 8-bit data type */ + +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) + if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)) + { + CRYP_PhaseProcessingResume(hcryp); + return HAL_OK; + } +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ + } + } + else + { + hcryp->SizesSum = hcryp->Size; + } + + /* Configure Key, IV and process message (header and payload) */ + if (DoKeyIVConfig == 1U) + { + /* Reset CrypHeaderCount */ + hcryp->CrypHeaderCount = 0U; + + /********************** Init phase ******************************************/ + + CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set the initialization vector (IV) with B0 */ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* just wait for hash computation */ + count = CRYP_TIMEOUT_GCMCCMINITPHASE; + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /***************************** Header phase *********************************/ + + /* Select header phase */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable computation complete flag and error interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) + { + headersize_in_bytes = hcryp->Init.HeaderSize * 4U; + } + else + { + headersize_in_bytes = hcryp->Init.HeaderSize; + } + + if (headersize_in_bytes == 0U) /* Header phase is skipped */ + { + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + /* Select payload phase once the header phase is performed */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + if (hcryp->Init.Algorithm == CRYP_AES_CCM) + { + /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */ + hcryp->CrypHeaderCount++; + } + /* Write the payload Input block in the IN FIFO */ + if (hcryp->Size == 0U) + { + /* Disable interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + else if (hcryp->Size >= 16U) + { + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + + if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) + { + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + else /* Size < 4 words : first block is the last block*/ + { + /* Compute the number of padding bytes in last block of payload */ + npblb = 16U - (uint32_t)hcryp->Size; + + mode = hcryp->Instance->CR & AES_CR_MODE; + if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || + ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) + { + /* Specify the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* Last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (loopcounter < 4U) + { + /* Pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + /* Enter header data */ + /* Check first whether header length is small enough to enter the full header in one shot */ + else if (headersize_in_bytes <= 16U) + { + for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + } + /* If the header size is a multiple of words */ + if ((headersize_in_bytes % 4U) == 0U) + { + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + else + { + /* Enter last bytes, padded with zeros */ + tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; + hcryp->Instance->DINR = tmp; + hcryp->CrypHeaderCount++; + loopcounter++; + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + else + { + /* Write the first input header block in the Input FIFO, + the following header data will be fed after interrupt occurrence */ + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U); + }/* if (hcryp->Init.HeaderSize == 0U) */ /* Header phase is skipped*/ + } /* end of if (dokeyivconfig == 1U) */ + else /* Key and IV have already been configured, + header has already been processed; + only process here message payload */ + { + /* Write the payload Input block in the IN FIFO */ + if (hcryp->Size == 0U) + { + /* Disable interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + else if (hcryp->Size >= 16U) + { + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U)); + + if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) + { + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + else /* Size < 4 words : first block is the last block*/ + { + /* Compute the number of padding bytes in last block of payload */ + npblb = 16U - (uint32_t)hcryp->Size; + + mode = hcryp->Instance->CR & AES_CR_MODE; + if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || + ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) + { + /* Specify the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* Last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (loopcounter < 4U) + { + /* Pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + /* Call Input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief AES CCM encryption/decryption process in DMA mode + * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp) +{ + uint32_t count; + uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ + + if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) + { + if (hcryp->KeyIVConfig == 1U) + { + /* If the Key and IV configuration has to be done only once + and if it has already been done, skip it */ + DoKeyIVConfig = 0U; + hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ + } + else + { + /* If the Key and IV configuration has to be done only once + and if it has not been done already, do it and set KeyIVConfig + to keep track it won't have to be done again next time */ + hcryp->KeyIVConfig = 1U; + hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ + } + } + else + { + hcryp->SizesSum = hcryp->Size; + } + + if (DoKeyIVConfig == 1U) + { + + /* Reset CrypHeaderCount */ + hcryp->CrypHeaderCount = 0U; + + + /********************** Init phase ******************************************/ + + CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.KeySize); + + /* Set the initialization vector (IV) with B0 */ + hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); + hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); + hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); + hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* just wait for hash computation */ + count = CRYP_TIMEOUT_GCMCCMINITPHASE; + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + + /********************* Header phase *****************************************/ + + if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK) + { + return HAL_ERROR; + } + + } + else + { + /* Initialization and header phases already done, only do payload phase */ + if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK) + { + return HAL_ERROR; + } + } /* if (DoKeyIVConfig == 1U) */ + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the payload phase in interrupt mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval state + */ +static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp) +{ + uint32_t loopcounter; + uint32_t temp[4]; /* Temporary CrypOutBuff */ + uint32_t lastwordsize; + uint32_t npblb; + uint32_t mode; + uint16_t incount; /* Temporary CrypInCount Value */ + uint16_t outcount; /* Temporary CrypOutCount Value */ + uint32_t i; + + /***************************** Payload phase *******************************/ + + /* Read the output block from the output FIFO and put them in temporary buffer + then get CrypOutBuff from temporary buffer*/ + for (i = 0U; i < 4U; i++) + { + temp[i] = hcryp->Instance->DOUTR; + } + i = 0U; + while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U)) + { + *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i]; + hcryp->CrypOutCount++; + i++; + } + incount = hcryp->CrypInCount; + outcount = hcryp->CrypOutCount; + if ((outcount >= (hcryp->Size / 4U)) && ((incount * 4U) >= hcryp->Size)) + { + + /* When in CCM with Key and IV configuration skipped, don't disable interruptions */ + if (!((hcryp->Init.Algorithm == CRYP_AES_CCM) && (hcryp->KeyIVConfig == 1U))) + { + /* Disable computation complete flag and errors interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + + /* Call output transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Output complete callback*/ + hcryp->OutCpltCallback(hcryp); +#else + /*Call legacy weak Output complete callback*/ + HAL_CRYP_OutCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + + else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U) + { + +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) + /* If suspension flag has been raised, suspend processing + only if not already at the end of the payload */ + if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) + { + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* reset SuspendRequest */ + hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; + /* Disable Computation Complete Flag and Errors Interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_SUSPENDED; + /* Mark that the payload phase is suspended */ + hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + } + else +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + { + /* Write the input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) + { + /* Call input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + } + else /* Last block of payload < 128bit*/ + { + /* Compute the number of padding bytes in last block of payload */ + npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); + + mode = hcryp->Instance->CR & AES_CR_MODE; + if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || + ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) + { + /* Specify the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* Last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (loopcounter < 4U) + { + /* pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + /* Call input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } +} + + +/** + * @brief Sets the payload phase in DMA mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval state + */ +static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp) +{ + uint16_t wordsize = hcryp->Size / 4U ; + uint32_t index; + uint32_t npblb; + uint32_t lastwordsize; + uint32_t temp[4]; /* Temporary CrypOutBuff */ + uint32_t count; + uint32_t reg; + + /************************ Payload phase ************************************/ + if (hcryp->Size == 0U) + { + /* Process unLocked */ + __HAL_UNLOCK(hcryp); + + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + else if (hcryp->Size >= 16U) + { + /*DMA transfer must not include the last block in case of Size is not %16 */ + wordsize = wordsize - (wordsize % 4U); + + /*DMA transfer */ + CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr)); + } + else /* length of input data is < 16 */ + { + /* Compute the number of padding bytes in last block of payload */ + npblb = 16U - (uint32_t)hcryp->Size; + + /* Set Npblb in case of AES GCM payload encryption or AES CCM payload decryption to get right tag*/ + reg = hcryp->Instance->CR & (AES_CR_CHMOD | AES_CR_MODE); + if ((reg == (CRYP_AES_GCM_GMAC | CRYP_OPERATINGMODE_ENCRYPT)) || \ + (reg == (CRYP_AES_CCM | CRYP_OPERATINGMODE_DECRYPT))) + { + /* Specify the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* last block optionally pad the data with zeros*/ + for (index = 0U; index < lastwordsize; index ++) + { + /* Write the last Input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (index < 4U) + { + /* pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0U; + index++; + } + /* Call the input data transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + /* Wait for CCF flag to be raised */ + count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /*Read the output block from the output FIFO */ + for (index = 0U; index < 4U; index++) + { + /* Read the output block from the output FIFO and put them in temporary buffer + then get CrypOutBuff from temporary buffer */ + temp[index] = hcryp->Instance->DOUTR; + } + for (index = 0U; index < lastwordsize; index++) + { + *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[index]; + hcryp->CrypOutCount++; + } + + /* Change the CRYP state to ready */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + + /* Call Output transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Output complete callback*/ + hcryp->OutCpltCallback(hcryp); +#else + /*Call legacy weak Output complete callback*/ + HAL_CRYP_OutCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + + return HAL_OK; +} + +/** + * @brief Sets the header phase in polling mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module(Header & HeaderSize) + * @param Timeout Timeout value + * @retval state + */ +static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + uint32_t loopcounter; + uint32_t size_in_bytes; + uint32_t tmp; + static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ + 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ + 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU + }; /* 8-bit data type */ + + /***************************** Header phase for GCM/GMAC or CCM *********************************/ + if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) + { + size_in_bytes = hcryp->Init.HeaderSize * 4U; + } + else + { + size_in_bytes = hcryp->Init.HeaderSize; + } + + if ((size_in_bytes != 0U)) + { + /* Select header phase */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* If size_in_bytes is a multiple of blocks (a multiple of four 32-bits words ) */ + if ((size_in_bytes % 16U) == 0U) + { + /* No padding */ + for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U) + { + /* Write the input block in the data input register */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + } + } + else + { + /* Write header block in the IN FIFO without last block */ + for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U) + { + /* Write the input block in the data input register */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + } + /* Write last complete words */ + for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + } + /* If the header size is a multiple of words */ + if ((size_in_bytes % 4U) == 0U) + { + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + else + { + /* Enter last bytes, padded with zeros */ + tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)]; + hcryp->Instance->DINR = tmp; + loopcounter++; + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + + if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + } + } + else + { + /*Workaround 1: only AES, before re-enabling the peripheral, datatype can be configured.*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType); + + /* Select header phase */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the header phase when using DMA in process + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module(Header & HeaderSize) + * @retval None + */ +static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp) +{ + uint32_t loopcounter; + uint32_t headersize_in_bytes; + uint32_t tmp; + static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ + 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ + 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU + }; /* 8-bit data type */ + + /***************************** Header phase for GCM/GMAC or CCM *********************************/ + if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) + { + headersize_in_bytes = hcryp->Init.HeaderSize * 4U; + } + else + { + headersize_in_bytes = hcryp->Init.HeaderSize; + } + + /* Select header phase */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* If header size is at least equal to 16 bytes, feed the header through DMA. + If size_in_bytes is not a multiple of blocks (is not a multiple of four 32-bit words ), + last bytes feeding and padding will be done in CRYP_DMAInCplt() */ + if (headersize_in_bytes >= 16U) + { + /* Initiate header DMA transfer */ + if (CRYP_SetHeaderDMAConfig(hcryp, (uint32_t)(hcryp->Init.Header), + (uint16_t)((headersize_in_bytes / 16U) * 4U)) != HAL_OK) + { + return HAL_ERROR; + } + } + else + { + if (headersize_in_bytes != 0U) + { + /* Header length is larger than 0 and strictly less than 16 bytes */ + /* Write last complete words */ + for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + } + /* If the header size is a multiple of words */ + if ((headersize_in_bytes % 4U) == 0U) + { + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + else + { + /* Enter last bytes, padded with zeros */ + tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; + hcryp->Instance->DINR = tmp; + loopcounter++; + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + + if (CRYP_WaitOnCCFlag(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE) != HAL_OK) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + } /* if (headersize_in_bytes != 0U) */ + + /* Move to payload phase if header length is null or + if the header length was less than 16 and header written by software instead of DMA */ + + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + /* Select payload phase once the header phase is performed */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Initiate payload DMA IN and processed data DMA OUT transfers */ + if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK) + { + return HAL_ERROR; + } + } /* if (headersize_in_bytes >= 16U) */ + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the header phase in interrupt mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module(Header & HeaderSize) + * @retval None + */ +static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp) +{ + uint32_t loopcounter; + uint32_t lastwordsize; + uint32_t npblb; + uint32_t mode; + uint32_t headersize_in_bytes; + uint32_t tmp; + static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */ + 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */ + 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU + }; /* 8-bit data type */ + + if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD) + { + headersize_in_bytes = hcryp->Init.HeaderSize * 4U; + } + else + { + headersize_in_bytes = hcryp->Init.HeaderSize; + } + + /***************************** Header phase *********************************/ + /* Test whether or not the header phase is over. + If the test below is true, move to payload phase */ + if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U)) + { + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + /* Select payload phase */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + if (hcryp->Init.Algorithm == CRYP_AES_CCM) + { + /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */ + hcryp->CrypHeaderCount++; + } + /* Write the payload Input block in the IN FIFO */ + if (hcryp->Size == 0U) + { + /* Disable interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + else if (hcryp->Size >= 16U) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + + if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) + { + /* Call the input data transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + else /* Size < 4 words : first block is the last block*/ + { + /* Compute the number of padding bytes in last block of payload */ + npblb = 16U - ((uint32_t)hcryp->Size); + mode = hcryp->Instance->CR & AES_CR_MODE; + if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || + ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) + { + /* Specify the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* Last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (loopcounter < 4U) + { + /* Pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + /* Call the input data transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + else if ((((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U)) + { + /* Can enter full 4 header words */ +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) + /* If suspension flag has been raised, suspend processing + only if not already at the end of the header */ + if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) + { + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* reset SuspendRequest */ + hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; + /* Disable Computation Complete Flag and Errors Interrupts */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_SUSPENDED; + /* Mark that the payload phase is suspended */ + hcryp->Phase = CRYP_PHASE_HEADER_SUSPENDED; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + } + else +#endif /* USE_HAL_CRYP_SUSPEND_RESUME */ + { + /* Write the input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + } + } + else /* Write last header block (4 words), padded with zeros if needed */ + { + + for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + } + /* If the header size is a multiple of words */ + if ((headersize_in_bytes % 4U) == 0U) + { + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + hcryp->CrypHeaderCount++; + } + } + else + { + /* Enter last bytes, padded with zeros */ + tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)]; + hcryp->Instance->DINR = tmp; + loopcounter++; + hcryp->CrypHeaderCount++; + /* Pad the data with zeros to have a complete block */ + while (loopcounter < 4U) + { + hcryp->Instance->DINR = 0x0U; + loopcounter++; + hcryp->CrypHeaderCount++; + } + } + } +} + +/** + * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Timeout Timeout duration. + * @note This function can only be used in thread mode. + * @retval HAL status + */ +static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Get timeout */ + tickstart = HAL_GetTick(); + + while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + return HAL_ERROR; + } + } + } + return HAL_OK; +} + +/** + * @brief Wait for Computation Complete Flag (CCF) to raise then clear it. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Timeout Timeout duration. + * @note This function can be used in thread or handler mode. + * @retval HAL status + */ +static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) +{ + uint32_t count = Timeout; + + do + { + count-- ; + if (count == 0U) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + hcryp->State = HAL_CRYP_STATE_READY; + +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) + /*Call registered error callback*/ + hcryp->ErrorCallback(hcryp); +#else + /*Call legacy weak error callback*/ + HAL_CRYP_ErrorCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); +} + +#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) +/** + * @brief In case of message processing suspension, read the Initialization Vector. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Output Pointer to the buffer containing the saved Initialization Vector. + * @note This value has to be stored for reuse by writing the AES_IVRx registers + * as soon as the suspended processing has to be resumed. + * @retval None + */ +static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output) +{ + uint32_t outputaddr = (uint32_t)Output; + + *(uint32_t *)(outputaddr) = hcryp->Instance->IVR3; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->IVR2; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->IVR1; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->IVR0; +} + +/** + * @brief In case of message processing resumption, rewrite the Initialization + * Vector in the AES_IVRx registers. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Input Pointer to the buffer containing the saved Initialization Vector to + * write back in the CRYP hardware block. + * @note AES must be disabled when reconfiguring the IV values. + * @retval None + */ +static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input) +{ + uint32_t ivaddr = (uint32_t)Input; + + hcryp->Instance->IVR3 = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->IVR2 = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->IVR1 = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->IVR0 = *(uint32_t *)(ivaddr); +} + +/** + * @brief In case of message GCM/GMAC/CCM processing suspension, + * read the Suspend Registers. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Output Pointer to the buffer containing the saved Suspend Registers. + * @note These values have to be stored for reuse by writing back the AES_SUSPxR registers + * as soon as the suspended processing has to be resumed. + * @retval None + */ +static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output) +{ + uint32_t outputaddr = (uint32_t)Output; + __IO uint32_t count = 0U; + + /* In case of GCM payload phase encryption, check that suspension can be carried out */ + if (READ_BIT(hcryp->Instance->CR, + (AES_CR_CHMOD | AES_CR_GCMPH | AES_CR_MODE)) == (CRYP_AES_GCM_GMAC | AES_CR_GCMPH_1 | 0x0U)) + { + + /* Wait for BUSY flag to be cleared */ + count = 0xFFF; + do + { + count-- ; + if (count == 0U) + { + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + HAL_CRYP_ErrorCallback(hcryp); + return; + } + } while (HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY)); + + } + + + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP7R; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP6R; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP5R; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP4R; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP3R; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP2R; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP1R; + outputaddr += 4U; + *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP0R; +} + +/** + * @brief In case of message GCM/GMAC/CCM processing resumption, rewrite the Suspend + * Registers in the AES_SUSPxR registers. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Input Pointer to the buffer containing the saved suspend registers to + * write back in the CRYP hardware block. + * @note AES must be disabled when reconfiguring the suspend registers. + * @retval None + */ +static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input) +{ + uint32_t ivaddr = (uint32_t)Input; + + hcryp->Instance->SUSP7R = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->SUSP6R = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->SUSP5R = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->SUSP4R = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->SUSP3R = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->SUSP2R = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->SUSP1R = *(uint32_t *)(ivaddr); + ivaddr += 4U; + hcryp->Instance->SUSP0R = *(uint32_t *)(ivaddr); +} + +/** + * @brief In case of message GCM/GMAC/CCM processing suspension, read the Key Registers. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Output Pointer to the buffer containing the saved Key Registers. + * @param KeySize Indicates the key size (128 or 256 bits). + * @note These values have to be stored for reuse by writing back the AES_KEYRx registers + * as soon as the suspended processing has to be resumed. + * @retval None + */ +static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize) +{ + uint32_t keyaddr = (uint32_t)Output; + + switch (KeySize) + { + case CRYP_KEYSIZE_256B: + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 4U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 5U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 6U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 7U); + break; + case CRYP_KEYSIZE_128B: + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U); + keyaddr += 4U; + *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U); + break; + default: + break; + } +} + +/** + * @brief In case of message GCM/GMAC (CCM/CMAC when applicable) processing resumption, rewrite the Key + * Registers in the AES_KEYRx registers. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module. + * @param Input Pointer to the buffer containing the saved key registers to + * write back in the CRYP hardware block. + * @param KeySize Indicates the key size (128 or 256 bits) + * @note AES must be disabled when reconfiguring the Key registers. + * @retval None + */ +static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize) +{ + uint32_t keyaddr = (uint32_t)Input; + + if (KeySize == CRYP_KEYSIZE_256B) + { + hcryp->Instance->KEYR7 = *(uint32_t *)(keyaddr); + keyaddr += 4U; + hcryp->Instance->KEYR6 = *(uint32_t *)(keyaddr); + keyaddr += 4U; + hcryp->Instance->KEYR5 = *(uint32_t *)(keyaddr); + keyaddr += 4U; + hcryp->Instance->KEYR4 = *(uint32_t *)(keyaddr); + keyaddr += 4U; + } + + hcryp->Instance->KEYR3 = *(uint32_t *)(keyaddr); + keyaddr += 4U; + hcryp->Instance->KEYR2 = *(uint32_t *)(keyaddr); + keyaddr += 4U; + hcryp->Instance->KEYR1 = *(uint32_t *)(keyaddr); + keyaddr += 4U; + hcryp->Instance->KEYR0 = *(uint32_t *)(keyaddr); +} + +/** + * @brief Authentication phase resumption in case of GCM/GMAC/CCM process in interrupt mode + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module(Header & HeaderSize) + * @retval None + */ +static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp) +{ + uint32_t loopcounter; + uint16_t lastwordsize; + uint16_t npblb; + uint32_t cr_temp; + + + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR | CRYP_CCF_CLEAR); + + /* Enable computation complete flag and error interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Case of header phase resumption =================================================*/ + if (hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) + { + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Select header phase */ + CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + if ((((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U)) + { + /* Write the input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++; + } + else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/ + { + /* Last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); + hcryp->CrypHeaderCount++ ; + } + while (loopcounter < 4U) + { + /* pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + } + /* Case of payload phase resumption =================================================*/ + else + { + if (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED) + { + + /* Set the phase */ + hcryp->Phase = CRYP_PHASE_PROCESS; + + /* Select payload phase once the header phase is performed */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); + + /* Set to 0 the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); + + if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U) + { + /* Write the input block in the IN FIFO */ + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) + { + /* Call input transfer complete callback */ +#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1) + /*Call registered Input complete callback*/ + hcryp->InCpltCallback(hcryp); +#else + /*Call legacy weak Input complete callback*/ + HAL_CRYP_InCpltCallback(hcryp); +#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ + } + } + else /* Last block of payload < 128bit*/ + { + /* Compute the number of padding bytes in last block of payload */ + npblb = (((hcryp->Size / 16U) + 1U) * 16U) - (hcryp->Size); + cr_temp = hcryp->Instance->CR; + if ((((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || + (((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) + { + /* Specify the number of non-valid bytes using NPBLB register*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, ((uint32_t)npblb) << 20U); + } + + /* Number of valid words (lastwordsize) in last block */ + if ((npblb % 4U) == 0U) + { + lastwordsize = (16U - npblb) / 4U; + } + else + { + lastwordsize = ((16U - npblb) / 4U) + 1U; + } + + /* Last block optionally pad the data with zeros*/ + for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) + { + hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); + hcryp->CrypInCount++; + } + while (loopcounter < 4U) + { + /* pad the data with zeros to have a complete block */ + hcryp->Instance->DINR = 0x0U; + loopcounter++; + } + } + } + } +} +#endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */ +/** + * @} + */ + + +#endif /* HAL_CRYP_MODULE_ENABLED */ + +#endif /* AES */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp_ex.c new file mode 100644 index 0000000..7b8df93 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp_ex.c @@ -0,0 +1,386 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_cryp_ex.c + * @author MCD Application Team + * @brief CRYPEx HAL module driver. + * This file provides firmware functions to manage the extended + * functionalities of the Cryptography (CRYP) peripheral. + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup CRYPEx + * @{ + */ + +#if defined(AES) + +#ifdef HAL_CRYP_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CRYPEx_Private_Defines + * @{ + */ + +#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */ +#define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */ +#define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */ +#define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */ + +#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode */ +#define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions */ +#define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption */ +#define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions */ + +#define CRYPEx_PHASE_PROCESS 0x02U /*!< CRYP peripheral is in processing phase */ +#define CRYPEx_PHASE_FINAL 0x03U /*!< CRYP peripheral is in final phase this is relevant only with CCM and GCM modes */ + +/* CTR0 information to use in CCM algorithm */ +#define CRYP_CCM_CTR0_0 0x07FFFFFFU +#define CRYP_CCM_CTR0_3 0xFFFFFF00U + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions---------------------------------------------------------*/ +/** @addtogroup CRYPEx_Exported_Functions + * @{ + */ + +/** @defgroup CRYPEx_Exported_Functions_Group1 Extended AES processing functions + * @brief Extended processing functions. + * +@verbatim + ============================================================================== + ##### Extended AES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to generate the authentication + TAG in Polling mode + (#)HAL_CRYPEx_AESGCM_GenerateAuthTAG + (#)HAL_CRYPEx_AESCCM_GenerateAuthTAG + they should be used after Encrypt/Decrypt operation. + +@endverbatim + * @{ + */ + +/** + * @brief generate the GCM authentication TAG. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param AuthTag Pointer to the authentication buffer + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_GenerateAuthTAG(CRYP_HandleTypeDef *hcryp, uint32_t *AuthTag, uint32_t Timeout) +{ + uint32_t tickstart; + /* Assume first Init.HeaderSize is in words */ + uint64_t headerlength = (uint64_t)hcryp->Init.HeaderSize * 32U; /* Header length in bits */ + uint64_t inputlength = (uint64_t)hcryp->SizesSum * 8U; /* Input length in bits */ + uint32_t tagaddr = (uint32_t)AuthTag; + + /* Correct headerlength if Init.HeaderSize is actually in bytes */ + if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_BYTE) + { + headerlength /= 4U; + } + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if (hcryp->Phase == CRYPEx_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = CRYPEx_PHASE_FINAL; + } + else /* Initialization phase has not been performed*/ + { + /* Disable the Peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Sequence error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_AUTH_TAG_SEQUENCE; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + + /* Select final phase */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_FINAL); + + /* Set the encrypt operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); + + /*TinyAES peripheral from V3.1.1 : data has to be inserted normally (no swapping)*/ + /* Write into the AES_DINR register the number of bits in header (64 bits) + followed by the number of bits in the payload */ + + hcryp->Instance->DINR = 0U; + hcryp->Instance->DINR = (uint32_t)(headerlength); + hcryp->Instance->DINR = 0U; + hcryp->Instance->DINR = (uint32_t)(inputlength); + + /* Wait for CCF flag to be raised */ + tickstart = HAL_GetTick(); + while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Disable the CRYP peripheral clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } + } + + /* Read the authentication TAG in the output FIFO */ + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + tagaddr += 4U; + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + tagaddr += 4U; + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + tagaddr += 4U; + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + + /* Clear CCF flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + /* Disable the peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + } + else + { + /* Busy error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; + return HAL_ERROR; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief AES CCM Authentication TAG generation. + * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param AuthTag Pointer to the authentication buffer + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_GenerateAuthTAG(CRYP_HandleTypeDef *hcryp, uint32_t *AuthTag, uint32_t Timeout) +{ + uint32_t tagaddr = (uint32_t)AuthTag; + uint32_t tickstart; + + if (hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process locked */ + __HAL_LOCK(hcryp); + + /* Disable interrupts in case they were kept enabled to proceed + a single message in several iterations */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if (hcryp->Phase == CRYPEx_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = CRYPEx_PHASE_FINAL; + } + else /* Initialization phase has not been performed*/ + { + /* Disable the peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Sequence error code field */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_AUTH_TAG_SEQUENCE; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + /* Select final phase */ + MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_FINAL); + + /* Set encrypt operating mode*/ + MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); + + /* Wait for CCF flag to be raised */ + tickstart = HAL_GetTick(); + while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Disable the CRYP peripheral Clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change state */ + hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + return HAL_ERROR; + } + } + } + + /* Read the authentication TAG in the output FIFO */ + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + tagaddr += 4U; + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + tagaddr += 4U; + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + tagaddr += 4U; + *(uint32_t *)(tagaddr) = hcryp->Instance->DOUTR; + + /* Clear CCF Flag */ + __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); + + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcryp); + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + } + else + { + /* Busy error code field */ + hcryp->ErrorCode = HAL_CRYP_ERROR_BUSY; + return HAL_ERROR; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup CRYPEx_Exported_Functions_Group2 Extended AES Key Derivations functions + * @brief Extended Key Derivations functions. + * +@verbatim + ============================================================================== + ##### Key Derivation functions ##### + ============================================================================== + [..] This section provides functions allowing to Enable or Disable the + the AutoKeyDerivation parameter in CRYP_HandleTypeDef structure + These function are allowed only in TinyAES peripheral. +@endverbatim + * @{ + */ + +/** + * @brief AES enable key derivation functions + * @param hcryp pointer to a CRYP_HandleTypeDef structure. + */ +void HAL_CRYPEx_EnableAutoKeyDerivation(CRYP_HandleTypeDef *hcryp) +{ + if (hcryp->State == HAL_CRYP_STATE_READY) + { + hcryp->AutoKeyDerivation = ENABLE; + } + else + { + /* Busy error code field */ + hcryp->ErrorCode = HAL_CRYP_ERROR_BUSY; + } +} +/** + * @brief AES disable key derivation functions + * @param hcryp pointer to a CRYP_HandleTypeDef structure. + */ +void HAL_CRYPEx_DisableAutoKeyDerivation(CRYP_HandleTypeDef *hcryp) +{ + if (hcryp->State == HAL_CRYP_STATE_READY) + { + hcryp->AutoKeyDerivation = DISABLE; + } + else + { + /* Busy error code field */ + hcryp->ErrorCode = HAL_CRYP_ERROR_BUSY; + } +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CRYP_MODULE_ENABLED */ + +#endif /* AES */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac.c new file mode 100644 index 0000000..2c69021 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac.c @@ -0,0 +1,1351 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_dac.c + * @author MCD Application Team + * @brief DAC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Digital to Analog Converter (DAC) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### DAC Peripheral features ##### + ============================================================================== + [..] + *** DAC Channels *** + ==================== + [..] + #error "Please implement comment here for your STM32 series" + *** DAC Buffer mode feature *** + =============================== + [..] + Each DAC channel integrates an output buffer that can be used to + reduce the output impedance, and to drive external loads directly + without having to add an external operational amplifier. + To enable, the output buffer use + sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; + [..] + (@) Refer to the device datasheet for more details about output + impedance value with and without output buffer. + + *** GPIO configurations guidelines *** + ===================== + [..] + When a DAC channel is used (ex channel1 on PA4) and the other is not + (ex channel2 on PA5 is configured in Analog and disabled). + Channel1 may disturb channel2 as coupling effect. + Note that there is no coupling on channel2 as soon as channel2 is turned on. + Coupling on adjacent channel could be avoided as follows: + when unused PA5 is configured as INPUT PULL-UP or DOWN. + PA5 is configured in ANALOG just before it is turned on. + + *** DAC Sample and Hold feature *** + ======================== + [..] + For each converter, 2 modes are supported: normal mode and + "sample and hold" mode (i.e. low power mode). + In the sample and hold mode, the DAC core converts data, then holds the + converted voltage on a capacitor. When not converting, the DAC cores and + buffer are completely turned off between samples and the DAC output is + tri-stated, therefore reducing the overall power consumption. A new + stabilization period is needed before each new conversion. + + The sample and hold allow setting internal or external voltage @ + low power consumption cost (output value can be at any given rate either + by CPU or DMA). + + The Sample and hold block and registers uses either LSI & run in + several power modes: run mode, sleep mode, low power run, low power sleep + mode & stop1 mode. + + Low power stop1 mode allows only static conversion. + + To enable Sample and Hold mode + Enable LSI using HAL_RCC_OscConfig with RCC_OSCILLATORTYPE_LSI & + RCC_LSI_ON parameters. + + Use DAC_InitStructure.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_ENABLE; + & DAC_ChannelConfTypeDef.DAC_SampleAndHoldConfig.DAC_SampleTime, + DAC_HoldTime & DAC_RefreshTime; + + *** DAC calibration feature *** + =================================== + [..] + (#) The 2 converters (channel1 & channel2) provide calibration capabilities. + (++) Calibration aims at correcting some offset of output buffer. + (++) The DAC uses either factory calibration settings OR user defined + calibration (trimming) settings (i.e. trimming mode). + (++) The user defined settings can be figured out using self calibration + handled by HAL_DACEx_SelfCalibrate. + (++) HAL_DACEx_SelfCalibrate: + (+++) Runs automatically the calibration. + (+++) Enables the user trimming mode + (+++) Updates a structure with trimming values with fresh calibration + results. + The user may store the calibration results for larger + (ex monitoring the trimming as a function of temperature + for instance) + + *** DAC wave generation feature *** + =================================== + [..] + Both DAC channels can be used to generate + (#) Noise wave + (#) Triangle wave + + *** DAC data format *** + ======================= + [..] + The DAC data format can be: + (#) 8-bit right alignment using DAC_ALIGN_8B_R + (#) 12-bit left alignment using DAC_ALIGN_12B_L + (#) 12-bit right alignment using DAC_ALIGN_12B_R + + *** DAC data value to voltage correspondence *** + ================================================ + [..] + The analog output voltage on each DAC channel pin is determined + by the following equation: + [..] + DAC_OUTx = VREF+ * DOR / 4095 + (+) with DOR is the Data Output Register + [..] + VREF+ is the input voltage reference (refer to the device datasheet) + [..] + e.g. To set DAC_OUT1 to 0.7V, use + (+) Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V + + *** DMA requests *** + ===================== + [..] + #error "Please implement comment here for your STM32 series" + + [..] + (@) For Dual mode and specific signal (Triangle and noise) generation please + refer to Extended Features Driver description + + ##### How to use this driver ##### + ============================================================================== + [..] + (+) DAC APB clock must be enabled to get write access to DAC + registers using HAL_DAC_Init() + #error "Please implement comment here for your STM32 series" + (+) Configure the DAC channel using HAL_DAC_ConfigChannel() function. + (+) Enable the DAC channel using HAL_DAC_Start() or HAL_DAC_Start_DMA() functions. + + *** Calibration mode IO operation *** + ====================================== + [..] + (+) Retrieve the factory trimming (calibration settings) using HAL_DACEx_GetTrimOffset() + (+) Run the calibration using HAL_DACEx_SelfCalibrate() + (+) Update the trimming while DAC running using HAL_DACEx_SetUserTrimming() + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the DAC peripheral using HAL_DAC_Start() + (+) To read the DAC last data output value, use the HAL_DAC_GetValue() function. + (+) Stop the DAC peripheral using HAL_DAC_Stop() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Start the DAC peripheral using HAL_DAC_Start_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + First issued trigger will start the conversion of the value previously set by HAL_DAC_SetValue(). + (+) At the middle of data transfer HAL_DAC_ConvHalfCpltCallbackCh1() + function is executed and user can add his own code by customization of function pointer + HAL_DAC_ConvHalfCpltCallbackCh1() + (+) At The end of data transfer HAL_DAC_ConvCpltCallbackCh1() + function is executed and user can add his own code by customization of function pointer + HAL_DAC_ConvCpltCallbackCh1() + (+) In case of transfer Error, HAL_DAC_ErrorCallbackCh1() function is executed and user can + add his own code by customization of function pointer HAL_DAC_ErrorCallbackCh1 + #error "Please implement comment here for your STM32 series" + (+) Stop the DAC peripheral using HAL_DAC_Stop_DMA() + + *** Callback registration *** + ============================================= + [..] + The compilation define USE_HAL_DAC_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + Use Functions HAL_DAC_RegisterCallback() to register a user callback, + it allows to register following callbacks: + (+) ConvCpltCallbackCh1 : callback when a half transfer is completed on Ch1. + (+) ConvHalfCpltCallbackCh1 : callback when a transfer is completed on Ch1. + (+) ErrorCallbackCh1 : callback when an error occurs on Ch1. + (+) DMAUnderrunCallbackCh1 : callback when an underrun error occurs on Ch1. + (+) MspInitCallback : DAC MspInit. + (+) MspDeInitCallback : DAC MspdeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + Use function HAL_DAC_UnRegisterCallback() to reset a callback to the default + weak (overridden) function. It allows to reset following callbacks: + (+) ConvCpltCallbackCh1 : callback when a half transfer is completed on Ch1. + (+) ConvHalfCpltCallbackCh1 : callback when a transfer is completed on Ch1. + (+) ErrorCallbackCh1 : callback when an error occurs on Ch1. + (+) DMAUnderrunCallbackCh1 : callback when an underrun error occurs on Ch1. + (+) MspInitCallback : DAC MspInit. + (+) MspDeInitCallback : DAC MspdeInit. + (+) All Callbacks + This function) takes as parameters the HAL peripheral handle and the Callback ID. + + By default, after the HAL_DAC_Init and if the state is HAL_DAC_STATE_RESET + all callbacks are reset to the corresponding legacy weak (overridden) functions. + Exception done for MspInit and MspDeInit callbacks that are respectively + reset to the legacy weak (overridden) functions in the HAL_DAC_Init + and HAL_DAC_DeInit only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the HAL_DAC_Init and HAL_DAC_DeInit + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) + + Callbacks can be registered/unregistered in READY state only. + Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered + in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used + during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_DAC_RegisterCallback before calling HAL_DAC_DeInit + or HAL_DAC_Init function. + + When The compilation define USE_HAL_DAC_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registering feature is not available + and weak (overridden) callbacks are used. + + *** DAC HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DAC HAL driver. + + (+) __HAL_DAC_ENABLE : Enable the DAC peripheral + (+) __HAL_DAC_DISABLE : Disable the DAC peripheral + (+) __HAL_DAC_CLEAR_FLAG: Clear the DAC's pending flags + (+) __HAL_DAC_GET_FLAG: Get the selected DAC's flag status + + [..] + (@) You can refer to the DAC HAL driver header file for more useful macros + +@endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#ifdef HAL_DAC_MODULE_ENABLED +#if defined(DAC1) + +/** @defgroup DAC DAC + * @brief DAC driver modules + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup DAC_Private_Constants DAC Private Constants + * @{ + */ +#define TIMEOUT_DAC_CALIBCONFIG 1U /* 1 ms */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions -------------------------------------------------------*/ + +/** @defgroup DAC_Exported_Functions DAC Exported Functions + * @{ + */ + +/** @defgroup DAC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DAC. + (+) De-initialize the DAC. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DAC peripheral according to the specified parameters + * in the DAC_InitStruct and initialize the associated handle. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef *hdac) +{ + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); + + if (hdac->State == HAL_DAC_STATE_RESET) + { +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) + /* Init the DAC Callback settings */ + hdac->ConvCpltCallbackCh1 = HAL_DAC_ConvCpltCallbackCh1; + hdac->ConvHalfCpltCallbackCh1 = HAL_DAC_ConvHalfCpltCallbackCh1; + hdac->ErrorCallbackCh1 = HAL_DAC_ErrorCallbackCh1; + hdac->DMAUnderrunCallbackCh1 = HAL_DAC_DMAUnderrunCallbackCh1; + if (hdac->MspInitCallback == NULL) + { + hdac->MspInitCallback = HAL_DAC_MspInit; + } +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ + + /* Allocate lock resource and initialize it */ + hdac->Lock = HAL_UNLOCKED; + +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) + /* Init the low level hardware */ + hdac->MspInitCallback(hdac); +#else + /* Init the low level hardware */ + HAL_DAC_MspInit(hdac); +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ + } + + /* Initialize the DAC state*/ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Set DAC error code to none */ + hdac->ErrorCode = HAL_DAC_ERROR_NONE; + + /* Initialize the DAC state*/ + hdac->State = HAL_DAC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Deinitialize the DAC peripheral registers to their default reset values. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef *hdac) +{ + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) + if (hdac->MspDeInitCallback == NULL) + { + hdac->MspDeInitCallback = HAL_DAC_MspDeInit; + } + /* DeInit the low level hardware */ + hdac->MspDeInitCallback(hdac); +#else + /* DeInit the low level hardware */ + HAL_DAC_MspDeInit(hdac); +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ + + /* Set DAC error code to none */ + hdac->ErrorCode = HAL_DAC_ERROR_NONE; + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initialize the DAC MSP. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_MspInit(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DAC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the DAC MSP. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_MspDeInit(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DAC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion. + (+) Stop conversion. + (+) Start conversion and enable DMA transfer. + (+) Stop conversion and disable DMA transfer. + (+) Get result of conversion. + +@endverbatim + * @{ + */ + +/** + * @brief Enables DAC and starts conversion of channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef *hdac, uint32_t Channel) +{ + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the Peripheral */ + __HAL_DAC_ENABLE(hdac, Channel); + + /* Check if software trigger enabled */ + if ((hdac->Instance->CR & (DAC_CR_TEN1 | DAC_CR_TSEL1)) == DAC_TRIGGER_SOFTWARE) + { + /* Enable the selected DAC software conversion */ + SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG1); + } + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables DAC and stop conversion of channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef *hdac, uint32_t Channel) +{ + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Disable the Peripheral */ + __HAL_DAC_DISABLE(hdac, Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enables DAC and starts conversion of channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to DAC peripheral + * @param Alignment Specifies the data alignment for DAC channel. + * This parameter can be one of the following values: + * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected + * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected + * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel, const uint32_t *pData, uint32_t Length, + uint32_t Alignment) +{ + HAL_StatusTypeDef status; + uint32_t tmpreg = 0U; + + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_ALIGN(Alignment)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + if (Channel == DAC_CHANNEL_1) + { + /* Set the DMA transfer complete callback for channel1 */ + hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; + + /* Set the DMA half transfer complete callback for channel1 */ + hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; + + /* Set the DMA error callback for channel1 */ + hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; + + /* Enable the selected DAC channel1 DMA request */ + SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN1); + + /* Case of use of channel 1 */ + switch (Alignment) + { + case DAC_ALIGN_12B_R: + /* Get DHR12R1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12R1; + break; + case DAC_ALIGN_12B_L: + /* Get DHR12L1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12L1; + break; + default: /* case DAC_ALIGN_8B_R */ + /* Get DHR8R1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR8R1; + break; + } + } + + /* Enable the DAC DMA underrun interrupt */ + __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); + + /* Enable the DMA channel */ + status = HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); + + /* Process Unlocked */ + __HAL_UNLOCK(hdac); + + if (status == HAL_OK) + { + /* Enable the Peripheral */ + __HAL_DAC_ENABLE(hdac, Channel); + } + else + { + hdac->ErrorCode |= HAL_DAC_ERROR_DMA; + } + + /* Return function status */ + return status; +} + +/** + * @brief Disables DAC and stop conversion of channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel) +{ + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Disable the selected DAC channel DMA request */ + hdac->Instance->CR &= ~(DAC_CR_DMAEN1 << (Channel & 0x10UL)); + + /* Disable the Peripheral */ + __HAL_DAC_DISABLE(hdac, Channel); + + /* Disable the DMA channel */ + + /* Disable the DMA channel */ + (void)HAL_DMA_Abort(hdac->DMA_Handle1); + + /* Disable the DAC DMA underrun interrupt */ + __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR1); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles DAC interrupt request + * This function uses the interruption of DMA + * underrun. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +void HAL_DAC_IRQHandler(DAC_HandleTypeDef *hdac) +{ + uint32_t itsource = hdac->Instance->CR; + uint32_t itflag = hdac->Instance->SR; + + if ((itsource & DAC_IT_DMAUDR1) == DAC_IT_DMAUDR1) + { + /* Check underrun flag of DAC channel 1 */ + if ((itflag & DAC_FLAG_DMAUDR1) == DAC_FLAG_DMAUDR1) + { + /* Change DAC state to error state */ + hdac->State = HAL_DAC_STATE_ERROR; + + /* Set DAC error code to channel1 DMA underrun error */ + SET_BIT(hdac->ErrorCode, HAL_DAC_ERROR_DMAUNDERRUNCH1); + + /* Clear the underrun flag */ + __HAL_DAC_CLEAR_FLAG(hdac, DAC_FLAG_DMAUDR1); + + /* Disable the selected DAC channel1 DMA request */ + __HAL_DAC_DISABLE_IT(hdac, DAC_CR_DMAEN1); + + /* Error callback */ +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) + hdac->DMAUnderrunCallbackCh1(hdac); +#else + HAL_DAC_DMAUnderrunCallbackCh1(hdac); +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ + } + } +} + +/** + * @brief Set the specified data holding register value for DAC channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @param Alignment Specifies the data alignment. + * This parameter can be one of the following values: + * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected + * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected + * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected + * @param Data Data to be loaded in the selected data holding register. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data) +{ + __IO uint32_t tmp = 0UL; + + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_ALIGN(Alignment)); + assert_param(IS_DAC_DATA(Data)); + + tmp = (uint32_t)hdac->Instance; + if (Channel == DAC_CHANNEL_1) + { + tmp += DAC_DHR12R1_ALIGNMENT(Alignment); + } + + /* Set the DAC channel selected data holding register */ + *(__IO uint32_t *) tmp = Data; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Conversion complete callback in non-blocking mode for Channel1 + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DAC_ConvCpltCallbackCh1 could be implemented in the user file + */ +} + +/** + * @brief Conversion half DMA transfer callback in non-blocking mode for Channel1 + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DAC_ConvHalfCpltCallbackCh1 could be implemented in the user file + */ +} + +/** + * @brief Error DAC callback for Channel1. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DAC_ErrorCallbackCh1 could be implemented in the user file + */ +} + +/** + * @brief DMA underrun DAC callback for channel1. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hdac); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_DAC_DMAUnderrunCallbackCh1 could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Configure channels. + (+) Set the specified data holding register value for DAC channel. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the last data output value of the selected DAC channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @retval The selected DAC channel data output value. + */ +uint32_t HAL_DAC_GetValue(const DAC_HandleTypeDef *hdac, uint32_t Channel) +{ + uint32_t result; + + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + result = hdac->Instance->DOR1; + + /* Returns the DAC channel data output register value */ + return result; +} + +/** + * @brief Configures the selected DAC channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param sConfig DAC configuration structure. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef *hdac, + const DAC_ChannelConfTypeDef *sConfig, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpreg1; + uint32_t tmpreg2; + uint32_t tickstart; + uint32_t connectOnChip; + + /* Check the DAC peripheral handle and channel configuration struct */ + if ((hdac == NULL) || (sConfig == NULL)) + { + return HAL_ERROR; + } + + /* Check the DAC parameters */ + assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); + assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer)); + assert_param(IS_DAC_CHIP_CONNECTION(sConfig->DAC_ConnectOnChipPeripheral)); + assert_param(IS_DAC_TRIMMING(sConfig->DAC_UserTrimming)); + if ((sConfig->DAC_UserTrimming) == DAC_TRIMMING_USER) + { + assert_param(IS_DAC_TRIMMINGVALUE(sConfig->DAC_TrimmingValue)); + } + assert_param(IS_DAC_SAMPLEANDHOLD(sConfig->DAC_SampleAndHold)); + if ((sConfig->DAC_SampleAndHold) == DAC_SAMPLEANDHOLD_ENABLE) + { + assert_param(IS_DAC_SAMPLETIME(sConfig->DAC_SampleAndHoldConfig.DAC_SampleTime)); + assert_param(IS_DAC_HOLDTIME(sConfig->DAC_SampleAndHoldConfig.DAC_HoldTime)); + assert_param(IS_DAC_REFRESHTIME(sConfig->DAC_SampleAndHoldConfig.DAC_RefreshTime)); + } + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Sample and hold configuration */ + if (sConfig->DAC_SampleAndHold == DAC_SAMPLEANDHOLD_ENABLE) + { + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* SHSR1 can be written when BWST1 is cleared */ + while (((hdac->Instance->SR) & DAC_SR_BWST1) != 0UL) + { + /* Check for the Timeout */ + if ((HAL_GetTick() - tickstart) > TIMEOUT_DAC_CALIBCONFIG) + { + /* New check to avoid false timeout detection in case of preemption */ + if (((hdac->Instance->SR) & DAC_SR_BWST1) != 0UL) + { + /* Update error code */ + SET_BIT(hdac->ErrorCode, HAL_DAC_ERROR_TIMEOUT); + + /* Change the DMA state */ + hdac->State = HAL_DAC_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + hdac->Instance->SHSR1 = sConfig->DAC_SampleAndHoldConfig.DAC_SampleTime; + + /* HoldTime */ + MODIFY_REG(hdac->Instance->SHHR, DAC_SHHR_THOLD1 << (Channel & 0x10UL), + (sConfig->DAC_SampleAndHoldConfig.DAC_HoldTime) << (Channel & 0x10UL)); + /* RefreshTime */ + MODIFY_REG(hdac->Instance->SHRR, DAC_SHRR_TREFRESH1 << (Channel & 0x10UL), + (sConfig->DAC_SampleAndHoldConfig.DAC_RefreshTime) << (Channel & 0x10UL)); + } + + if (sConfig->DAC_UserTrimming == DAC_TRIMMING_USER) + /* USER TRIMMING */ + { + /* Get the DAC CCR value */ + tmpreg1 = hdac->Instance->CCR; + /* Clear trimming value */ + tmpreg1 &= ~(((uint32_t)(DAC_CCR_OTRIM1)) << (Channel & 0x10UL)); + /* Configure for the selected trimming offset */ + tmpreg2 = sConfig->DAC_TrimmingValue; + /* Calculate CCR register value depending on DAC_Channel */ + tmpreg1 |= tmpreg2 << (Channel & 0x10UL); + /* Write to DAC CCR */ + hdac->Instance->CCR = tmpreg1; + } + /* else factory trimming is used (factory setting are available at reset)*/ + /* SW Nothing has nothing to do */ + + /* Get the DAC MCR value */ + tmpreg1 = hdac->Instance->MCR; + /* Clear DAC_MCR_MODEx bits */ + tmpreg1 &= ~(((uint32_t)(DAC_MCR_MODE1)) << (Channel & 0x10UL)); + /* Configure for the selected DAC channel: mode, buffer output & on chip peripheral connect */ + + + if (sConfig->DAC_ConnectOnChipPeripheral == DAC_CHIPCONNECT_EXTERNAL) + { + connectOnChip = 0x00000000UL; + } + else if (sConfig->DAC_ConnectOnChipPeripheral == DAC_CHIPCONNECT_INTERNAL) + { + connectOnChip = DAC_MCR_MODE1_0; + } + else /* (sConfig->DAC_ConnectOnChipPeripheral == DAC_CHIPCONNECT_BOTH) */ + { + if (sConfig->DAC_OutputBuffer == DAC_OUTPUTBUFFER_ENABLE) + { + connectOnChip = DAC_MCR_MODE1_0; + } + else + { + connectOnChip = 0x00000000UL; + } + } + tmpreg2 = (sConfig->DAC_SampleAndHold | sConfig->DAC_OutputBuffer | connectOnChip); + /* Calculate MCR register value depending on DAC_Channel */ + tmpreg1 |= tmpreg2 << (Channel & 0x10UL); + /* Write to DAC MCR */ + hdac->Instance->MCR = tmpreg1; + + /* DAC in normal operating mode hence clear DAC_CR_CENx bit */ + CLEAR_BIT(hdac->Instance->CR, DAC_CR_CEN1 << (Channel & 0x10UL)); + + /* Get the DAC CR value */ + tmpreg1 = hdac->Instance->CR; + /* Clear TENx, TSELx, WAVEx and MAMPx bits */ + tmpreg1 &= ~(((uint32_t)(DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1)) << (Channel & 0x10UL)); + /* Configure for the selected DAC channel: trigger */ + /* Set TSELx and TENx bits according to DAC_Trigger value */ + tmpreg2 = sConfig->DAC_Trigger; + /* Calculate CR register value depending on DAC_Channel */ + tmpreg1 |= tmpreg2 << (Channel & 0x10UL); + /* Write to DAC CR */ + hdac->Instance->CR = tmpreg1; + /* Disable wave generation */ + CLEAR_BIT(hdac->Instance->CR, (DAC_CR_WAVE1 << (Channel & 0x10UL))); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DAC state. + (+) Check the DAC Errors. + +@endverbatim + * @{ + */ + +/** + * @brief return the DAC handle state + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL state + */ +HAL_DAC_StateTypeDef HAL_DAC_GetState(const DAC_HandleTypeDef *hdac) +{ + /* Return DAC handle state */ + return hdac->State; +} + + +/** + * @brief Return the DAC error code + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval DAC Error Code + */ +uint32_t HAL_DAC_GetError(const DAC_HandleTypeDef *hdac) +{ + return hdac->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DAC_Exported_Functions + * @{ + */ + +/** @addtogroup DAC_Exported_Functions_Group1 + * @{ + */ +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User DAC Callback + * To be used instead of the weak (overridden) predefined callback + * @note The HAL_DAC_RegisterCallback() may be called before HAL_DAC_Init() in HAL_DAC_STATE_RESET to register + * callbacks for HAL_DAC_MSPINIT_CB_ID and HAL_DAC_MSPDEINIT_CB_ID + * @param hdac DAC handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_DAC_ERROR_INVALID_CALLBACK DAC Error Callback ID + * @arg @ref HAL_DAC_CH1_COMPLETE_CB_ID DAC CH1 Complete Callback ID + * @arg @ref HAL_DAC_CH1_HALF_COMPLETE_CB_ID DAC CH1 Half Complete Callback ID + * @arg @ref HAL_DAC_CH1_ERROR_ID DAC CH1 Error Callback ID + * @arg @ref HAL_DAC_CH1_UNDERRUN_CB_ID DAC CH1 UnderRun Callback ID + * @arg @ref HAL_DAC_MSPINIT_CB_ID DAC MSP Init Callback ID + * @arg @ref HAL_DAC_MSPDEINIT_CB_ID DAC MSP DeInit Callback ID + * + * @param pCallback pointer to the Callback function + * @retval status + */ +HAL_StatusTypeDef HAL_DAC_RegisterCallback(DAC_HandleTypeDef *hdac, HAL_DAC_CallbackIDTypeDef CallbackID, + pDAC_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + if (pCallback == NULL) + { + /* Update the error code */ + hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; + return HAL_ERROR; + } + + if (hdac->State == HAL_DAC_STATE_READY) + { + switch (CallbackID) + { + case HAL_DAC_CH1_COMPLETE_CB_ID : + hdac->ConvCpltCallbackCh1 = pCallback; + break; + case HAL_DAC_CH1_HALF_COMPLETE_CB_ID : + hdac->ConvHalfCpltCallbackCh1 = pCallback; + break; + case HAL_DAC_CH1_ERROR_ID : + hdac->ErrorCallbackCh1 = pCallback; + break; + case HAL_DAC_CH1_UNDERRUN_CB_ID : + hdac->DMAUnderrunCallbackCh1 = pCallback; + break; + case HAL_DAC_MSPINIT_CB_ID : + hdac->MspInitCallback = pCallback; + break; + case HAL_DAC_MSPDEINIT_CB_ID : + hdac->MspDeInitCallback = pCallback; + break; + default : + /* Update the error code */ + hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; + /* update return status */ + status = HAL_ERROR; + break; + } + } + else if (hdac->State == HAL_DAC_STATE_RESET) + { + switch (CallbackID) + { + case HAL_DAC_MSPINIT_CB_ID : + hdac->MspInitCallback = pCallback; + break; + case HAL_DAC_MSPDEINIT_CB_ID : + hdac->MspDeInitCallback = pCallback; + break; + default : + /* Update the error code */ + hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; + /* update return status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; + /* update return status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister a User DAC Callback + * DAC Callback is redirected to the weak (overridden) predefined callback + * @note The HAL_DAC_UnRegisterCallback() may be called before HAL_DAC_Init() in HAL_DAC_STATE_RESET to un-register + * callbacks for HAL_DAC_MSPINIT_CB_ID and HAL_DAC_MSPDEINIT_CB_ID + * @param hdac DAC handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_DAC_CH1_COMPLETE_CB_ID DAC CH1 transfer Complete Callback ID + * @arg @ref HAL_DAC_CH1_HALF_COMPLETE_CB_ID DAC CH1 Half Complete Callback ID + * @arg @ref HAL_DAC_CH1_ERROR_ID DAC CH1 Error Callback ID + * @arg @ref HAL_DAC_CH1_UNDERRUN_CB_ID DAC CH1 UnderRun Callback ID + * @arg @ref HAL_DAC_MSPINIT_CB_ID DAC MSP Init Callback ID + * @arg @ref HAL_DAC_MSPDEINIT_CB_ID DAC MSP DeInit Callback ID + * @arg @ref HAL_DAC_ALL_CB_ID DAC All callbacks + * @retval status + */ +HAL_StatusTypeDef HAL_DAC_UnRegisterCallback(DAC_HandleTypeDef *hdac, HAL_DAC_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + if (hdac->State == HAL_DAC_STATE_READY) + { + switch (CallbackID) + { + case HAL_DAC_CH1_COMPLETE_CB_ID : + hdac->ConvCpltCallbackCh1 = HAL_DAC_ConvCpltCallbackCh1; + break; + case HAL_DAC_CH1_HALF_COMPLETE_CB_ID : + hdac->ConvHalfCpltCallbackCh1 = HAL_DAC_ConvHalfCpltCallbackCh1; + break; + case HAL_DAC_CH1_ERROR_ID : + hdac->ErrorCallbackCh1 = HAL_DAC_ErrorCallbackCh1; + break; + case HAL_DAC_CH1_UNDERRUN_CB_ID : + hdac->DMAUnderrunCallbackCh1 = HAL_DAC_DMAUnderrunCallbackCh1; + break; + case HAL_DAC_MSPINIT_CB_ID : + hdac->MspInitCallback = HAL_DAC_MspInit; + break; + case HAL_DAC_MSPDEINIT_CB_ID : + hdac->MspDeInitCallback = HAL_DAC_MspDeInit; + break; + case HAL_DAC_ALL_CB_ID : + hdac->ConvCpltCallbackCh1 = HAL_DAC_ConvCpltCallbackCh1; + hdac->ConvHalfCpltCallbackCh1 = HAL_DAC_ConvHalfCpltCallbackCh1; + hdac->ErrorCallbackCh1 = HAL_DAC_ErrorCallbackCh1; + hdac->DMAUnderrunCallbackCh1 = HAL_DAC_DMAUnderrunCallbackCh1; + hdac->MspInitCallback = HAL_DAC_MspInit; + hdac->MspDeInitCallback = HAL_DAC_MspDeInit; + break; + default : + /* Update the error code */ + hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; + /* update return status */ + status = HAL_ERROR; + break; + } + } + else if (hdac->State == HAL_DAC_STATE_RESET) + { + switch (CallbackID) + { + case HAL_DAC_MSPINIT_CB_ID : + hdac->MspInitCallback = HAL_DAC_MspInit; + break; + case HAL_DAC_MSPDEINIT_CB_ID : + hdac->MspDeInitCallback = HAL_DAC_MspDeInit; + break; + default : + /* Update the error code */ + hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; + /* update return status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; + /* update return status */ + status = HAL_ERROR; + } + + return status; +} +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DAC_Private_Functions + * @{ + */ + +/** + * @brief DMA conversion complete callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) + hdac->ConvCpltCallbackCh1(hdac); +#else + HAL_DAC_ConvCpltCallbackCh1(hdac); +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ + + hdac->State = HAL_DAC_STATE_READY; +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + /* Conversion complete callback */ +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) + hdac->ConvHalfCpltCallbackCh1(hdac); +#else + HAL_DAC_ConvHalfCpltCallbackCh1(hdac); +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA error callback + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef *hdac = (DAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Set DAC error code to DMA error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMA; + +#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) + hdac->ErrorCallbackCh1(hdac); +#else + HAL_DAC_ErrorCallbackCh1(hdac); +#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ + + hdac->State = HAL_DAC_STATE_READY; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* DAC1 */ + +#endif /* HAL_DAC_MODULE_ENABLED */ +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac_ex.c new file mode 100644 index 0000000..b841123 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dac_ex.c @@ -0,0 +1,426 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_dac_ex.c + * @author MCD Application Team + * @brief Extended DAC HAL module driver. + * This file provides firmware functions to manage the extended + * functionalities of the DAC peripheral. + * + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + *** Signal generation operation *** + =================================== + [..] + (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal. + (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal. + + (+) HAL_DACEx_SelfCalibrate to calibrate one DAC channel. + (+) HAL_DACEx_SetUserTrimming to set user trimming value. + (+) HAL_DACEx_GetTrimOffset to retrieve trimming value (factory setting + after reset, user setting if HAL_DACEx_SetUserTrimming have been used + at least one time after reset). + + @endverbatim + ****************************************************************************** + */ + + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#ifdef HAL_DAC_MODULE_ENABLED + +#if defined(DAC1) + +/** @defgroup DACEx DACEx + * @brief DAC Extended HAL module driver + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/* Delay for DAC minimum trimming time. */ +/* Note: minimum time needed between two calibration steps */ +/* The delay below is specified under conditions: */ +/* - DAC channel output buffer enabled */ +/* Literal set to maximum value (refer to device datasheet, */ +/* electrical characteristics, parameter "tTRIM"). */ +/* Unit: us */ +#define DAC_DELAY_TRIM_US (50UL) /*!< Delay for DAC minimum trimming time */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup DACEx_Exported_Functions DACEx Exported Functions + * @{ + */ + +/** @defgroup DACEx_Exported_Functions_Group2 IO operation functions + * @brief Extended IO operation functions + * +@verbatim + ============================================================================== + ##### Extended features functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion. + (+) Stop conversion. + (+) Start conversion and enable DMA transfer. + (+) Stop conversion and disable DMA transfer. + (+) Get result of conversion. + (+) Get result of dual mode conversion. + +@endverbatim + * @{ + */ + +/** + * @brief Enable or disable the selected DAC channel wave generation. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @param Amplitude Select max triangle amplitude. + * This parameter can be one of the following values: + * @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1 + * @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3 + * @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7 + * @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15 + * @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31 + * @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63 + * @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127 + * @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255 + * @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511 + * @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023 + * @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047 + * @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude) +{ + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the triangle wave generation for the selected DAC channel */ + MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), + (DAC_CR_WAVE1_1 | Amplitude) << (Channel & 0x10UL)); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enable or disable the selected DAC channel wave generation. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @param Amplitude Unmask DAC channel LFSR for noise wave generation. + * This parameter can be one of the following values: + * @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation + * @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef *hdac, uint32_t Channel, uint32_t Amplitude) +{ + /* Check the DAC peripheral handle */ + if (hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the noise wave generation for the selected DAC channel */ + MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1) | (DAC_CR_MAMP1)) << (Channel & 0x10UL), + (DAC_CR_WAVE1_0 | Amplitude) << (Channel & 0x10UL)); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Run the self calibration of one DAC channel. + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param sConfig DAC channel configuration structure. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @retval Updates DAC_TrimmingValue. , DAC_UserTrimming set to DAC_UserTrimming + * @retval HAL status + * @note Calibration runs about 7 ms. + */ +HAL_StatusTypeDef HAL_DACEx_SelfCalibrate(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + __IO uint32_t tmp; + uint32_t trimmingvalue; + uint32_t delta; + __IO uint32_t wait_loop_index; + + /* store/restore channel configuration structure purpose */ + uint32_t oldmodeconfiguration; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Check the DAC handle allocation */ + /* Check if DAC running */ + if ((hdac == NULL) || (sConfig == NULL)) + { + status = HAL_ERROR; + } + else if (hdac->State == HAL_DAC_STATE_BUSY) + { + status = HAL_ERROR; + } + else + { + /* Process locked */ + __HAL_LOCK(hdac); + + /* Store configuration */ + oldmodeconfiguration = (hdac->Instance->MCR & (DAC_MCR_MODE1 << (Channel & 0x10UL))); + + /* Disable the selected DAC channel */ + CLEAR_BIT((hdac->Instance->CR), (DAC_CR_EN1 << (Channel & 0x10UL))); + + /* Set mode in MCR for calibration */ + MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), 0U); + + /* Set DAC Channel1 DHR register to the middle value */ + tmp = (uint32_t)hdac->Instance; + + if (Channel == DAC_CHANNEL_1) + { + tmp += DAC_DHR12R1_ALIGNMENT(DAC_ALIGN_12B_R); + } + + *(__IO uint32_t *) tmp = 0x0800UL; + + /* Enable the selected DAC channel calibration */ + /* i.e. set DAC_CR_CENx bit */ + SET_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL))); + + /* Init trimming counter */ + /* Medium value */ + trimmingvalue = 16UL; + delta = 8UL; + while (delta != 0UL) + { + /* Set candidate trimming */ + MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL))); + + /* Wait minimum time needed between two calibration steps (OTRIM) */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially CPU processing cycles, scaling in us split to not exceed */ + /* 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((DAC_DELAY_TRIM_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + + if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) + { + /* DAC_SR_CAL_FLAGx is HIGH try higher trimming */ + trimmingvalue -= delta; + } + else + { + /* DAC_SR_CAL_FLAGx is LOW try lower trimming */ + trimmingvalue += delta; + } + delta >>= 1UL; + } + + /* Still need to check if right calibration is current value or one step below */ + /* Indeed the first value that causes the DAC_SR_CAL_FLAGx bit to change from 0 to 1 */ + /* Set candidate trimming */ + MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL))); + + /* Wait minimum time needed between two calibration steps (OTRIM) */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially CPU processing cycles, scaling in us split to not exceed */ + /* 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((DAC_DELAY_TRIM_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL)); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + + if ((hdac->Instance->SR & (DAC_SR_CAL_FLAG1 << (Channel & 0x10UL))) == 0UL) + { + /* Trimming is actually one value more */ + trimmingvalue++; + /* Set right trimming */ + MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (trimmingvalue << (Channel & 0x10UL))); + } + + /* Disable the selected DAC channel calibration */ + /* i.e. clear DAC_CR_CENx bit */ + CLEAR_BIT((hdac->Instance->CR), (DAC_CR_CEN1 << (Channel & 0x10UL))); + + sConfig->DAC_TrimmingValue = trimmingvalue; + sConfig->DAC_UserTrimming = DAC_TRIMMING_USER; + + /* Restore configuration */ + MODIFY_REG(hdac->Instance->MCR, (DAC_MCR_MODE1 << (Channel & 0x10UL)), oldmodeconfiguration); + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + } + + return status; +} + +/** + * @brief Set the trimming mode and trimming value (user trimming mode applied). + * @param hdac pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param sConfig DAC configuration structure updated with new DAC trimming value. + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @param NewTrimmingValue DAC new trimming value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_SetUserTrimming(DAC_HandleTypeDef *hdac, DAC_ChannelConfTypeDef *sConfig, uint32_t Channel, + uint32_t NewTrimmingValue) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_NEWTRIMMINGVALUE(NewTrimmingValue)); + + /* Check the DAC handle and channel configuration struct allocation */ + if ((hdac == NULL) || (sConfig == NULL)) + { + status = HAL_ERROR; + } + else + { + /* Process locked */ + __HAL_LOCK(hdac); + + /* Set new trimming */ + MODIFY_REG(hdac->Instance->CCR, (DAC_CCR_OTRIM1 << (Channel & 0x10UL)), (NewTrimmingValue << (Channel & 0x10UL))); + + /* Update trimming mode */ + sConfig->DAC_UserTrimming = DAC_TRIMMING_USER; + sConfig->DAC_TrimmingValue = NewTrimmingValue; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + } + return status; +} + +/** + * @brief Return the DAC trimming value. + * @param hdac DAC handle + * @param Channel The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @retval Trimming value : range: 0->31 + * + */ +uint32_t HAL_DACEx_GetTrimOffset(const DAC_HandleTypeDef *hdac, uint32_t Channel) +{ + /* Check the parameter */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Retrieve trimming */ + return ((hdac->Instance->CCR & (DAC_CCR_OTRIM1 << (Channel & 0x10UL))) >> (Channel & 0x10UL)); +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* DAC1 */ + +#endif /* HAL_DAC_MODULE_ENABLED */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma.c new file mode 100644 index 0000000..06a6057 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma.c @@ -0,0 +1,1199 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_dma.c + * @author GPM Application Team + * @brief DMA HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Direct Memory Access (DMA) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and errors functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable and configure the peripheral to be connected to the DMA Channel + (except for internal SRAM / FLASH memories: no initialization is + necessary). Please refer to the Reference manual for connection between peripherals + and DMA requests. + + (#) For a given Channel, program the required configuration through the following parameters: + Channel request, Transfer Direction, Source and Destination data formats, + Circular or Normal mode, Channel Priority level, Source and Destination Increment mode + using HAL_DMA_Init() function. + + Prior to HAL_DMA_Init the peripheral clock shall be enabled for both DMA & DMAMUX + thanks to: + (##) DMA1 or DMA2: __HAL_RCC_DMA1_CLK_ENABLE() or __HAL_RCC_DMA2_CLK_ENABLE(); + + (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error + detection. + + (#) Use HAL_DMA_Abort() function to abort the current transfer + + -@- In Memory-to-Memory transfer mode, Circular mode is not allowed. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source + address and destination address and the Length of data to be transferred + (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this + case a fixed Timeout can be configured by User depending from his application. + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority() + (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ() + (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of + Source address and destination address and the Length of data to be transferred. + In this case the DMA interrupt is configured + (+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine + (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can + add his own function to register callbacks with HAL_DMA_RegisterCallback(). + + *** DMA HAL driver macros list *** + ============================================= + [..] + Below the list of macros in DMA HAL driver. + + (+) __HAL_DMA_ENABLE: Enable the specified DMA Channel. + (+) __HAL_DMA_DISABLE: Disable the specified DMA Channel. + (+) __HAL_DMA_GET_FLAG: Get the DMA Channel pending flags. + (+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Channel pending flags. + (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Channel interrupts. + (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Channel interrupts. + (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Channel interrupt is enabled or not. + + [..] + (@) You can refer to the DMA HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup DMA DMA + * @brief DMA HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/** @defgroup DMA_Private_Functions DMA Private Functions + * @{ + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +static void DMA_CalcDMAMUXChannelBaseAndMask(DMA_HandleTypeDef *hdma); +static void DMA_CalcDMAMUXRequestGenBaseAndMask(DMA_HandleTypeDef *hdma); + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Functions DMA Exported Functions + * @{ + */ + +/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to initialize the DMA Channel source + and destination addresses, incrementation and data sizes, transfer direction, + circular/normal mode selection, memory-to-memory mode selection and Channel priority value. + [..] + The HAL_DMA_Init() function follows the DMA configuration procedures as described in + reference manual. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DMA according to the specified + * parameters in the DMA_InitTypeDef and initialize the associated handle. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma) +{ + /* Check the DMA handle allocation */ + if (hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + assert_param(IS_DMA_DIRECTION(hdma->Init.Direction)); + assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc)); + assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc)); + assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment)); + assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment)); + assert_param(IS_DMA_MODE(hdma->Init.Mode)); + assert_param(IS_DMA_PRIORITY(hdma->Init.Priority)); + + assert_param(IS_DMA_ALL_REQUEST(hdma->Init.Request)); + + /* Compute the channel index */ +#if defined(DMA2) + if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1)) + { + /* DMA1 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / \ + ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA1; + } + else + { + /* DMA2 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / \ + ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA2; + } +#else + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / \ + ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; +#endif /* DMA2 */ + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR and MEM2MEM bits */ + CLEAR_BIT(hdma->Instance->CCR, (DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | \ + DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | \ + DMA_CCR_DIR | DMA_CCR_MEM2MEM)); + + /* Set the DMA Channel configuration */ + SET_BIT(hdma->Instance->CCR, (hdma->Init.Direction | \ + hdma->Init.PeriphInc | hdma->Init.MemInc | \ + hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment | \ + hdma->Init.Mode | hdma->Init.Priority)); + + /* Initialize parameters for DMAMUX channel : + DMAmuxChannel, DMAmuxChannelStatus and DMAmuxChannelStatusMask + */ + DMA_CalcDMAMUXChannelBaseAndMask(hdma); + + if (hdma->Init.Direction == DMA_MEMORY_TO_MEMORY) + { + /* if memory to memory force the request to 0*/ + hdma->Init.Request = DMA_REQUEST_MEM2MEM; + } + + /* Set peripheral request to DMAMUX channel */ + hdma->DMAmuxChannel->CCR = (hdma->Init.Request & DMAMUX_CxCR_DMAREQ_ID); + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (((hdma->Init.Request > 0UL) && (hdma->Init.Request <= DMA_REQUEST_GENERATOR3))) + { + /* Initialize parameters for DMAMUX request generator : + DMAmuxRequestGen, DMAmuxRequestGenStatus and DMAmuxRequestGenStatusMask + */ + DMA_CalcDMAMUXRequestGenBaseAndMask(hdma); + + /* Reset the DMAMUX request generator register*/ + hdma->DMAmuxRequestGen->RGCR = 0U; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + else + { + hdma->DMAmuxRequestGen = 0U; + hdma->DMAmuxRequestGenStatus = 0U; + hdma->DMAmuxRequestGenStatusMask = 0U; + } + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state*/ + hdma->State = HAL_DMA_STATE_READY; + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return HAL_OK; +} + +/** + * @brief DeInitialize the DMA peripheral. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma) +{ + /* Check the DMA handle allocation */ + if (NULL == hdma) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* Disable the selected DMA Channelx */ + __HAL_DMA_DISABLE(hdma); + + /* Compute the channel index */ +#if defined(DMA2) + if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1)) + { + /* DMA1 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / \ + ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA1; + } + else + { + /* DMA2 */ + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / \ + ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2U; + hdma->DmaBaseAddress = DMA2; + } +#else + hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / \ + ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; +#endif /* DMA2 */ + + /* Reset DMA Channel control register */ + hdma->Instance->CCR = 0U; + + /* Clear all flags */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1CU)); +#else + __HAL_DMA_CLEAR_FLAG(hdma, (DMA_FLAG_GI1 << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + + /* Initialize parameters for DMAMUX channel : + DMAmuxChannel, DMAmuxChannelStatus and DMAmuxChannelStatusMask */ + + DMA_CalcDMAMUXChannelBaseAndMask(hdma); + + /* Reset the DMAMUX channel that corresponds to the DMA channel */ + hdma->DMAmuxChannel->CCR = 0U; + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Reset Request generator parameters if any */ + if (((hdma->Init.Request > 0UL) && (hdma->Init.Request <= DMA_REQUEST_GENERATOR3))) + { + /* Initialize parameters for DMAMUX request generator : + DMAmuxRequestGen, DMAmuxRequestGenStatus and DMAmuxRequestGenStatusMask + */ + DMA_CalcDMAMUXRequestGenBaseAndMask(hdma); + + /* Reset the DMAMUX request generator register*/ + hdma->DMAmuxRequestGen->RGCR = 0U; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + hdma->DMAmuxRequestGen = 0U; + hdma->DMAmuxRequestGenStatus = 0U; + hdma->DMAmuxRequestGenStatusMask = 0U; + + /* Clean callbacks */ + hdma->XferCpltCallback = NULL; + hdma->XferHalfCpltCallback = NULL; + hdma->XferErrorCallback = NULL; + hdma->XferAbortCallback = NULL; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions + * @brief Input and Output operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and Start DMA transfer + (+) Configure the source, destination address and data length and + Start DMA transfer with interrupt + (+) Abort DMA transfer + (+) Poll for transfer complete + (+) Handle DMA interrupt request + (+) Register and Unregister DMA callbacks + +@endverbatim + * @{ + */ + +/** + * @brief Start the DMA Transfer. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param SrcAddress The source memory Buffer address + * @param DstAddress The destination memory Buffer address + * @param DataLength The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Process locked */ + __HAL_LOCK(hdma); + + if (hdma->State == HAL_DMA_STATE_READY) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length & clear flags*/ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Change the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Start the DMA Transfer with interrupt enabled. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param SrcAddress The source memory Buffer address + * @param DstAddress The destination memory Buffer address + * @param DataLength The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, + uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Process locked */ + __HAL_LOCK(hdma); + + if (hdma->State == HAL_DMA_STATE_READY) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length & clear flags*/ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the transfer complete interrupt */ + /* Enable the transfer Error interrupt */ + if (NULL != hdma->XferHalfCpltCallback) + { + /* Enable the Half transfer complete interrupt as well */ + __HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + } + else + { + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT); + __HAL_DMA_ENABLE_IT(hdma, (DMA_IT_TC | DMA_IT_TE)); + } + + /* Check if DMAMUX Synchronization is enabled*/ + if ((hdma->DMAmuxChannel->CCR & DMAMUX_CxCR_SE) != 0U) + { + /* Enable DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR |= DMAMUX_CxCR_SOIE; + } + + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, enable the DMAMUX request generator overrun IT*/ + /* enable the request gen overrun IT*/ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_OIE; + } + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Change the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Abort the DMA Transfer. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma) +{ + /* Check the DMA peripheral handle */ + if (NULL == hdma) + { + return HAL_ERROR; + } + + /* Check the DMA peripheral state */ + if (hdma->State != HAL_DMA_STATE_BUSY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + else + { + /* Disable DMA IT */ + __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + + /* disable the DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + + /* Disable the channel */ + __HAL_DMA_DISABLE(hdma); + + /* Clear all flags */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1CU)); +#else + __HAL_DMA_CLEAR_FLAG(hdma, ((DMA_FLAG_GI1) << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, disable the DMAMUX request generator overrun IT*/ + /* disable the request gen overrun IT*/ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + } + + return HAL_OK; +} + +/** + * @brief Aborts the DMA Transfer in Interrupt mode. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (hdma->State != HAL_DMA_STATE_BUSY) + { + /* no transfer ongoing */ + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + + status = HAL_ERROR; + } + else + { + /* Disable DMA IT */ + __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + + /* Disable the channel */ + __HAL_DMA_DISABLE(hdma); + + /* disable the DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + + /* Clear all flags */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1CU)); +#else + __HAL_DMA_CLEAR_FLAG(hdma, ((DMA_FLAG_GI1) << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, disable the DMAMUX request generator overrun IT*/ + /* disable the request gen overrun IT*/ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Call User Abort callback */ + if (hdma->XferAbortCallback != NULL) + { + hdma->XferAbortCallback(hdma); + } + } + return status; +} + +/** + * @brief Polling for transfer complete. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param CompleteLevel Specifies the DMA level complete. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, HAL_DMA_LevelCompleteTypeDef CompleteLevel, + uint32_t Timeout) +{ + uint32_t temp; + uint32_t tickstart; + + if (hdma->State != HAL_DMA_STATE_BUSY) + { + /* no transfer ongoing */ + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + __HAL_UNLOCK(hdma); + return HAL_ERROR; + } + + /* Polling mode not supported in circular mode */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) != 0U) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + return HAL_ERROR; + } + + /* Get the level transfer complete flag */ + if (HAL_DMA_FULL_TRANSFER == CompleteLevel) + { + /* Transfer Complete flag */ + temp = DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1CU); + } + else + { + /* Half Transfer Complete flag */ + temp = DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1CU); + } + + /* Get tick */ + tickstart = HAL_GetTick(); + +#if defined(DMA2) + while ((hdma->DmaBaseAddress->ISR & temp) == 0U) + { + if ((hdma->DmaBaseAddress->ISR & (DMA_FLAG_TE1 << (hdma->ChannelIndex & 0x1CU))) != 0U) + { + /* When a DMA transfer error occurs */ + /* A hardware clear of its EN bits is performed */ + /* Clear all flags */ + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1CU)); + + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } +#else + while (0U == __HAL_DMA_GET_FLAG(hdma, temp)) + { + if (0U != __HAL_DMA_GET_FLAG(hdma, (DMA_FLAG_TE1 << (hdma->ChannelIndex & 0x1CU)))) + { + /* When a DMA transfer error occurs */ + /* A hardware clear of its EN bits is performed */ + /* Clear all flags */ + __HAL_DMA_CLEAR_FLAG(hdma, ((DMA_FLAG_GI1) << (hdma->ChannelIndex & 0x1CU))); + + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } +#endif /* DMA2 */ + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + } + } + + /*Check for DMAMUX Request generator (if used) overrun status */ + if (hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator Check for DMAMUX request generator overrun */ + if ((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U) + { + /* Disable the request gen overrun interrupt */ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN; + } + } + + /* Check for DMAMUX Synchronization overrun */ + if ((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U) + { + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_SYNC; + } + + if (HAL_DMA_FULL_TRANSFER == CompleteLevel) + { + /* Clear the transfer complete flag */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = (DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1CU)); +#else + __HAL_DMA_CLEAR_FLAG(hdma, (DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + + /* Process unlocked */ + __HAL_UNLOCK(hdma); + + /* The selected Channelx EN bit is cleared (DMA is disabled and + all transfers are complete) */ + hdma->State = HAL_DMA_STATE_READY; + } + else + { + /* Clear the half transfer complete flag */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = (DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1CU)); +#else + __HAL_DMA_CLEAR_FLAG(hdma, (DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + } + + return HAL_OK; +} + +/** + * @brief Handle DMA interrupt request. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval None + */ +void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma) +{ +#if defined(DMA2) + uint32_t flag_it = hdma->DmaBaseAddress->ISR; +#else + uint32_t flag_it = DMA1->ISR; +#endif /* DMA2 */ + uint32_t source_it = hdma->Instance->CCR; + + /* Half Transfer Complete Interrupt management ******************************/ + if (((flag_it & (DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1CU))) != 0U) && ((source_it & DMA_IT_HT) != 0U)) + { + /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) + { + /* Disable the half transfer interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT); + } + /* Clear the half transfer complete flag */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = DMA_ISR_HTIF1 << (hdma->ChannelIndex & 0x1CU); +#else + __HAL_DMA_CLEAR_FLAG(hdma, (DMA_FLAG_HT1 << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + + /* DMA peripheral state is not updated in Half Transfer */ + /* but in Transfer Complete case */ + + if (hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + + /* Transfer Complete Interrupt management ***********************************/ + else if ((0U != (flag_it & (DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1CU)))) && (0U != (source_it & DMA_IT_TC))) + { + if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) + { + /* Disable the transfer complete and error interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE | DMA_IT_TC); + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + } + /* Clear the transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, (DMA_FLAG_TC1 << (hdma->ChannelIndex & 0x1CU))); + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + if (hdma->XferCpltCallback != NULL) + { + /* Transfer complete callback */ + hdma->XferCpltCallback(hdma); + } + } + + /* Transfer Error Interrupt management **************************************/ + else if (((flag_it & (DMA_FLAG_TE1 << (hdma->ChannelIndex & 0x1CU))) != 0U) && ((source_it & DMA_IT_TE) != 0U)) + { + /* When a DMA transfer error occurs */ + /* A hardware clear of its EN bits is performed */ + /* Disable ALL DMA IT */ + __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + + /* Clear all flags */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1CU)); +#else + __HAL_DMA_CLEAR_FLAG(hdma, (DMA_FLAG_GI1 << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if (hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + else + { + /* Nothing To Do */ + } + return; +} + +/** + * @brief Register callbacks + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param CallbackID User Callback identifier + * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. + * @param pCallback Pointer to private callback function which has pointer to + * a DMA_HandleTypeDef structure as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, + void (* pCallback)(DMA_HandleTypeDef *_hdma)) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdma); + + if (hdma->State == HAL_DMA_STATE_READY) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = pCallback; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = pCallback; + break; + + default: + status = HAL_ERROR; + break; + } + } + else + { + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @brief UnRegister callbacks + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param CallbackID User Callback identifier + * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hdma); + + if (hdma->State == HAL_DMA_STATE_READY) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = NULL; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = NULL; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = NULL; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = NULL; + break; + + case HAL_DMA_XFER_ALL_CB_ID: + hdma->XferCpltCallback = NULL; + hdma->XferHalfCpltCallback = NULL; + hdma->XferErrorCallback = NULL; + hdma->XferAbortCallback = NULL; + break; + + default: + status = HAL_ERROR; + break; + } + } + else + { + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @} + */ + +/** @defgroup DMA_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DMA state + (+) Get error code + +@endverbatim + * @{ + */ + +/** + * @brief Return the DMA handle state. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval HAL state + */ +HAL_DMA_StateTypeDef HAL_DMA_GetState(const DMA_HandleTypeDef *hdma) +{ + /* Return DMA handle state */ + return hdma->State; +} + +/** + * @brief Return the DMA error code. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval DMA Error Code + */ +uint32_t HAL_DMA_GetError(const DMA_HandleTypeDef *hdma) +{ + /* Return the DMA error code */ + return hdma->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMA_Private_Functions + * @{ + */ + +/** + * @brief Sets the DMA Transfer parameter. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @param SrcAddress The source memory Buffer address + * @param DstAddress The destination memory Buffer address + * @param DataLength The length of data to be transferred from source to destination + * @retval HAL status + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if (hdma->DMAmuxRequestGen != 0U) + { + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + /* Clear all flags */ +#if defined(DMA2) + hdma->DmaBaseAddress->IFCR = (DMA_ISR_GIF1 << (hdma->ChannelIndex & 0x1CU)); +#else + __HAL_DMA_CLEAR_FLAG(hdma, (DMA_FLAG_GI1 << (hdma->ChannelIndex & 0x1CU))); +#endif /* DMA2 */ + + /* Configure DMA Channel data length */ + hdma->Instance->CNDTR = DataLength; + + /* Memory to Peripheral */ + if ((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Channel destination address */ + hdma->Instance->CPAR = DstAddress; + + /* Configure DMA Channel source address */ + hdma->Instance->CMAR = SrcAddress; + } + /* Peripheral to Memory */ + else + { + /* Configure DMA Channel source address */ + hdma->Instance->CPAR = SrcAddress; + + /* Configure DMA Channel destination address */ + hdma->Instance->CMAR = DstAddress; + } +} + +/** + * @brief Updates the DMA handle with the DMAMUX channel and status mask depending on channel number + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval None + */ +static void DMA_CalcDMAMUXChannelBaseAndMask(DMA_HandleTypeDef *hdma) +{ + uint32_t channel_number; + +#if defined(DMA2) + /* check if instance is not outside the DMA channel range */ + if ((uint32_t)hdma->Instance < (uint32_t)DMA2_Channel1) + { + /* DMA1 */ + /* Associate a DMA Channel to a DMAMUX channel */ + hdma->DMAmuxChannel = (DMAMUX1_Channel0 + (hdma->ChannelIndex >> 2U)); + + /* Prepare channel_number used for DMAmuxChannelStatusMask computation */ + channel_number = (((uint32_t)hdma->Instance & 0xFFU) - 8U) / 20U; + } + else + { + /* DMA2 */ + /* Associate a DMA Channel to a DMAMUX channel */ + hdma->DMAmuxChannel = (DMAMUX1_Channel7 + (hdma->ChannelIndex >> 2U)); + + /* Prepare channel_number used for DMAmuxChannelStatusMask computation */ + channel_number = (((((uint32_t)hdma->Instance & 0xFFU) - 8U) / 20U) + 7U); + } +#else + /* Associate a DMA Channel to a DMAMUX channel */ + hdma->DMAmuxChannel = (DMAMUX_Channel_TypeDef *) \ + (uint32_t)((uint32_t)DMAMUX1_Channel0 + \ + ((hdma->ChannelIndex >> 2U) * \ + ((uint32_t)DMAMUX1_Channel1 - (uint32_t)DMAMUX1_Channel0))); + + /* Prepare channel_number used for DMAmuxChannelStatusMask computation */ + channel_number = (((uint32_t)hdma->Instance & 0xFFU) - 8U) / 20U; +#endif /* DMA2 */ + + /* Initialize the field DMAmuxChannelStatus to DMAMUX1_ChannelStatus base */ + hdma->DMAmuxChannelStatus = DMAMUX1_ChannelStatus; + + /* Initialize the field DMAmuxChannelStatusMask with the corresponding index of the DMAMUX channel selected + for the current ChannelIndex */ + hdma->DMAmuxChannelStatusMask = 1UL << (channel_number & 0x1FU); +} + +/** + * @brief Updates the DMA handle with the DMAMUX request generator params + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Channel. + * @retval None + */ + +static void DMA_CalcDMAMUXRequestGenBaseAndMask(DMA_HandleTypeDef *hdma) +{ + uint32_t request = hdma->Init.Request & DMAMUX_CxCR_DMAREQ_ID; + + /* DMA Channels are connected to DMAMUX1 request generator blocks*/ + hdma->DMAmuxRequestGen = (DMAMUX_RequestGen_TypeDef *)((uint32_t)(((uint32_t)DMAMUX1_RequestGenerator0) + \ + ((request - 1U) * 4U))); + + hdma->DMAmuxRequestGenStatus = DMAMUX1_RequestGenStatus; + + /* here "Request" is either DMA_REQUEST_GENERATOR0 to DMA_REQUEST_GENERATOR3, i.e. <= 4*/ + hdma->DMAmuxRequestGenStatusMask = 1UL << ((request - 1U) & 0x3U); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma_ex.c new file mode 100644 index 0000000..b2d1455 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_dma_ex.c @@ -0,0 +1,317 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_dma_ex.c + * @author GPM Application Team + * @brief DMA Extension HAL module driver + * This file provides firmware functions to manage the following + * functionalities of the DMA Extension peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The DMA Extension HAL driver can be used as follows: + (+) Configure the DMAMUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function. + (+) Configure the DMAMUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function. + Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used + to respectively enable/disable the request generator. + + (+) To handle the DMAMUX Interrupts, the function HAL_DMAEx_MUX_IRQHandler should be called from + the DMAMUX IRQ handler i.e DMAMUX1_OVR_IRQHandler. + As only one interrupt line is available for all DMAMUX channels and request generators , + HAL_DMAEx_MUX_IRQHandler should be called with, as parameter, the appropriate DMA handle as many as used DMAs in + the user project (exception done if a given DMA is not using the DMAMUX SYNC block neither a request generator) + + @endverbatim + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup DMAEx DMAEx + * @brief DMA Extended HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private Constants ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup DMAEx_Exported_Functions DMAEx Exported Functions + * @{ + */ + +/** @defgroup DMAEx_Exported_Functions_Group1 DMAEx Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + + (+) Configure the DMAMUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function. + (+) Configure the DMAMUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function. + Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used + to respectively enable/disable the request generator. + (+) Handle DMAMUX interrupts using HAL_DMAEx_MUX_IRQHandler : should be called from + the DMAMUX IRQ handler + +@endverbatim + * @{ + */ + +/** + * @brief Configure the DMAMUX synchronization parameters for a given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @param pSyncConfig Pointer to HAL_DMA_MuxSyncConfigTypeDef contains the DMAMUX synchronization parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxSync(DMA_HandleTypeDef *hdma, HAL_DMA_MuxSyncConfigTypeDef *pSyncConfig) +{ + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + assert_param(IS_DMAMUX_SYNC_SIGNAL_ID(pSyncConfig->SyncSignalID)); + + assert_param(IS_DMAMUX_SYNC_POLARITY(pSyncConfig-> SyncPolarity)); + assert_param(IS_DMAMUX_SYNC_STATE(pSyncConfig->SyncEnable)); + assert_param(IS_DMAMUX_SYNC_EVENT(pSyncConfig->EventEnable)); + assert_param(IS_DMAMUX_SYNC_REQUEST_NUMBER(pSyncConfig->RequestNumber)); + + /*Check if the DMA state is ready */ + if (hdma->State == HAL_DMA_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Set the new synchronization parameters (and keep the request ID filled during the Init)*/ + MODIFY_REG(hdma->DMAmuxChannel->CCR, \ + (~DMAMUX_CxCR_DMAREQ_ID), \ + (pSyncConfig->SyncSignalID | ((pSyncConfig->RequestNumber - 1U) << DMAMUX_CxCR_NBREQ_Pos) | \ + pSyncConfig->SyncPolarity | ((uint32_t)pSyncConfig->SyncEnable << DMAMUX_CxCR_SE_Pos) | \ + ((uint32_t)pSyncConfig->EventEnable << DMAMUX_CxCR_EGE_Pos))); + + /* Process UnLocked */ + __HAL_UNLOCK(hdma); + + return HAL_OK; + } + else + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Return error status */ + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMAMUX request generator block used by the given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @param pRequestGeneratorConfig Pointer to HAL_DMA_MuxRequestGeneratorConfigTypeDef + * contains the request generator parameters. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxRequestGenerator(DMA_HandleTypeDef *hdma, + HAL_DMA_MuxRequestGeneratorConfigTypeDef *pRequestGeneratorConfig) +{ + HAL_StatusTypeDef status; + HAL_DMA_StateTypeDef temp_state = hdma->State; + + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + assert_param(IS_DMAMUX_REQUEST_GEN_SIGNAL_ID(pRequestGeneratorConfig->SignalID)); + + assert_param(IS_DMAMUX_REQUEST_GEN_POLARITY(pRequestGeneratorConfig->Polarity)); + assert_param(IS_DMAMUX_REQUEST_GEN_REQUEST_NUMBER(pRequestGeneratorConfig->RequestNumber)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block + */ + if (hdma->DMAmuxRequestGen == 0U) + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_PARAM; + + /* error status */ + status = HAL_ERROR; + } + else if (((hdma->DMAmuxRequestGen->RGCR & DMAMUX_RGxCR_GE) == 0U) && (temp_state == HAL_DMA_STATE_READY)) + { + /* RequestGenerator must be disable prior to the configuration i.e GE bit is 0 */ + + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Set the request generator new parameters*/ + hdma->DMAmuxRequestGen->RGCR = pRequestGeneratorConfig->SignalID | \ + ((pRequestGeneratorConfig->RequestNumber - 1U) << DMAMUX_RGxCR_GNBREQ_Pos) | \ + pRequestGeneratorConfig->Polarity; + /* Process UnLocked */ + __HAL_UNLOCK(hdma); + + return HAL_OK; + } + else + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Enable the DMAMUX request generator block used by the given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_EnableMuxRequestGenerator(DMA_HandleTypeDef *hdma) +{ + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block + */ + if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0)) + { + + /* Enable the request generator*/ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_GE; + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Disable the DMAMUX request generator block used by the given DMA channel (instance). + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_DisableMuxRequestGenerator(DMA_HandleTypeDef *hdma) +{ + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block + */ + if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0)) + { + + /* Disable the request generator*/ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_GE; + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Handles DMAMUX interrupt request. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA channel. + * @retval None + */ +void HAL_DMAEx_MUX_IRQHandler(DMA_HandleTypeDef *hdma) +{ + /* Check for DMAMUX Synchronization overrun */ + if ((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U) + { + /* Disable the synchro overrun interrupt */ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_SYNC; + + if (hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + + if (hdma->DMAmuxRequestGen != 0) + { + /* if using a DMAMUX request generator block Check for DMAMUX request generator overrun */ + if ((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U) + { + /* Disable the request gen overrun interrupt */ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN; + + if (hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + } +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_exti.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_exti.c new file mode 100644 index 0000000..287ba16 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_exti.c @@ -0,0 +1,654 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_exti.c + * @author MCD Application Team + * @brief EXTI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the General Purpose Input/Output (EXTI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + @verbatim + ============================================================================== + ##### EXTI Peripheral features ##### + ============================================================================== + [..] + (+) Each Exti line can be configured within this driver. + + (+) Exti line can be configured in 3 different modes + (++) Interrupt + (++) Event + (++) Both of them + + (+) Configurable Exti lines can be configured with 3 different triggers + (++) Rising + (++) Falling + (++) Both of them + + (+) When set in interrupt mode, configurable Exti lines have two diffenrents + interrupt pending registers which allow to distinguish which transition + occurs: + (++) Rising edge pending interrupt + (++) Falling + + (+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can + be selected through multiplexer. + + ##### How to use this driver ##### + ============================================================================== + [..] + + (#) Configure the EXTI line using HAL_EXTI_SetConfigLine(). + (++) Choose the interrupt line number by setting "Line" member from + EXTI_ConfigTypeDef structure. + (++) Configure the interrupt and/or event mode using "Mode" member from + EXTI_ConfigTypeDef structure. + (++) For configurable lines, configure rising and/or falling trigger + "Trigger" member from EXTI_ConfigTypeDef structure. + (++) For Exti lines linked to gpio, choose gpio port using "GPIOSel" + member from GPIO_InitTypeDef structure. + + (#) Get current Exti configuration of a dedicated line using + HAL_EXTI_GetConfigLine(). + (++) Provide exiting handle as parameter. + (++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter. + + (#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine(). + (++) Provide exiting handle as parameter. + + (#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback(). + (++) Provide exiting handle as first parameter. + (++) Provide which callback will be registered using one value from + EXTI_CallbackIDTypeDef. + (++) Provide callback function pointer. + + (#) Get interrupt pending bit using HAL_EXTI_GetPending(). + + (#) Clear interrupt pending bit using HAL_EXTI_GetPending(). + + (#) Generate software interrupt using HAL_EXTI_GenerateSWI(). + + @endverbatim + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup EXTI + * @{ + */ + +#ifdef HAL_EXTI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines ------------------------------------------------------------*/ +/** @defgroup EXTI_Private_Constants EXTI Private Constants + * @{ + */ +#define EXTI_MODE_OFFSET 0x04U /* byte offset between CPU IMR/EMR registers */ +#define EXTI_CONFIG_OFFSET 0x08U /* byte offset between Rising/Falling configuration registers */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup EXTI_Exported_Functions + * @{ + */ + +/** @addtogroup EXTI_Exported_Functions_Group1 + * @brief Configuration functions + * +@verbatim + =============================================================================== + ##### Configuration functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Set configuration of a dedicated Exti line. + * @param hexti Exti handle. + * @param pExtiConfig Pointer on EXTI configuration to be set. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) +{ + uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check null pointer */ + if ((hexti == NULL) || (pExtiConfig == NULL)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_EXTI_LINE(pExtiConfig->Line)); + assert_param(IS_EXTI_MODE(pExtiConfig->Mode)); + + /* Assign line number to handle */ + hexti->Line = pExtiConfig->Line; + + /* compute line register offset and line mask */ + offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (pExtiConfig->Line & EXTI_PIN_MASK); + maskline = (1UL << linepos); + + /* Configure triggers for configurable lines */ + if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00U) + { + assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger)); + + /* Configure rising trigger */ + regaddr = (uint32_t *)(&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00U) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store rising trigger mode */ + *regaddr = regval; + + /* Configure falling trigger */ + regaddr = (uint32_t *)(&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00U) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store falling trigger mode */ + *regaddr = regval; + + /* Configure gpio port selection in case of gpio exti line */ + if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) + { + assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel)); + assert_param(IS_EXTI_GPIO_PIN(linepos)); + + regval = EXTI->EXTICR[linepos >> 2U]; + regval &= ~(0xFFU << (8U * (linepos & 0x03U))); + regval |= (pExtiConfig->GPIOSel << (8U * (linepos & 0x03U))); + EXTI->EXTICR[linepos >> 2U] = regval; + } + } + + /* Configure interrupt mode : read current mode */ + regaddr = (uint32_t *)(&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00U) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store interrupt mode */ + *regaddr = regval; + + /* Configure event mode : read current mode */ + regaddr = (uint32_t *)(&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Mask or set line */ + if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00U) + { + regval |= maskline; + } + else + { + regval &= ~maskline; + } + + /* Store event mode */ + *regaddr = regval; + + return HAL_OK; +} + +/** + * @brief Get configuration of a dedicated Exti line. + * @param hexti Exti handle. + * @param pExtiConfig Pointer on structure to store Exti configuration. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) +{ + uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check null pointer */ + if ((hexti == NULL) || (pExtiConfig == NULL)) + { + return HAL_ERROR; + } + + /* Check the parameter */ + assert_param(IS_EXTI_LINE(hexti->Line)); + + /* Store handle line number to configiguration structure */ + pExtiConfig->Line = hexti->Line; + + /* compute line register offset and line mask */ + offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (pExtiConfig->Line & EXTI_PIN_MASK); + maskline = (1UL << linepos); + + /* 1] Get core mode : interrupt */ + regaddr = (uint32_t *)(&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Check if selected line is enable */ + if ((regval & maskline) != 0x00U) + { + pExtiConfig->Mode = EXTI_MODE_INTERRUPT; + } + else + { + pExtiConfig->Mode = EXTI_MODE_NONE; + } + + /* Get event mode */ + regaddr = (uint32_t *)(&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset)); + regval = *regaddr; + + /* Check if selected line is enable */ + if ((regval & maskline) != 0x00U) + { + pExtiConfig->Mode |= EXTI_MODE_EVENT; + } + + /* 2] Get trigger for configurable lines : rising */ + if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00U) + { + regaddr = (uint32_t *)(&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Get default Trigger and GPIOSel configuration */ + pExtiConfig->Trigger = EXTI_TRIGGER_NONE; + pExtiConfig->GPIOSel = 0x00u; + + /* Check if configuration of selected line is enable */ + if ((regval & maskline) != 0x00U) + { + pExtiConfig->Trigger = EXTI_TRIGGER_RISING; + } + + /* Get falling configuration */ + regaddr = (uint32_t *)(&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = *regaddr; + + /* Check if configuration of selected line is enable */ + if ((regval & maskline) != 0x00U) + { + pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING; + } + + /* Get Gpio port selection for gpio lines */ + if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) + { + assert_param(IS_EXTI_GPIO_PIN(linepos)); + regval = EXTI->EXTICR[linepos >> 2U]; + pExtiConfig->GPIOSel = ((regval << (8U * (3 - (linepos & 0x03U)))) >> 24); + } + } + else + { + pExtiConfig->Trigger = EXTI_TRIGGER_NONE; + pExtiConfig->GPIOSel = 0x00U; + } + + return HAL_OK; +} + +/** + * @brief Clear whole configuration of a dedicated Exti line. + * @param hexti Exti handle. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti) +{ + uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check null pointer */ + if (hexti == NULL) + { + return HAL_ERROR; + } + + /* Check the parameter */ + assert_param(IS_EXTI_LINE(hexti->Line)); + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (hexti->Line & EXTI_PIN_MASK); + maskline = (1 << linepos); + + /* 1] Clear interrupt mode */ + regaddr = (uint32_t *)(&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + /* 2] Clear event mode */ + regaddr = (uint32_t *)(&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + /* 3] Clear triggers in case of configurable lines */ + if ((hexti->Line & EXTI_CONFIG) != 0x00U) + { + regaddr = (uint32_t *)(&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + regaddr = (uint32_t *)(&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = (*regaddr & ~maskline); + *regaddr = regval; + + /* Get Gpio port selection for gpio lines */ + if ((hexti->Line & EXTI_GPIO) != 0x00U) + { + assert_param(IS_EXTI_GPIO_PIN(linepos)); + regval = EXTI->EXTICR[linepos >> 2U]; + regval &= ~(0xFFU << (8U * (linepos & 0x03U))); + EXTI->EXTICR[linepos >> 2U] = regval; + } + } + + return HAL_OK; +} + +/** + * @brief Register callback for a dedicaated Exti line. + * @param hexti Exti handle. + * @param CallbackID User callback identifier. + * This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values. + * @param pPendingCbfn function pointer to be stored as callback. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, + void (*pPendingCbfn)(void)) +{ + HAL_StatusTypeDef status = HAL_OK; + + switch (CallbackID) + { + case HAL_EXTI_COMMON_CB_ID: + hexti->RisingCallback = pPendingCbfn; + hexti->FallingCallback = pPendingCbfn; + break; + + case HAL_EXTI_RISING_CB_ID: + hexti->RisingCallback = pPendingCbfn; + break; + + case HAL_EXTI_FALLING_CB_ID: + hexti->FallingCallback = pPendingCbfn; + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Store line number as handle private field. + * @param hexti Exti handle. + * @param ExtiLine Exti line number. + * This parameter can be from 0 to @ref EXTI_LINE_NB. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine) +{ + /* Check the parameters */ + assert_param(IS_EXTI_LINE(ExtiLine)); + + /* Check null pointer */ + if (hexti == NULL) + { + return HAL_ERROR; + } + else + { + /* Store line number as handle private field */ + hexti->Line = ExtiLine; + + return HAL_OK; + } +} + +/** + * @} + */ + +/** @addtogroup EXTI_Exported_Functions_Group2 + * @brief EXTI IO functions. + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Handle EXTI interrupt request. + * @param hexti Exti handle. + * @retval none. + */ +void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti) +{ + uint32_t *regaddr; + uint32_t regval; + uint32_t maskline; + uint32_t offset; + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + maskline = (1 << (hexti->Line & EXTI_PIN_MASK)); + + /* Get rising edge pending bit */ + regaddr = (uint32_t *)(&EXTI->RPR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = (*regaddr & maskline); + + if (regval != 0x00U) + { + /* Clear pending bit */ + *regaddr = maskline; + + /* Call rising callback */ + if (hexti->RisingCallback != NULL) + { + hexti->RisingCallback(); + } + } + + /* Get falling edge pending bit */ + regaddr = (uint32_t *)(&EXTI->FPR1 + (EXTI_CONFIG_OFFSET * offset)); + regval = (*regaddr & maskline); + + if (regval != 0x00U) + { + /* Clear pending bit */ + *regaddr = maskline; + + /* Call rising callback */ + if (hexti->FallingCallback != NULL) + { + hexti->FallingCallback(); + } + } +} + +/** + * @brief Get interrupt pending bit of a dedicated line. + * @param hexti Exti handle. + * @param Edge Specify which pending edge as to be checked. + * This parameter can be one of the following values: + * @arg @ref EXTI_TRIGGER_RISING + * @arg @ref EXTI_TRIGGER_FALLING + * @retval 1 if interrupt is pending else 0. + */ +uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) +{ + uint32_t *regaddr; + uint32_t regval; + uint32_t linepos; + uint32_t maskline; + uint32_t offset; + + /* Check parameters */ + assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); + assert_param(IS_EXTI_PENDING_EDGE(Edge)); + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + linepos = (hexti->Line & EXTI_PIN_MASK); + maskline = (1 << linepos); + + if (Edge != EXTI_TRIGGER_RISING) + { + /* Get falling edge pending bit */ + regaddr = (uint32_t *)(&EXTI->FPR1 + (EXTI_CONFIG_OFFSET * offset)); + } + else + { + /* Get rising edge pending bit */ + regaddr = (uint32_t *)(&EXTI->RPR1 + (EXTI_CONFIG_OFFSET * offset)); + } + + /* return 1 if bit is set else 0 */ + regval = ((*regaddr & maskline) >> linepos); + return regval; +} + +/** + * @brief Clear interrupt pending bit of a dedicated line. + * @param hexti Exti handle. + * @param Edge Specify which pending edge as to be clear. + * This parameter can be one of the following values: + * @arg @ref EXTI_TRIGGER_RISING + * @arg @ref EXTI_TRIGGER_FALLING + * @retval None. + */ +void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) +{ + uint32_t *regaddr; + uint32_t maskline; + uint32_t offset; + + /* Check parameters */ + assert_param(IS_EXTI_LINE(hexti->Line)); + assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); + assert_param(IS_EXTI_PENDING_EDGE(Edge)); + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + maskline = (1 << (hexti->Line & EXTI_PIN_MASK)); + + if (Edge != EXTI_TRIGGER_RISING) + { + /* Get falling edge pending register address */ + regaddr = (uint32_t *)(&EXTI->FPR1 + (EXTI_CONFIG_OFFSET * offset)); + } + else + { + /* Get falling edge pending register address */ + regaddr = (uint32_t *)(&EXTI->RPR1 + (EXTI_CONFIG_OFFSET * offset)); + } + + /* Clear Pending bit */ + *regaddr = maskline; +} + +/** + * @brief Generate a software interrupt for a dedicated line. + * @param hexti Exti handle. + * @retval None. + */ +void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti) +{ + uint32_t *regaddr; + uint32_t maskline; + uint32_t offset; + + /* Check parameter */ + assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); + + /* compute line register offset and line mask */ + offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT); + maskline = (1 << (hexti->Line & EXTI_PIN_MASK)); + + regaddr = (uint32_t *)(&EXTI->SWIER1 + (EXTI_CONFIG_OFFSET * offset)); + *regaddr = maskline; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_EXTI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash.c new file mode 100644 index 0000000..e7a00a3 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash.c @@ -0,0 +1,707 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_flash.c + * @author MCD Application Team + * @brief FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the internal FLASH memory: + * + Program operations functions + * + Memory Control functions + * + Peripheral Errors functions + * + @verbatim + ============================================================================== + ##### FLASH peripheral features ##### + ============================================================================== + + [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses + to the Flash memory. It implements the erase and program Flash memory operations + and the read and write protection mechanisms. + + [..] The Flash memory interface accelerates code execution with a system of instruction + prefetch and cache lines. + + [..] The FLASH main features are: + (+) Flash memory read operations + (+) Flash memory program/erase operations + (+) Read / write protections + (+) Option bytes programming + (+) Prefetch on I-Code + (+) 32 cache lines of 4*64 bits on I-Code + (+) Error code correction (ECC) : Data in flash are 72-bits word + (8 bits added per double word) + + ##### How to use this driver ##### + ============================================================================== + [..] + This driver provides functions and macros to configure and program the FLASH + memory of all STM32U0xx devices. + + (#) Flash Memory IO Programming functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Program functions: double word and fast program (full row programming) + (++) There are two modes of programming: + (+++) Polling mode using HAL_FLASH_Program() function + (+++) Interrupt mode using HAL_FLASH_Program_IT() function + + (#) Interrupts and flags management functions: + (++) Handle FLASH interrupts by calling HAL_FLASH_IRQHandler() + (++) Callback functions are called when the flash operations are finished : + HAL_FLASH_EndOfOperationCallback() when everything is ok, otherwise + HAL_FLASH_OperationErrorCallback() + (++) Get error flag status by calling HAL_GetError() + + (#) Option bytes management functions : + (++) Lock and Unlock the option bytes using HAL_FLASH_OB_Unlock() and + HAL_FLASH_OB_Lock() functions + (++) Launch the reload of the option bytes using HAL_FLASH_OB_Launch() function. + In this case, a reset is generated + + [..] + In addition to these functions, this driver includes a set of macros allowing + to handle the following operations: + (+) Set the latency + (+) Enable/Disable the prefetch buffer + (+) Enable/Disable the Instruction cache + (+) Reset the Instruction cache + (+) Enable/Disable the Flash power-down during low-power run and sleep modes + (+) Enable/Disable the Flash interrupts + (+) Monitor the Flash flags status + + @endverbatim + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup FLASH FLASH + * @brief FLASH HAL module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup FLASH_Private_Variables FLASH Private Variables + * @{ + */ +/** + * @brief Variable used for Program/Erase sectors under interruption + */ +FLASH_ProcessTypeDef pFlash = {.Lock = HAL_UNLOCKED, \ + .ErrorCode = HAL_FLASH_ERROR_NONE, \ + .ProcedureOnGoing = FLASH_TYPENONE, \ + .Address = 0U, \ + .Banks = 0U, \ + .Page = 0U, \ + .NbPagesToErase = 0U + }; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup FLASH_Private_Functions FLASH Private Functions + * @{ + */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data); +static void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Functions FLASH Exported Functions + * @{ + */ + +/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions + * @brief Programming operation functions + * +@verbatim + =============================================================================== + ##### Programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the FLASH + program operations. + +@endverbatim + * @{ + */ + +/** + * @brief Program double word or fast program of a row at a specified address. + * @param TypeProgram Indicate the way to program at a specified address. + * This parameter can be a value of @ref FLASH_Type_Program + * @param Address Specifies the address to be programmed. + * @param Data Specifies the data to be programmed + * This parameter is the data for the double word program and the address where + * are stored the data for the row fast program depending on the TypeProgram: + * TypeProgram = FLASH_TYPEPROGRAM_DOUBLEWORD (64-bit) + * TypeProgram = FLASH_TYPEPROGRAM_FAST (32-bit). + * + * @retval HAL_StatusTypeDef HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status == HAL_OK) + { + if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD) + { + /* Check the parameters */ + assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); + + /* Program double-word (64-bit) at a specified address */ + FLASH_Program_DoubleWord(Address, Data); + } + else + { + /* Check the parameters */ + assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address)); + + /* Fast program a 32 row double-word (64-bit) at a specified address */ + FLASH_Program_Fast(Address, (uint32_t)Data); + } + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + /* If the program operation is completed, disable the PG or FSTPG Bit */ + CLEAR_BIT(FLASH->CR, TypeProgram); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + /* return status */ + return status; +} + +/** + * @brief Program double word or fast program of a row at a specified address with interrupt enabled. + * @param TypeProgram Indicate the way to program at a specified address. + * This parameter can be a value of @ref FLASH_Type_Program + * @param Address Specifies the address to be programmed. + * @param Data Specifies the data to be programmed + * This parameter is the data for the double word program and the address where + * are stored the data for the row fast program depending on the TypeProgram: + * TypeProgram = FLASH_TYPEPROGRAM_DOUBLEWORD (64-bit) + * TypeProgram = FLASH_TYPEPROGRAM_FAST (32-bit). + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } + else + { + /* Set internal variables used by the IRQ handler */ + pFlash.ProcedureOnGoing = TypeProgram; + pFlash.Address = Address; + + /* Enable End of Operation and Error interrupts */ + FLASH->CR |= FLASH_CR_EOPIE | FLASH_CR_ERRIE; + + if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD) + { + /* Check the parameters */ + assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); + + /* Program double-word (64-bit) at a specified address */ + FLASH_Program_DoubleWord(Address, Data); + } + else + { + /* Check the parameters */ + assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address)); + + /* Fast program a 32 row double-word (64-bit) at a specified address */ + FLASH_Program_Fast(Address, (uint32_t)Data); + } + } + + /* return status */ + return status; +} + +/** + * @brief Handle FLASH interrupt request. + * @retval None + */ +void HAL_FLASH_IRQHandler(void) +{ + uint32_t param; + uint32_t error; + + /* Save flash errors. */ + error = (FLASH->SR & FLASH_SR_ERRORS); + + /* A] Set parameter for user or error callbacks */ + /* check operation was a program or erase */ + if ((pFlash.ProcedureOnGoing & FLASH_TYPEERASE_MASS) != 0x00U) + { + /* return bank number */ + param = pFlash.Banks; + } + else + { + /* Clear operation only for page erase or program */ + CLEAR_BIT(FLASH->CR, pFlash.ProcedureOnGoing); + + if ((pFlash.ProcedureOnGoing & (FLASH_TYPEPROGRAM_DOUBLEWORD | FLASH_TYPEPROGRAM_FAST)) != 0x00U) + { + /* return address being programmed */ + param = pFlash.Address; + } + else + { + /* return page number being erased */ + param = pFlash.Page; + } + } + + /* B] Check errors */ + if (error != 0x00U) + { + /*Save the error code*/ + pFlash.ErrorCode |= error; + + /* clear error flags */ + FLASH->SR = FLASH_SR_ERRORS; + + /*Stop the procedure ongoing*/ + pFlash.ProcedureOnGoing = FLASH_TYPENONE; + + /* Error callback */ + HAL_FLASH_OperationErrorCallback(param); + } + + /* C] Check FLASH End of Operation flag */ + if ((FLASH->SR & FLASH_SR_EOP) != 0x00U) + { + /* Clear FLASH End of Operation pending bit */ + FLASH->SR = FLASH_SR_EOP; + + if (pFlash.ProcedureOnGoing == FLASH_TYPEERASE_PAGES) + { + /* Nb of pages to erased can be decreased */ + pFlash.NbPagesToErase--; + + /* Check if there are still pages to erase*/ + if (pFlash.NbPagesToErase != 0x00U) + { + /* Increment page number */ + pFlash.Page++; + FLASH_PageErase(pFlash.Page); + } + else + { + /* No more pages to erase: stop erase pages procedure */ + pFlash.ProcedureOnGoing = FLASH_TYPENONE; + } + } + else + { + /*Stop the ongoing procedure */ + pFlash.ProcedureOnGoing = FLASH_TYPENONE; + } + + /* User callback */ + HAL_FLASH_EndOfOperationCallback(param); + } + + if (pFlash.ProcedureOnGoing == FLASH_TYPENONE) + { + /* Disable End of Operation and Error interrupts */ + FLASH->CR &= ~(FLASH_CR_EOPIE | FLASH_CR_ERRIE); + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } +} + +/** + * @brief FLASH end of operation interrupt callback. + * @param ReturnValue The value saved in this parameter depends on the ongoing procedure + * Mass Erase: 0 + * Page Erase: Page which has been erased + * Program: Address which was selected for data program + * @retval None + */ +__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(ReturnValue); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_FLASH_EndOfOperationCallback could be implemented in the user file + */ +} + +/** + * @brief FLASH operation error interrupt callback. + * @param ReturnValue The value saved in this parameter depends on the ongoing procedure + * Mass Erase: 0 + * Page Erase: Page number which returned an error + * Program: Address which was selected for data program + * @retval None + */ +__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(ReturnValue); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_FLASH_OperationErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions + * @brief Management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the FLASH + memory operations. + +@endverbatim + * @{ + */ + +/** + * @brief Unlock the FLASH control register access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Unlock(void) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0x00U) + { + /* Authorize the FLASH Registers access */ + WRITE_REG(FLASH->KEYR, FLASH_KEY1); + WRITE_REG(FLASH->KEYR, FLASH_KEY2); + + /* verify Flash is unlock */ + if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0x00U) + { + status = HAL_ERROR; + } + } + + return status; +} + +/** + * @brief Lock the FLASH control register access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Lock(void) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Set the LOCK Bit to lock the FLASH Registers access */ + SET_BIT(FLASH->CR, FLASH_CR_LOCK); + + /* verify Flash is locked */ + if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0x00u) + { + status = HAL_OK; + } + + return status; +} + +/** + * @brief Unlock the FLASH Option Bytes Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) != 0x00U) + { + /* Authorizes the Option Byte register programming */ + WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1); + WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2); + + /* verify option bytes are unlocked */ + if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) == 0x00U) + { + status = HAL_OK; + } + } + + return status; +} + +/** + * @brief Lock the FLASH Option Bytes Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Lock(void) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */ + SET_BIT(FLASH->CR, FLASH_CR_OPTLOCK); + + /* verify option bytes are locked */ + if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) != 0x00u) + { + status = HAL_OK; + } + + return status; +} + +/** + * @brief Launch the option byte loading. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Launch(void) +{ + /* Set the bit to force the option byte reloading */ + SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH); + + /* We should not reach here : Option byte launch generates Option byte reset + so return error */ + return HAL_ERROR; +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time Errors of the FLASH peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Get the specific FLASH error flag. + * @retval FLASH_ErrorCode The returned value can be + * @arg @ref HAL_FLASH_ERROR_NONE No error set + * @arg @ref HAL_FLASH_ERROR_OP Operation error + * @arg @ref HAL_FLASH_ERROR_PROG Programming error + * @arg @ref HAL_FLASH_ERROR_WRP Write protection error + * @arg @ref HAL_FLASH_ERROR_PGA Programming alignment error + * @arg @ref HAL_FLASH_ERROR_SIZ Size error + * @arg @ref HAL_FLASH_ERROR_PGS Programming sequence error + * @arg @ref HAL_FLASH_ERROR_MIS Fast programming data miss error + * @arg @ref HAL_FLASH_ERROR_FAST Fast programming error + * @arg @ref HAL_FLASH_ERROR_OPTV Option validity error + * @arg @ref HAL_FLASH_ERROR_ECCD two ECC errors have been detected + */ +uint32_t HAL_FLASH_GetError(void) +{ + return pFlash.ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ + +/** @addtogroup FLASH_Private_Functions + * @{ + */ + +/** + * @brief Wait for a FLASH operation to complete. + * @param Timeout maximum flash operation timeout + * @retval HAL_StatusTypeDef HAL Status + */ +HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout) +{ + uint32_t error; + /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset. + Even if the FLASH operation fails, the BUSY flag will be reset and an error + flag will be set */ + uint32_t timeout = HAL_GetTick() + Timeout; + error = FLASH_SR_BSY1; + while ((FLASH->SR & error) != 0x00U) + { + if (HAL_GetTick() >= timeout) + { + return HAL_TIMEOUT; + } + } + + /* check flash errors */ + error = (FLASH->SR & FLASH_SR_ERRORS); + + /* Clear SR register */ + FLASH->SR = FLASH_SR_CLEAR; + + if (error != 0x00U) + { + /*Save the error code*/ + pFlash.ErrorCode = error; + return HAL_ERROR; + } + + /* Wait for control register to be written */ + timeout = HAL_GetTick() + Timeout; + + while ((FLASH->SR & FLASH_SR_CFGBSY) != 0x00U) + { + if (HAL_GetTick() >= timeout) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Program double-word (64-bit) at a specified address. + * @param Address Specifies the address to be programmed. + * @param Data Specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data) +{ + /* Set PG bit */ + SET_BIT(FLASH->CR, FLASH_CR_PG); + + /* Program first word */ + *(uint32_t *)Address = (uint32_t)Data; + + /* Barrier to ensure programming is performed in 2 steps, in right order + (independently of compiler optimization behavior) */ + __ISB(); + + /* Program second word */ + *(uint32_t *)(Address + 4U) = (uint32_t)(Data >> 32U); +} + +/** + * @brief Fast program a 32 row double-word (64-bit) at a specified address. + * @param Address Specifies the address to be programmed. + * @param DataAddress Specifies the address where the data are stored. + * @retval None + */ +static __RAM_FUNC void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress) +{ + uint8_t index = 0; + uint32_t dest = Address; + uint32_t src = DataAddress; + uint32_t primask_bit; + + /* Set FSTPG bit */ + SET_BIT(FLASH->CR, FLASH_CR_FSTPG); + + /* Enter critical section: row programming should not be longer than 7 ms */ + primask_bit = __get_PRIMASK(); + __disable_irq(); + + /* Fast Program : 64 words */ + while (index < 64U) + { + *(uint32_t *)dest = *(uint32_t *)src; + src += 4U; + dest += 4U; + index++; + } + + /* wait for BSY1 in order to be sure that flash operation is ended befoire + allowing prefetch in flash. Timeout does not return status, as it will + be anyway done later */ + while ((FLASH->SR & FLASH_SR_BSY1) != 0x00U) + { + } + + /* Exit critical section: restore previous priority mask */ + __set_PRIMASK(primask_bit); +} + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash_ex.c new file mode 100644 index 0000000..8810051 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_flash_ex.c @@ -0,0 +1,834 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_flash_ex.c + * @author MCD Application Team + * @brief Extended FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the FLASH extended peripheral: + * + Extended programming operations functions + * + @verbatim + ============================================================================== + ##### Flash Extended features ##### + ============================================================================== + + [..] Comparing to other previous devices, the FLASH interface for STM32U0xx + devices contains the following additional features + + (+) Capacity up to 128 Kbytes with single bank architecture supporting read-while-write + capability (RWW) + (+) Write protection + (+) Single bank memory organization + (+) Hide Protection areas + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure and program the FLASH memory + of all STM32U0xx devices. It includes + (#) Flash Memory Erase functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Erase function: Erase page, erase all sectors + (++) There are two modes of erase : + (+++) Polling Mode using HAL_FLASHEx_Erase() + (+++) Interrupt Mode using HAL_FLASHEx_Erase_IT() + + (#) Option Bytes Programming function: Use HAL_FLASHEx_OBProgram() to : + (++) Set/Reset the write protection + (++) Set the Read protection Level + (++) Program the user Option Bytes + (++) Set boot lock + (++) Configure the Hide protection areas + + (#) Get Option Bytes Configuration function: Use HAL_FLASHEx_OBGetConfig() to : + (++) Get the value of a write protection area + (++) Know if the read protection is activated + (++) Get the value of the user Option Bytes + (++) Get the boot lock information + (++) Get the configuration of Hide protection areas + + (#) Enable or disable debugger usage using HAL_FLASHEx_EnableDebugger and + HAL_FLASHEx_DisableDebugger. + + (#) Check is flash content is empty or not using HAL_FLASHEx_FlashEmptyCheck. + and modify this setting (for flash loader purpose e.g.) using + HAL_FLASHEx_ForceFlashEmpty. + + (#) Enable HDP area protection using HAL_FLASHEx_EnableHDPProtection + + @endverbatim + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup FLASHEx FLASHEx + * @brief FLASH Extended HAL module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions + * @{ + */ +static void FLASH_MassErase(void); +static void FLASH_OB_WRPConfig(uint32_t WRPArea, uint32_t WRPStartOffset, uint32_t WRDPEndOffset); +static void FLASH_OB_GetWRP(uint32_t WRPArea, uint32_t *WRPStartOffset, uint32_t *WRDPEndOffset); +static void FLASH_OB_OptrConfig(uint32_t UserType, uint32_t UserConfig, uint32_t RDPLevel); +static uint32_t FLASH_OB_GetRDP(void); +static uint32_t FLASH_OB_GetUser(void); +void FLASH_OB_GetOEMKeyCRC(uint32_t *OEM1KeyCRC, uint32_t *OEM2KEYCRC); +static void FLASH_OB_HDPConfig(uint32_t BootEntry, uint32_t HDPEndPage, uint32_t HDPEn); +static void FLASH_OB_GetHDPConfig(uint32_t *BootEntry, uint32_t *HDPEndPage, uint32_t *HDPEn); +static void FLASH_OB_RDPKeyConfig(uint32_t RDPKeyType, uint32_t RDPKey0, uint32_t RDPKey1, + uint32_t RDPKey2, uint32_t RDPKey3); + +/** + * @} + */ + +/* Exported functions -------------------------------------------------------*/ +/** @defgroup FLASHEx_Exported_Functions FLASH Extended Exported Functions + * @{ + */ + +/** @defgroup FLASHEx_Exported_Functions_Group1 Extended IO operation functions + * @brief Extended IO operation functions + * +@verbatim + =============================================================================== + ##### Extended programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the Extended FLASH + programming operations Operations. + +@endverbatim + * @{ + */ +/** + * @brief Perform a mass erase or erase the specified FLASH memory pages. + * @param[in] pEraseInit Pointer to an @ref FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * @param[out] PageError Pointer to variable that contains the configuration + * information on faulty page in case of error (0xFFFFFFFF means that all + * the pages have been correctly erased) + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError) +{ + HAL_StatusTypeDef status; + uint32_t index; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status == HAL_OK) + { + /* For single bank product force Banks to Bank 1 */ + pEraseInit->Banks = FLASH_BANK_1; + if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASS) + { + /* Proceed to Mass Erase */ + FLASH_MassErase(); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + } + else + { + /*Initialization of PageError variable*/ + *PageError = 0xFFFFFFFFU; + + for (index = pEraseInit->Page; index < (pEraseInit->Page + pEraseInit->NbPages); index++) + { + /* Start erase page */ + FLASH_PageErase(index); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status != HAL_OK) + { + /* In case of error, stop erase procedure and return the faulty address */ + *PageError = index; + break; + } + } + + /* If operation is completed or interrupted, disable the Page Erase Bit */ + CLEAR_BIT(FLASH->CR, FLASH_CR_PER); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + /* return status */ + return status; +} + + +/** + * @brief Perform a mass erase or erase the specified FLASH memory pages with interrupt enabled. + * @param pEraseInit Pointer to an @ref FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit) +{ + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Reset error code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* save procedure for interrupt treatment */ + pFlash.ProcedureOnGoing = pEraseInit->TypeErase; + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } + else + { + /* For single bank product force Banks to Bank 1 */ + pEraseInit->Banks = FLASH_BANK_1; + /* Store Bank number */ + pFlash.Banks = pEraseInit->Banks; + + /* Enable End of Operation and Error interrupts */ + FLASH->CR |= FLASH_CR_EOPIE | FLASH_CR_ERRIE; + + if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASS) + { + /* Set Page to 0 for Interrupt callback management */ + pFlash.Page = 0; + + /* Proceed to Mass Erase */ + FLASH_MassErase(); + } + else + { + /* Erase by page to be done */ + pFlash.NbPagesToErase = pEraseInit->NbPages; + pFlash.Page = pEraseInit->Page; + + /*Erase 1st page and wait for IT */ + FLASH_PageErase(pEraseInit->Page); + } + } + + /* return status */ + return status; +} + +/** + * @brief Program Option bytes. + * @param pOBInit Pointer to an @ref FLASH_OBProgramInitTypeDef structure that + * contains the configuration information for the programming. + * @note To configure any option bytes, the option lock bit OPTLOCK must be + * cleared with the call of @ref HAL_FLASH_OB_Unlock() function. + * @note New option bytes configuration will be taken into account only + * - after an option bytes launch through the call of @ref HAL_FLASH_OB_Launch() + * - a Power On Reset + * - an exit from Standby or Shutdown mode. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit) +{ + uint32_t optr; + HAL_StatusTypeDef status; + + /* Check the parameters */ + assert_param(IS_OPTIONBYTE(pOBInit->OptionType)); + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Write protection configuration */ + if ((pOBInit->OptionType & OPTIONBYTE_WRP) != 0x00U) + { + /* Configure of Write protection on the selected area */ + FLASH_OB_WRPConfig(pOBInit->WRPArea, pOBInit->WRPStartOffset, pOBInit->WRPEndOffset); + } + + /* Option register */ + if ((pOBInit->OptionType & (OPTIONBYTE_RDP | OPTIONBYTE_USER)) == (OPTIONBYTE_RDP | OPTIONBYTE_USER)) + { + /* Fully modify OPTR register with RDP & user data */ + FLASH_OB_OptrConfig(pOBInit->USERType, pOBInit->USERConfig, pOBInit->RDPLevel); + } + else if ((pOBInit->OptionType & OPTIONBYTE_RDP) != 0x00U) + { + /* Only modify RDP so get current user data */ + optr = FLASH_OB_GetUser(); + FLASH_OB_OptrConfig(optr, optr, pOBInit->RDPLevel); + } + else if ((pOBInit->OptionType & OPTIONBYTE_USER) != 0x00U) + { + /* Only modify user so get current RDP level */ + optr = FLASH_OB_GetRDP(); + FLASH_OB_OptrConfig(pOBInit->USERType, pOBInit->USERConfig, optr); + } + else + { + /* nothing to do */ + } + + /* HDP Area Configuration */ + if ((pOBInit->OptionType & OPTIONBYTE_HDP) != 0x00U) + { + /* Configure the HDP area protection */ + FLASH_OB_HDPConfig(pOBInit->BootLock, pOBInit->HDPEndPage, pOBInit->HDPState); + } + + /* RDP Keys OEM1/2 Configuration */ + if ((pOBInit->OptionType & OPTIONBYTE_RDPKEY) != 0x00U) + { + /* Configure the RDP keys */ + FLASH_OB_RDPKeyConfig(pOBInit->RDPKeyType, pOBInit->RDPKey1, pOBInit->RDPKey2, pOBInit->RDPKey3, pOBInit->RDPKey4); + } + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + if (status == HAL_OK) + { + /* Set OPTSTRT Bit */ + SET_BIT(FLASH->CR, FLASH_CR_OPTSTRT); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); + + /* If the option byte program operation is completed, disable the OPTSTRT Bit */ + CLEAR_BIT(FLASH->CR, FLASH_CR_OPTSTRT); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + /* return status */ + return status; +} + +/** + * @brief Get the Option bytes configuration. + * @note warning: this API only read flash register, it does not reflect any + * change that would have been programmed between previous Option byte + * loading and current call. + * @param pOBInit Pointer to an @ref FLASH_OBProgramInitTypeDef structure that contains the + * configuration information. The fields pOBInit->WRPArea should + * indicate which area is requested for the WRP. + * @retval None + */ +void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit) +{ + pOBInit->OptionType = OPTIONBYTE_ALL; + + /* Get write protection on the selected area */ + FLASH_OB_GetWRP(pOBInit->WRPArea, &(pOBInit->WRPStartOffset), &(pOBInit->WRPEndOffset)); + + /* Get Read protection level */ + pOBInit->RDPLevel = FLASH_OB_GetRDP(); + + /* Get the user option bytes */ + pOBInit->USERConfig = FLASH_OB_GetUser(); + pOBInit->USERType = OB_USER_ALL; + + /* Get the Securable Memory Area protection */ + FLASH_OB_GetHDPConfig(&(pOBInit->BootLock), &(pOBInit->HDPEndPage), &(pOBInit->HDPState)); +} + +/** + * @brief Enable Debugger. + * @note After calling this API, flash interface allow debugger intrusion. + * @retval None + */ +void HAL_FLASHEx_EnableDebugger(void) +{ + FLASH->ACR |= FLASH_ACR_DBG_SWEN; +} + + +/** + * @brief Disable Debugger. + * @note After calling this API, Debugger is disabled: it is no more possible to + * break, see CPU register, etc... + * @retval None + */ +void HAL_FLASHEx_DisableDebugger(void) +{ + FLASH->ACR &= ~FLASH_ACR_DBG_SWEN; +} + +/** + * @brief Flash Empty check + * @note This API checks if first location in Flash is programmed or not. + * This check is done once by Option Byte Loader. + * @retval 0 if 1st location is not programmed else + */ +uint32_t HAL_FLASHEx_FlashEmptyCheck(void) +{ + return ((FLASH->ACR & FLASH_ACR_EMPTY)); +} + + +/** + * @brief Force Empty check value. + * @note Allows to modify program empty check value in order to force this + * infrmation in Flash Interface, for all next reset that do not launch + * Option Byte Loader. + * @param FlashEmpty this parameter can be a value of @ref FLASHEx_Empty_Check + * @retval None + */ +void HAL_FLASHEx_ForceFlashEmpty(uint32_t FlashEmpty) +{ + uint32_t acr; + assert_param(IS_FLASH_EMPTY_CHECK(FlashEmpty)); + + acr = (FLASH->ACR & ~FLASH_ACR_EMPTY); + FLASH->ACR = (acr | FlashEmpty); +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Functions + * @{ + */ + +/** + * @brief Mass erase of FLASH memory. + * @retval None + */ +static void FLASH_MassErase(void) +{ + /* Set the Mass Erase Bit and start bit */ + SET_BIT(FLASH->CR, (FLASH_CR_STRT | FLASH_CR_MER1)); +} + +/** + * @brief Erase the specified FLASH memory page. + * @param Page FLASH page to erase + * This parameter must be a value between 0 and (max number of pages in Flash - 1) + * @retval None + */ +void FLASH_PageErase(uint32_t Page) +{ + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_FLASH_BANK(FLASH_BANK_1)); + assert_param(IS_FLASH_PAGE(Page)); + + /* Get configuration register, then clear page number */ + tmp = (FLASH->CR & ~FLASH_CR_PNB); + + /* Set page number, Page Erase bit & Start bit */ + FLASH->CR = (tmp | (FLASH_CR_STRT | (Page << FLASH_CR_PNB_Pos) | FLASH_CR_PER)); +} + +/** + * @brief Flush the instruction cache. + * @retval None + */ +void FLASH_FlushCaches(void) +{ + /* Flush instruction cache */ + if (READ_BIT(FLASH->ACR, FLASH_ACR_ICEN) != 0U) + { + /* Disable instruction cache */ + __HAL_FLASH_INSTRUCTION_CACHE_DISABLE(); + /* Reset instruction cache */ + __HAL_FLASH_INSTRUCTION_CACHE_RESET(); + /* Enable instruction cache */ + __HAL_FLASH_INSTRUCTION_CACHE_ENABLE(); + } +} + + +/** + * @brief Configure the write protection of the desired pages. + * @note When WRP is active in a zone, it cannot be erased or programmed. + * Consequently, a software mass erase cannot be performed if one zone + * is write-protected. + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase Flash memory if the CPU debug + * features are connected (JTAG or single wire) or boot code is being + * executed from RAM or System flash, even if WRP is not activated. + * @param WRPArea Specifies the area to be configured. + * This parameter can be one of the following values: + * @arg @ref OB_WRPAREA_ZONE_A Flash Zone A + * @arg @ref OB_WRPAREA_ZONE_B Flash Zone B + * @param WRPStartOffset Specifies the start page of the write protected area + * This parameter can be page number between 0 and (max number of pages in the Flash Bank - 1) + * @param WRDPEndOffset Specifies the end page of the write protected area + * This parameter can be page number between WRPStartOffset and (max number of pages in the Flash Bank - 1) + * @retval None + */ +static void FLASH_OB_WRPConfig(uint32_t WRPArea, uint32_t WRPStartOffset, uint32_t WRDPEndOffset) +{ + /* Check the parameters */ + assert_param(IS_OB_WRPAREA(WRPArea)); + assert_param(IS_FLASH_PAGE(WRPStartOffset)); + assert_param(IS_FLASH_PAGE(WRDPEndOffset)); + + /* Configure the write protected area */ + if (WRPArea == OB_WRPAREA_ZONE_A) + { + FLASH->WRP1AR = ((WRDPEndOffset << FLASH_WRP1AR_WRP1A_END_Pos) | WRPStartOffset); + } + else + { + FLASH->WRP1BR = ((WRDPEndOffset << FLASH_WRP1BR_WRP1B_END_Pos) | WRPStartOffset); + } +} + +/** + * @brief Return the FLASH Write Protection Option Bytes value. + * @param[in] WRPArea Specifies the area to be returned. + * This parameter can be one of the following values: + * @arg @ref OB_WRPAREA_ZONE_A Flash Zone A + * @arg @ref OB_WRPAREA_ZONE_B Flash Zone B + * @param[out] WRPStartOffset Specifies the address where to copied the start page + * of the write protected area + * @param[out] WRDPEndOffset Dpecifies the address where to copied the end page of + * the write protected area + * @retval None + */ +static void FLASH_OB_GetWRP(uint32_t WRPArea, uint32_t *WRPStartOffset, uint32_t *WRDPEndOffset) +{ + + /* Get the configuration of the write protected area */ + if (WRPArea == OB_WRPAREA_ZONE_A) + { + *WRPStartOffset = READ_BIT(FLASH->WRP1AR, FLASH_WRP1AR_WRP1A_STRT); + *WRDPEndOffset = (READ_BIT(FLASH->WRP1AR, FLASH_WRP1AR_WRP1A_END) >> FLASH_WRP1AR_WRP1A_END_Pos); + } + else if (WRPArea == OB_WRPAREA_ZONE_B) + { + *WRPStartOffset = READ_BIT(FLASH->WRP1BR, FLASH_WRP1BR_WRP1B_STRT); + *WRDPEndOffset = (READ_BIT(FLASH->WRP1BR, FLASH_WRP1BR_WRP1B_END) >> FLASH_WRP1BR_WRP1B_END_Pos); + } + else + { + /* Empty statement (to be compliant MISRA 15.7) */ + } +} + +/** + * @brief Set user & RDP configuration + * @note !!! Warning : When enabling OB_RDP level 2 it is no more possible + * to go back to level 1 or 0 !!! + * @param UserType The FLASH User Option Bytes to be modified. + * This parameter can be a combination of @ref FLASH_OB_USER_Type + * @param UserConfig The FLASH User Option Bytes values. + * This parameter can be a combination of: + * @arg @ref FLASH_OB_USER_BOR_ENABLE + * @arg @ref FLASH_OB_USER_BOR_LEVEL + * @arg @ref FLASH_OB_USER_RESET_CONFIG + * @arg @ref FLASH_OB_USER_NRST_STOP + * @arg @ref FLASH_OB_USER_NRST_STANDBY + * @arg @ref FLASH_OB_USER_NRST_SHUTDOWN + * @arg @ref FLASH_OB_USER_IWDG_SW + * @arg @ref FLASH_OB_USER_IWDG_STOP + * @arg @ref FLASH_OB_USER_IWDG_STANDBY + * @arg @ref FLASH_OB_USER_WWDG_SW + * @arg @ref FLASH_OB_USER_SRAM_PARITY + * @arg @ref FLASH_OB_USER_NBOOT_SEL + * @arg @ref FLASH_OB_USER_NBOOT1 + * @arg @ref FLASH_OB_USER_NBOOT0 + * @arg @ref FLASH_OB_USER_INPUT_RESET_HOLDER + * @param RDPLevel specifies the read protection level. + * This parameter can be one of the following values: + * @arg @ref OB_RDP_LEVEL_0 No protection + * @arg @ref OB_RDP_LEVEL_1 Memory Read protection + * @arg @ref OB_RDP_LEVEL_2 Full chip protection + * @retval None + */ +static void FLASH_OB_OptrConfig(uint32_t UserType, uint32_t UserConfig, uint32_t RDPLevel) +{ + uint32_t optr; + + /* Check the parameters */ + assert_param(IS_OB_USER_TYPE(UserType)); + assert_param(IS_OB_USER_CONFIG(UserType, UserConfig)); + assert_param(IS_OB_RDP_LEVEL(RDPLevel)); + + /* Configure the RDP level in the option bytes register */ + optr = FLASH->OPTR; + optr &= ~(UserType | FLASH_OPTR_RDP); + FLASH->OPTR = (optr | UserConfig | RDPLevel); +} + +/** + * @brief Return the FLASH Read Protection level. + * @retval FLASH ReadOut Protection Status: + * This return value can be one of the following values: + * @arg @ref OB_RDP_LEVEL_0 No protection + * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory + * @arg @ref OB_RDP_LEVEL_2 Full chip protection + */ +static uint32_t FLASH_OB_GetRDP(void) +{ + uint32_t rdplvl = READ_BIT(FLASH->OPTR, FLASH_OPTR_RDP); + + if ((rdplvl != OB_RDP_LEVEL_0) && (rdplvl != OB_RDP_LEVEL_2)) + { + return (OB_RDP_LEVEL_1); + } + else + { + return rdplvl; + } +} + +/** + * @brief Return the FLASH User Option Byte value. + * @retval The FLASH User Option Bytes values. It will be a combination of all the following values: + * @arg @ref FLASH_OB_USER_BOR_ENABLE + * @arg @ref FLASH_OB_USER_BOR_LEVEL + * @arg @ref FLASH_OB_USER_RESET_CONFIG + * @arg @ref FLASH_OB_USER_NRST_STOP + * @arg @ref FLASH_OB_USER_NRST_STANDBY + * @arg @ref FLASH_OB_USER_NRST_SHUTDOWN + * @arg @ref FLASH_OB_USER_IWDG_SW + * @arg @ref FLASH_OB_USER_IWDG_STOP + * @arg @ref FLASH_OB_USER_IWDG_STANDBY + * @arg @ref FLASH_OB_USER_WWDG_SW + * @arg @ref FLASH_OB_USER_SRAM_PARITY + * @arg @ref FLASH_OB_USER_NBOOT_SEL + * @arg @ref FLASH_OB_USER_NBOOT1 + * @arg @ref FLASH_OB_USER_NBOOT0 + * @arg @ref FLASH_OB_USER_INPUT_RESET_HOLDER + */ +static uint32_t FLASH_OB_GetUser(void) +{ + uint32_t user = ((FLASH->OPTR & ~FLASH_OPTR_RDP) & OB_USER_ALL); + return user; +} + +/** + * @brief Configure the HDP memory register. + * @param BootEntry specifies if boot scheme is forced to Flash (System or user) or not + * This parameter can be one of the following values: + * @arg @ref OB_BOOT_LOCK_DISABLE No boot entry + * @arg @ref OB_BOOT_LOCK_ENABLE Flash selected as unique entry boot + * @param HDPEndPage specifies the end page of the hide protection area + * @param HDPEn Enable and disable the HDP area + * @retval None + */ +static void FLASH_OB_HDPConfig(uint32_t BootEntry, uint32_t HDPEndPage, uint32_t HDPEn) +{ + uint32_t secmem; + + /* Check the parameters */ + assert_param(IS_OB_BOOT_LOCK(BootEntry)); + assert_param(IS_FLASH_PAGE(HDPEndPage)); + /* Set securable memory area configuration */ + secmem = (FLASH->SECR & ~(FLASH_SECR_BOOT_LOCK | FLASH_SECR_HDP1_PEND | FLASH_SECR_HDP1EN)); + FLASH->SECR = (secmem | BootEntry | HDPEndPage | (HDPEn << FLASH_SECR_HDP1EN_Pos)); +} + +/** + * @brief Return the HDP memory register configuration. + * @param BootEntry specifies if boot scheme configuration. + * @param HDPEndPage specifies the end page of the hide protection area + * @param HDPEn specifies the status of the hide protection area (Enabled(other) or disabled(0xB4)) + * @retval None + */ +static void FLASH_OB_GetHDPConfig(uint32_t *BootEntry, uint32_t *HDPEndPage, uint32_t *HDPEn) +{ + uint32_t secmem = FLASH->SECR; + + *BootEntry = (secmem & FLASH_SECR_BOOT_LOCK); + *HDPEndPage = (secmem & FLASH_SECR_HDP1_PEND); + *HDPEn = (secmem & FLASH_SECR_HDP1EN) >> FLASH_SECR_HDP1EN_Pos; +} + +/** + * @brief Set the read protection key. + * @param RDPKeyType specifies the read protection key type. + * This parameter can be one of the following values: + * @arg OB_RDP_KEY_OEM1: OEM1 key + * @arg OB_RDP_KEY_OEM2: OEM2 key + * @param RDPKey0 specifies the RDP key 0. + * @param RDPKey1 specifies the RDP key 1. + * @param RDPKey2 specifies the RDP key 2. + * @param RDPKey3 specifies the RDP key 3. + * @retval None + */ +static void FLASH_OB_RDPKeyConfig(uint32_t RDPKeyType, uint32_t RDPKey0, uint32_t RDPKey1, + uint32_t RDPKey2, uint32_t RDPKey3) +{ + /* Check the parameters */ + assert_param(IS_OB_RDP_KEY_TYPE(RDPKeyType)); + + /* Configure the RDP OEM1/2 key */ + if (RDPKeyType == OB_RDP_KEY_OEM1) + { + WRITE_REG(FLASH->OEM1KEYW0R, RDPKey0); + WRITE_REG(FLASH->OEM1KEYW1R, RDPKey1); + WRITE_REG(FLASH->OEM1KEYW2R, RDPKey2); + WRITE_REG(FLASH->OEM1KEYW3R, RDPKey3); + } + else if (RDPKeyType == OB_RDP_KEY_OEM2) + { + + WRITE_REG(FLASH->OEM2KEYW0R, RDPKey0); + WRITE_REG(FLASH->OEM2KEYW1R, RDPKey1); + WRITE_REG(FLASH->OEM2KEYW2R, RDPKey2); + WRITE_REG(FLASH->OEM2KEYW3R, RDPKey3); + } + else + { + /* nothing to do */ + } +} + +/** + * @brief Get the OEM1/2 keys CRC. + * @param RDPKeyType specifies the read protection key type. + * This parameter can be one of the following values: + * @arg OB_RDP_KEY_OEM1: OEM1 key + * @arg OB_RDP_KEY_OEM2: OEM2 key + * @param OEMKeyCRC specifies the OEM keys CRC. + * @retval None + */ +void HAL_FLASH_OB_GetOEMKeyCRC(uint32_t RDPKeyType, uint32_t *OEMKeyCRC) +{ + uint32_t regvalue; + + regvalue = FLASH->OEMKEYSR; + if (RDPKeyType == OB_RDP_KEY_OEM1) + { + *OEMKeyCRC = (regvalue & FLASH_OEMKEYSR_OEM1KEYCRC); + } + else if (RDPKeyType == OB_RDP_KEY_OEM2) + { + *OEMKeyCRC = (regvalue & FLASH_OEMKEYSR_OEM2KEYCRC) >> FLASH_OEMKEYSR_OEM2KEYCRC_Pos; + } + else + { + /* Empty statement (to be compliant MISRA 15.7) */ + } +} + +/** + * @brief Enable the HDP Protection area . + * @param Banks specifies the bank number + * this parameter can be: + * @arg @ref FLASH_BANK_1 + * @retval None + */ +void HAL_FLASHEx_EnableHDPProtection(uint32_t Banks) +{ + assert_param(IS_FLASH_BANK(Banks)); + + MODIFY_REG(FLASH->HDPCR, FLASH_HDPCR_HDP1_ACCDIS, FLASH_HDPCR_HDP1_ACCDIS); +} + +/** + * @brief Check if the HDP area protection enabled. + * @retval returns 1 if the Protection is enabled + * 0 if the protection is disabled + */ +uint32_t HAL_FLASHEx_IsEnabledHDPProtection(void) +{ + return ((READ_BIT(FLASH->HDPCR, FLASH_HDPCR_HDP1_ACCDIS) == FLASH_HDPCR_HDP1_ACCDIS) ? 0UL : 1UL); +} +/** + * @brief HDP extension area configuration. + * @param pHDPExtension pointer to an FLASH_HDPExtentionTypeDef structure that + * contains the configuration information. + * @retval None + */ +void HAL_FLASHEx_ConfigHDPExtension(const FLASH_HDPExtensionTypeDef *pHDPExtension) +{ + assert_param(IS_FLASH_PAGE(pHDPExtension->NbPages)); + assert_param(IS_OB_HDPEXT_CONFIG(pHDPExtension->Status)); + + MODIFY_REG(FLASH->HDPEXTR, FLASH_HDPEXTR_HDP1_EXT, (pHDPExtension->NbPages)); + MODIFY_REG(FLASH->HDPCR, FLASH_HDPCR_HDP1EXT_ACCDIS, (pHDPExtension->Status)); +} +/** + * @brief Get HDP extension configuration. + * @param pHDPExtension pointer to an FLASH_HDPExtentionTypeDef structure that + * contains the configuration information. + * @retval None + */ +void HAL_FLASHEx_GetHDPExtensionConfig(FLASH_HDPExtensionTypeDef *pHDPExtension) +{ + uint32_t regvalue; + + regvalue = FLASH->HDPEXTR; + pHDPExtension->NbPages = regvalue & FLASH_HDPEXTR_HDP1_EXT; + regvalue = FLASH->HDPCR; + pHDPExtension->Status = regvalue & FLASH_HDPCR_HDP1EXT_ACCDIS; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_gpio.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_gpio.c new file mode 100644 index 0000000..c6455e4 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_gpio.c @@ -0,0 +1,542 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_gpio.c + * @author MCD Application Team + * @brief GPIO HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the General Purpose Input/Output (GPIO) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### GPIO Peripheral features ##### + ============================================================================== + [..] + (+) Each port bit of the general-purpose I/O (GPIO) ports can be individually + configured by software in several modes: + (++) Input mode + (++) Analog mode + (++) Output mode + (++) Alternate function mode + (++) External interrupt/event lines + + (+) During and just after reset, the alternate functions and external interrupt + lines are not active and the I/O ports are configured in input floating mode. + + (+) All GPIO pins have weak internal pull-up and pull-down resistors, which can be + activated or not. + + (+) In Output or Alternate mode, each IO can be configured on open-drain or push-pull + type and the IO speed can be selected depending on the VDD value. + + (+) The microcontroller IO pins are connected to onboard peripherals/modules through a + multiplexer that allows only one peripheral alternate function (AF) connected + to an IO pin at a time. In this way, there can be no conflict between peripherals + sharing the same IO pin. + + (+) All ports have external interrupt/event capability. To use external interrupt + lines, the port must be configured in input mode. All available GPIO pins are + connected to the 16 external interrupt/event lines from EXTI0 to EXTI15. + + (+) The external interrupt/event controller consists of up to 28 edge detectors + (16 lines are connected to GPIO) for generating event/interrupt requests (each + input line can be independently configured to select the type (interrupt or event) + and the corresponding trigger event (rising or falling or both). Each line can + also be masked independently. + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable the GPIO AHB clock using the following function: __HAL_RCC_GPIOx_CLK_ENABLE(). + + (#) Configure the GPIO pin(s) using HAL_GPIO_Init(). + (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure + (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef + structure. + (++) In case of Output or alternate function mode selection: the speed is + configured through "Speed" member from GPIO_InitTypeDef structure. + (++) In alternate mode is selection, the alternate function connected to the IO + is configured through "Alternate" member from GPIO_InitTypeDef structure. + (++) Analog mode is required when a pin is to be used as ADC channel + or DAC output. + (++) In case of external interrupt/event selection the "Mode" member from + GPIO_InitTypeDef structure select the type (interrupt or event) and + the corresponding trigger event (rising or falling or both). + + (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority + mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using + HAL_NVIC_EnableIRQ(). + + (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin(). + + (#) To set/reset the level of a pin configured in output mode use + HAL_GPIO_WritePin()/HAL_GPIO_TogglePin(). + + (#) To lock pin configuration until next reset use HAL_GPIO_LockPin(). + + (#) During and just after reset, the alternate functions are not + active and the GPIO pins are configured in input floating mode (except JTAG + pins). + + (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose + (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has + priority over the GPIO function. + + (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as + general purpose PF0 and PF1, respectively, when the HSE oscillator is off. + The HSE has priority over the GPIO function. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup GPIO + * @{ + */ + +#ifdef HAL_GPIO_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines ------------------------------------------------------------*/ +/** @addtogroup GPIO_Private_Constants + * @{ + */ +#define GPIO_NUMBER (16u) +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup GPIO_Exported_Functions + * @{ + */ + +/** @addtogroup GPIO_Exported_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the GPIOx peripheral according to the specified parameters in the GPIO_Init. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32U0xx family + * @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains + * the configuration information for the specified GPIO peripheral. + * @retval None + */ +void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, const GPIO_InitTypeDef *GPIO_Init) +{ + uint32_t position = 0x00u; + uint32_t iocurrent; + uint32_t temp; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Init->Pin)); + assert_param(IS_GPIO_MODE(GPIO_Init->Mode)); + + /* Configure the port pins */ + while (((GPIO_Init->Pin) >> position) != 0x00u) + { + /* Get current io position */ + iocurrent = (GPIO_Init->Pin) & (1uL << position); + + if (iocurrent != 0x00u) + { + /*--------------------- GPIO Mode Configuration ------------------------*/ + /* In case of Output or Alternate function mode selection */ + if (((GPIO_Init->Mode & GPIO_MODE) == MODE_OUTPUT) || ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF)) + { + /* Check the Speed parameter */ + assert_param(IS_GPIO_SPEED(GPIO_Init->Speed)); + + /* Configure the IO Speed */ + temp = GPIOx->OSPEEDR; + temp &= ~(GPIO_OSPEEDR_OSPEED0 << (position * GPIO_OSPEEDR_OSPEED1_Pos)); + temp |= (GPIO_Init->Speed << (position * GPIO_OSPEEDR_OSPEED1_Pos)); + GPIOx->OSPEEDR = temp; + + /* Configure the IO Output Type */ + temp = GPIOx->OTYPER; + temp &= ~(GPIO_OTYPER_OT0 << position) ; + temp |= (((GPIO_Init->Mode & OUTPUT_TYPE) >> OUTPUT_TYPE_POS) << position); + GPIOx->OTYPER = temp; + } + + if ((GPIO_Init->Mode & GPIO_MODE) != MODE_ANALOG) + { + /* Check the Pull parameter */ + assert_param(IS_GPIO_PULL(GPIO_Init->Pull)); + + /* Activate the Pull-up or Pull down resistor for the current IO */ + temp = GPIOx->PUPDR; + temp &= ~(GPIO_PUPDR_PUPD0 << (position * GPIO_PUPDR_PUPD1_Pos)); + temp |= ((GPIO_Init->Pull) << (position * GPIO_PUPDR_PUPD1_Pos)); + GPIOx->PUPDR = temp; + } + + /* In case of Alternate function mode selection */ + if ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF) + { + /* Check the Alternate function parameters */ + assert_param(IS_GPIO_AF_INSTANCE(GPIOx)); + assert_param(IS_GPIO_AF(GPIO_Init->Alternate)); + + /* Configure Alternate function mapped with the current IO */ + temp = GPIOx->AFR[position >> 3u]; + temp &= ~(0xFu << ((position & 0x07u) * GPIO_AFRL_AFSEL1_Pos)); + temp |= ((GPIO_Init->Alternate) << ((position & 0x07u) * GPIO_AFRL_AFSEL1_Pos)); + GPIOx->AFR[position >> 3u] = temp; + } + + /* Configure IO Direction mode (Input, Output, Alternate or Analog) */ + temp = GPIOx->MODER; + temp &= ~(GPIO_MODER_MODE0 << (position * GPIO_MODER_MODE1_Pos)); + temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * GPIO_MODER_MODE1_Pos)); + GPIOx->MODER = temp; + + /*--------------------- EXTI Mode Configuration ------------------------*/ + /* Configure the External Interrupt or event for the current IO */ + if ((GPIO_Init->Mode & EXTI_MODE) != 0x00u) + { + temp = EXTI->EXTICR[position >> 2u]; + temp &= ~(0x0FuL << (EXTI_EXTICR1_EXTI1_Pos * (position & 0x03u))); + temp |= (GPIO_GET_INDEX(GPIOx) << (EXTI_EXTICR1_EXTI1_Pos * (position & 0x03u))); + EXTI->EXTICR[position >> 2u] = temp; + + /* Clear Rising Falling edge configuration */ + temp = EXTI->RTSR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & TRIGGER_RISING) != 0x00u) + { + temp |= iocurrent; + } + EXTI->RTSR1 = temp; + + temp = EXTI->FTSR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & TRIGGER_FALLING) != 0x00u) + { + temp |= iocurrent; + } + EXTI->FTSR1 = temp; + + /* Clear EXTI line configuration */ + temp = EXTI->EMR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & EXTI_EVT) != 0x00u) + { + temp |= iocurrent; + } + EXTI->EMR1 = temp; + + temp = EXTI->IMR1; + temp &= ~(iocurrent); + if ((GPIO_Init->Mode & EXTI_IT) != 0x00u) + { + temp |= iocurrent; + } + EXTI->IMR1 = temp; + } + } + + position++; + } +} + +/** + * @brief De-initialize the GPIOx peripheral registers to their default reset values. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32U0xx family + * @param GPIO_Pin specifies the port bit to be written. + * This parameter can be any combination of GPIO_Pin_x where x can be (0..15). + * @retval None + */ +void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin) +{ + uint32_t position = 0x00u; + uint32_t iocurrent; + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* Configure the port pins */ + while ((GPIO_Pin >> position) != 0x00u) + { + /* Get current io position */ + iocurrent = (GPIO_Pin) & (1uL << position); + + if (iocurrent != 0x00u) + { + /*------------------------- EXTI Mode Configuration --------------------*/ + /* Clear the External Interrupt or Event for the current IO */ + + tmp = EXTI->EXTICR[position >> 2u]; + tmp &= (0x0FuL << (EXTI_EXTICR1_EXTI1_Pos * (position & 0x03u))); + if (tmp == (GPIO_GET_INDEX(GPIOx) << (EXTI_EXTICR1_EXTI1_Pos * (position & 0x03u)))) + { + /* Clear EXTI line configuration */ + EXTI->IMR1 &= ~(iocurrent); + EXTI->EMR1 &= ~(iocurrent); + + /* Clear Rising Falling edge configuration */ + EXTI->FTSR1 &= ~(iocurrent); + EXTI->RTSR1 &= ~(iocurrent); + + tmp = 0x0FuL << (EXTI_EXTICR1_EXTI1_Pos * (position & 0x03u)); + EXTI->EXTICR[position >> 2u] &= ~tmp; + } + + /*------------------------- GPIO Mode Configuration --------------------*/ + /* Configure IO in Analog Mode */ + GPIOx->MODER |= (GPIO_MODER_MODE0 << (position * GPIO_MODER_MODE1_Pos)); + + /* Configure the default Alternate Function in current IO */ + GPIOx->AFR[position >> 3u] &= ~(0xFu << ((position & 0x07u) * GPIO_AFRL_AFSEL1_Pos)) ; + + /* Configure the default value for IO Speed */ + GPIOx->OSPEEDR &= ~(GPIO_OSPEEDR_OSPEED0 << (position * GPIO_OSPEEDR_OSPEED1_Pos)); + + /* Configure the default value IO Output Type */ + GPIOx->OTYPER &= ~(GPIO_OTYPER_OT0 << position) ; + + /* Deactivate the Pull-up and Pull-down resistor for the current IO */ + GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPD0 << (position * GPIO_PUPDR_PUPD1_Pos)); + } + + position++; + } +} + +/** + * @} + */ + +/** @addtogroup GPIO_Exported_Functions_Group2 + * @brief GPIO Read, Write, Toggle, Lock and EXTI management functions. + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Read the specified input port pin. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32U0xx family + * @param GPIO_Pin specifies the port bit to read. + * This parameter can be any combination of GPIO_Pin_x where x can be (0..15). + * @retval The input port pin value. + */ +GPIO_PinState HAL_GPIO_ReadPin(const GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) +{ + GPIO_PinState bitstatus; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + if ((GPIOx->IDR & GPIO_Pin) != 0x00u) + { + bitstatus = GPIO_PIN_SET; + } + else + { + bitstatus = GPIO_PIN_RESET; + } + return bitstatus; +} + +/** + * @brief Set or clear the selected data port bit. + * + * @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify + * accesses. In this way, there is no risk of an IRQ occurring between + * the read and the modify access. + * + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32U0xx family + * @param GPIO_Pin specifies the port bit to be written. + * This parameter can be any combination of GPIO_Pin_x where x can be (0..15). + * @param PinState specifies the value to be written to the selected bit. + * This parameter can be one of the GPIO_PinState enum values: + * @arg GPIO_PIN_RESET: to clear the port pin + * @arg GPIO_PIN_SET: to set the port pin + * @retval None + */ +void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState) +{ + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + assert_param(IS_GPIO_PIN_ACTION(PinState)); + + if (PinState != GPIO_PIN_RESET) + { + GPIOx->BSRR = (uint32_t)GPIO_Pin; + } + else + { + GPIOx->BRR = (uint32_t)GPIO_Pin; + } +} + +/** + * @brief Toggle the specified GPIO pin. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32U0xx family + * @param GPIO_Pin specifies the pin to be toggled. + * This parameter can be any combination of GPIO_Pin_x where x can be (0..15). + * @retval None + */ +void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) +{ + uint32_t odr; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* get current Output Data Register value */ + odr = GPIOx->ODR; + + /* Set selected pins that were at low level, and reset ones that were high */ + GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin); +} + +/** + * @brief Lock GPIO Pins configuration registers. + * @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, + * GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. + * @note The configuration of the locked GPIO pins can no longer be modified + * until the next reset. + * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32U0xx family + * @param GPIO_Pin specifies the port bits to be locked. + * This parameter can be any combination of GPIO_Pin_x where x can be (0..15). + * @retval None + */ +HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin) +{ + __IO uint32_t tmp = GPIO_LCKR_LCKK; + + /* Check the parameters */ + assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* Apply lock key write sequence */ + tmp |= GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */ + GPIOx->LCKR = GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Read LCKK register. This read is mandatory to complete key lock sequence */ + tmp = GPIOx->LCKR; + + /* read again in order to confirm lock is active */ + if ((GPIOx->LCKR & GPIO_LCKR_LCKK) != 0x00u) + { + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Handle EXTI interrupt request. + * @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line. + * @retval None + */ +void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin) +{ + /* EXTI line interrupt detected */ + if (__HAL_GPIO_EXTI_GET_RISING_IT(GPIO_Pin) != 0x00u) + { + __HAL_GPIO_EXTI_CLEAR_RISING_IT(GPIO_Pin); + HAL_GPIO_EXTI_Rising_Callback(GPIO_Pin); + } + + if (__HAL_GPIO_EXTI_GET_FALLING_IT(GPIO_Pin) != 0x00u) + { + __HAL_GPIO_EXTI_CLEAR_FALLING_IT(GPIO_Pin); + HAL_GPIO_EXTI_Falling_Callback(GPIO_Pin); + } +} + +/** + * @brief EXTI line detection callback. + * @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line. + * @retval None + */ +__weak void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(GPIO_Pin); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_GPIO_EXTI_Rising_Callback could be implemented in the user file + */ +} + +/** + * @brief EXTI line detection callback. + * @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line. + * @retval None + */ +__weak void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(GPIO_Pin); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_GPIO_EXTI_Falling_Callback could be implemented in the user file + */ +} +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_GPIO_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c.c new file mode 100644 index 0000000..efa40a4 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c.c @@ -0,0 +1,7447 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_i2c.c + * @author MCD Application Team + * @brief I2C HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Inter Integrated Circuit (I2C) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The I2C HAL driver can be used as follows: + + (#) Declare a I2C_HandleTypeDef handle structure, for example: + I2C_HandleTypeDef hi2c; + + (#)Initialize the I2C low level resources by implementing the HAL_I2C_MspInit() API: + (##) Enable the I2Cx interface clock + (##) I2C pins configuration + (+++) Enable the clock for the I2C GPIOs + (+++) Configure I2C pins as alternate function open-drain + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the I2Cx interrupt priority + (+++) Enable the NVIC I2C IRQ Channel + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for + the transmit or receive channel + (+++) Enable the DMAx interface clock using + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx channel + (+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on + the DMA Tx or Rx channel + + (#) Configure the Communication Clock Timing, Own Address1, Master Addressing mode, Dual Addressing mode, + Own Address2, Own Address2 Mask, General call and Nostretch mode in the hi2c Init structure. + + (#) Initialize the I2C registers by calling the HAL_I2C_Init(), configures also the low level Hardware + (GPIO, CLOCK, NVIC...etc) by calling the customized HAL_I2C_MspInit(&hi2c) API. + + (#) To check if target device is ready for communication, use the function HAL_I2C_IsDeviceReady() + + (#) For I2C IO and IO MEM operations, three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Transmit in master mode an amount of data in blocking mode using HAL_I2C_Master_Transmit() + (+) Receive in master mode an amount of data in blocking mode using HAL_I2C_Master_Receive() + (+) Transmit in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Transmit() + (+) Receive in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Receive() + + *** Polling mode IO MEM operation *** + ===================================== + [..] + (+) Write an amount of data in blocking mode to a specific memory address using HAL_I2C_Mem_Write() + (+) Read an amount of data in blocking mode from a specific memory address using HAL_I2C_Mem_Read() + + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode using HAL_I2C_Master_Transmit_IT() + (+) At transmission end of transfer, HAL_I2C_MasterTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode using HAL_I2C_Master_Receive_IT() + (+) At reception end of transfer, HAL_I2C_MasterRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode using HAL_I2C_Slave_Transmit_IT() + (+) At transmission end of transfer, HAL_I2C_SlaveTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode using HAL_I2C_Slave_Receive_IT() + (+) At reception end of transfer, HAL_I2C_SlaveRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + (+) Abort a master or memory I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + + *** Interrupt mode or DMA mode IO sequential operation *** + ========================================================== + [..] + (@) These interfaces allow to manage a sequential transfer with a repeated start condition + when a direction change during transfer + [..] + (+) A specific option field manage the different steps of a sequential transfer + (+) Option field values are defined through I2C_XFEROPTIONS and are listed below: + (++) I2C_FIRST_AND_LAST_FRAME: No sequential usage, functional is same as associated interfaces in + no sequential mode + (++) I2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address + and data to transfer without a final stop condition + (++) I2C_FIRST_AND_NEXT_FRAME: Sequential usage (Master only), this option allow to manage a sequence with + start condition, address and data to transfer without a final stop condition, + an then permit a call the same master sequential interface several times + (like HAL_I2C_Master_Seq_Transmit_IT() then HAL_I2C_Master_Seq_Transmit_IT() + or HAL_I2C_Master_Seq_Transmit_DMA() then HAL_I2C_Master_Seq_Transmit_DMA()) + (++) I2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to + transfer + if no direction change and without a final stop condition in both cases + (++) I2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to + transfer + if no direction change and with a final stop condition in both cases + (++) I2C_LAST_FRAME_NO_STOP: Sequential usage (Master only), this option allow to manage a restart condition + after several call of the same master sequential interface several times + (link with option I2C_FIRST_AND_NEXT_FRAME). + Usage can, transfer several bytes one by one using + HAL_I2C_Master_Seq_Transmit_IT + or HAL_I2C_Master_Seq_Receive_IT + or HAL_I2C_Master_Seq_Transmit_DMA + or HAL_I2C_Master_Seq_Receive_DMA + with option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME. + Then usage of this option I2C_LAST_FRAME_NO_STOP at the last Transmit or + Receive sequence permit to call the opposite interface Receive or Transmit + without stopping the communication and so generate a restart condition. + (++) I2C_OTHER_FRAME: Sequential usage (Master only), this option allow to manage a restart condition after + each call of the same master sequential + interface. + Usage can, transfer several bytes one by one with a restart with slave address between + each bytes using + HAL_I2C_Master_Seq_Transmit_IT + or HAL_I2C_Master_Seq_Receive_IT + or HAL_I2C_Master_Seq_Transmit_DMA + or HAL_I2C_Master_Seq_Receive_DMA + with option I2C_FIRST_FRAME then I2C_OTHER_FRAME. + Then usage of this option I2C_OTHER_AND_LAST_FRAME at the last frame to help automatic + generation of STOP condition. + + (+) Different sequential I2C interfaces are listed below: + (++) Sequential transmit in master I2C mode an amount of data in non-blocking mode using + HAL_I2C_Master_Seq_Transmit_IT() or using HAL_I2C_Master_Seq_Transmit_DMA() + (+++) At transmission end of current frame transfer, HAL_I2C_MasterTxCpltCallback() is executed and + users can add their own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (++) Sequential receive in master I2C mode an amount of data in non-blocking mode using + HAL_I2C_Master_Seq_Receive_IT() or using HAL_I2C_Master_Seq_Receive_DMA() + (+++) At reception end of current frame transfer, HAL_I2C_MasterRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (++) Abort a master or memory IT or DMA I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+++) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (++) Enable/disable the Address listen mode in slave I2C mode using HAL_I2C_EnableListen_IT() + HAL_I2C_DisableListen_IT() + (+++) When address slave I2C match, HAL_I2C_AddrCallback() is executed and users can + add their own code to check the Address Match Code and the transmission direction request by master + (Write/Read). + (+++) At Listen mode end HAL_I2C_ListenCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_ListenCpltCallback() + (++) Sequential transmit in slave I2C mode an amount of data in non-blocking mode using + HAL_I2C_Slave_Seq_Transmit_IT() or using HAL_I2C_Slave_Seq_Transmit_DMA() + (+++) At transmission end of current frame transfer, HAL_I2C_SlaveTxCpltCallback() is executed and + users can add their own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (++) Sequential receive in slave I2C mode an amount of data in non-blocking mode using + HAL_I2C_Slave_Seq_Receive_IT() or using HAL_I2C_Slave_Seq_Receive_DMA() + (+++) At reception end of current frame transfer, HAL_I2C_SlaveRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (++) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + (++) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** Interrupt mode IO MEM operation *** + ======================================= + [..] + (+) Write an amount of data in non-blocking mode with Interrupt to a specific memory address using + HAL_I2C_Mem_Write_IT() + (+) At Memory end of write transfer, HAL_I2C_MemTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with Interrupt from a specific memory address using + HAL_I2C_Mem_Read_IT() + (+) At Memory end of read transfer, HAL_I2C_MemRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Master_Transmit_DMA() + (+) At transmission end of transfer, HAL_I2C_MasterTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Master_Receive_DMA() + (+) At reception end of transfer, HAL_I2C_MasterRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Slave_Transmit_DMA() + (+) At transmission end of transfer, HAL_I2C_SlaveTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode (DMA) using + HAL_I2C_Slave_Receive_DMA() + (+) At reception end of transfer, HAL_I2C_SlaveRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + (+) Abort a master or memory I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT() + (+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_AbortCpltCallback() + (+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** DMA mode IO MEM operation *** + ================================= + [..] + (+) Write an amount of data in non-blocking mode with DMA to a specific memory address using + HAL_I2C_Mem_Write_DMA() + (+) At Memory end of write transfer, HAL_I2C_MemTxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with DMA from a specific memory address using + HAL_I2C_Mem_Read_DMA() + (+) At Memory end of read transfer, HAL_I2C_MemRxCpltCallback() is executed and users can + add their own code by customization of function pointer HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can + add their own code by customization of function pointer HAL_I2C_ErrorCallback() + + + *** I2C HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in I2C HAL driver. + + (+) __HAL_I2C_ENABLE: Enable the I2C peripheral + (+) __HAL_I2C_DISABLE: Disable the I2C peripheral + (+) __HAL_I2C_GENERATE_NACK: Generate a Non-Acknowledge I2C peripheral in Slave mode + (+) __HAL_I2C_GET_FLAG: Check whether the specified I2C flag is set or not + (+) __HAL_I2C_CLEAR_FLAG: Clear the specified I2C pending flag + (+) __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt + (+) __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt + + *** Callback registration *** + ============================================= + [..] + The compilation flag USE_HAL_I2C_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_I2C_RegisterCallback() or HAL_I2C_RegisterAddrCallback() + to register an interrupt callback. + [..] + Function HAL_I2C_RegisterCallback() allows to register following callbacks: + (+) MasterTxCpltCallback : callback for Master transmission end of transfer. + (+) MasterRxCpltCallback : callback for Master reception end of transfer. + (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. + (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. + (+) ListenCpltCallback : callback for end of listen mode. + (+) MemTxCpltCallback : callback for Memory transmission end of transfer. + (+) MemRxCpltCallback : callback for Memory reception end of transfer. + (+) ErrorCallback : callback for error detection. + (+) AbortCpltCallback : callback for abort completion process. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + [..] + For specific callback AddrCallback use dedicated register callbacks : HAL_I2C_RegisterAddrCallback(). + [..] + Use function HAL_I2C_UnRegisterCallback to reset a callback to the default + weak function. + HAL_I2C_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) MasterTxCpltCallback : callback for Master transmission end of transfer. + (+) MasterRxCpltCallback : callback for Master reception end of transfer. + (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. + (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. + (+) ListenCpltCallback : callback for end of listen mode. + (+) MemTxCpltCallback : callback for Memory transmission end of transfer. + (+) MemRxCpltCallback : callback for Memory reception end of transfer. + (+) ErrorCallback : callback for error detection. + (+) AbortCpltCallback : callback for abort completion process. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + [..] + For callback AddrCallback use dedicated register callbacks : HAL_I2C_UnRegisterAddrCallback(). + [..] + By default, after the HAL_I2C_Init() and when the state is HAL_I2C_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_I2C_MasterTxCpltCallback(), HAL_I2C_MasterRxCpltCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the HAL_I2C_Init()/ HAL_I2C_DeInit() only when + these callbacks are null (not registered beforehand). + If MspInit or MspDeInit are not null, the HAL_I2C_Init()/ HAL_I2C_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + [..] + Callbacks can be registered/unregistered in HAL_I2C_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in HAL_I2C_STATE_READY or HAL_I2C_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + Then, the user first registers the MspInit/MspDeInit user callbacks + using HAL_I2C_RegisterCallback() before calling HAL_I2C_DeInit() + or HAL_I2C_Init() function. + [..] + When the compilation flag USE_HAL_I2C_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + [..] + (@) You can refer to the I2C HAL driver header file for more useful macros + + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup I2C I2C + * @brief I2C HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup I2C_Private_Define I2C Private Define + * @{ + */ +#define TIMING_CLEAR_MASK (0xF0FFFFFFU) /*!< I2C TIMING clear register Mask */ +#define I2C_TIMEOUT_ADDR (10000U) /*!< 10 s */ +#define I2C_TIMEOUT_BUSY (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_DIR (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_RXNE (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_STOPF (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TC (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TCR (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TXIS (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_FLAG (25U) /*!< 25 ms */ + +#define MAX_NBYTE_SIZE 255U +#define SLAVE_ADDR_SHIFT 7U +#define SLAVE_ADDR_MSK 0x06U + +/* Private define for @ref PreviousState usage */ +#define I2C_STATE_MSK ((uint32_t)((uint32_t)((uint32_t)HAL_I2C_STATE_BUSY_TX | \ + (uint32_t)HAL_I2C_STATE_BUSY_RX) & \ + (uint32_t)(~((uint32_t)HAL_I2C_STATE_READY)))) +/*!< Mask State define, keep only RX and TX bits */ +#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE)) +/*!< Default Value */ +#define I2C_STATE_MASTER_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MASTER)) +/*!< Master Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MASTER_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MASTER)) +/*!< Master Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_SLAVE)) +/*!< Slave Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_SLAVE)) +/*!< Slave Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MEM)) +/*!< Memory Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | \ + (uint32_t)HAL_I2C_MODE_MEM)) +/*!< Memory Busy RX, combinaison of State LSB and Mode enum */ + + +/* Private define to centralize the enable/disable of Interrupts */ +#define I2C_XFER_TX_IT (uint16_t)(0x0001U) /*!< Bit field can be combinated with + @ref I2C_XFER_LISTEN_IT */ +#define I2C_XFER_RX_IT (uint16_t)(0x0002U) /*!< Bit field can be combinated with + @ref I2C_XFER_LISTEN_IT */ +#define I2C_XFER_LISTEN_IT (uint16_t)(0x8000U) /*!< Bit field can be combinated with @ref I2C_XFER_TX_IT + and @ref I2C_XFER_RX_IT */ + +#define I2C_XFER_ERROR_IT (uint16_t)(0x0010U) /*!< Bit definition to manage addition of global Error + and NACK treatment */ +#define I2C_XFER_CPLT_IT (uint16_t)(0x0020U) /*!< Bit definition to manage only STOP evenement */ +#define I2C_XFER_RELOAD_IT (uint16_t)(0x0040U) /*!< Bit definition to manage only Reload of NBYTE */ + +/* Private define Sequential Transfer Options default/reset value */ +#define I2C_NO_OPTION_FRAME (0xFFFF0000U) +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup I2C_Private_Macro + * @{ + */ +#if defined(HAL_DMA_MODULE_ENABLED) +/* Macro to get remaining data to transfer on DMA side */ +#define I2C_GET_DMA_REMAIN_DATA(__HANDLE__) __HAL_DMA_GET_COUNTER(__HANDLE__) +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/** @defgroup I2C_Private_Functions I2C Private Functions + * @{ + */ +#if defined(HAL_DMA_MODULE_ENABLED) +/* Private functions to handle DMA transfer */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAError(DMA_HandleTypeDef *hdma); +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma); + +#endif /* HAL_DMA_MODULE_ENABLED */ + +/* Private functions to handle IT transfer */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode); + +/* Private functions to handle IT transfer */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart); + +/* Private functions for I2C transfer IRQ handler */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Mem_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +#if defined(HAL_DMA_MODULE_ENABLED) +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Mem_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources); +#endif /* HAL_DMA_MODULE_ENABLED */ + +/* Private functions to handle flags during polling transfer */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, + uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); +static HAL_StatusTypeDef I2C_IsErrorOccurred(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart); + +/* Private functions to centralize the enable/disable of Interrupts */ +static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); +static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); + +/* Private function to treat different error callback */ +static void I2C_TreatErrorCallback(I2C_HandleTypeDef *hi2c); + +/* Private function to flush TXDR register */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c); + +/* Private function to handle start, restart or stop a transfer */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, + uint32_t Request); + +/* Private function to Convert Specific options */ +static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Functions I2C Exported Functions + * @{ + */ + +/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + deinitialize the I2Cx peripheral: + + (+) User must Implement HAL_I2C_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_I2C_Init() to configure the selected device with + the selected configuration: + (++) Clock Timing + (++) Own Address 1 + (++) Addressing mode (Master, Slave) + (++) Dual Addressing mode + (++) Own Address 2 + (++) Own Address 2 Mask + (++) General call mode + (++) Nostretch mode + + (+) Call the function HAL_I2C_DeInit() to restore the default configuration + of the selected I2Cx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the I2C according to the specified parameters + * in the I2C_InitTypeDef and initialize the associated handle. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if (hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1)); + assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode)); + assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode)); + assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2)); + assert_param(IS_I2C_OWN_ADDRESS2_MASK(hi2c->Init.OwnAddress2Masks)); + assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode)); + assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode)); + + if (hi2c->State == HAL_I2C_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2c->Lock = HAL_UNLOCKED; + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + /* Init the I2C Callback settings */ + hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ + hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ + hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ + hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ + hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ + hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ + hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ + hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ + hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ + + if (hi2c->MspInitCallback == NULL) + { + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + hi2c->MspInitCallback(hi2c); +#else + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_I2C_MspInit(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /*---------------------------- I2Cx TIMINGR Configuration ------------------*/ + /* Configure I2Cx: Frequency range */ + hi2c->Instance->TIMINGR = hi2c->Init.Timing & TIMING_CLEAR_MASK; + + /*---------------------------- I2Cx OAR1 Configuration ---------------------*/ + /* Disable Own Address1 before set the Own Address1 configuration */ + hi2c->Instance->OAR1 &= ~I2C_OAR1_OA1EN; + + /* Configure I2Cx: Own Address1 and ack own address1 mode */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | hi2c->Init.OwnAddress1); + } + else /* I2C_ADDRESSINGMODE_10BIT */ + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hi2c->Init.OwnAddress1); + } + + /*---------------------------- I2Cx CR2 Configuration ----------------------*/ + /* Configure I2Cx: Addressing Master mode */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + SET_BIT(hi2c->Instance->CR2, I2C_CR2_ADD10); + } + else + { + /* Clear the I2C ADD10 bit */ + CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_ADD10); + } + /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */ + hi2c->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK); + + /*---------------------------- I2Cx OAR2 Configuration ---------------------*/ + /* Disable Own Address2 before set the Own Address2 configuration */ + hi2c->Instance->OAR2 &= ~I2C_DUALADDRESS_ENABLE; + + /* Configure I2Cx: Dual mode and Own Address2 */ + hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2 | \ + (hi2c->Init.OwnAddress2Masks << 8)); + + /*---------------------------- I2Cx CR1 Configuration ----------------------*/ + /* Configure I2Cx: Generalcall and NoStretch mode */ + hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode); + + /* Enable the selected I2C peripheral */ + __HAL_I2C_ENABLE(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + return HAL_OK; +} + +/** + * @brief DeInitialize the I2C peripheral. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if (hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the I2C Peripheral Clock */ + __HAL_I2C_DISABLE(hi2c); + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + if (hi2c->MspDeInitCallback == NULL) + { + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + hi2c->MspDeInitCallback(hi2c); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_I2C_MspDeInit(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_RESET; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Initialize the I2C MSP. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the I2C MSP. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspDeInit could be implemented in the user file + */ +} + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User I2C Callback + * To be used instead of the weak predefined callback + * @note The HAL_I2C_RegisterCallback() may be called before HAL_I2C_Init() in HAL_I2C_STATE_RESET + * to register callbacks for HAL_I2C_MSPINIT_CB_ID and HAL_I2C_MSPDEINIT_CB_ID. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID + * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID + * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID + * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID + * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID + * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID + * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID + * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, + pI2C_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (HAL_I2C_STATE_READY == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : + hi2c->MasterTxCpltCallback = pCallback; + break; + + case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : + hi2c->MasterRxCpltCallback = pCallback; + break; + + case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : + hi2c->SlaveTxCpltCallback = pCallback; + break; + + case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : + hi2c->SlaveRxCpltCallback = pCallback; + break; + + case HAL_I2C_LISTEN_COMPLETE_CB_ID : + hi2c->ListenCpltCallback = pCallback; + break; + + case HAL_I2C_MEM_TX_COMPLETE_CB_ID : + hi2c->MemTxCpltCallback = pCallback; + break; + + case HAL_I2C_MEM_RX_COMPLETE_CB_ID : + hi2c->MemRxCpltCallback = pCallback; + break; + + case HAL_I2C_ERROR_CB_ID : + hi2c->ErrorCallback = pCallback; + break; + + case HAL_I2C_ABORT_CB_ID : + hi2c->AbortCpltCallback = pCallback; + break; + + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = pCallback; + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_I2C_STATE_RESET == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = pCallback; + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister an I2C Callback + * I2C callback is redirected to the weak predefined callback + * @note The HAL_I2C_UnRegisterCallback() may be called before HAL_I2C_Init() in HAL_I2C_STATE_RESET + * to un-register callbacks for HAL_I2C_MSPINIT_CB_ID and HAL_I2C_MSPDEINIT_CB_ID. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * This parameter can be one of the following values: + * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID + * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID + * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID + * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID + * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID + * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID + * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID + * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_I2C_STATE_READY == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : + hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ + break; + + case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : + hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ + break; + + case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : + hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ + break; + + case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : + hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ + break; + + case HAL_I2C_LISTEN_COMPLETE_CB_ID : + hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ + break; + + case HAL_I2C_MEM_TX_COMPLETE_CB_ID : + hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ + break; + + case HAL_I2C_MEM_RX_COMPLETE_CB_ID : + hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ + break; + + case HAL_I2C_ERROR_CB_ID : + hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_I2C_ABORT_CB_ID : + hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_I2C_STATE_RESET == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Register the Slave Address Match I2C Callback + * To be used instead of the weak HAL_I2C_AddrCallback() predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pCallback pointer to the Address Match Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (HAL_I2C_STATE_READY == hi2c->State) + { + hi2c->AddrCallback = pCallback; + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief UnRegister the Slave Address Match I2C Callback + * Info Ready I2C Callback is redirected to the weak HAL_I2C_AddrCallback() predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_I2C_STATE_READY == hi2c->State) + { + hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2C data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2C_Master_Transmit() + (++) HAL_I2C_Master_Receive() + (++) HAL_I2C_Slave_Transmit() + (++) HAL_I2C_Slave_Receive() + (++) HAL_I2C_Mem_Write() + (++) HAL_I2C_Mem_Read() + (++) HAL_I2C_IsDeviceReady() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2C_Master_Transmit_IT() + (++) HAL_I2C_Master_Receive_IT() + (++) HAL_I2C_Slave_Transmit_IT() + (++) HAL_I2C_Slave_Receive_IT() + (++) HAL_I2C_Mem_Write_IT() + (++) HAL_I2C_Mem_Read_IT() + (++) HAL_I2C_Master_Seq_Transmit_IT() + (++) HAL_I2C_Master_Seq_Receive_IT() + (++) HAL_I2C_Slave_Seq_Transmit_IT() + (++) HAL_I2C_Slave_Seq_Receive_IT() + (++) HAL_I2C_EnableListen_IT() + (++) HAL_I2C_DisableListen_IT() + (++) HAL_I2C_Master_Abort_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2C_Master_Transmit_DMA() + (++) HAL_I2C_Master_Receive_DMA() + (++) HAL_I2C_Slave_Transmit_DMA() + (++) HAL_I2C_Slave_Receive_DMA() + (++) HAL_I2C_Mem_Write_DMA() + (++) HAL_I2C_Mem_Read_DMA() + (++) HAL_I2C_Master_Seq_Transmit_DMA() + (++) HAL_I2C_Master_Seq_Receive_DMA() + (++) HAL_I2C_Slave_Seq_Transmit_DMA() + (++) HAL_I2C_Slave_Seq_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2C_MasterTxCpltCallback() + (++) HAL_I2C_MasterRxCpltCallback() + (++) HAL_I2C_SlaveTxCpltCallback() + (++) HAL_I2C_SlaveRxCpltCallback() + (++) HAL_I2C_MemTxCpltCallback() + (++) HAL_I2C_MemRxCpltCallback() + (++) HAL_I2C_AddrCallback() + (++) HAL_I2C_ListenCpltCallback() + (++) HAL_I2C_ErrorCallback() + (++) HAL_I2C_AbortCpltCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmits in master mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_GENERATE_START_WRITE); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_WRITE); + } + + while (hi2c->XferCount > 0U) + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives in master mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + } + + while (hi2c->XferCount > 0U) + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmits in slave mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t Timeout) +{ + uint32_t tickstart; + uint16_t tmpXferCount; + HAL_StatusTypeDef error; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Preload TX data if no stretch enable */ + if (hi2c->Init.NoStretchMode == I2C_NOSTRETCH_ENABLE) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + } + + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* If 10bit addressing mode is selected */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Wait until DIR flag is set Transmitter mode */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + return HAL_ERROR; + } + + while (hi2c->XferCount > 0U) + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + } + + /* Wait until AF flag is set */ + error = I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, Timeout, tickstart); + + if (error != HAL_OK) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0 */ + + tmpXferCount = hi2c->XferCount; + if ((hi2c->ErrorCode == HAL_I2C_ERROR_AF) && (tmpXferCount == 0U)) + { + /* Reset ErrorCode to NONE */ + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + else + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + } + else + { + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Clear AF flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Wait until STOP flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + return HAL_ERROR; + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + /* Wait until BUSY flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in blocking mode + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Wait until DIR flag is reset Receiver mode */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + while (hi2c->XferCount > 0U) + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Store Last receive data if any */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + /* Wait until STOP flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Preload TX data if no stretch enable */ + if (hi2c->Init.NoStretchMode == I2C_NOSTRETCH_ENABLE) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to write and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size) +{ + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address */ + /* Set NBYTES to read and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to read and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + /* Preload TX data if no stretch enable */ + if (hi2c->Init.NoStretchMode == I2C_NOSTRETCH_ENABLE) + { + /* Preload TX register */ + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + + if (hi2c->XferCount != 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, + (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Write an amount of data in blocking mode to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + + do + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + + } while (hi2c->XferCount > 0U); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in blocking mode from a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, + I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + } + + do + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t) hi2c->XferSize, I2C_RELOAD_MODE, + I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_NO_STARTSTOP); + } + } + } while (hi2c->XferCount > 0U); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->XferSize = 0U; + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_IT; + hi2c->Devaddress = DevAddress; + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_IT; + hi2c->Devaddress = DevAddress; + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Write an amount of data in non-blocking mode with DMA to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_DMA; + hi2c->Devaddress = DevAddress; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, + uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Mem_ISR_DMA; + hi2c->Devaddress = DevAddress; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Prefetch Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + /* If Memory address size is 16Bit */ + else + { + /* Prefetch Memory Address (MSB part, LSB will be manage through interrupt) */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Prepare Memaddress buffer for LSB part */ + hi2c->Memaddress = I2C_MEM_ADD_LSB(MemAddress); + } + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and Memory Address */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Checks if target device is ready for communication. + * @note This function is used with Memory devices + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param Trials Number of trials + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, + uint32_t Timeout) +{ + uint32_t tickstart; + + __IO uint32_t I2C_Trials = 0UL; + + HAL_StatusTypeDef status = HAL_OK; + + FlagStatus tmp1; + FlagStatus tmp2; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + do + { + /* Generate Start */ + hi2c->Instance->CR2 = I2C_GENERATE_START(hi2c->Init.AddressingMode, DevAddress); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set or a NACK flag is set*/ + tickstart = HAL_GetTick(); + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + + while ((tmp1 == RESET) && (tmp2 == RESET)) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + } + + /* Check if the NACKF flag has not been set */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET) + { + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + /* A non acknowledge appear during STOP Flag waiting process, a new trial must be performed */ + if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Reset the error code for next trial */ + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + else + { + status = HAL_ERROR; + } + } + else + { + /* A acknowledge appear during STOP Flag waiting process, this mean that device respond to its address */ + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Device is ready */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + } + else + { + /* A non acknowledge is detected, this mean that device not respond to its address, + a new trial must be performed */ + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + status = HAL_ERROR; + } + else + { + /* Clear STOP Flag, auto generated with autoend*/ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + } + + /* Increment Trials */ + I2C_Trials++; + + if ((I2C_Trials < Trials) && (status == HAL_ERROR)) + { + status = HAL_OK; + } + + } while (I2C_Trials < Trials); + + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with Interrupt. + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_WRITE; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + /* Send Slave Address and set NBYTES to write */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with DMA. + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_WRITE; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_DMA; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and set NBYTES to write */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to write and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_READ; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + /* Send Slave Address and set NBYTES to read */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, + uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_READ; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_DMA; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, + do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && \ + (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount <= MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and set NBYTES to read */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to read and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, + I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | + I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave RX state to TX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort DMA Xfer if any */ + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave RX state to TX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + /* Abort DMA Xfer if any */ + if (hi2c->hdmarx != NULL) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + } + else + { + /* Nothing to do */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Reset XferSize */ + hi2c->XferSize = 0; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave TX state to RX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + +#if defined(HAL_DMA_MODULE_ENABLED) + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, + uint32_t XferOptions) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + FlagStatus tmp; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave TX state to RX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + } + else + { + /* Nothing to do */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, + (uint32_t)pData, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Reset XferSize */ + hi2c->XferSize = 0; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + tmp = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + if ((I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) && (tmp != RESET)) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Enable the Address listen mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Enable the Address Match interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Disable the Address listen mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + uint32_t tmp; + + /* Disable Address listen mode only if a transfer is not ongoing */ + if (hi2c->State == HAL_I2C_STATE_LISTEN) + { + tmp = (uint32_t)(hi2c->State) & I2C_STATE_MSK; + hi2c->PreviousState = tmp | (uint32_t)(hi2c->Mode); + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Disable the Address Match interrupt */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Abort a master or memory I2C IT or DMA process communication with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress) +{ + HAL_I2C_ModeTypeDef tmp_mode = hi2c->Mode; + + if ((tmp_mode == HAL_I2C_MODE_MASTER) || (tmp_mode == HAL_I2C_MODE_MEM)) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Interrupts and Store Previous state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + } + else + { + /* Do nothing */ + } + + /* Set State at HAL_I2C_STATE_ABORT */ + hi2c->State = HAL_I2C_STATE_ABORT; + + /* Set NBYTES to 1 to generate a dummy read on I2C peripheral */ + /* Set AUTOEND mode, this will generate a NACK then STOP condition to abort the current transfer */ + I2C_TransferConfig(hi2c, DevAddress, 1, I2C_AUTOEND_MODE, I2C_GENERATE_STOP); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + return HAL_OK; + } + else + { + /* Wrong usage of abort function */ + /* This function should be used only in case of abort monitored by master device */ + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks + * @{ + */ + +/** + * @brief This function handles I2C event interrupt request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c) /* Derogation MISRAC2012-Rule-8.13 */ +{ + /* Get current IT Flags and IT sources value */ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + + /* I2C events treatment -------------------------------------*/ + if (hi2c->XferISR != NULL) + { + hi2c->XferISR(hi2c, itflags, itsources); + } +} + +/** + * @brief This function handles I2C error interrupt request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + uint32_t tmperror; + + /* I2C Bus error interrupt occurred ------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_BERR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); + } + + /* I2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_OVR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; + + /* Clear OVR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); + } + + /* I2C Arbitration Loss error interrupt occurred -------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_ARLO) != RESET) && \ + (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); + } + + /* Store current volatile hi2c->ErrorCode, misra rule */ + tmperror = hi2c->ErrorCode; + + /* Call the Error Callback in case of Error detected */ + if ((tmperror & (HAL_I2C_ERROR_BERR | HAL_I2C_ERROR_OVR | HAL_I2C_ERROR_ARLO)) != HAL_I2C_ERROR_NONE) + { + I2C_ITError(hi2c, tmperror); + } +} + +/** + * @brief Master Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Master Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterRxCpltCallback could be implemented in the user file + */ +} + +/** @brief Slave Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Address Match callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param TransferDirection Master request Transfer Direction (Write/Read), value of @ref I2C_XFERDIRECTION + * @param AddrMatchCode Address Match Code + * @retval None + */ +__weak void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + UNUSED(TransferDirection); + UNUSED(AddrMatchCode); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AddrCallback() could be implemented in the user file + */ +} + +/** + * @brief Listen Complete callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ListenCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief Memory Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief I2C error callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief I2C abort callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AbortCpltCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions + * @brief Peripheral State, Mode and Error functions + * +@verbatim + =============================================================================== + ##### Peripheral State, Mode and Error functions ##### + =============================================================================== + [..] + This subsection permit to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the I2C handle state. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL state + */ +HAL_I2C_StateTypeDef HAL_I2C_GetState(const I2C_HandleTypeDef *hi2c) +{ + /* Return I2C handle state */ + return hi2c->State; +} + +/** + * @brief Returns the I2C Master, Slave, Memory or no mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL mode + */ +HAL_I2C_ModeTypeDef HAL_I2C_GetMode(const I2C_HandleTypeDef *hi2c) +{ + return hi2c->Mode; +} + +/** + * @brief Return the I2C error code. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval I2C Error Code + */ +uint32_t HAL_I2C_GetError(const I2C_HandleTypeDef *hi2c) +{ + return hi2c->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup I2C_Private_Functions + * @{ + */ + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint16_t devaddress; + uint32_t tmpITFlags = ITFlags; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + /* No need to generate STOP, it is automatically done */ + /* Error callback will be send during stop flag treatment */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, + hi2c->XferOptions, I2C_NO_STARTSTOP); + } + else + { + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + else + { + /* Call TxCpltCallback() if no stop mode is set */ + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if (hi2c->XferCount == 0U) + { + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Generate a stop condition in case of no transfer option */ + if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + } + else + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + } + } + else + { + /* Wrong size Status regarding TC flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else + { + /* Nothing to do */ + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, tmpITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Memory Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Mem_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t direction = I2C_GENERATE_START_WRITE; + uint32_t tmpITFlags = ITFlags; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + /* No need to generate STOP, it is automatically done */ + /* Error callback will be send during stop flag treatment */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + if (hi2c->Memaddress == 0xFFFFFFFFU) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else + { + /* Write LSB part of Memory Address */ + hi2c->Instance->TXDR = hi2c->Memaddress; + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable Interrupt related to address step */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + direction = I2C_GENERATE_START_READ; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, direction); + } + else + { + hi2c->XferSize = hi2c->XferCount; + + /* Set NBYTES to write and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, direction); + } + } + else + { + /* Nothing to do */ + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, tmpITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t tmpoptions = hi2c->XferOptions; + uint32_t tmpITFlags = ITFlags; + + /* Process locked */ + __HAL_LOCK(hi2c); + + /* Check if STOPF is set */ + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, tmpITFlags); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0*/ + /* So clear Flag NACKF only */ + if (hi2c->XferCount == 0U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) + /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for + Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + if (hi2c->XferCount > 0U) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + + if ((hi2c->XferCount == 0U) && \ + (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_ADDR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) + { + I2C_ITAddrCplt(hi2c, tmpITFlags); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + /* Write data to TXDR only if XferCount not reach "0" */ + /* A TXIS flag can be set, during STOP treatment */ + /* Check if all Data have already been sent */ + /* If it is the case, this last write in TXDR is not sent, correspond to a dummy TXIS event */ + if (hi2c->XferCount > 0U) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + else + { + if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) + { + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + } + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint16_t devaddress; + uint32_t xfermode; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* No need to generate STOP, it is automatically done */ + /* But enable STOP interrupt, to treat it */ + /* Error callback will be send during stop flag treatment */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable TC interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_TCI); + + if (hi2c->XferCount != 0U) + { + /* Recover Slave address */ + devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); + + /* Prepare the new XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + xfermode = hi2c->XferOptions; + } + else + { + xfermode = I2C_AUTOEND_MODE; + } + } + + /* Set the new XferSize in Nbytes register */ + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else + { + /* Call TxCpltCallback() if no stop mode is set */ + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if (hi2c->XferCount == 0U) + { + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Generate a stop condition in case of no transfer option */ + if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + } + else + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + } + } + else + { + /* Wrong size Status regarding TC flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Memory Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Mem_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t direction = I2C_GENERATE_START_WRITE; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* No need to generate STOP, it is automatically done */ + /* But enable STOP interrupt, to treat it */ + /* Error callback will be send during stop flag treatment */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TXIS) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + /* Write LSB part of Memory Address */ + hi2c->Instance->TXDR = hi2c->Memaddress; + + /* Reset Memaddress content */ + hi2c->Memaddress = 0xFFFFFFFFU; + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TCR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable Interrupt related to address step */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Enable only Error interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + if (hi2c->XferCount != 0U) + { + /* Prepare the new XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TC) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable Interrupt related to address step */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Enable only Error and NACK interrupt for data transfer */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + direction = I2C_GENERATE_START_READ; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_RELOAD_MODE, direction); + } + else + { + hi2c->XferSize = hi2c->XferCount; + + /* Set NBYTES to write and generate RESTART */ + I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize, + I2C_AUTOEND_MODE, direction); + } + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, + uint32_t ITSources) +{ + uint32_t tmpoptions = hi2c->XferOptions; + uint32_t treatdmanack = 0U; + HAL_I2C_StateTypeDef tmpstate; + + /* Process locked */ + __HAL_LOCK(hi2c); + + /* Check if STOPF is set */ + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, ITFlags); + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0 */ + /* So clear Flag NACKF only */ + if ((I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) || + (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET)) + { + /* Split check of hdmarx, for MISRA compliance */ + if (hi2c->hdmarx != NULL) + { + if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET) + { + if (I2C_GET_DMA_REMAIN_DATA(hi2c->hdmarx) == 0U) + { + treatdmanack = 1U; + } + } + } + + /* Split check of hdmatx, for MISRA compliance */ + if (hi2c->hdmatx != NULL) + { + if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) + { + if (I2C_GET_DMA_REMAIN_DATA(hi2c->hdmatx) == 0U) + { + treatdmanack = 1U; + } + } + } + + if (treatdmanack == 1U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) + /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for + Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, ITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Store current hi2c->State, solve MISRA2012-Rule-13.5 */ + tmpstate = hi2c->State; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + if ((tmpstate == HAL_I2C_STATE_BUSY_TX) || (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN)) + { + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + } + else if ((tmpstate == HAL_I2C_STATE_BUSY_RX) || (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + } + else + { + /* Do nothing */ + } + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + else + { + /* Only Clear NACK Flag, no DMA treatment is pending */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_ADDR) != RESET) && \ + (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) + { + I2C_ITAddrCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Master sends target device address followed by internal memory address for write request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for read request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, + uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, + uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TC flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TC, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief I2C Address complete process callback. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint8_t transferdirection; + uint16_t slaveaddrcode; + uint16_t ownadd1code; + uint16_t ownadd2code; + + /* Prevent unused argument(s) compilation warning */ + UNUSED(ITFlags); + + /* In case of Listen state, need to inform upper layer of address match code event */ + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + transferdirection = I2C_GET_DIR(hi2c); + slaveaddrcode = I2C_GET_ADDR_MATCH(hi2c); + ownadd1code = I2C_GET_OWN_ADDRESS1(hi2c); + ownadd2code = I2C_GET_OWN_ADDRESS2(hi2c); + + /* If 10bits addressing mode is selected */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + if ((slaveaddrcode & SLAVE_ADDR_MSK) == ((ownadd1code >> SLAVE_ADDR_SHIFT) & SLAVE_ADDR_MSK)) + { + slaveaddrcode = ownadd1code; + hi2c->AddrEventCount++; + if (hi2c->AddrEventCount == 2U) + { + /* Reset Address Event counter */ + hi2c->AddrEventCount = 0U; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + else + { + slaveaddrcode = ownadd2code; + + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* else 7 bits addressing mode is selected */ + else + { + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* Else clear address flag only */ + else + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + } +} + +/** + * @brief I2C Master sequential complete process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c) +{ + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* No Generate Stop, to permit restart mode */ + /* The stop will be done at the end of transfer, when I2C_AUTOEND_MODE enable */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterTxCpltCallback(hi2c); +#else + HAL_I2C_MasterTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterRxCpltCallback(hi2c); +#else + HAL_I2C_MasterRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Slave sequential complete process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c) +{ + uint32_t tmpcr1value = READ_REG(hi2c->Instance->CR1); + + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If a DMA is ongoing, Update handle size context */ + if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_TXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + } + else if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_RXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + } + else + { + /* Do nothing */ + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_TX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveTxCpltCallback(hi2c); +#else + HAL_I2C_SlaveTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_RX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveRxCpltCallback(hi2c); +#else + HAL_I2C_SlaveRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } +} + +/** + * @brief I2C Master complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint32_t tmperror; + uint32_t tmpITFlags = ITFlags; + __IO uint32_t tmpreg; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Disable Interrupts and Store Previous state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + } + else + { + /* Do nothing */ + } + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Reset handle parameters */ + hi2c->XferISR = NULL; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + + if (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set acknowledge error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + /* Fetch Last receive data if any */ + if ((hi2c->State == HAL_I2C_STATE_ABORT) && (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET)) + { + /* Read data from RXDR */ + tmpreg = (uint8_t)hi2c->Instance->RXDR; + UNUSED(tmpreg); + } + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Store current volatile hi2c->ErrorCode, misra rule */ + tmperror = hi2c->ErrorCode; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + if ((hi2c->State == HAL_I2C_STATE_ABORT) || (tmperror != HAL_I2C_ERROR_NONE)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + /* hi2c->State == HAL_I2C_STATE_BUSY_TX */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MemTxCpltCallback(hi2c); +#else + HAL_I2C_MemTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterTxCpltCallback(hi2c); +#else + HAL_I2C_MasterTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MemRxCpltCallback(hi2c); +#else + HAL_I2C_MemRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterRxCpltCallback(hi2c); +#else + HAL_I2C_MasterRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + else + { + /* Nothing to do */ + } +} + +/** + * @brief I2C Slave complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint32_t tmpcr1value = READ_REG(hi2c->Instance->CR1); + uint32_t tmpITFlags = ITFlags; + uint32_t tmpoptions = hi2c->XferOptions; + HAL_I2C_StateTypeDef tmpstate = hi2c->State; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Disable Interrupts and Store Previous state */ + if ((tmpstate == HAL_I2C_STATE_BUSY_TX) || (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN)) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + } + else if ((tmpstate == HAL_I2C_STATE_BUSY_RX) || (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + } + else if (tmpstate == HAL_I2C_STATE_LISTEN) + { + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT | I2C_XFER_RX_IT); + hi2c->PreviousState = I2C_STATE_NONE; + } + else + { + /* Do nothing */ + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If a DMA is ongoing, Update handle size context */ + if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_TXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + if (hi2c->hdmatx != NULL) + { + hi2c->XferCount = (uint16_t)I2C_GET_DMA_REMAIN_DATA(hi2c->hdmatx); + } + } + else if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_RXDMAEN) != RESET) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + if (hi2c->hdmarx != NULL) + { + hi2c->XferCount = (uint16_t)I2C_GET_DMA_REMAIN_DATA(hi2c->hdmarx); + } + } + else + { + /* Do nothing */ + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Store Last receive data if any */ + if (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + if (hi2c->XferSize > 0U) + { + hi2c->XferSize--; + hi2c->XferCount--; + } + } + + /* All data are not transferred, so set error code accordingly */ + if (hi2c->XferCount != 0U) + { + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \ + (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0*/ + /* So clear Flag NACKF only */ + if (hi2c->XferCount == 0U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) + /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for + Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ + if (hi2c->State == HAL_I2C_STATE_LISTEN) + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + } + else if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + /* Call the Sequential Complete callback, to inform upper layer of the end of Transfer */ + I2C_ITSlaveSeqCplt(hi2c); + + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ListenCpltCallback(hi2c); +#else + HAL_I2C_ListenCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + /* Call the corresponding callback to inform upper layer of End of Transfer */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveRxCpltCallback(hi2c); +#else + HAL_I2C_SlaveRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveTxCpltCallback(hi2c); +#else + HAL_I2C_SlaveTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Listen complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + /* Reset handle parameters */ + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Store Last receive data if any */ + if (I2C_CHECK_FLAG(ITFlags, I2C_FLAG_RXNE) != RESET) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + if (hi2c->XferSize > 0U) + { + hi2c->XferSize--; + hi2c->XferCount--; + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + + /* Disable all Interrupts*/ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ListenCpltCallback(hi2c); +#else + HAL_I2C_ListenCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ +} + +/** + * @brief I2C interrupts error process. + * @param hi2c I2C handle. + * @param ErrorCode Error code to handle. + * @retval None + */ +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode) +{ + HAL_I2C_StateTypeDef tmpstate = hi2c->State; + +#if defined(HAL_DMA_MODULE_ENABLED) + uint32_t tmppreviousstate; +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset handle parameters */ + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferCount = 0U; + + /* Set new error code */ + hi2c->ErrorCode |= ErrorCode; + + /* Disable Interrupts */ + if ((tmpstate == HAL_I2C_STATE_LISTEN) || + (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN) || + (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + /* Disable all interrupts, except interrupts related to LISTEN state */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* keep HAL_I2C_STATE_LISTEN if set */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->XferISR = I2C_Slave_ISR_IT; + } + else + { + /* Disable all interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* If state is an abort treatment on going, don't change state */ + /* This change will be do later */ + if (hi2c->State != HAL_I2C_STATE_ABORT) + { + /* Set HAL_I2C_STATE_READY */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if a STOPF is detected */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + } + hi2c->XferISR = NULL; + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort DMA TX transfer if any */ + tmppreviousstate = hi2c->PreviousState; + + if ((hi2c->hdmatx != NULL) && ((tmppreviousstate == I2C_STATE_MASTER_BUSY_TX) || \ + (tmppreviousstate == I2C_STATE_SLAVE_BUSY_TX))) + { + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + } + + if (HAL_DMA_GetState(hi2c->hdmatx) != HAL_DMA_STATE_READY) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + else + { + I2C_TreatErrorCallback(hi2c); + } + } + /* Abort DMA RX transfer if any */ + else if ((hi2c->hdmarx != NULL) && ((tmppreviousstate == I2C_STATE_MASTER_BUSY_RX) || \ + (tmppreviousstate == I2C_STATE_SLAVE_BUSY_RX))) + { + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + } + + if (HAL_DMA_GetState(hi2c->hdmarx) != HAL_DMA_STATE_READY) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly hi2c->hdmarx->XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + else + { + I2C_TreatErrorCallback(hi2c); + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + I2C_TreatErrorCallback(hi2c); + } +} + +/** + * @brief I2C Error callback treatment. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_TreatErrorCallback(I2C_HandleTypeDef *hi2c) +{ + if (hi2c->State == HAL_I2C_STATE_ABORT) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AbortCpltCallback(hi2c); +#else + HAL_I2C_AbortCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->PreviousState = I2C_STATE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ErrorCallback(hi2c); +#else + HAL_I2C_ErrorCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Tx data register flush process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c) +{ + /* If a pending TXIS flag is set */ + /* Write a dummy data in TXDR to clear it */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) != RESET) + { + hi2c->Instance->TXDR = 0x00U; + } + + /* Flush TX register if not empty */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE) == RESET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_TXE); + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief DMA I2C master transmit process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if (hi2c->XferCount == 0U) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, + hi2c->XferSize) != HAL_OK) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); + } + else + { + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } + } +} + + +/** + * @brief DMA I2C slave transmit process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + uint32_t tmpoptions = hi2c->XferOptions; + + if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ + } +} + + +/** + * @brief DMA I2C master receive process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if (hi2c->XferCount == 0U) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)hi2c->pBuffPtr, + hi2c->XferSize) != HAL_OK) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); + } + else + { + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } + } +} + + +/** + * @brief DMA I2C slave receive process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + uint32_t tmpoptions = hi2c->XferOptions; + + if ((I2C_GET_DMA_REMAIN_DATA(hi2c->hdmarx) == 0U) && \ + (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ + } +} + + +/** + * @brief DMA I2C communication error callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAError(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Disable Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); +} + + +/** + * @brief DMA I2C communication abort callback + * (To be called at end of DMA Abort procedure). + * @param hdma DMA handle. + * @retval None + */ +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma) +{ + /* Derogation MISRAC2012-Rule-11.5 */ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); + + /* Reset AbortCpltCallback */ + if (hi2c->hdmatx != NULL) + { + hi2c->hdmatx->XferAbortCallback = NULL; + } + if (hi2c->hdmarx != NULL) + { + hi2c->hdmarx->XferAbortCallback = NULL; + } + + I2C_TreatErrorCallback(hi2c); +} + +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief This function handles I2C Communication Timeout. It waits + * until a flag is no longer in the specified status. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Flag Specifies the I2C flag to check. + * @param Status The actual Flag status (SET or RESET). + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, + uint32_t Timeout, uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + if (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of TXIS flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of STOP flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of RXNE flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, + uint32_t Tickstart) +{ + HAL_StatusTypeDef status = HAL_OK; + + while ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) && (status == HAL_OK)) + { + /* Check if an error is detected */ + if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK) + { + status = HAL_ERROR; + } + + /* Check if a STOPF is detected */ + if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) && (status == HAL_OK)) + { + /* Check if an RXNE is pending */ + /* Store Last receive data if any */ + if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) && (hi2c->XferSize > 0U)) + { + /* Return HAL_OK */ + /* The Reading of data from RXDR will be done in caller function */ + status = HAL_OK; + } + + /* Check a no-acknowledge have been detected */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + hi2c->ErrorCode = HAL_I2C_ERROR_AF; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + status = HAL_ERROR; + } + else + { + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + } + + /* Check for the Timeout */ + if ((((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) && (status == HAL_OK)) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + status = HAL_ERROR; + } + } + } + return status; +} + +/** + * @brief This function handles errors detection during an I2C Communication. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_IsErrorOccurred(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t itflag = hi2c->Instance->ISR; + uint32_t error_code = 0; + uint32_t tickstart = Tickstart; + uint32_t tmp1; + HAL_I2C_ModeTypeDef tmp2; + + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_AF)) + { + /* Clear NACKF Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Wait until STOP Flag is set or timeout occurred */ + /* AutoEnd should be initiate after AF */ + while ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) && (status == HAL_OK)) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + tmp1 = (uint32_t)(hi2c->Instance->CR2 & I2C_CR2_STOP); + tmp2 = hi2c->Mode; + + /* In case of I2C still busy, try to regenerate a STOP manually */ + if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) != RESET) && \ + (tmp1 != I2C_CR2_STOP) && \ + (tmp2 != HAL_I2C_MODE_SLAVE)) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + + /* Update Tick with new reference */ + tickstart = HAL_GetTick(); + } + + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check for the Timeout */ + if ((HAL_GetTick() - tickstart) > I2C_TIMEOUT_STOPF) + { + error_code |= HAL_I2C_ERROR_TIMEOUT; + + status = HAL_ERROR; + + break; + } + } + } + } + } + + /* In case STOP Flag is detected, clear it */ + if (status == HAL_OK) + { + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + error_code |= HAL_I2C_ERROR_AF; + + status = HAL_ERROR; + } + + /* Refresh Content of Status register */ + itflag = hi2c->Instance->ISR; + + /* Then verify if an additional errors occurs */ + /* Check if a Bus error occurred */ + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_BERR)) + { + error_code |= HAL_I2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); + + status = HAL_ERROR; + } + + /* Check if an Over-Run/Under-Run error occurred */ + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_OVR)) + { + error_code |= HAL_I2C_ERROR_OVR; + + /* Clear OVR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); + + status = HAL_ERROR; + } + + /* Check if an Arbitration Loss error occurred */ + if (HAL_IS_BIT_SET(itflag, I2C_FLAG_ARLO)) + { + error_code |= HAL_I2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); + + status = HAL_ERROR; + } + + if (status != HAL_OK) + { + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->ErrorCode |= error_code; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + } + + return status; +} + +/** + * @brief Handles I2Cx communication when starting transfer or during transfer (TC or TCR flag are set). + * @param hi2c I2C handle. + * @param DevAddress Specifies the slave address to be programmed. + * @param Size Specifies the number of bytes to be programmed. + * This parameter must be a value between 0 and 255. + * @param Mode New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_RELOAD_MODE Enable Reload mode . + * @arg @ref I2C_AUTOEND_MODE Enable Automatic end mode. + * @arg @ref I2C_SOFTEND_MODE Enable Software end mode. + * @param Request New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_NO_STARTSTOP Don't Generate stop and start condition. + * @arg @ref I2C_GENERATE_STOP Generate stop condition (Size should be set to 0). + * @arg @ref I2C_GENERATE_START_READ Generate Restart for read request. + * @arg @ref I2C_GENERATE_START_WRITE Generate Restart for write request. + * @retval None + */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, + uint32_t Request) +{ + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_TRANSFER_MODE(Mode)); + assert_param(IS_TRANSFER_REQUEST(Request)); + + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + tmp = ((uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | \ + (((uint32_t)Size << I2C_CR2_NBYTES_Pos) & I2C_CR2_NBYTES) | \ + (uint32_t)Mode | (uint32_t)Request) & (~0x80000000U)); + + /* update CR2 register */ + MODIFY_REG(hi2c->Instance->CR2, \ + ((I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | \ + (I2C_CR2_RD_WRN & (uint32_t)(Request >> (31U - I2C_CR2_RD_WRN_Pos))) | \ + I2C_CR2_START | I2C_CR2_STOP)), tmp); +} + +/** + * @brief Manage the enabling of Interrupts. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. + * @retval None + */ +static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0U; + +#if defined(HAL_DMA_MODULE_ENABLED) + if ((hi2c->XferISR != I2C_Master_ISR_DMA) && \ + (hi2c->XferISR != I2C_Slave_ISR_DMA) && \ + (hi2c->XferISR != I2C_Mem_ISR_DMA)) +#endif /* HAL_DMA_MODULE_ENABLED */ + { + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Enable ERR, TC, STOP, NACK and TXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI; + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI; + } + + if (InterruptRequest == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if (InterruptRequest == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + } + +#if defined(HAL_DMA_MODULE_ENABLED) + else + { + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Enable ERR, TC, STOP, NACK and TXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI; + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI; + } + + if (InterruptRequest == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if (InterruptRequest == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= (I2C_IT_STOPI | I2C_IT_TCI); + } + + if (InterruptRequest == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Enable interrupts only at the end */ + /* to avoid the risk of I2C interrupt handle execution before */ + /* all interrupts requested done */ + __HAL_I2C_ENABLE_IT(hi2c, tmpisr); +} + +/** + * @brief Manage the disabling of Interrupts. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. + * @retval None + */ +static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0U; + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Disable TC and TXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_TXI; + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Disable TC and RXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_RXI; + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Disable ADDR, NACK and STOP interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if (InterruptRequest == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if (InterruptRequest == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + + if (InterruptRequest == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + + /* Disable interrupts only at the end */ + /* to avoid a breaking situation like at "t" time */ + /* all disable interrupts request are not done */ + __HAL_I2C_DISABLE_IT(hi2c, tmpisr); +} + +/** + * @brief Convert I2Cx OTHER_xxx XferOptions to functional XferOptions. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c) +{ + /* if user set XferOptions to I2C_OTHER_FRAME */ + /* it request implicitly to generate a restart condition */ + /* set XferOptions to I2C_FIRST_FRAME */ + if (hi2c->XferOptions == I2C_OTHER_FRAME) + { + hi2c->XferOptions = I2C_FIRST_FRAME; + } + /* else if user set XferOptions to I2C_OTHER_AND_LAST_FRAME */ + /* it request implicitly to generate a restart condition */ + /* then generate a stop condition at the end of transfer */ + /* set XferOptions to I2C_FIRST_AND_LAST_FRAME */ + else if (hi2c->XferOptions == I2C_OTHER_AND_LAST_FRAME) + { + hi2c->XferOptions = I2C_FIRST_AND_LAST_FRAME; + } + else + { + /* Nothing to do */ + } +} + +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c_ex.c new file mode 100644 index 0000000..75ada9f --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_i2c_ex.c @@ -0,0 +1,361 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_i2c_ex.c + * @author MCD Application Team + * @brief I2C Extended HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of I2C Extended peripheral: + * + Filter Mode Functions + * + WakeUp Mode Functions + * + FastModePlus Functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### I2C peripheral Extended features ##### + ============================================================================== + + [..] Comparing to other previous devices, the I2C interface for STM32U0xx + devices contains the following additional features + + (+) Possibility to disable or enable Analog Noise Filter + (+) Use of a configured Digital Noise Filter + (+) Disable or enable wakeup from Stop mode(s) + (+) Disable or enable Fast Mode Plus + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure Noise Filter and Wake Up Feature + (#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter() + (#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter() + (#) Configure the enable or disable of I2C Wake Up Mode using the functions : + (++) HAL_I2CEx_EnableWakeUp() + (++) HAL_I2CEx_DisableWakeUp() + (#) Configure the enable or disable of fast mode plus driving capability using the functions : + (++) HAL_I2CEx_ConfigFastModePlus() + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup I2CEx I2CEx + * @brief I2C Extended HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions + * @{ + */ + +/** @defgroup I2CEx_Exported_Functions_Group1 Filter Mode Functions + * @brief Filter Mode Functions + * +@verbatim + =============================================================================== + ##### Filter Mode Functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Noise Filters + +@endverbatim + * @{ + */ + +/** + * @brief Configure I2C Analog noise filter. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param AnalogFilter New state of the Analog filter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter) +{ + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Reset I2Cx ANOFF bit */ + hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF); + + /* Set analog filter bit*/ + hi2c->Instance->CR1 |= AnalogFilter; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configure I2C Digital noise filter. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter) +{ + uint32_t tmpreg; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Get the old register value */ + tmpreg = hi2c->Instance->CR1; + + /* Reset I2Cx DNF bits [11:8] */ + tmpreg &= ~(I2C_CR1_DNF); + + /* Set I2Cx DNF coefficient */ + tmpreg |= DigitalFilter << 8U; + + /* Store the new register value */ + hi2c->Instance->CR1 = tmpreg; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @} + */ +#if defined(I2C_CR1_WUPEN) + +/** @defgroup I2CEx_Exported_Functions_Group2 WakeUp Mode Functions + * @brief WakeUp Mode Functions + * +@verbatim + =============================================================================== + ##### WakeUp Mode Functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Wake Up Feature + +@endverbatim + * @{ + */ + +/** + * @brief Enable I2C wakeup from Stop mode(s). + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c) +{ + /* Check the parameters */ + assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Enable wakeup from stop mode */ + hi2c->Instance->CR1 |= I2C_CR1_WUPEN; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Disable I2C wakeup from Stop mode(s). + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c) +{ + /* Check the parameters */ + assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Enable wakeup from stop mode */ + hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN); + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @} + */ +#endif /* I2C_CR1_WUPEN */ + +/** @defgroup I2CEx_Exported_Functions_Group3 Fast Mode Plus Functions + * @brief Fast Mode Plus Functions + * +@verbatim + =============================================================================== + ##### Fast Mode Plus Functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Fast Mode Plus + +@endverbatim + * @{ + */ + +/** + * @brief Configure I2C Fast Mode Plus. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param FastModePlus New state of the Fast Mode Plus. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigFastModePlus(I2C_HandleTypeDef *hi2c, uint32_t FastModePlus) +{ + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_FASTMODEPLUS(FastModePlus)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + if (FastModePlus == I2C_FASTMODEPLUS_ENABLE) + { + /* Set I2Cx FMP bit */ + hi2c->Instance->CR1 |= (I2C_CR1_FMP); + } + else + { + /* Reset I2Cx FMP bit */ + hi2c->Instance->CR1 &= ~(I2C_CR1_FMP); + } + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @} + */ +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_irda.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_irda.c new file mode 100644 index 0000000..e916b9e --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_irda.c @@ -0,0 +1,3015 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_irda.c + * @author MCD Application Team + * @brief IRDA HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the IrDA (Infrared Data Association) Peripheral + * (IRDA) + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + * + Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The IRDA HAL driver can be used as follows: + + (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda). + (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API + in setting the associated USART or UART in IRDA mode: + (++) Enable the USARTx/UARTx interface clock. + (++) USARTx/UARTx pins configuration: + (+++) Enable the clock for the USARTx/UARTx GPIOs. + (+++) Configure these USARTx/UARTx pins (TX as alternate function pull-up, RX as alternate function Input). + (++) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT() + and HAL_IRDA_Receive_IT() APIs): + (+++) Configure the USARTx/UARTx interrupt priority. + (+++) Enable the NVIC USARTx/UARTx IRQ handle. + (+++) The specific IRDA interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process. + + (++) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA() + and HAL_IRDA_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx channel. + (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer + complete interrupt on the DMA Tx/Rx channel. + + (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter), + the normal or low power mode and the clock prescaler in the hirda handle Init structure. + + (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_IRDA_MspInit() API. + + -@@- The specific IRDA interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() + (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non-blocking mode using HAL_IRDA_Transmit_IT() + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback() + (+) Receive an amount of data in non-blocking mode using HAL_IRDA_Receive_IT() + (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback() + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non-blocking mode (DMA) using HAL_IRDA_Transmit_DMA() + (+) At transmission half of transfer HAL_IRDA_TxHalfCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback() + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback() + (+) Receive an amount of data in non-blocking mode (DMA) using HAL_IRDA_Receive_DMA() + (+) At reception half of transfer HAL_IRDA_RxHalfCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback() + (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback() + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback() + + *** IRDA HAL driver macros list *** + ==================================== + [..] + Below the list of most used macros in IRDA HAL driver. + + (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral + (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral + (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not + (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag + (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt + (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt + (+) __HAL_IRDA_GET_IT_SOURCE: Check whether or not the specified IRDA interrupt is enabled + + [..] + (@) You can refer to the IRDA HAL driver header file for more useful macros + + ##### Callback registration ##### + ================================== + + [..] + The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function HAL_IRDA_RegisterCallback() to register a user callback. + Function HAL_IRDA_RegisterCallback() allows to register following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) MspInitCallback : IRDA MspInit. + (+) MspDeInitCallback : IRDA MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function HAL_IRDA_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) MspInitCallback : IRDA MspInit. + (+) MspDeInitCallback : IRDA MspDeInit. + + [..] + By default, after the HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxHalfCpltCallback(). + Exception done for MspInit and MspDeInit functions that are respectively + reset to the legacy weak functions in the HAL_IRDA_Init() + and HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the HAL_IRDA_Init() and HAL_IRDA_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand). + + [..] + Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user) + MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_IRDA_RegisterCallback() before calling HAL_IRDA_DeInit() + or HAL_IRDA_Init() function. + + [..] + When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available + and weak callbacks are used. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup IRDA IRDA + * @brief HAL IRDA module driver + * @{ + */ + +#ifdef HAL_IRDA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup IRDA_Private_Constants IRDA Private Constants + * @{ + */ +#define IRDA_TEACK_REACK_TIMEOUT 1000U /*!< IRDA TX or RX enable acknowledge time-out value */ + +#define IRDA_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE \ + | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)) /*!< UART or USART CR1 fields of parameters set by IRDA_SetConfig API */ + +#define USART_BRR_MIN 0x10U /*!< USART BRR minimum authorized value */ + +#define USART_BRR_MAX 0x0000FFFFU /*!< USART BRR maximum authorized value */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup IRDA_Private_Macros IRDA Private Macros + * @{ + */ +/** @brief BRR division operation to set BRR register in 16-bit oversampling mode. + * @param __PCLK__ IRDA clock source. + * @param __BAUD__ Baud rate set by the user. + * @param __PRESCALER__ IRDA clock prescaler value. + * @retval Division result + */ +#define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__, __PRESCALER__) ((((__PCLK__)/IRDAPrescTable[(__PRESCALER__)])\ + + ((__BAUD__)/2U)) / (__BAUD__)) +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup IRDA_Private_Functions + * @{ + */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) +void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ +static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, + uint32_t Tickstart, uint32_t Timeout); +#if defined(HAL_DMA_MODULE_ENABLED) +static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda); +#endif /* HAL_DMA_MODULE_ENABLED */ +static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda); +#if defined(HAL_DMA_MODULE_ENABLED) +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAError(DMA_HandleTypeDef *hdma); +static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma); +static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma); +static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +#endif /* HAL_DMA_MODULE_ENABLED */ +static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda); +static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda); +static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup IRDA_Exported_Functions IRDA Exported Functions + * @{ + */ + +/** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx + in asynchronous IRDA mode. + (+) For the asynchronous mode only these parameters can be configured: + (++) Baud Rate + (++) Word Length + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + (++) Power mode + (++) Prescaler setting + (++) Receiver/transmitter modes + + [..] + The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures + (details for the procedures are available in reference manual). + +@endverbatim + + Depending on the frame length defined by the M1 and M0 bits (7-bit, + 8-bit or 9-bit), the possible IRDA frame formats are listed in the + following table. + + Table 1. IRDA frame format. + +-----------------------------------------------------------------------+ + | M1 bit | M0 bit | PCE bit | IRDA frame | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 0 | | SB | 8 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 0 | | SB | 9 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 0 | | SB | 7 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | + +-----------------------------------------------------------------------+ + + * @{ + */ + +/** + * @brief Initialize the IRDA mode according to the specified + * parameters in the IRDA_InitTypeDef and initialize the associated handle. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if (hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the USART/UART associated to the IRDA handle */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + + if (hirda->gState == HAL_IRDA_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hirda->Lock = HAL_UNLOCKED; + +#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1 + IRDA_InitCallbacksToDefault(hirda); + + if (hirda->MspInitCallback == NULL) + { + hirda->MspInitCallback = HAL_IRDA_MspInit; + } + + /* Init the low level hardware */ + hirda->MspInitCallback(hirda); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_IRDA_MspInit(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + } + + hirda->gState = HAL_IRDA_STATE_BUSY; + + /* Disable the Peripheral to update the configuration registers */ + __HAL_IRDA_DISABLE(hirda); + + /* Set the IRDA Communication parameters */ + if (IRDA_SetConfig(hirda) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* In IRDA mode, the following bits must be kept cleared: + - LINEN, STOP and CLKEN bits in the USART_CR2 register, + - SCEN and HDSEL bits in the USART_CR3 register.*/ + CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP)); + CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); + + /* set the UART/USART in IRDA mode */ + hirda->Instance->CR3 |= USART_CR3_IREN; + + /* Enable the Peripheral */ + __HAL_IRDA_ENABLE(hirda); + + /* TEACK and/or REACK to check before moving hirda->gState and hirda->RxState to Ready */ + return (IRDA_CheckIdleState(hirda)); +} + +/** + * @brief DeInitialize the IRDA peripheral. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if (hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the USART/UART associated to the IRDA handle */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + + hirda->gState = HAL_IRDA_STATE_BUSY; + + /* DeInit the low level hardware */ +#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1 + if (hirda->MspDeInitCallback == NULL) + { + hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; + } + /* DeInit the low level hardware */ + hirda->MspDeInitCallback(hirda); +#else + HAL_IRDA_MspDeInit(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + /* Disable the Peripheral */ + __HAL_IRDA_DISABLE(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_RESET; + hirda->RxState = HAL_IRDA_STATE_RESET; + + /* Process Unlock */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Initialize the IRDA MSP. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_IRDA_MspInit can be implemented in the user file + */ +} + +/** + * @brief DeInitialize the IRDA MSP. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_IRDA_MspDeInit can be implemented in the user file + */ +} + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User IRDA Callback + * To be used to override the weak predefined callback + * @note The HAL_IRDA_RegisterCallback() may be called before HAL_IRDA_Init() in HAL_IRDA_STATE_RESET + * to register callbacks for HAL_IRDA_MSPINIT_CB_ID and HAL_IRDA_MSPDEINIT_CB_ID + * @param hirda irda handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID, + pIRDA_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (hirda->gState == HAL_IRDA_STATE_READY) + { + switch (CallbackID) + { + case HAL_IRDA_TX_HALFCOMPLETE_CB_ID : + hirda->TxHalfCpltCallback = pCallback; + break; + + case HAL_IRDA_TX_COMPLETE_CB_ID : + hirda->TxCpltCallback = pCallback; + break; + + case HAL_IRDA_RX_HALFCOMPLETE_CB_ID : + hirda->RxHalfCpltCallback = pCallback; + break; + + case HAL_IRDA_RX_COMPLETE_CB_ID : + hirda->RxCpltCallback = pCallback; + break; + + case HAL_IRDA_ERROR_CB_ID : + hirda->ErrorCallback = pCallback; + break; + + case HAL_IRDA_ABORT_COMPLETE_CB_ID : + hirda->AbortCpltCallback = pCallback; + break; + + case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID : + hirda->AbortTransmitCpltCallback = pCallback; + break; + + case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID : + hirda->AbortReceiveCpltCallback = pCallback; + break; + + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = pCallback; + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hirda->gState == HAL_IRDA_STATE_RESET) + { + switch (CallbackID) + { + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = pCallback; + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister an IRDA callback + * IRDA callback is redirected to the weak predefined callback + * @note The HAL_IRDA_UnRegisterCallback() may be called before HAL_IRDA_Init() in HAL_IRDA_STATE_RESET + * to un-register callbacks for HAL_IRDA_MSPINIT_CB_ID and HAL_IRDA_MSPDEINIT_CB_ID + * @param hirda irda handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_IRDA_STATE_READY == hirda->gState) + { + switch (CallbackID) + { + case HAL_IRDA_TX_HALFCOMPLETE_CB_ID : + hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + break; + + case HAL_IRDA_TX_COMPLETE_CB_ID : + hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */ + break; + + case HAL_IRDA_RX_HALFCOMPLETE_CB_ID : + hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + break; + + case HAL_IRDA_RX_COMPLETE_CB_ID : + hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */ + break; + + case HAL_IRDA_ERROR_CB_ID : + hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_IRDA_ABORT_COMPLETE_CB_ID : + hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID : + hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak + AbortTransmitCpltCallback */ + break; + + case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID : + hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak + AbortReceiveCpltCallback */ + break; + + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = HAL_IRDA_MspInit; /* Legacy weak MspInitCallback */ + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; /* Legacy weak MspDeInitCallback */ + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_IRDA_STATE_RESET == hirda->gState) + { + switch (CallbackID) + { + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = HAL_IRDA_MspInit; + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions + * @brief IRDA Transmit and Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the IRDA data transfers. + + [..] + IrDA is a half duplex communication protocol. If the Transmitter is busy, any data + on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver + is busy, data on the TX from the USART to IrDA will not be encoded by IrDA. + While receiving data, transmission should be avoided as the data to be transmitted + could be corrupted. + + [..] + (#) There are two modes of transfer: + (++) Blocking mode: the communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) Non-Blocking mode: the communication is performed using Interrupts + or DMA, these API's return the HAL status. + The end of the data processing will be indicated through the + dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks + will be executed respectively at the end of the Transmit or Receive process + The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected + + (#) Blocking mode APIs are : + (++) HAL_IRDA_Transmit() + (++) HAL_IRDA_Receive() + + (#) Non Blocking mode APIs with Interrupt are : + (++) HAL_IRDA_Transmit_IT() + (++) HAL_IRDA_Receive_IT() + (++) HAL_IRDA_IRQHandler() + + (#) Non Blocking mode functions with DMA are : + (++) HAL_IRDA_Transmit_DMA() + (++) HAL_IRDA_Receive_DMA() + (++) HAL_IRDA_DMAPause() + (++) HAL_IRDA_DMAResume() + (++) HAL_IRDA_DMAStop() + + (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode: + (++) HAL_IRDA_TxHalfCpltCallback() + (++) HAL_IRDA_TxCpltCallback() + (++) HAL_IRDA_RxHalfCpltCallback() + (++) HAL_IRDA_RxCpltCallback() + (++) HAL_IRDA_ErrorCallback() + + (#) Non-Blocking mode transfers could be aborted using Abort API's : + (++) HAL_IRDA_Abort() + (++) HAL_IRDA_AbortTransmit() + (++) HAL_IRDA_AbortReceive() + (++) HAL_IRDA_Abort_IT() + (++) HAL_IRDA_AbortTransmit_IT() + (++) HAL_IRDA_AbortReceive_IT() + + (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided: + (++) HAL_IRDA_AbortCpltCallback() + (++) HAL_IRDA_AbortTransmitCpltCallback() + (++) HAL_IRDA_AbortReceiveCpltCallback() + + (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. + Errors are handled as follows : + (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is + to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error + in Interrupt mode reception . + Received character is then retrieved and stored in Rx buffer, Error code is set to allow user + to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed. + Transfer is kept ongoing on IRDA side. + If user wants to abort it, Abort services should be called by user. + (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted. + This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. + Error code is set to allow user to identify error type, and + HAL_IRDA_ErrorCallback() user callback is executed. + +@endverbatim + * @{ + */ + +/** + * @brief Send an amount of data in blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @param Timeout Specify timeout value. + * @retval HAL status + */ +/** + * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + */ +HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + const uint8_t *pdata8bits; + const uint16_t *pdata16bits; + uint32_t tickstart; + + /* Check that a Tx process is not already ongoing */ + if (hirda->gState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR will be + handled through a u16 cast. */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + + /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + pdata8bits = NULL; + pdata16bits = (const uint16_t *) pData; /* Derogation R.11.3 */ + } + else + { + pdata8bits = pData; + pdata16bits = NULL; + } + + while (hirda->TxXferCount > 0U) + { + hirda->TxXferCount--; + + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if (pdata8bits == NULL) + { + hirda->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU); + pdata16bits++; + } + else + { + hirda->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU); + pdata8bits++; + } + } + + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* At end of Tx process, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @param Timeout Specify timeout value. + * @retval HAL status + */ +/** + * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + */ +HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint8_t *pdata8bits; + uint16_t *pdata16bits; + uint16_t uhMask; + uint32_t tickstart; + + /* Check that a Rx process is not already ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be received from RDR will be + handled through a u16 cast. */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + + /* Computation of the mask to apply to RDR register + of the UART associated to the IRDA */ + IRDA_MASK_COMPUTATION(hirda); + uhMask = hirda->Mask; + + /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + pdata8bits = NULL; + pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */ + } + else + { + pdata8bits = pData; + pdata16bits = NULL; + } + + /* Check data remaining to be received */ + while (hirda->RxXferCount > 0U) + { + hirda->RxXferCount--; + + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if (pdata8bits == NULL) + { + *pdata16bits = (uint16_t)(hirda->Instance->RDR & uhMask); + pdata16bits++; + } + else + { + *pdata8bits = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask); + pdata8bits++; + } + } + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in interrupt mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +/** + * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if (hirda->gState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR will be + handled through a u16 cast. */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Transmit Data Register Empty Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in interrupt mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +/** + * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + */ +HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be received from RDR will be + handled through a u16 cast. */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + + /* Computation of the mask to apply to the RDR register + of the UART associated to the IRDA */ + IRDA_MASK_COMPUTATION(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + if (hirda->Init.Parity != IRDA_PARITY_NONE) + { + /* Enable the IRDA Parity Error and Data Register not empty Interrupts */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE); + } + else + { + /* Enable the IRDA Data Register not empty Interrupts */ + SET_BIT(hirda->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + } + + /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Send an amount of data in DMA mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +/** + * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if (hirda->gState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data copy into TDR will be + handled by DMA from a u16 frontier. */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmatx->XferErrorCallback = IRDA_DMAError; + + /* Set the DMA abort callback */ + hirda->hdmatx->XferAbortCallback = NULL; + + /* Enable the IRDA transmit DMA channel */ + if (HAL_DMA_Start_IT(hirda->hdmatx, (uint32_t)hirda->pTxBuffPtr, (uint32_t)&hirda->Instance->TDR, Size) == HAL_OK) + { + /* Clear the TC flag in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_TCF); + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Restore hirda->gState to ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + return HAL_ERROR; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in DMA mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @note When the IRDA parity is enabled (PCE = 1), the received data contains + * the parity bit (MSB position). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +/** + * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + */ +HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data copy from RDR will be + handled by DMA from a u16 frontier. */ + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmarx->XferErrorCallback = IRDA_DMAError; + + /* Set the DMA abort callback */ + hirda->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, (uint32_t)hirda->pRxBuffPtr, Size) == HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + if (hirda->Init.Parity != IRDA_PARITY_NONE) + { + /* Enable the UART Parity Error Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + } + + /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + return HAL_OK; + } + else + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Restore hirda->RxState to ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + return HAL_ERROR; + } + } + else + { + return HAL_BUSY; + } +} + + +/** + * @brief Pause the DMA Transfer. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda) +{ + /* Process Locked */ + __HAL_LOCK(hirda); + + if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable the IRDA DMA Tx request */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + } + } + if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the IRDA DMA Rx request */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Resume the DMA Transfer. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda) +{ + /* Process Locked */ + __HAL_LOCK(hirda); + + if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + /* Enable the IRDA DMA Tx request */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + } + if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_IRDA_CLEAR_OREFLAG(hirda); + + /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */ + if (hirda->Init.Parity != IRDA_PARITY_NONE) + { + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + } + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Enable the IRDA DMA Rx request */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Stop the DMA Transfer. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() / + HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback: + indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete + interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of + the stream and the corresponding call back is executed. */ + + /* Stop IRDA DMA Tx request if ongoing */ + if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel */ + if (hirda->hdmatx != NULL) + { + if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + + IRDA_EndTxTransfer(hirda); + } + } + + /* Stop IRDA DMA Rx request if ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel */ + if (hirda->hdmarx != NULL) + { + if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + + IRDA_EndRxTransfer(hirda); + } + } + + return HAL_OK; +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Abort ongoing transfers (blocking mode). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable IRDA Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | \ + USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmatx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmatx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Tx and Rx transfer counters */ + hirda->TxXferCount = 0U; + hirda->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->gState and hirda->RxState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Reset Handle ErrorCode to No Error */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (blocking mode). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable IRDA Interrupts (Tx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmatx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmatx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Tx transfer counter */ + hirda->TxXferCount = 0U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (blocking mode). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable IRDA Interrupts (Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hirda->ErrorCode = HAL_IRDA_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Rx transfer counter */ + hirda->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing transfers (Interrupt mode). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable IRDA Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda) +{ + uint32_t abortcplt = 1U; + + /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | \ + USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised + before any call to DMA Abort functions */ + /* DMA Tx Handle is valid */ + if (hirda->hdmatx != NULL) + { + /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback; + } + else + { + hirda->hdmatx->XferAbortCallback = NULL; + } + } + /* DMA Rx Handle is valid */ + if (hirda->hdmarx != NULL) + { + /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback; + } + else + { + hirda->hdmarx->XferAbortCallback = NULL; + } + } + + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable DMA Tx at UART level */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmatx != NULL) + { + /* IRDA Tx DMA Abort callback has already been initialised : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK) + { + hirda->hdmatx->XferAbortCallback = NULL; + } + else + { + abortcplt = 0U; + } + } + } + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmarx != NULL) + { + /* IRDA Rx DMA Abort callback has already been initialised : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) + { + hirda->hdmarx->XferAbortCallback = NULL; + abortcplt = 1U; + } + else + { + abortcplt = 0U; + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ + if (abortcplt == 1U) + { + /* Reset Tx and Rx transfer counters */ + hirda->TxXferCount = 0U; + hirda->RxXferCount = 0U; + + /* Reset errorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->gState and hirda->RxState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hirda->AbortCpltCallback(hirda); +#else + /* Call legacy weak Abort complete callback */ + HAL_IRDA_AbortCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (Interrupt mode). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable IRDA Interrupts (Tx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmatx != NULL) + { + /* Set the IRDA DMA Abort callback : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK) + { + /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */ + hirda->hdmatx->XferAbortCallback(hirda->hdmatx); + } + } + else + { + /* Reset Tx transfer counter */ + hirda->TxXferCount = 0U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hirda->AbortTransmitCpltCallback(hirda); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_IRDA_AbortTransmitCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Reset Tx transfer counter */ + hirda->TxXferCount = 0U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hirda->AbortTransmitCpltCallback(hirda); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_IRDA_AbortTransmitCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (Interrupt mode). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable IRDA Interrupts (Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) + { + /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */ + hirda->hdmarx->XferAbortCallback(hirda->hdmarx); + } + } + else + { + /* Reset Rx transfer counter */ + hirda->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hirda->AbortReceiveCpltCallback(hirda); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_IRDA_AbortReceiveCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Reset Rx transfer counter */ + hirda->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hirda->AbortReceiveCpltCallback(hirda); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_IRDA_AbortReceiveCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Handle IRDA interrupt request. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda) +{ + uint32_t isrflags = READ_REG(hirda->Instance->ISR); + uint32_t cr1its = READ_REG(hirda->Instance->CR1); + uint32_t cr3its; + uint32_t errorflags; + uint32_t errorcode; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)); + if (errorflags == 0U) + { + /* IRDA in mode Receiver ---------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)) + { + IRDA_Receive_IT(hirda); + return; + } + } + + /* If some errors occur */ + cr3its = READ_REG(hirda->Instance->CR3); + if ((errorflags != 0U) + && (((cr3its & USART_CR3_EIE) != 0U) + || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)) != 0U))) + { + /* IRDA parity error interrupt occurred -------------------------------------*/ + if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF); + + hirda->ErrorCode |= HAL_IRDA_ERROR_PE; + } + + /* IRDA frame error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF); + + hirda->ErrorCode |= HAL_IRDA_ERROR_FE; + } + + /* IRDA noise error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF); + + hirda->ErrorCode |= HAL_IRDA_ERROR_NE; + } + + /* IRDA Over-Run interrupt occurred -----------------------------------------*/ + if (((isrflags & USART_ISR_ORE) != 0U) && + (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U))) + { + __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF); + + hirda->ErrorCode |= HAL_IRDA_ERROR_ORE; + } + + /* Call IRDA Error Call back function if need be --------------------------*/ + if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE) + { + /* IRDA in mode Receiver ---------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)) + { + IRDA_Receive_IT(hirda); + } + + /* If Overrun error occurs, or if any error occurs in DMA mode reception, + consider error as blocking */ + errorcode = hirda->ErrorCode; + if ((HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) || + ((errorcode & HAL_IRDA_ERROR_ORE) != 0U)) + { + /* Blocking error : transfer is aborted + Set the IRDA state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + IRDA_EndRxTransfer(hirda); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback : + will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) + { + /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */ + hirda->hdmarx->XferAbortCallback(hirda->hdmarx); + } + } + else + { +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + } + } + return; + + } /* End if some error occurs */ + + /* IRDA in mode Transmitter ------------------------------------------------*/ + if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) && ((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U)) + { + IRDA_Transmit_IT(hirda); + return; + } + + /* IRDA in mode Transmitter (transmission end) -----------------------------*/ + if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U)) + { + IRDA_EndTransmit_IT(hirda); + return; + } + +} + +/** + * @brief Tx Transfer completed callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_TxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Tx Half Transfer completed callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +__weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_RxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Half Transfer complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA error callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_ErrorCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA Abort Complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_AbortCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA Abort Complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA Abort Receive Complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group4 Peripheral State and Error functions + * @brief IRDA State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Error functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of IrDA + communication process and also return Peripheral Errors occurred during communication process + (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state + of the IRDA peripheral handle. + (+) HAL_IRDA_GetError() checks in run-time errors that could occur during + communication. + +@endverbatim + * @{ + */ + +/** + * @brief Return the IRDA handle state. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL state + */ +HAL_IRDA_StateTypeDef HAL_IRDA_GetState(const IRDA_HandleTypeDef *hirda) +{ + /* Return IRDA handle state */ + uint32_t temp1; + uint32_t temp2; + temp1 = (uint32_t)hirda->gState; + temp2 = (uint32_t)hirda->RxState; + + return (HAL_IRDA_StateTypeDef)(temp1 | temp2); +} + +/** + * @brief Return the IRDA handle error code. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval IRDA Error Code + */ +uint32_t HAL_IRDA_GetError(const IRDA_HandleTypeDef *hirda) +{ + return hirda->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup IRDA_Private_Functions IRDA Private Functions + * @{ + */ + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) +/** + * @brief Initialize the callbacks to their default values. + * @param hirda IRDA handle. + * @retval none + */ +void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda) +{ + /* Init the IRDA Callback settings */ + hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */ + hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */ + hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */ + hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ + hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ + +} +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + +/** + * @brief Configure the IRDA peripheral. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda) +{ + uint32_t tmpreg; + uint32_t clocksource; + HAL_StatusTypeDef ret = HAL_OK; + static const uint16_t IRDAPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U}; + uint32_t pclk; + + /* Check the communication parameters */ + assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate)); + assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength)); + assert_param(IS_IRDA_PARITY(hirda->Init.Parity)); + assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode)); + assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler)); + assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode)); + assert_param(IS_IRDA_CLOCKPRESCALER(hirda->Init.ClockPrescaler)); + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* Configure the IRDA Word Length, Parity and transfer Mode: + Set the M bits according to hirda->Init.WordLength value + Set PCE and PS bits according to hirda->Init.Parity value + Set TE and RE bits according to hirda->Init.Mode value */ + tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ; + + MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode); + + /*--------------------- USART clock PRESC Configuration ----------------*/ + /* Configure + * - IRDA Clock Prescaler: set PRESCALER according to hirda->Init.ClockPrescaler value */ + MODIFY_REG(hirda->Instance->PRESC, USART_PRESC_PRESCALER, hirda->Init.ClockPrescaler); + + /*-------------------------- USART GTPR Configuration ----------------------*/ + MODIFY_REG(hirda->Instance->GTPR, (uint16_t)USART_GTPR_PSC, (uint16_t)hirda->Init.Prescaler); + + /*-------------------------- USART BRR Configuration -----------------------*/ + IRDA_GETCLOCKSOURCE(hirda, clocksource); + pclk = HAL_RCCEx_GetPeriphCLKFreq(clocksource); + + tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler)); + + /* USARTDIV must be greater than or equal to 0d16 */ + if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX)) + { + hirda->Instance->BRR = (uint16_t)tmpreg; + } + else + { + ret = HAL_ERROR; + } + + return ret; +} + +/** + * @brief Check the IRDA Idle State. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda) +{ + uint32_t tickstart; + + /* Initialize the IRDA ErrorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if ((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK) + { + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + /* Check if the Receiver is enabled */ + if ((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + /* Wait until REACK flag is set */ + if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK) + { + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + + /* Initialize the IRDA state*/ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Handle IRDA Communication Timeout. It waits + * until a flag is no longer in the specified status. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param Flag Specifies the IRDA flag to check. + * @param Status The actual Flag status (SET or RESET) + * @param Tickstart Tick start value + * @param Timeout Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, + uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) + interrupts for the interrupt process */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + + /* At end of Tx process, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; +} + + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief DMA IRDA transmit process complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + + /* DMA Normal mode */ + if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) + { + hirda->TxXferCount = 0U; + + /* Disable the DMA transfer for transmit request by resetting the DMAT bit + in the IRDA CR3 register */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Enable the IRDA Transmit Complete Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + } + /* DMA Circular mode */ + else + { +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Tx complete callback */ + hirda->TxCpltCallback(hirda); +#else + /* Call legacy weak Tx complete callback */ + HAL_IRDA_TxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + +} + +/** + * @brief DMA IRDA transmit process half complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Tx Half complete callback */ + hirda->TxHalfCpltCallback(hirda); +#else + /* Call legacy weak Tx complete callback */ + HAL_IRDA_TxHalfCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA receive process complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + + /* DMA Normal mode */ + if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) + { + hirda->RxXferCount = 0U; + + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by resetting the DMAR bit + in the IRDA CR3 register */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + } + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hirda->RxCpltCallback(hirda); +#else + /* Call legacy weak Rx complete callback */ + HAL_IRDA_RxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA IRDA receive process half complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /*Call registered Rx Half complete callback*/ + hirda->RxHalfCpltCallback(hirda); +#else + /* Call legacy weak Rx Half complete callback */ + HAL_IRDA_RxHalfCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA communication error callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMAError(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + + /* Stop IRDA DMA Tx request if ongoing */ + if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + hirda->TxXferCount = 0U; + IRDA_EndTxTransfer(hirda); + } + } + + /* Stop IRDA DMA Rx request if ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + hirda->RxXferCount = 0U; + IRDA_EndRxTransfer(hirda); + } + } + + hirda->ErrorCode |= HAL_IRDA_ERROR_DMA; +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA communication abort callback, when initiated by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + hirda->RxXferCount = 0U; + hirda->TxXferCount = 0U; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA Tx communication abort callback, when initiated by user + * (To be called at end of DMA Tx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Rx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + + hirda->hdmatx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hirda->hdmarx != NULL) + { + if (hirda->hdmarx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + hirda->TxXferCount = 0U; + hirda->RxXferCount = 0U; + + /* Reset errorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->gState and hirda->RxState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hirda->AbortCpltCallback(hirda); +#else + /* Call legacy weak Abort complete callback */ + HAL_IRDA_AbortCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + + +/** + * @brief DMA IRDA Rx communication abort callback, when initiated by user + * (To be called at end of DMA Rx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Tx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + + hirda->hdmarx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hirda->hdmatx != NULL) + { + if (hirda->hdmatx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + hirda->TxXferCount = 0U; + hirda->RxXferCount = 0U; + + /* Reset errorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->gState and hirda->RxState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hirda->AbortCpltCallback(hirda); +#else + /* Call legacy weak Abort complete callback */ + HAL_IRDA_AbortCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + + +/** + * @brief DMA IRDA Tx communication abort callback, when initiated by user by a call to + * HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer) + * (This callback is executed at end of DMA Tx Abort procedure following user abort request, + * and leads to user Tx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); + + hirda->TxXferCount = 0U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hirda->AbortTransmitCpltCallback(hirda); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_IRDA_AbortTransmitCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA Rx communication abort callback, when initiated by user by a call to + * HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer) + * (This callback is executed at end of DMA Rx Abort procedure following user abort request, + * and leads to user Rx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hirda->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hirda->AbortReceiveCpltCallback(hirda); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_IRDA_AbortReceiveCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Send an amount of data in interrupt mode. + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_IRDA_Transmit_IT(). + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda) +{ + const uint16_t *tmp; + + /* Check that a Tx process is ongoing */ + if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + if (hirda->TxXferCount == 0U) + { + /* Disable the IRDA Transmit Data Register Empty Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + + /* Enable the IRDA Transmit Complete Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + } + else + { + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + tmp = (const uint16_t *) hirda->pTxBuffPtr; /* Derogation R.11.3 */ + hirda->Instance->TDR = (uint16_t)(*tmp & 0x01FFU); + hirda->pTxBuffPtr += 2U; + } + else + { + hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr & 0xFFU); + hirda->pTxBuffPtr++; + } + hirda->TxXferCount--; + } + } +} + +/** + * @brief Wrap up transmission in non-blocking mode. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable the IRDA Transmit Complete Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + + /* Tx process is ended, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Tx complete callback */ + hirda->TxCpltCallback(hirda); +#else + /* Call legacy weak Tx complete callback */ + HAL_IRDA_TxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief Receive an amount of data in interrupt mode. + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_IRDA_Receive_IT() + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda) +{ + uint16_t *tmp; + uint16_t uhMask = hirda->Mask; + uint16_t uhdata; + + /* Check that a Rx process is ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + uhdata = (uint16_t) READ_REG(hirda->Instance->RDR); + if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) + { + tmp = (uint16_t *) hirda->pRxBuffPtr; /* Derogation R.11.3 */ + *tmp = (uint16_t)(uhdata & uhMask); + hirda->pRxBuffPtr += 2U; + } + else + { + *hirda->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask); + hirda->pRxBuffPtr++; + } + + hirda->RxXferCount--; + if (hirda->RxXferCount == 0U) + { + /* Disable the IRDA Parity Error Interrupt and RXNE interrupt */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + + /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Rx process is completed, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hirda->RxCpltCallback(hirda); +#else + /* Call legacy weak Rx complete callback */ + HAL_IRDA_RxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @} + */ + +#endif /* HAL_IRDA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_iwdg.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_iwdg.c new file mode 100644 index 0000000..d898e68 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_iwdg.c @@ -0,0 +1,510 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_iwdg.c + * @author MCD Application Team + * @brief IWDG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Independent Watchdog (IWDG) peripheral: + * + Initialization and Start functions + * + IO operation functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### IWDG Generic features ##### + ============================================================================== + [..] + (+) The IWDG can be started by either software or hardware (configurable + through option byte). + + (+) The IWDG is clocked by the Low-Speed Internal clock (LSI) and thus stays + active even if the main clock fails. + + (+) Once the IWDG is started, the LSI is forced ON and both cannot be + disabled. The counter starts counting down from the reset value (0xFFF). + When it reaches the end of count value (0x000) a reset signal is + generated (IWDG reset). + + (+) Whenever the key value 0x0000 AAAA is written in the IWDG_KR register, + the IWDG_RLR value is reloaded into the counter and the watchdog reset + is prevented. + + (+) The IWDG is implemented in the VDD voltage domain that is still functional + in STOP and STANDBY mode (IWDG reset can wake up the CPU from STANDBY). + IWDGRST flag in RCC_CSR register can be used to inform when an IWDG + reset occurs. + + (+) Debug mode: When the microcontroller enters debug mode (core halted), + the IWDG counter either continues to work normally or stops, depending + on DBG_IWDG_STOP configuration bit in DBG module, accessible through + __HAL_DBGMCU_FREEZE_IWDG() and __HAL_DBGMCU_UNFREEZE_IWDG() macros. + + [..] Min-max timeout value @32KHz (LSI): ~125us / ~131.04s + The IWDG timeout may vary due to LSI clock frequency dispersion. + STM32U0xx devices provide the capability to measure the LSI clock + frequency (LSI clock is internally connected to TIM16 CH1 input capture). + The measured value can be used to have an IWDG timeout with an + acceptable accuracy. + + [..] Default timeout value (necessary for IWDG_SR status register update): + Constant LSI_VALUE is defined based on the nominal LSI clock frequency. + This frequency being subject to variations as mentioned above, the + default timeout value (defined through constant HAL_IWDG_DEFAULT_TIMEOUT + below) may become too short or too long. + In such cases, this default timeout value can be tuned by redefining + the constant LSI_VALUE at user-application level (based, for instance, + on the measured LSI clock frequency as explained above). + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Register callback to treat Iwdg interrupt and MspInit using HAL_IWDG_RegisterCallback(). + (++) Provide exiting handle as first parameter. + (++) Provide which callback will be registered using one value from + HAL_IWDG_CallbackIDTypeDef. + (++) Provide callback function pointer. + + (#) Use IWDG using HAL_IWDG_Init() function to : + (++) Enable instance by writing Start keyword in IWDG_KEY register. LSI + clock is forced ON and IWDG counter starts counting down. + (++) Enable write access to configuration registers: + IWDG_PR, IWDG_RLR, IWDG_WINR and EWCR. + (++) Configure the IWDG prescaler and counter reload value. This reload + value will be loaded in the IWDG counter each time the watchdog is + reloaded, then the IWDG will start counting down from this value. + (++) Depending on window parameter: + (+++) If Window Init parameter is same as Window register value, + nothing more is done but reload counter value in order to exit + function with exact time base. + (+++) Else modify Window register. This will automatically reload + watchdog counter. + (++) Depending on Early Wakeup Interrupt parameter: + (+++) If EWI is set to disable, comparator is set to 0, interrupt is + disable & flag is clear. + (+++) Else modify EWCR register, setting comparator value, enable + interrupt & clear flag. + (++) Wait for status flags to be reset. + + (#) Then the application program must refresh the IWDG counter at regular + intervals during normal operation to prevent an MCU reset, using + HAL_IWDG_Refresh() function. + + *** IWDG HAL driver macros list *** + ==================================== + [..] + Below the list of most used macros in IWDG HAL driver: + (+) __HAL_IWDG_START: Enable the IWDG peripheral + (+) __HAL_IWDG_RELOAD_COUNTER: Reloads IWDG counter with value defined in + the reload register + + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#ifdef HAL_IWDG_MODULE_ENABLED +/** @addtogroup IWDG + * @brief IWDG HAL module driver. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup IWDG_Private_Defines IWDG Private Defines + * @{ + */ +/* Status register needs up to 5 LSI clock periods to be updated. However a + synchronisation is added on prescaled LSI clock rising edge, so we only + consider a highest prescaler cycle. + The timeout value is calculated using the highest prescaler (1024) and + the LSI_VALUE constant. The value of this constant can be changed by the user + to take into account possible LSI clock period variations. + The timeout value is multiplied by 1000 to be converted in milliseconds. + LSI startup time is also considered here by adding LSI_STARTUP_TIME + converted in milliseconds. */ +#define HAL_IWDG_DEFAULT_TIMEOUT (((1UL * 1024UL * 1000UL) / LSI_VALUE) + ((LSI_STARTUP_TIME / 1000UL) + 1UL)) +#define IWDG_KERNEL_UPDATE_FLAGS (IWDG_SR_EWU | IWDG_SR_WVU | IWDG_SR_RVU | IWDG_SR_PVU) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup IWDG_Exported_Functions + * @{ + */ + +/** @addtogroup IWDG_Exported_Functions_Group1 + * @brief Initialization and Start functions. + * +@verbatim + =============================================================================== + ##### Initialization and Start functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the IWDG according to the specified parameters in the + IWDG_InitTypeDef of associated handle. + (+) Manage Window option. + (+) Once initialization is performed in HAL_IWDG_Init function, Watchdog + is reloaded in order to exit function with correct time base. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the IWDG according to the specified parameters in the + * IWDG_InitTypeDef and start watchdog. Before exiting function, + * watchdog is refreshed in order to have correct time base. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg) +{ + uint32_t tickstart; + + /* Check the IWDG handle allocation */ + if (hiwdg == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_IWDG_ALL_INSTANCE(hiwdg->Instance)); + assert_param(IS_IWDG_PRESCALER(hiwdg->Init.Prescaler)); + assert_param(IS_IWDG_RELOAD(hiwdg->Init.Reload)); + assert_param(IS_IWDG_WINDOW(hiwdg->Init.Window)); + assert_param(IS_IWDG_EWI(hiwdg->Init.EWI)); + +#if (USE_HAL_IWDG_REGISTER_CALLBACKS == 1) + /* Reset Callback pointers */ + if (hiwdg->EwiCallback == NULL) + { + hiwdg->EwiCallback = HAL_IWDG_EarlyWakeupCallback; + } + if (hiwdg->MspInitCallback == NULL) + { + hiwdg->MspInitCallback = HAL_IWDG_MspInit; + } + + /* Init the low level hardware */ + hiwdg->MspInitCallback(hiwdg); +#else + /* Init the low level hardware */ + HAL_IWDG_MspInit(hiwdg); +#endif /* USE_HAL_IWDG_REGISTER_CALLBACKS */ + + /* Enable IWDG. LSI is turned on automatically */ + __HAL_IWDG_START(hiwdg); + + /* Enable write access to IWDG_PR, IWDG_RLR, IWDG_WINR and EWCR registers by writing + 0x5555 in KR */ + IWDG_ENABLE_WRITE_ACCESS(hiwdg); + + /* Write to IWDG registers the Prescaler & Reload values to work with */ + hiwdg->Instance->PR = hiwdg->Init.Prescaler; + hiwdg->Instance->RLR = hiwdg->Init.Reload; + + /* Check Reload update flag, before performing any reload of the counter, else previous value + will be taken. */ + tickstart = HAL_GetTick(); + + /* Wait for register to be updated */ + while ((hiwdg->Instance->SR & IWDG_SR_RVU) != 0x00u) + { + if ((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT) + { + if ((hiwdg->Instance->SR & IWDG_SR_RVU) != 0x00u) + { + return HAL_TIMEOUT; + } + } + } + + if (hiwdg->Init.EWI == IWDG_EWI_DISABLE) + { + /* EWI comparator value equal 0, disable the early wakeup interrupt + * acknowledge the early wakeup interrupt in any cases. it clears the EWIF flag in SR register + * Set Watchdog Early Wakeup Comparator to 0x00 */ + hiwdg->Instance->EWCR = IWDG_EWCR_EWIC; + } + else + { + /* EWI comparator value different from 0, enable the early wakeup interrupt, + * acknowledge the early wakeup interrupt in any cases. it clears the EWIF flag in SR register + * Set Watchdog Early Wakeup Comparator value */ + hiwdg->Instance->EWCR = IWDG_EWCR_EWIE | IWDG_EWCR_EWIC | hiwdg->Init.EWI; + } + + /* Check pending flag, if previous update not done, return timeout */ + tickstart = HAL_GetTick(); + + /* Wait for register to be updated */ + while ((hiwdg->Instance->SR & IWDG_KERNEL_UPDATE_FLAGS) != 0x00u) + { + if ((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT) + { + if ((hiwdg->Instance->SR & IWDG_KERNEL_UPDATE_FLAGS) != 0x00u) + { + return HAL_TIMEOUT; + } + } + } + + /* If window parameter is different than current value, modify window + register */ + if (hiwdg->Instance->WINR != hiwdg->Init.Window) + { + /* Write to IWDG WINR the IWDG_Window value to compare with. In any case, + even if window feature is disabled, Watchdog will be reloaded by writing + windows register */ + hiwdg->Instance->WINR = hiwdg->Init.Window; + } + else + { + /* Reload IWDG counter with value defined in the reload register */ + __HAL_IWDG_RELOAD_COUNTER(hiwdg); + } + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initialize the IWDG MSP. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @note When rewriting this function in user file, mechanism may be added + * to avoid multiple initialize when HAL_IWDG_Init function is called + * again to change parameters. + * @retval None + */ +__weak void HAL_IWDG_MspInit(IWDG_HandleTypeDef *hiwdg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hiwdg); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_IWDG_MspInit could be implemented in the user file + */ +} + + +#if (USE_HAL_IWDG_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User IWDG Callback + * To be used instead of the weak (surcharged) predefined callback + * @param hiwdg IWDG handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_IWDG_EWI_CB_ID Early WakeUp Interrupt Callback ID + * @arg @ref HAL_IWDG_MSPINIT_CB_ID MspInit callback ID + * @param pCallback pointer to the Callback function + * @retval status + */ +HAL_StatusTypeDef HAL_IWDG_RegisterCallback(IWDG_HandleTypeDef *hiwdg, HAL_IWDG_CallbackIDTypeDef CallbackID, + pIWDG_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + status = HAL_ERROR; + } + else + { + switch (CallbackID) + { + case HAL_IWDG_EWI_CB_ID: + hiwdg->EwiCallback = pCallback; + break; + case HAL_IWDG_MSPINIT_CB_ID: + hiwdg->MspInitCallback = pCallback; + break; + + default: + status = HAL_ERROR; + break; + } + } + + return status; +} + + +/** + * @brief Unregister a IWDG Callback + * IWDG Callback is redirected to the weak (surcharged) predefined callback + * @param hiwdg IWDG handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_IWDG_EWI_CB_ID Early WakeUp Interrupt Callback ID + * @arg @ref HAL_IWDG_MSPINIT_CB_ID MspInit callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_IWDG_UnRegisterCallback(IWDG_HandleTypeDef *hiwdg, HAL_IWDG_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + switch (CallbackID) + { + case HAL_IWDG_EWI_CB_ID: + hiwdg->EwiCallback = HAL_IWDG_EarlyWakeupCallback; + break; + case HAL_IWDG_MSPINIT_CB_ID: + hiwdg->MspInitCallback = HAL_IWDG_MspInit; + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} +#endif /* USE_HAL_IWDG_REGISTER_CALLBACKS */ + + +/** + * @} + */ + + +/** @addtogroup IWDG_Exported_Functions_Group2 + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Refresh the IWDG. + +@endverbatim + * @{ + */ + +/** + * @brief Refresh the IWDG. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg) +{ + /* Reload IWDG counter with value defined in the reload register */ + __HAL_IWDG_RELOAD_COUNTER(hiwdg); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Get back IWDG running status + * @note This API allows to know if IWDG has been started by other master, thread + * or by hardware. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval can be one of following value : + * @arg @ref IWDG_STATUS_DISABLE + * @arg @ref IWDG_STATUS_ENABLE + */ +uint32_t HAL_IWDG_GetActiveStatus(const IWDG_HandleTypeDef *hiwdg) +{ + uint32_t status; + + /* Get back ONF flag */ + status = (hiwdg->Instance->SR & IWDG_SR_ONF); + + /* Return status */ + return status; +} + + +/** + * @brief Handle IWDG interrupt request. + * @note The Early Wakeup Interrupt (EWI) can be used if specific safety operations + * or data logging must be performed before the actual reset is generated. + * The EWI interrupt is enabled by calling HAL_IWDG_Init function with + * EWIMode set to IWDG_EWI_ENABLE. + * When the downcounter reaches the value 0x40, and EWI interrupt is + * generated and the corresponding Interrupt Service Routine (ISR) can + * be used to trigger specific actions (such as communications or data + * logging), before resetting the device. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval None + */ +void HAL_IWDG_IRQHandler(IWDG_HandleTypeDef *hiwdg) +{ + /* Check if IWDG Early Wakeup Interrupt occurred */ + if ((hiwdg->Instance->SR & IWDG_SR_EWIF) != 0x00u) + { + /* Clear the IWDG Early Wakeup flag */ + hiwdg->Instance->EWCR |= IWDG_EWCR_EWIC; + +#if (USE_HAL_IWDG_REGISTER_CALLBACKS == 1) + /* Early Wakeup registered callback */ + hiwdg->EwiCallback(hiwdg); +#else + /* Early Wakeup callback */ + HAL_IWDG_EarlyWakeupCallback(hiwdg); +#endif /* USE_HAL_IWDG_REGISTER_CALLBACKS */ + } +} + + +/** + * @brief IWDG Early Wakeup callback. + * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval None + */ +__weak void HAL_IWDG_EarlyWakeupCallback(IWDG_HandleTypeDef *hiwdg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hiwdg); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_IWDG_EarlyWakeupCallback could be implemented in the user file + */ +} + + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_IWDG_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lcd.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lcd.c new file mode 100644 index 0000000..e36ffdd --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lcd.c @@ -0,0 +1,614 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_lcd.c + * @author MCD Application Team + * @brief LCD Controller HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the LCD Controller (LCD) peripheral: + * + Initialization/de-initialization methods + * + I/O operation methods + * + Peripheral State methods + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] The LCD HAL driver can be used as follows: + + (#) Declare a LCD_HandleTypeDef handle structure. + + -@- The frequency generator allows you to achieve various LCD frame rates + starting from an LCD input clock frequency (LCDCLK) which can vary + from 32 kHz up to 1 MHz. + + (#) Initialize the LCD low level resources by implementing the HAL_LCD_MspInit() API: + + (++) Enable the LCDCLK (same as RTCCLK): to configure the RTCCLK/LCDCLK, proceed as follows: + (+++) Use RCC function HAL_RCCEx_PeriphCLKConfig in indicating RCC_PERIPHCLK_LCD and + selected clock source (HSE, LSI or LSE) + + (++) LCD pins configuration: + (+++) Enable the clock for the LCD GPIOs. + (+++) Configure these LCD pins as alternate function no-pull. + (++) Enable the LCD interface clock. + + + (#) Program the Prescaler, Divider, Blink mode, Blink Frequency Duty, Bias, + Voltage Source, Dead Time, Pulse On Duration, Contrast, High drive and Multiplexer + Segment in the Init structure of the LCD handle. + + (#) Initialize the LCD registers by calling the HAL_LCD_Init() API. + + -@- The HAL_LCD_Init() API configures also the low level Hardware GPIO, CLOCK, ...etc) + by calling the customized HAL_LCD_MspInit() API. + -@- After calling the HAL_LCD_Init() the LCD RAM memory is cleared + + (#) Optionally you can update the LCD configuration using these macros: + (++) LCD High Drive using the __HAL_LCD_HIGHDRIVER_ENABLE() and __HAL_LCD_HIGHDRIVER_DISABLE() macros + (++) Voltage output buffer using __HAL_LCD_VOLTAGE_BUFFER_ENABLE() and __HAL_LCD_VOLTAGE_BUFFER_DISABLE() macros + (++) LCD Pulse ON Duration using the __HAL_LCD_PULSEONDURATION_CONFIG() macro + (++) LCD Dead Time using the __HAL_LCD_DEADTIME_CONFIG() macro + (++) The LCD Blink mode and frequency using the __HAL_LCD_BLINK_CONFIG() macro + (++) The LCD Contrast using the __HAL_LCD_CONTRAST_CONFIG() macro + + (#) Write to the LCD RAM memory using the HAL_LCD_Write() API, this API can be called + more time to update the different LCD RAM registers before calling + HAL_LCD_UpdateDisplayRequest() API. + + (#) The HAL_LCD_Clear() API can be used to clear the LCD RAM memory. + + (#) When LCD RAM memory is updated enable the update display request using + the HAL_LCD_UpdateDisplayRequest() API. + + [..] LCD and low power modes: + (#) The LCD remain active during Sleep, Low Power run, Low Power Sleep and + STOP modes. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#ifdef HAL_LCD_MODULE_ENABLED + +#if defined (LCD) + +/** @defgroup LCD LCD + * @brief LCD HAL module driver + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup LCD_Private_Defines LCD Private Defines + * @{ + */ + +#define LCD_TIMEOUT_VALUE 1000U + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup LCD_Exported_Functions LCD Exported Functions + * @{ + */ + +/** @defgroup LCD_Exported_Functions_Group1 Initialization/de-initialization methods + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the LCD peripheral according to the specified parameters + * in the LCD_InitStruct and initialize the associated handle. + * @note This function can be used only when the LCD is disabled. + * @param hlcd LCD handle + * @retval None + */ +HAL_StatusTypeDef HAL_LCD_Init(LCD_HandleTypeDef *hlcd) +{ + uint32_t tickstart; + uint32_t counter; + HAL_StatusTypeDef status; + + /* Check the LCD handle allocation */ + if (hlcd == NULL) + { + return HAL_ERROR; + } + + /* Check function parameters */ + assert_param(IS_LCD_ALL_INSTANCE(hlcd->Instance)); + assert_param(IS_LCD_PRESCALER(hlcd->Init.Prescaler)); + assert_param(IS_LCD_DIVIDER(hlcd->Init.Divider)); + assert_param(IS_LCD_DUTY(hlcd->Init.Duty)); + assert_param(IS_LCD_BIAS(hlcd->Init.Bias)); + assert_param(IS_LCD_VOLTAGE_SOURCE(hlcd->Init.VoltageSource)); + assert_param(IS_LCD_PULSE_ON_DURATION(hlcd->Init.PulseOnDuration)); + assert_param(IS_LCD_HIGH_DRIVE(hlcd->Init.HighDrive)); + assert_param(IS_LCD_DEAD_TIME(hlcd->Init.DeadTime)); + assert_param(IS_LCD_CONTRAST(hlcd->Init.Contrast)); + assert_param(IS_LCD_BLINK_FREQUENCY(hlcd->Init.BlinkFrequency)); + assert_param(IS_LCD_BLINK_MODE(hlcd->Init.BlinkMode)); + assert_param(IS_LCD_MUX_SEGMENT(hlcd->Init.MuxSegment)); + + if (hlcd->State == HAL_LCD_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hlcd->Lock = HAL_UNLOCKED; + + /* Initialize the low level hardware (MSP) */ + HAL_LCD_MspInit(hlcd); + } + + hlcd->State = HAL_LCD_STATE_BUSY; + + /* Disable the peripheral */ + __HAL_LCD_DISABLE(hlcd); + + /* Clear the LCD_RAM registers and enable the display request by setting the UDR bit + in the LCD_SR register */ + for (counter = LCD_RAM_REGISTER0; counter <= LCD_RAM_REGISTER7; counter++) + { + hlcd->Instance->RAM[counter] = 0; + } + /* Enable the display request */ + /* hlcd->Instance->SR |= LCD_SR_UDR */ + /* Configure the LCD Prescaler, Divider, Blink mode and Blink Frequency: + Set PS[3:0] bits according to hlcd->Init.Prescaler value + Set DIV[3:0] bits according to hlcd->Init.Divider value + Set BLINK[1:0] bits according to hlcd->Init.BlinkMode value + Set BLINKF[2:0] bits according to hlcd->Init.BlinkFrequency value + Set DEAD[2:0] bits according to hlcd->Init.DeadTime value + Set PON[2:0] bits according to hlcd->Init.PulseOnDuration value + Set CC[2:0] bits according to hlcd->Init.Contrast value + Set HD bit according to hlcd->Init.HighDrive value */ + MODIFY_REG(hlcd->Instance->FCR, \ + (LCD_FCR_PS | LCD_FCR_DIV | LCD_FCR_BLINK | LCD_FCR_BLINKF | \ + LCD_FCR_DEAD | LCD_FCR_PON | LCD_FCR_CC | LCD_FCR_HD), \ + (hlcd->Init.Prescaler | hlcd->Init.Divider | hlcd->Init.BlinkMode | hlcd->Init.BlinkFrequency | \ + hlcd->Init.DeadTime | hlcd->Init.PulseOnDuration | hlcd->Init.Contrast | hlcd->Init.HighDrive)); + + /* Wait until LCD Frame Control Register Synchronization flag (FCRSF) is set in the LCD_SR register + This bit is set by hardware each time the LCD_FCR register is updated in the LCDCLK + domain. It is cleared by hardware when writing to the LCD_FCR register.*/ + status = LCD_WaitForSynchro(hlcd); + if (status != HAL_OK) + { + return status; + } + + /* Configure the LCD Duty, Bias, Voltage Source, Dead Time, Pulse On Duration and Contrast: + Set DUTY[2:0] bits according to hlcd->Init.Duty value + Set BIAS[1:0] bits according to hlcd->Init.Bias value + Set VSEL bit according to hlcd->Init.VoltageSource value + Set MUX_SEG bit according to hlcd->Init.MuxSegment value */ + MODIFY_REG(hlcd->Instance->CR, \ + (LCD_CR_DUTY | LCD_CR_BIAS | LCD_CR_VSEL | LCD_CR_MUX_SEG), \ + (hlcd->Init.Duty | hlcd->Init.Bias | hlcd->Init.VoltageSource | hlcd->Init.MuxSegment)); + + /* Enable the peripheral */ + __HAL_LCD_ENABLE(hlcd); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait Until the LCD is enabled */ + while (__HAL_LCD_GET_FLAG(hlcd, LCD_FLAG_ENS) == RESET) + { + if ((HAL_GetTick() - tickstart) > LCD_TIMEOUT_VALUE) + { + hlcd->ErrorCode = HAL_LCD_ERROR_ENS; + return HAL_TIMEOUT; + } + } + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /*!< Wait Until the LCD Booster is ready */ + while (__HAL_LCD_GET_FLAG(hlcd, LCD_FLAG_RDY) == RESET) + { + if ((HAL_GetTick() - tickstart) > LCD_TIMEOUT_VALUE) + { + hlcd->ErrorCode = HAL_LCD_ERROR_RDY; + return HAL_TIMEOUT; + } + } + + /* Initialize the LCD state */ + hlcd->ErrorCode = HAL_LCD_ERROR_NONE; + hlcd->State = HAL_LCD_STATE_READY; + + return status; +} + +/** + * @brief DeInitialize the LCD peripheral. + * @param hlcd LCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LCD_DeInit(LCD_HandleTypeDef *hlcd) +{ + /* Check the LCD handle allocation */ + if (hlcd == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_LCD_ALL_INSTANCE(hlcd->Instance)); + + hlcd->State = HAL_LCD_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_LCD_MspDeInit(hlcd); + + hlcd->ErrorCode = HAL_LCD_ERROR_NONE; + hlcd->State = HAL_LCD_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hlcd); + + return HAL_OK; +} + +/** + * @brief DeInitialize the LCD MSP. + * @param hlcd LCD handle + * @retval None + */ +__weak void HAL_LCD_MspDeInit(LCD_HandleTypeDef *hlcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlcd); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_LCD_MspDeInit it to be implemented in the user file + */ +} + +/** + * @brief Initialize the LCD MSP. + * @param hlcd LCD handle + * @retval None + */ +__weak void HAL_LCD_MspInit(LCD_HandleTypeDef *hlcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlcd); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_LCD_MspInit is to be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LCD_Exported_Functions_Group2 IO operation methods + * @brief LCD RAM functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] Using its double buffer memory the LCD controller ensures the coherency of the + displayed information without having to use interrupts to control LCD_RAM + modification. + + [..] The application software can access the first buffer level (LCD_RAM) through + the APB interface. Once it has modified the LCD_RAM using the HAL_LCD_Write() API, + it sets the UDR flag in the LCD_SR register using the HAL_LCD_UpdateDisplayRequest() API. + + [..] This UDR flag (update display request) requests the updated information to be + moved into the second buffer level (LCD_DISPLAY). + + [..] This operation is done synchronously with the frame (at the beginning of the + next frame), until the update is completed, the LCD_RAM is write protected and + the UDR flag stays high. + + [..] Once the update is completed another flag (UDD - Update Display Done) is set and + generates an interrupt if the UDDIE bit in the LCD_FCR register is set. + The time it takes to update LCD_DISPLAY is, in the worst case, one odd and one + even frame. + + [..] The update will not occur (UDR = 1 and UDD = 0) until the display is + enabled (LCDEN = 1). + +@endverbatim + * @{ + */ + +/** + * @brief Write a word in the specific LCD RAM. + * @param hlcd LCD handle + * @param RAMRegisterIndex specifies the LCD RAM Register. + * This parameter can be one of the following values: + * @arg LCD_RAM_REGISTER0: LCD RAM Register 0 + * @arg LCD_RAM_REGISTER1: LCD RAM Register 1 + * @arg LCD_RAM_REGISTER2: LCD RAM Register 2 + * @arg LCD_RAM_REGISTER3: LCD RAM Register 3 + * @arg LCD_RAM_REGISTER4: LCD RAM Register 4 + * @arg LCD_RAM_REGISTER5: LCD RAM Register 5 + * @arg LCD_RAM_REGISTER6: LCD RAM Register 6 + * @arg LCD_RAM_REGISTER7: LCD RAM Register 7 + * @arg LCD_RAM_REGISTER8: LCD RAM Register 8 + * @arg LCD_RAM_REGISTER9: LCD RAM Register 9 + * @arg LCD_RAM_REGISTER10: LCD RAM Register 10 + * @arg LCD_RAM_REGISTER11: LCD RAM Register 11 + * @arg LCD_RAM_REGISTER12: LCD RAM Register 12 + * @arg LCD_RAM_REGISTER13: LCD RAM Register 13 + * @arg LCD_RAM_REGISTER14: LCD RAM Register 14 + * @arg LCD_RAM_REGISTER15: LCD RAM Register 15 + * @param RAMRegisterMask specifies the LCD RAM Register Data Mask. + * @param Data specifies LCD Data Value to be written. + * @retval None + */ +HAL_StatusTypeDef HAL_LCD_Write(LCD_HandleTypeDef *hlcd, uint32_t RAMRegisterIndex, uint32_t RAMRegisterMask, + uint32_t Data) +{ + uint32_t tickstart; + HAL_LCD_StateTypeDef state = hlcd->State; + + if ((state == HAL_LCD_STATE_READY) || (state == HAL_LCD_STATE_BUSY)) + { + /* Check the parameters */ + assert_param(IS_LCD_RAM_REGISTER(RAMRegisterIndex)); + + if (hlcd->State == HAL_LCD_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hlcd); + hlcd->State = HAL_LCD_STATE_BUSY; + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /*!< Wait Until the LCD is ready */ + while (__HAL_LCD_GET_FLAG(hlcd, LCD_FLAG_UDR) != RESET) + { + if ((HAL_GetTick() - tickstart) > LCD_TIMEOUT_VALUE) + { + hlcd->ErrorCode = HAL_LCD_ERROR_UDR; + + /* Process Unlocked */ + __HAL_UNLOCK(hlcd); + + return HAL_TIMEOUT; + } + } + } + + /* Copy the new Data bytes to LCD RAM register */ + MODIFY_REG(hlcd->Instance->RAM[RAMRegisterIndex], ~(RAMRegisterMask), Data); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Clear the LCD RAM registers. + * @param hlcd LCD handle + * @retval None + */ +HAL_StatusTypeDef HAL_LCD_Clear(LCD_HandleTypeDef *hlcd) +{ + uint32_t tickstart; + uint32_t counter; + HAL_StatusTypeDef status = HAL_ERROR; + HAL_LCD_StateTypeDef state = hlcd->State; + + if ((state == HAL_LCD_STATE_READY) || (state == HAL_LCD_STATE_BUSY)) + { + /* Process Locked */ + __HAL_LOCK(hlcd); + + hlcd->State = HAL_LCD_STATE_BUSY; + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /*!< Wait Until the LCD is ready */ + while (__HAL_LCD_GET_FLAG(hlcd, LCD_FLAG_UDR) != RESET) + { + if ((HAL_GetTick() - tickstart) > LCD_TIMEOUT_VALUE) + { + hlcd->ErrorCode = HAL_LCD_ERROR_UDR; + + /* Process Unlocked */ + __HAL_UNLOCK(hlcd); + + return HAL_TIMEOUT; + } + } + /* Clear the LCD_RAM registers */ + for (counter = LCD_RAM_REGISTER0; counter <= LCD_RAM_REGISTER15; counter++) + { + hlcd->Instance->RAM[counter] = 0; + } + + /* Update the LCD display */ + status = HAL_LCD_UpdateDisplayRequest(hlcd); + } + return status; +} + +/** + * @brief Enable the Update Display Request. + * @param hlcd LCD handle + * @note Each time software modifies the LCD_RAM it must set the UDR bit to + * transfer the updated data to the second level buffer. + * The UDR bit stays set until the end of the update and during this + * time the LCD_RAM is write protected. + * @note When the display is disabled, the update is performed for all + * LCD_DISPLAY locations. + * When the display is enabled, the update is performed only for locations + * for which commons are active (depending on DUTY). For example if + * DUTY = 1/2, only the LCD_DISPLAY of COM0 and COM1 will be updated. + * @retval None + */ +HAL_StatusTypeDef HAL_LCD_UpdateDisplayRequest(LCD_HandleTypeDef *hlcd) +{ + uint32_t tickstart; + + /* Clear the Update Display Done flag before starting the update display request */ + __HAL_LCD_CLEAR_FLAG(hlcd, LCD_FLAG_UDD); + + /* Enable the display request */ + hlcd->Instance->SR |= LCD_SR_UDR; + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /*!< Wait Until the LCD display is done */ + while (__HAL_LCD_GET_FLAG(hlcd, LCD_FLAG_UDD) == RESET) + { + if ((HAL_GetTick() - tickstart) > LCD_TIMEOUT_VALUE) + { + hlcd->ErrorCode = HAL_LCD_ERROR_UDD; + + /* Process Unlocked */ + __HAL_UNLOCK(hlcd); + + return HAL_TIMEOUT; + } + } + + hlcd->State = HAL_LCD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hlcd); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup LCD_Exported_Functions_Group3 Peripheral State methods + * @brief LCD State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the LCD: + (+) HAL_LCD_GetState() API can be helpful to check in run-time the state of the LCD peripheral State. + (+) HAL_LCD_GetError() API to return the LCD error code. +@endverbatim + * @{ + */ + +/** + * @brief Return the LCD handle state. + * @param hlcd LCD handle + * @retval HAL state + */ +HAL_LCD_StateTypeDef HAL_LCD_GetState(LCD_HandleTypeDef *hlcd) +{ + /* Return LCD handle state */ + return hlcd->State; +} + +/** + * @brief Return the LCD error code. + * @param hlcd LCD handle + * @retval LCD Error Code + */ +uint32_t HAL_LCD_GetError(LCD_HandleTypeDef *hlcd) +{ + return hlcd->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup LCD_Private_Functions LCD Private Functions + * @{ + */ + +/** + * @brief Wait until the LCD FCR register is synchronized in the LCDCLK domain. + * This function must be called after any write operation to LCD_FCR register. + * @retval None + */ +HAL_StatusTypeDef LCD_WaitForSynchro(LCD_HandleTypeDef *hlcd) +{ + uint32_t tickstart; + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Loop until FCRSF flag is set */ + while (__HAL_LCD_GET_FLAG(hlcd, LCD_FLAG_FCRSF) == RESET) + { + if ((HAL_GetTick() - tickstart) > LCD_TIMEOUT_VALUE) + { + hlcd->ErrorCode = HAL_LCD_ERROR_FCRSF; + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* LCD */ + +#endif /* HAL_LCD_MODULE_ENABLED */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lptim.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lptim.c new file mode 100644 index 0000000..dc4b793 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_lptim.c @@ -0,0 +1,4274 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_lptim.c + * @author MCD Application Team + * @brief LPTIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Low Power Timer (LPTIM) peripheral: + * + Initialization and de-initialization functions. + * + Start/Stop operation functions in polling mode. + * + Start/Stop operation functions in interrupt mode. + * + Reading operation functions. + * + Peripheral State functions. + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The LPTIM HAL driver can be used as follows: + + (#)Initialize the LPTIM low level resources by implementing the + HAL_LPTIM_MspInit(): + (++) Enable the LPTIM interface clock using __HAL_RCC_LPTIMx_CLK_ENABLE(). + (++) In case of using interrupts (e.g. HAL_LPTIM_PWM_Start_IT()): + (+++) Configure the LPTIM interrupt priority using HAL_NVIC_SetPriority(). + (+++) Enable the LPTIM IRQ handler using HAL_NVIC_EnableIRQ(). + (+++) In LPTIM IRQ handler, call HAL_LPTIM_IRQHandler(). + + (#)Initialize the LPTIM HAL using HAL_LPTIM_Init(). This function + configures mainly: + (++) The instance: LPTIM1, LPTIM2, LPTIM3 or LPTIM4. + (++) Clock: the counter clock. + (+++) Source : it can be either the ULPTIM input (IN1) or one of + the internal clock; (APB, LSE, LSI or MSI). + (+++) Prescaler: select the clock divider. + (++) UltraLowPowerClock : To be used only if the ULPTIM is selected + as counter clock source. + (+++) Polarity: polarity of the active edge for the counter unit + if the ULPTIM input is selected. + (+++) SampleTime: clock sampling time to configure the clock glitch + filter. + (++) Trigger: How the counter start. + (+++) Source: trigger can be software or one of the hardware triggers. + (+++) ActiveEdge : only for hardware trigger. + (+++) SampleTime : trigger sampling time to configure the trigger + glitch filter. + (++) OutputPolarity : 2 opposite polarities are possible. + (++) UpdateMode: specifies whether the update of the autoreload and + the compare values is done immediately or after the end of current + period. + (++) Input1Source: Source selected for input1 (GPIO or comparator output). + (++) Input2Source: Source selected for input2 (GPIO or comparator output). + Input2 is used only for encoder feature so is used only for LPTIM1 instance. + + (#)Six modes are available: + + (++) PWM Mode: To generate a PWM signal with specified period and pulse, + call HAL_LPTIM_PWM_Start() or HAL_LPTIM_PWM_Start_IT() for interruption + mode. + + (++) One Pulse Mode: To generate pulse with specified width in response + to a stimulus, call HAL_LPTIM_OnePulse_Start() or + HAL_LPTIM_OnePulse_Start_IT() for interruption mode. + + (++) Set once Mode: In this mode, the output changes the level (from + low level to high level if the output polarity is configured high, else + the opposite) when a compare match occurs. To start this mode, call + HAL_LPTIM_SetOnce_Start() or HAL_LPTIM_SetOnce_Start_IT() for + interruption mode. + + (++) Encoder Mode: To use the encoder interface call + HAL_LPTIM_Encoder_Start() or HAL_LPTIM_Encoder_Start_IT() for + interruption mode. Only available for LPTIM1 instance. + + (++) Time out Mode: an active edge on one selected trigger input rests + the counter. The first trigger event will start the timer, any + successive trigger event will reset the counter and the timer will + restart. To start this mode call HAL_LPTIM_TimeOut_Start_IT() or + HAL_LPTIM_TimeOut_Start_IT() for interruption mode. + + (++) Counter Mode: counter can be used to count external events on + the LPTIM Input1 or it can be used to count internal clock cycles. + To start this mode, call HAL_LPTIM_Counter_Start() or + HAL_LPTIM_Counter_Start_IT() for interruption mode. + + + (#) User can stop any process by calling the corresponding API: + HAL_LPTIM_Xxx_Stop() or HAL_LPTIM_Xxx_Stop_IT() if the process is + already started in interruption mode. + + (#) De-initialize the LPTIM peripheral using HAL_LPTIM_DeInit(). + + *** Callback registration *** + ============================================= + [..] + The compilation define USE_HAL_LPTIM_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + [..] + Use Function HAL_LPTIM_RegisterCallback() to register a callback. + HAL_LPTIM_RegisterCallback() takes as parameters the HAL peripheral handle, + the Callback ID and a pointer to the user callback function. + [..] + Use function HAL_LPTIM_UnRegisterCallback() to reset a callback to the + default weak function. + HAL_LPTIM_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + [..] + These functions allow to register/unregister following callbacks: + + (+) MspInitCallback : LPTIM Base Msp Init Callback. + (+) MspDeInitCallback : LPTIM Base Msp DeInit Callback. + (+) CompareMatchCallback : Compare match Callback. + (+) AutoReloadMatchCallback : Auto-reload match Callback. + (+) TriggerCallback : External trigger event detection Callback. + (+) CompareWriteCallback : Compare register write complete Callback. + (+) AutoReloadWriteCallback : Auto-reload register write complete Callback. + (+) DirectionUpCallback : Up-counting direction change Callback. + (+) DirectionDownCallback : Down-counting direction change Callback. + (+) UpdateEventCallback : Update event detection Callback. + (+) RepCounterWriteCallback : Repetition counter register write complete Callback. + + [..] + By default, after the Init and when the state is HAL_LPTIM_STATE_RESET + all interrupt callbacks are set to the corresponding weak functions: + examples HAL_LPTIM_TriggerCallback(), HAL_LPTIM_CompareMatchCallback(). + + [..] + Exception done for MspInit and MspDeInit functions that are reset to the legacy weak + functionalities in the Init/DeInit only when these callbacks are null + (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init/DeInit + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) + + [..] + Callbacks can be registered/unregistered in HAL_LPTIM_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_LPTIM_STATE_READY or HAL_LPTIM_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_LPTIM_RegisterCallback() before calling DeInit or Init function. + + [..] + When The compilation define USE_HAL_LPTIM_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup LPTIM LPTIM + * @brief LPTIM HAL module driver. + * @{ + */ + +#ifdef HAL_LPTIM_MODULE_ENABLED + +#if defined (LPTIM1) || defined (LPTIM2) || defined (LPTIM3) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup LPTIM_Private_Constants + * @{ + */ +#define TIMEOUT 1000UL /* Timeout is 1s */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static HAL_StatusTypeDef LPTIM_OC1_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig); +static HAL_StatusTypeDef LPTIM_OC2_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig); +static HAL_StatusTypeDef LPTIM_OC3_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig); +static HAL_StatusTypeDef LPTIM_OC4_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig); +static void LPTIM_IC1_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig); +static void LPTIM_IC2_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig); +static void LPTIM_IC3_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig); +static void LPTIM_IC4_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig); +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) +static void LPTIM_ResetCallback(LPTIM_HandleTypeDef *lptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ +static HAL_StatusTypeDef LPTIM_WaitForFlag(const LPTIM_HandleTypeDef *hlptim, uint32_t flag); +void LPTIM_DMAError(DMA_HandleTypeDef *hdma); +void LPTIM_DMACaptureCplt(DMA_HandleTypeDef *hdma); +void LPTIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma); +void LPTIM_DMAUpdateEventCplt(DMA_HandleTypeDef *hdma); +void LPTIM_DMAUpdateEventHalfCplt(DMA_HandleTypeDef *hdma); + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup LPTIM_Exported_Functions LPTIM Exported Functions + * @{ + */ + +/** @defgroup LPTIM_Exported_Functions_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the LPTIM according to the specified parameters in the + LPTIM_InitTypeDef and initialize the associated handle. + (+) DeInitialize the LPTIM peripheral. + (+) Initialize the LPTIM MSP. + (+) DeInitialize the LPTIM MSP. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the LPTIM according to the specified parameters in the + * LPTIM_InitTypeDef and initialize the associated handle. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Init(LPTIM_HandleTypeDef *hlptim) +{ + uint32_t tmpcfgr; + + /* Check the LPTIM handle allocation */ + if (hlptim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PERIOD(hlptim->Init.Period)); + + assert_param(IS_LPTIM_CLOCK_SOURCE(hlptim->Init.Clock.Source)); + assert_param(IS_LPTIM_CLOCK_PRESCALER(hlptim->Init.Clock.Prescaler)); + if ((hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_ULPTIM) + || (hlptim->Init.CounterSource == LPTIM_COUNTERSOURCE_EXTERNAL)) + { + assert_param(IS_LPTIM_CLOCK_POLARITY(hlptim->Init.UltraLowPowerClock.Polarity)); + assert_param(IS_LPTIM_CLOCK_SAMPLE_TIME(hlptim->Init.UltraLowPowerClock.SampleTime)); + } + assert_param(IS_LPTIM_TRG_SOURCE(hlptim->Init.Trigger.Source)); + if (hlptim->Init.Trigger.Source != LPTIM_TRIGSOURCE_SOFTWARE) + { + assert_param(IS_LPTIM_EXT_TRG_POLARITY(hlptim->Init.Trigger.ActiveEdge)); + assert_param(IS_LPTIM_TRIG_SAMPLE_TIME(hlptim->Init.Trigger.SampleTime)); + } + assert_param(IS_LPTIM_UPDATE_MODE(hlptim->Init.UpdateMode)); + assert_param(IS_LPTIM_COUNTER_SOURCE(hlptim->Init.CounterSource)); + assert_param(IS_LPTIM_REPETITION(hlptim->Init.RepetitionCounter)); + + if (hlptim->State == HAL_LPTIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hlptim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + LPTIM_ResetCallback(hlptim); + + if (hlptim->MspInitCallback == NULL) + { + hlptim->MspInitCallback = HAL_LPTIM_MspInit; + } + + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + hlptim->MspInitCallback(hlptim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + HAL_LPTIM_MspInit(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_REPOK); + + /* Set the repetition counter */ + __HAL_LPTIM_REPETITIONCOUNTER_SET(hlptim, hlptim->Init.RepetitionCounter); + + /* Wait for the completion of the write operation to the LPTIM_RCR register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_REPOK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_ARROK); + + /* Set LPTIM Period */ + __HAL_LPTIM_AUTORELOAD_SET(hlptim, hlptim->Init.Period); + + /* Wait for the completion of the write operation to the LPTIM_ARR register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_ARROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Get the LPTIMx CFGR value */ + tmpcfgr = hlptim->Instance->CFGR; + + if ((hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_ULPTIM) + || (hlptim->Init.CounterSource == LPTIM_COUNTERSOURCE_EXTERNAL)) + { + tmpcfgr &= (uint32_t)(~(LPTIM_CFGR_CKPOL | LPTIM_CFGR_CKFLT)); + } + if (hlptim->Init.Trigger.Source != LPTIM_TRIGSOURCE_SOFTWARE) + { + tmpcfgr &= (uint32_t)(~(LPTIM_CFGR_TRGFLT | LPTIM_CFGR_TRIGSEL)); + } + + /* Clear CKSEL, PRESC, TRIGEN, TRGFLT, WAVPOL, PRELOAD & COUNTMODE bits */ + tmpcfgr &= (uint32_t)(~(LPTIM_CFGR_CKSEL | LPTIM_CFGR_TRIGEN | LPTIM_CFGR_PRELOAD | + LPTIM_CFGR_PRESC | LPTIM_CFGR_COUNTMODE)); + + /* Set initialization parameters */ + tmpcfgr |= (hlptim->Init.Clock.Source | + hlptim->Init.Clock.Prescaler | + hlptim->Init.UpdateMode | + hlptim->Init.CounterSource); + + /* Glitch filters for internal triggers and external inputs are configured + * only if an internal clock source is provided to the LPTIM + */ + if (hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC) + { + tmpcfgr |= (hlptim->Init.Trigger.SampleTime | + hlptim->Init.UltraLowPowerClock.SampleTime); + } + + /* Configure LPTIM external clock polarity and digital filter */ + if ((hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_ULPTIM) + || (hlptim->Init.CounterSource == LPTIM_COUNTERSOURCE_EXTERNAL)) + { + tmpcfgr |= (hlptim->Init.UltraLowPowerClock.Polarity | + hlptim->Init.UltraLowPowerClock.SampleTime); + } + + /* Configure LPTIM external trigger */ + if (hlptim->Init.Trigger.Source != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Enable External trigger and set the trigger source */ + tmpcfgr |= (hlptim->Init.Trigger.Source | + hlptim->Init.Trigger.ActiveEdge | + hlptim->Init.Trigger.SampleTime); + } + + /* Write to LPTIMx CFGR */ + hlptim->Instance->CFGR = tmpcfgr; + + /* Configure LPTIM input sources */ +#if defined(LPTIM3) + if ((hlptim->Instance == LPTIM1) || (hlptim->Instance == LPTIM3)) +#else + if (hlptim->Instance == LPTIM1) +#endif /* LPTIM3 */ + { + /* Check LPTIM Input1 and Input2 sources */ + assert_param(IS_LPTIM_INPUT1_SOURCE(hlptim->Instance, hlptim->Init.Input1Source)); + assert_param(IS_LPTIM_INPUT2_SOURCE(hlptim->Instance, hlptim->Init.Input2Source)); + + /* Configure LPTIM Input1 and Input2 sources */ + hlptim->Instance->CFGR2 = (hlptim->Init.Input1Source | hlptim->Init.Input2Source); + } + else + { + if (hlptim->Instance == LPTIM2) + { + /* Check LPTIM Input1 source */ + assert_param(IS_LPTIM_INPUT1_SOURCE(hlptim->Instance, hlptim->Init.Input1Source)); + + /* Configure LPTIM Input1 source */ + hlptim->Instance->CFGR2 = hlptim->Init.Input1Source; + } + } + + /* Initialize the LPTIM channels state */ + LPTIM_CHANNEL_STATE_SET_ALL(hlptim, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitialize the LPTIM peripheral. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_DeInit(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the LPTIM handle allocation */ + if (hlptim == NULL) + { + return HAL_ERROR; + } + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + __HAL_LPTIM_ENABLE(hlptim); + if (IS_LPTIM_CC2_INSTANCE(hlptim->Instance)) + { + hlptim->Instance->CCMR1 = 0; + } + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP1OK); + + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_1, 0); + /* Wait for the completion of the write operation to the LPTIM_CCR1 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP1OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + if (IS_LPTIM_CC2_INSTANCE(hlptim->Instance)) + { + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP2OK); + + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_2, 0); + /* Wait for the completion of the write operation to the LPTIM_CCR2 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP2OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + if (IS_LPTIM_CC3_INSTANCE(hlptim->Instance)) + { + hlptim->Instance->CCMR2 = 0; + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP3OK); + + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_3, 0); + /* Wait for the completion of the write operation to the LPTIM_CCR3 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP3OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + if (IS_LPTIM_CC4_INSTANCE(hlptim->Instance)) + { + hlptim->Instance->CCMR2 = 0; + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP4OK); + + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_4, 0); + /* Wait for the completion of the write operation to the LPTIM_CCR4 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP4OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_ARROK); + + __HAL_LPTIM_AUTORELOAD_SET(hlptim, 0); + + /* Wait for the completion of the write operation to the LPTIM_ARR register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_ARROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the LPTIM Peripheral Clock */ + __HAL_LPTIM_DISABLE(hlptim); + + hlptim->Instance->CFGR = 0; + hlptim->Instance->CFGR2 = 0; + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + if (hlptim->MspDeInitCallback == NULL) + { + hlptim->MspDeInitCallback = HAL_LPTIM_MspDeInit; + } + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + hlptim->MspDeInitCallback(hlptim); +#else + /* DeInit the low level hardware: CLOCK, NVIC.*/ + HAL_LPTIM_MspDeInit(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + + /* Change the LPTIM channels state */ + LPTIM_CHANNEL_STATE_SET_ALL(hlptim, HAL_LPTIM_CHANNEL_STATE_RESET); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hlptim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initialize the LPTIM MSP. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_MspInit(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize LPTIM MSP. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_MspDeInit(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LPTIM_Exported_Functions_Group2 LPTIM Start-Stop operation functions + * @brief Start-Stop operation functions. + * +@verbatim + ============================================================================== + ##### LPTIM Start Stop operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start the PWM mode. + (+) Stop the PWM mode. + (+) Start the One pulse mode. + (+) Stop the One pulse mode. + (+) Start the Set once mode. + (+) Stop the Set once mode. + (+) Start the Encoder mode. + (+) Stop the Encoder mode. + (+) Start the Timeout mode. + (+) Stop the Timeout mode. + (+) Start the Counter mode. + (+) Stop the Counter mode. + + +@endverbatim + * @{ + */ + +/** + * @brief Start the LPTIM PWM generation. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Reset WAVE bit to set PWM mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Enable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the LPTIM PWM generation. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Stop(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable LPTIM signal from the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the LPTIM PWM generation in interrupt mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Reset WAVE bit to set PWM mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP1OK | LPTIM_IT_CC1 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_2: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP2OK | LPTIM_IT_CC2 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_3: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP3OK | LPTIM_IT_CC3 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_4: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP4OK | LPTIM_IT_CC4 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Enable external trigger interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the LPTIM PWM generation in interrupt mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Stop_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable LPTIM signal from the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP1OK | LPTIM_IT_CC1 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_2: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP2OK | LPTIM_IT_CC2 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_3: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP3OK | LPTIM_IT_CC3 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_4: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP4OK | LPTIM_IT_CC4 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Enable external trigger interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the LPTIM PWM generation in DMA mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @param pData The destination Buffer address + * @param Length The length of data to be transferred from LPTIM peripheral to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Start_DMA(LPTIM_HandleTypeDef *hlptim, uint32_t Channel, const uint32_t *pData, + uint32_t Length) +{ + DMA_HandleTypeDef *hdma; + + /* Check the parameters */ + assert_param(IS_LPTIM_DMA_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Reset WAVE bit to set PWM mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Enable update event DMA request */ + __HAL_LPTIM_ENABLE_DMA(hlptim, LPTIM_DMA_UPDATE); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Set the DMA update event callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC1]->XferCpltCallback = LPTIM_DMAUpdateEventCplt; + hlptim->hdma[LPTIM_DMA_ID_CC1]->XferHalfCpltCallback = LPTIM_DMAUpdateEventHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC1]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC1]; + if (HAL_DMA_Start_IT(hdma, (uint32_t)pData, (uint32_t)&hlptim->Instance->CCR1, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + case LPTIM_CHANNEL_2: + /* Set the DMA update event callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC2]->XferCpltCallback = LPTIM_DMAUpdateEventCplt; + hlptim->hdma[LPTIM_DMA_ID_CC2]->XferHalfCpltCallback = LPTIM_DMAUpdateEventHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC2]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC2]; + if (HAL_DMA_Start_IT(hdma, (uint32_t)pData, (uint32_t)&hlptim->Instance->CCR2, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + case LPTIM_CHANNEL_3: + /* Set the DMA update event callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC3]->XferCpltCallback = LPTIM_DMAUpdateEventCplt; + hlptim->hdma[LPTIM_DMA_ID_CC3]->XferHalfCpltCallback = LPTIM_DMAUpdateEventHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC3]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC3]; + if (HAL_DMA_Start_IT(hdma, (uint32_t)pData, (uint32_t)&hlptim->Instance->CCR3, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + case LPTIM_CHANNEL_4: + /* Set the DMA update event callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC4]->XferCpltCallback = LPTIM_DMAUpdateEventCplt; + hlptim->hdma[LPTIM_DMA_ID_CC4]->XferHalfCpltCallback = LPTIM_DMAUpdateEventHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC4]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC4]; + if (HAL_DMA_Start_IT(hdma, (uint32_t)pData, (uint32_t)&hlptim->Instance->CCR4, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + default: + break; + } + + /* Enable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the LPTIM PWM generation in DMA mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_PWM_Stop_DMA(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_DMA_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable update event DMA request */ + __HAL_LPTIM_DISABLE_DMA(hlptim, LPTIM_DMA_UPDATE); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Disable update event DMA request */ + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC1]); + break; + case LPTIM_CHANNEL_2: + /* Disable update event DMA request */ + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC2]); + break; + case LPTIM_CHANNEL_3: + /* Disable update event DMA request */ + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC3]); + break; + case LPTIM_CHANNEL_4: + /* Disable update event DMA request */ + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC4]); + break; + default: + break; + } + + /* Disable LPTIM signal from the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the LPTIM One pulse generation. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Reset WAVE bit to set one pulse mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Enable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Start timer in single (one shot) mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the LPTIM One pulse generation. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Stop(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the LPTIM One pulse generation in interrupt mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Reset WAVE bit to set one pulse mode */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP1OK | LPTIM_IT_CC1 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_2: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP2OK | LPTIM_IT_CC2 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_3: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP3OK | LPTIM_IT_CC3 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_4: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP4OK | LPTIM_IT_CC4 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + /* Enable external trigger interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Enable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Start timer in single (one shot) mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the LPTIM One pulse generation in interrupt mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OnePulse_Stop_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP1OK | LPTIM_IT_CC1 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_2: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP2OK | LPTIM_IT_CC2 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_3: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP3OK | LPTIM_IT_CC3 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_4: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP4OK | LPTIM_IT_CC4 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | + LPTIM_IT_UPDATE); + break; + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + /* Enable external trigger interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the LPTIM in Set once mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Set WAVE bit to enable the set once mode */ + hlptim->Instance->CFGR |= LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Enable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Start timer in single (one shot) mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the LPTIM Set once mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Stop(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the LPTIM Set once mode in interrupt mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Set WAVE bit to enable the set once mode */ + hlptim->Instance->CFGR |= LPTIM_CFGR_WAVE; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP1OK | LPTIM_IT_CC1 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_2: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP2OK | LPTIM_IT_CC2 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_3: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP3OK | LPTIM_IT_CC3 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_UPDATE); + break; + case LPTIM_CHANNEL_4: + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CMP4OK | LPTIM_IT_CC4 | LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_UPDATE); + break; + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + /* Enable external trigger interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Enable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Start timer in single (one shot) mode */ + __HAL_LPTIM_START_SINGLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the LPTIM Set once mode in interrupt mode. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_SetOnce_Stop_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable LPTIM signal on the corresponding output pin */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP1OK | LPTIM_IT_CC1 | LPTIM_IT_ARROK | LPTIM_IT_ARRM); + break; + case LPTIM_CHANNEL_2: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP2OK | LPTIM_IT_CC2 | LPTIM_IT_ARROK | LPTIM_IT_ARRM); + break; + case LPTIM_CHANNEL_3: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP3OK | LPTIM_IT_CC3 | LPTIM_IT_ARROK | LPTIM_IT_ARRM); + break; + case LPTIM_CHANNEL_4: + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CMP4OK | LPTIM_IT_CC4 | LPTIM_IT_ARROK | LPTIM_IT_ARRM); + break; + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* If external trigger source is used, then enable external trigger interrupt */ + if ((hlptim->Init.Trigger.Source) != LPTIM_TRIGSOURCE_SOFTWARE) + { + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + /* Enable external trigger interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_EXTTRIG); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the Encoder interface. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Start(LPTIM_HandleTypeDef *hlptim) +{ + uint32_t tmpcfgr; + + /* Check the parameters */ + assert_param(IS_LPTIM_ENCODER_INTERFACE_INSTANCE(hlptim->Instance)); + assert_param(hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC); + assert_param(hlptim->Init.Clock.Prescaler == LPTIM_PRESCALER_DIV1); + assert_param(IS_LPTIM_CLOCK_POLARITY(hlptim->Init.UltraLowPowerClock.Polarity)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Get the LPTIMx CFGR value */ + tmpcfgr = hlptim->Instance->CFGR; + + /* Clear CKPOL bits */ + tmpcfgr &= (uint32_t)(~LPTIM_CFGR_CKPOL); + + /* Set Input polarity */ + tmpcfgr |= hlptim->Init.UltraLowPowerClock.Polarity; + + /* Write to LPTIMx CFGR */ + hlptim->Instance->CFGR = tmpcfgr; + + /* Set ENC bit to enable the encoder interface */ + hlptim->Instance->CFGR |= LPTIM_CFGR_ENC; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the Encoder interface. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_ENCODER_INTERFACE_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset ENC bit to disable the encoder interface */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_ENC; + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the Encoder interface in interrupt mode. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Start_IT(LPTIM_HandleTypeDef *hlptim) +{ + uint32_t tmpcfgr; + + /* Check the parameters */ + assert_param(IS_LPTIM_ENCODER_INTERFACE_INSTANCE(hlptim->Instance)); + assert_param(hlptim->Init.Clock.Source == LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC); + assert_param(hlptim->Init.Clock.Prescaler == LPTIM_PRESCALER_DIV1); + assert_param(IS_LPTIM_CLOCK_POLARITY(hlptim->Init.UltraLowPowerClock.Polarity)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Configure edge sensitivity for encoder mode */ + /* Get the LPTIMx CFGR value */ + tmpcfgr = hlptim->Instance->CFGR; + + /* Clear CKPOL bits */ + tmpcfgr &= (uint32_t)(~LPTIM_CFGR_CKPOL); + + /* Set Input polarity */ + tmpcfgr |= hlptim->Init.UltraLowPowerClock.Polarity; + + /* Write to LPTIMx CFGR */ + hlptim->Instance->CFGR = tmpcfgr; + + /* Set ENC bit to enable the encoder interface */ + hlptim->Instance->CFGR |= LPTIM_CFGR_ENC; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Enable "switch to up/down direction" interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_UP | LPTIM_IT_DOWN); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the Encoder interface in interrupt mode. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Encoder_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_ENCODER_INTERFACE_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset ENC bit to disable the encoder interface */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_ENC; + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Disable "switch to down/up direction" interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_UP | LPTIM_IT_DOWN); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the Timeout function. + * @note The first trigger event will start the timer, any successive + * trigger event will reset the counter and the timer restarts. + * @param hlptim LPTIM handle + * @param Timeout Specifies the TimeOut value to reset the counter. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Timeout) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PULSE(Timeout)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR |= LPTIM_CFGR_TIMOUT; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP1OK); + + /* Load the Timeout value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_1, Timeout); + + /* Wait for the completion of the write operation to the LPTIM_CCR1 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP1OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the Timeout function. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_TIMOUT; + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the Timeout function in interrupt mode. + * @note The first trigger event will start the timer, any successive + * trigger event will reset the counter and the timer restarts. + * @param hlptim LPTIM handle + * @param Timeout Specifies the TimeOut value to reset the counter. + * This parameter must be a value between 0x0000 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Timeout) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_PULSE(Timeout)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR |= LPTIM_CFGR_TIMOUT; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Enable Compare match CH1 interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CC1); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP1OK); + + /* Load the Timeout value in the compare register */ + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_1, Timeout); + + /* Wait for the completion of the write operation to the LPTIM_CCR1 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP1OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the Timeout function in interrupt mode. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_TimeOut_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Reset TIMOUT bit to enable the timeout function */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_TIMOUT; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Disable Compare match CH1 interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CC1); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the Counter mode. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Start(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* If clock source is not ULPTIM clock and counter source is external, then it must not be prescaled */ + if ((hlptim->Init.Clock.Source != LPTIM_CLOCKSOURCE_ULPTIM) + && (hlptim->Init.CounterSource == LPTIM_COUNTERSOURCE_EXTERNAL)) + { + /* Check if clock is prescaled */ + assert_param(IS_LPTIM_CLOCK_PRESCALERDIV1(hlptim->Init.Clock.Prescaler)); + /* Set clock prescaler to 0 */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_PRESC; + } + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the Counter mode. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Stop(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the Counter mode in interrupt mode. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Start_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* If clock source is not ULPTIM clock and counter source is external, then it must not be prescaled */ + if ((hlptim->Init.Clock.Source != LPTIM_CLOCKSOURCE_ULPTIM) + && (hlptim->Init.CounterSource == LPTIM_COUNTERSOURCE_EXTERNAL)) + { + /* Check if clock is prescaled */ + assert_param(IS_LPTIM_CLOCK_PRESCALERDIV1(hlptim->Init.Clock.Prescaler)); + /* Set clock prescaler to 0 */ + hlptim->Instance->CFGR &= ~LPTIM_CFGR_PRESC; + } + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Enable interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | LPTIM_IT_UPDATE); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the Counter mode in interrupt mode. + * @param hlptim LPTIM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_Counter_Stop_IT(LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DIEROK); + + /* Disable interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_ARROK | LPTIM_IT_ARRM | LPTIM_IT_REPOK | LPTIM_IT_UPDATE); + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the LPTIM Input Capture measurement. + * @param hlptim LPTIM Input Capture handle + * @param Channel LPTIM Channels to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: TIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: TIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: TIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_IC_Start(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INPUT_CAPTURE_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Enable capture */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM Input Capture measurement. + * @param hlptim LPTIM Input Capture handle + * @param Channel LPTIM Channels to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: TIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: TIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: TIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_IC_Stop(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INPUT_CAPTURE_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Disable capture */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the LPTIM Input Capture measurement in interrupt mode. + * @param hlptim LPTIM Input Capture handle + * @param Channel LPTIM Channels to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: TIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: TIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: TIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_IC_Start_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INPUT_CAPTURE_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Enable Capture/Compare 1 interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CC1); + break; + case LPTIM_CHANNEL_2: + /* Disable Capture/Compare 2 interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CC2); + break; + case LPTIM_CHANNEL_3: + /* Enable Capture/Compare 3 interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CC3); + break; + case LPTIM_CHANNEL_4: + /* Disable Capture/Compare 4 interrupt */ + __HAL_LPTIM_ENABLE_IT(hlptim, LPTIM_IT_CC4); + break; + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Enable capture */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM Input Capture measurement in interrupt mode. + * @param hlptim LPTIM Input Capture handle + * @param Channel LPTIM Channels to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: TIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: TIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: TIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_IC_Stop_IT(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_LPTIM_INPUT_CAPTURE_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Disable Capture/Compare 1 interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CC1); + break; + case LPTIM_CHANNEL_2: + /* Disable Capture/Compare 2 interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CC2); + break; + case LPTIM_CHANNEL_3: + /* Disable Capture/Compare 3 interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CC3); + break; + case LPTIM_CHANNEL_4: + /* Disable Capture/Compare 4 interrupt */ + __HAL_LPTIM_DISABLE_IT(hlptim, LPTIM_IT_CC4); + break; + default: + status = HAL_ERROR; + break; + } + + if (status != HAL_ERROR) + { + /* Disable capture */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the LPTIM Input Capture measurement in DMA mode. + * @param hlptim LPTIM Input Capture handle + * @param Channel LPTIM Channels to be enabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: TIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: TIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: TIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The destination Buffer address + * @param Length The length of data to be transferred from LPTIM peripheral to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_IC_Start_DMA(LPTIM_HandleTypeDef *hlptim, uint32_t Channel, uint32_t *pData, + uint32_t Length) +{ + DMA_HandleTypeDef *hdma; + + /* Check the parameters */ + assert_param(IS_LPTIM_DMA_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + + /* Check LPTIM channel state */ + if (LPTIM_CHANNEL_STATE_GET(hlptim, Channel) != HAL_LPTIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_BUSY); + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Set the DMA capture callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC1]->XferCpltCallback = LPTIM_DMACaptureCplt; + hlptim->hdma[LPTIM_DMA_ID_CC1]->XferHalfCpltCallback = LPTIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC1]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC1]; + if (HAL_DMA_Start_IT(hdma, (uint32_t)&hlptim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable Capture/Compare 1 DMA request */ + __HAL_LPTIM_ENABLE_DMA(hlptim, LPTIM_DMA_CC1); + break; + + case LPTIM_CHANNEL_2: + /* Set the DMA capture callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC2]->XferCpltCallback = LPTIM_DMACaptureCplt; + hlptim->hdma[LPTIM_DMA_ID_CC2]->XferHalfCpltCallback = LPTIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC2]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC2]; + if (HAL_DMA_Start_IT(hdma, (uint32_t)&hlptim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable Capture/Compare 2 DMA request */ + __HAL_LPTIM_ENABLE_DMA(hlptim, LPTIM_DMA_CC2); + break; + case LPTIM_CHANNEL_3: + /* Set the DMA capture callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC3]->XferCpltCallback = LPTIM_DMACaptureCplt; + hlptim->hdma[LPTIM_DMA_ID_CC3]->XferHalfCpltCallback = LPTIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC3]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC3]; + if ((HAL_DMA_Start_IT(hdma, (uint32_t)&hlptim->Instance->CCR3, (uint32_t)pData, Length)) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable Capture/Compare 3 DMA request */ + __HAL_LPTIM_ENABLE_DMA(hlptim, LPTIM_DMA_CC3); + break; + + case LPTIM_CHANNEL_4: + /* Set the DMA capture callbacks */ + hlptim->hdma[LPTIM_DMA_ID_CC4]->XferCpltCallback = LPTIM_DMACaptureCplt; + hlptim->hdma[LPTIM_DMA_ID_CC4]->XferHalfCpltCallback = LPTIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + hlptim->hdma[LPTIM_DMA_ID_CC4]->XferErrorCallback = LPTIM_DMAError; + + /* Enable the DMA Channel */ + hdma = hlptim->hdma[LPTIM_DMA_ID_CC4]; + if (HAL_DMA_Start_IT(hdma, (uint32_t)&hlptim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable Capture/Compare 4 DMA request */ + __HAL_LPTIM_ENABLE_DMA(hlptim, LPTIM_DMA_CC4); + break; + + default: + break; + } + + /* Wait for the completion of the write operation to the LPTIM_DIER register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_DIEROK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Start timer in continuous mode */ + __HAL_LPTIM_START_CONTINUOUS(hlptim); + + /* Enable capture */ + __HAL_LPTIM_CAPTURE_COMPARE_ENABLE(hlptim, Channel); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the LPTIM Input Capture measurement in DMA mode. + * @param hlptim LPTIM Input Capture handle + * @param Channel LPTIM Channels to be disabled + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: TIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: TIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: TIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_IC_Stop_DMA(LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_LPTIM_DMA_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_BUSY; + + switch (Channel) + { + case LPTIM_CHANNEL_1: + /* Disable Capture/Compare 1 DMA request */ + __HAL_LPTIM_DISABLE_DMA(hlptim, LPTIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC1]); + break; + + case LPTIM_CHANNEL_2: + /* Disable Capture/Compare 2 DMA request */ + __HAL_LPTIM_DISABLE_DMA(hlptim, LPTIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC2]); + break; + + case LPTIM_CHANNEL_3: + /* Disable Capture/Compare 3 DMA request */ + __HAL_LPTIM_DISABLE_DMA(hlptim, LPTIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC3]); + break; + + case LPTIM_CHANNEL_4: + /* Disable Capture/Compare 4 DMA request */ + __HAL_LPTIM_DISABLE_DMA(hlptim, LPTIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(hlptim->hdma[LPTIM_DMA_ID_CC4]); + break; + default: + status = HAL_ERROR; + break; + } + + if (status != HAL_ERROR) + { + /* Disable capture */ + __HAL_LPTIM_CAPTURE_COMPARE_DISABLE(hlptim, Channel); + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Set the LPTIM channel state */ + LPTIM_CHANNEL_STATE_SET(hlptim, Channel, HAL_LPTIM_CHANNEL_STATE_READY); + + /* Set the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + } + + /* Return function status */ + return status; +} +/** + * @} + */ + +/** @defgroup LPTIM_Exported_Functions_Group3 LPTIM Read operation functions + * @brief Read operation functions. + * +@verbatim + ============================================================================== + ##### LPTIM Read operation functions ##### + ============================================================================== +[..] This section provides LPTIM Reading functions. + (+) Read the counter value. + (+) Read the period (Auto-reload) value. + (+) Read the pulse (Compare)value. +@endverbatim + * @{ + */ + +/** + * @brief Return the current counter value. + * @param hlptim LPTIM handle + * @retval Counter value. + */ +uint32_t HAL_LPTIM_ReadCounter(const LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + return (hlptim->Instance->CNT); +} + +/** + * @brief Return the current Autoreload (Period) value. + * @param hlptim LPTIM handle + * @retval Autoreload value. + */ +uint32_t HAL_LPTIM_ReadAutoReload(const LPTIM_HandleTypeDef *hlptim) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(hlptim->Instance)); + + return (hlptim->Instance->ARR); +} + +/** + * @brief Return the current Compare (Pulse) value. + * @param hlptim LPTIM handle + * @param Channel LPTIM Channel to be selected + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval Compare value. + */ +uint32_t HAL_LPTIM_ReadCapturedValue(const LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + uint32_t tmpccr; + + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + + switch (Channel) + { + case LPTIM_CHANNEL_1: + tmpccr = hlptim->Instance->CCR1; + break; + case LPTIM_CHANNEL_2: + tmpccr = hlptim->Instance->CCR2; + break; + case LPTIM_CHANNEL_3: + tmpccr = hlptim->Instance->CCR3; + break; + case LPTIM_CHANNEL_4: + tmpccr = hlptim->Instance->CCR4; + break; + default: + tmpccr = 0; + break; + } + return tmpccr; +} + +/** + * @brief LPTimer Input Capture Get Offset(in counter step unit) + * @note The real capture value corresponding to the input capture trigger can be calculated using + * the formula hereafter : Real capture value = captured(LPTIM_CCRx) - offset + * The Offset value is depending on the glitch filter value for the channel + * and the value of the prescaler for the kernel clock. + * Please check Errata Sheet V1_8 for more details under "variable latency + * on input capture channel" section. + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param Channel This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @retval The offset value + */ +uint8_t HAL_LPTIM_IC_GetOffset(const LPTIM_HandleTypeDef *hlptim, uint32_t Channel) +{ + + uint8_t offset ; + uint32_t prescaler; + uint32_t filter ; + + /* Get prescaler value */ + prescaler = LL_LPTIM_GetPrescaler(hlptim->Instance); + + /* Get filter value */ + filter = LL_LPTIM_IC_GetFilter(hlptim->Instance, Channel); + + /* Get offset value */ + offset = LL_LPTIM_IC_GET_OFFSET(prescaler, filter); + + /* return offset value */ + return offset; +} + +/** + * @} + */ +/** @defgroup LPTIM_Exported_Functions_Group5 LPTIM Config function + * @brief Config channel + * +@verbatim + ============================================================================== + ##### LPTIM Config function ##### + ============================================================================== +[..] This section provides LPTIM Config function. + (+) Configure channel: Output Compare mode, Period, Polarity. +@endverbatim + * @{ + */ + +/** + * @brief + * @param hlptim LPTIM handle + * @param sConfig The output configuration structure + * @param Channel LPTIM Channel to be configured + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @note Successive calls to HAL_LPTIM_OC_ConfigChannel can only be performed + * after a delay that must be greater or equal than the value of + * (PRESC x 3) kernel clock cycles, PRESC[2:0] being the clock decimal + * division factor (1, 2, 4, ..., 128). Any successive call violating + * this delay, leads to unpredictable results. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_OC_ConfigChannel(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig, + uint32_t Channel) +{ + HAL_StatusTypeDef status; + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + assert_param(IS_LPTIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_LPTIM_PULSE(sConfig->Pulse)); + + hlptim->State = HAL_LPTIM_STATE_BUSY; + + switch (Channel) + { + case LPTIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC1_INSTANCE(hlptim->Instance)); + + /* Configure the LPTIM Channel 1 in Output Compare */ + status = LPTIM_OC1_SetConfig(hlptim, sConfig); + if (status != HAL_OK) + { + return status; + } + break; + } + case LPTIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC2_INSTANCE(hlptim->Instance)); + + /* Configure the LPTIM Channel 2 in Output Compare */ + status = LPTIM_OC2_SetConfig(hlptim, sConfig); + if (status != HAL_OK) + { + return status; + } + break; + } + + case LPTIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC3_INSTANCE(hlptim->Instance)); + + /* Configure the LPTIM Channel 3 in Output Compare */ + status = LPTIM_OC3_SetConfig(hlptim, sConfig); + if (status != HAL_OK) + { + return status; + } + break; + } + case LPTIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC4_INSTANCE(hlptim->Instance)); + + /* Configure the LPTIM Channel 4 in Output Compare */ + status = LPTIM_OC4_SetConfig(hlptim, sConfig); + if (status != HAL_OK) + { + return status; + } + break; + } + default: + break; + } + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief + * @param hlptim LPTIM handle + * @param sConfig The input configuration structure + * @param Channel LPTIM Channel to be configured + * This parameter can be one of the following values: + * @arg LPTIM_CHANNEL_1: LPTIM Channel 1 selected + * @arg LPTIM_CHANNEL_2: LPTIM Channel 2 selected + * @arg LPTIM_CHANNEL_3: LPTIM Channel 3 selected + * @arg LPTIM_CHANNEL_4: LPTIM Channel 4 selected + * @note Successive calls to HAL_LPTIM_IC_ConfigChannel can only be performed + * after a delay that must be greater or equal than the value of + * (PRESC x 3) kernel clock cycles, PRESC[2:0] being the clock decimal + * division factor (1, 2, 4, ..., 128). Any successive call violating + * this delay, leads to unpredictable results. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LPTIM_IC_ConfigChannel(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig, + uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_LPTIM_CCX_INSTANCE(hlptim->Instance, Channel)); + assert_param(IS_LPTIM_IC_PRESCALER(sConfig->ICPrescaler)); + assert_param(IS_LPTIM_IC_POLARITY(sConfig->ICPolarity)); + assert_param(IS_LPTIM_IC_FILTER(sConfig->ICFilter)); + + hlptim->State = HAL_LPTIM_STATE_BUSY; + + switch (Channel) + { + case LPTIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC1_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_IC1_SOURCE(hlptim->Instance, sConfig->ICInputSource)); + + /* Configure the LPTIM Channel 1 in Input Capture */ + LPTIM_IC1_SetConfig(hlptim, sConfig); + break; + } + case LPTIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC2_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_IC2_SOURCE(hlptim->Instance, sConfig->ICInputSource)); + + /* Configure the LPTIM Channel 2 in Input Capture */ + LPTIM_IC2_SetConfig(hlptim, sConfig); + break; + } + case LPTIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC3_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_IC3_SOURCE(hlptim->Instance, sConfig->ICInputSource)); + + /* Configure the LPTIM Channel 3 in Input Capture */ + LPTIM_IC3_SetConfig(hlptim, sConfig); + break; + } + case LPTIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_LPTIM_CC4_INSTANCE(hlptim->Instance)); + assert_param(IS_LPTIM_IC4_SOURCE(hlptim->Instance, sConfig->ICInputSource)); + + /* Configure the LPTIM Channel 4 in Input Capture */ + LPTIM_IC4_SetConfig(hlptim, sConfig); + break; + } + default: + break; + } + + /* Change the LPTIM state */ + hlptim->State = HAL_LPTIM_STATE_READY; + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup LPTIM_Exported_Functions_Group4 LPTIM IRQ handler and callbacks + * @brief LPTIM IRQ handler. + * +@verbatim + ============================================================================== + ##### LPTIM IRQ handler and callbacks ##### + ============================================================================== +[..] This section provides LPTIM IRQ handler and callback functions called within + the IRQ handler: + (+) LPTIM interrupt request handler + (+) Compare match Callback + (+) Auto-reload match Callback + (+) External trigger event detection Callback + (+) Compare register write complete Callback + (+) Auto-reload register write complete Callback + (+) Up-counting direction change Callback + (+) Down-counting direction change Callback + +@endverbatim + * @{ + */ + +/** + * @brief Handle LPTIM interrupt request. + * @param hlptim LPTIM handle + * @retval None + */ +void HAL_LPTIM_IRQHandler(LPTIM_HandleTypeDef *hlptim) +{ + /* Capture Compare 1 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC1) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC1) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC1); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_1; + + /* Input capture event */ + if ((hlptim->Instance->CCMR1 & LPTIM_CCMR1_CC1SEL) != 0x00U) + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_CaptureCallback(hlptim); +#else + HAL_LPTIM_IC_CaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->CompareMatchCallback(hlptim); +#else + HAL_LPTIM_CompareMatchCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Capture Compare 2 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC2) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC2) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC2); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_2; + + /* Input capture event */ + if ((hlptim->Instance->CCMR1 & LPTIM_CCMR1_CC2SEL) != 0x00U) + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_CaptureCallback(hlptim); +#else + HAL_LPTIM_IC_CaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->CompareMatchCallback(hlptim); +#else + HAL_LPTIM_CompareMatchCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Capture Compare 3 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC3) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC3) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC3); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_3; + + /* Input capture event */ + if ((hlptim->Instance->CCMR2 & LPTIM_CCMR2_CC3SEL) != 0x00U) + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_CaptureCallback(hlptim); +#else + HAL_LPTIM_IC_CaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->CompareMatchCallback(hlptim); +#else + HAL_LPTIM_CompareMatchCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Capture Compare 4 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC4) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC4) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC4); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_4; + + /* Input capture event */ + if ((hlptim->Instance->CCMR2 & LPTIM_CCMR2_CC4SEL) != 0x00U) + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_CaptureCallback(hlptim); +#else + HAL_LPTIM_IC_CaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->CompareMatchCallback(hlptim); +#else + HAL_LPTIM_CompareMatchCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Over Capture 1 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC1O) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC1O) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC1O); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_1; + + /* Over capture event */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_OverCaptureCallback(hlptim); +#else + HAL_LPTIM_IC_OverCaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Over Capture 2 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC2O) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC2O) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC2O); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_2; + + /* Over capture event */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_OverCaptureCallback(hlptim); +#else + HAL_LPTIM_IC_OverCaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Over Capture 3 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC3O) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC3O) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC3O); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_3; + + /* Over capture event */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_OverCaptureCallback(hlptim); +#else + HAL_LPTIM_IC_OverCaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Over Capture 4 interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CC4O) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_FLAG_CC4O) != RESET) + { + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CC4O); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_4; + + /* Over capture event */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_OverCaptureCallback(hlptim); +#else + HAL_LPTIM_IC_OverCaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; + } + } + + /* Autoreload match interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_ARRM) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_ARRM) != RESET) + { + /* Clear Autoreload match flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_ARRM); + + /* Autoreload match Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->AutoReloadMatchCallback(hlptim); +#else + HAL_LPTIM_AutoReloadMatchCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Trigger detected interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_EXTTRIG) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_EXTTRIG) != RESET) + { + /* Clear Trigger detected flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_EXTTRIG); + + /* Trigger detected callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->TriggerCallback(hlptim); +#else + HAL_LPTIM_TriggerCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Compare write interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CMP1OK) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_CMP1OK) != RESET) + { + /* Clear Compare write flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP1OK); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_1; + /* Compare write Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->CompareWriteCallback(hlptim); +#else + HAL_LPTIM_CompareWriteCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Compare write interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_CMP2OK) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_CMP2OK) != RESET) + { + /* Clear Compare write flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP2OK); + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_2; + /* Compare write Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->CompareWriteCallback(hlptim); +#else + HAL_LPTIM_CompareWriteCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Autoreload write interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_ARROK) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_ARROK) != RESET) + { + /* Clear Autoreload write flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_ARROK); + + /* Autoreload write Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->AutoReloadWriteCallback(hlptim); +#else + HAL_LPTIM_AutoReloadWriteCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Direction counter changed from Down to Up interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_UP) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_UP) != RESET) + { + /* Clear Direction counter changed from Down to Up flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_UP); + + /* Direction counter changed from Down to Up Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->DirectionUpCallback(hlptim); +#else + HAL_LPTIM_DirectionUpCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Direction counter changed from Up to Down interrupt */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_DOWN) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_DOWN) != RESET) + { + /* Clear Direction counter changed from Up to Down flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_DOWN); + + /* Direction counter changed from Up to Down Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->DirectionDownCallback(hlptim); +#else + HAL_LPTIM_DirectionDownCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Repetition counter underflowed (or contains zero) and the LPTIM counter + overflowed */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_UPDATE) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_UPDATE) != RESET) + { + /* Clear update event flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_UPDATE); + + /* Update event Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->UpdateEventCallback(hlptim); +#else + HAL_LPTIM_UpdateEventCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } + + /* Successful APB bus write to repetition counter register */ + if (__HAL_LPTIM_GET_FLAG(hlptim, LPTIM_FLAG_REPOK) != RESET) + { + if (__HAL_LPTIM_GET_IT_SOURCE(hlptim, LPTIM_IT_REPOK) != RESET) + { + /* Clear successful APB bus write to repetition counter flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_REPOK); + + /* Successful APB bus write to repetition counter Callback */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->RepCounterWriteCallback(hlptim); +#else + HAL_LPTIM_RepCounterWriteCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + } + } +} + +/** + * @brief Compare match callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_CompareMatchCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_CompareMatchCallback could be implemented in the user file + */ +} + +/** + * @brief Autoreload match callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_AutoReloadMatchCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_AutoReloadMatchCallback could be implemented in the user file + */ +} + +/** + * @brief Trigger detected callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_TriggerCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_TriggerCallback could be implemented in the user file + */ +} + +/** + * @brief Compare write callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_CompareWriteCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_CompareWriteCallback could be implemented in the user file + */ +} + +/** + * @brief Autoreload write callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_AutoReloadWriteCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_AutoReloadWriteCallback could be implemented in the user file + */ +} + +/** + * @brief Direction counter changed from Down to Up callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_DirectionUpCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_DirectionUpCallback could be implemented in the user file + */ +} + +/** + * @brief Direction counter changed from Up to Down callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_DirectionDownCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_DirectionDownCallback could be implemented in the user file + */ +} + +/** + * @brief Repetition counter underflowed (or contains zero) and LPTIM counter overflowed callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_UpdateEventCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_UpdateEventCallback could be implemented in the user file + */ +} + +/** + * @brief Successful APB bus write to repetition counter register callback in non-blocking mode. + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_RepCounterWriteCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_RepCounterWriteCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture callback in non-blocking mode + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_IC_CaptureCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_IC_CaptureCallback could be implemented in the user file + */ +} + +/** + * @brief Over Capture callback in non-blocking mode + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_IC_OverCaptureCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_IC_OverCaptureCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture half complete callback in non-blocking mode + * @param hlptim LPTIM IC handle + * @retval None + */ +__weak void HAL_LPTIM_IC_CaptureHalfCpltCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_IC_CaptureHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Update event half complete callback in non-blocking mode + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_UpdateEventHalfCpltCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_UpdateEventHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Error callback in non-blocking mode + * @param hlptim LPTIM handle + * @retval None + */ +__weak void HAL_LPTIM_ErrorCallback(LPTIM_HandleTypeDef *hlptim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hlptim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_LPTIM_ErrorCallback could be implemented in the user file + */ +} + + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User LPTIM callback to be used instead of the weak predefined callback + * @param hlptim LPTIM handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_LPTIM_MSPINIT_CB_ID LPTIM Base Msp Init Callback ID + * @arg @ref HAL_LPTIM_MSPDEINIT_CB_ID LPTIM Base Msp DeInit Callback ID + * @arg @ref HAL_LPTIM_COMPARE_MATCH_CB_ID Compare match Callback ID + * @arg @ref HAL_LPTIM_AUTORELOAD_MATCH_CB_ID Auto-reload match Callback ID + * @arg @ref HAL_LPTIM_TRIGGER_CB_ID External trigger event detection Callback ID + * @arg @ref HAL_LPTIM_COMPARE_WRITE_CB_ID Compare register write complete Callback ID + * @arg @ref HAL_LPTIM_AUTORELOAD_WRITE_CB_ID Auto-reload register write complete Callback ID + * @arg @ref HAL_LPTIM_DIRECTION_UP_CB_ID Up-counting direction change Callback ID + * @arg @ref HAL_LPTIM_DIRECTION_DOWN_CB_ID Down-counting direction change Callback ID + * @arg @ref HAL_LPTIM_UPDATE_EVENT_CB_ID Update event detection Callback ID + * @arg @ref HAL_LPTIM_REP_COUNTER_WRITE_CB_ID Repetition counter register write complete Callback ID + * @arg @ref HAL_LPTIM_UPDATE_EVENT_HALF_CB_ID Update event Half detection Callback ID + * @arg @ref HAL_LPTIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_LPTIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_LPTIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_LPTIM_OVER_CAPTURE_CB_ID Over Capture Callback ID + * @param pCallback pointer to the callback function + * @retval status + */ +HAL_StatusTypeDef HAL_LPTIM_RegisterCallback(LPTIM_HandleTypeDef *hlptim, + HAL_LPTIM_CallbackIDTypeDef CallbackID, + pLPTIM_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + + if (hlptim->State == HAL_LPTIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_LPTIM_MSPINIT_CB_ID : + hlptim->MspInitCallback = pCallback; + break; + + case HAL_LPTIM_MSPDEINIT_CB_ID : + hlptim->MspDeInitCallback = pCallback; + break; + + case HAL_LPTIM_COMPARE_MATCH_CB_ID : + hlptim->CompareMatchCallback = pCallback; + break; + + case HAL_LPTIM_AUTORELOAD_MATCH_CB_ID : + hlptim->AutoReloadMatchCallback = pCallback; + break; + + case HAL_LPTIM_TRIGGER_CB_ID : + hlptim->TriggerCallback = pCallback; + break; + + case HAL_LPTIM_COMPARE_WRITE_CB_ID : + hlptim->CompareWriteCallback = pCallback; + break; + + case HAL_LPTIM_AUTORELOAD_WRITE_CB_ID : + hlptim->AutoReloadWriteCallback = pCallback; + break; + + case HAL_LPTIM_DIRECTION_UP_CB_ID : + hlptim->DirectionUpCallback = pCallback; + break; + + case HAL_LPTIM_DIRECTION_DOWN_CB_ID : + hlptim->DirectionDownCallback = pCallback; + break; + + case HAL_LPTIM_UPDATE_EVENT_CB_ID : + hlptim->UpdateEventCallback = pCallback; + break; + + case HAL_LPTIM_REP_COUNTER_WRITE_CB_ID : + hlptim->RepCounterWriteCallback = pCallback; + break; + + case HAL_LPTIM_UPDATE_EVENT_HALF_CB_ID : + hlptim->UpdateEventHalfCpltCallback = pCallback; + break; + + case HAL_LPTIM_ERROR_CB_ID : + hlptim->ErrorCallback = pCallback; + break; + + case HAL_LPTIM_IC_CAPTURE_CB_ID : + hlptim->IC_CaptureCallback = pCallback; + break; + + case HAL_LPTIM_IC_CAPTURE_HALF_CB_ID : + hlptim->IC_CaptureHalfCpltCallback = pCallback; + break; + + case HAL_LPTIM_OVER_CAPTURE_CB_ID : + hlptim->IC_OverCaptureCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hlptim->State == HAL_LPTIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_LPTIM_MSPINIT_CB_ID : + hlptim->MspInitCallback = pCallback; + break; + + case HAL_LPTIM_MSPDEINIT_CB_ID : + hlptim->MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister a LPTIM callback + * LLPTIM callback is redirected to the weak predefined callback + * @param hlptim LPTIM handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_LPTIM_MSPINIT_CB_ID LPTIM Base Msp Init Callback ID + * @arg @ref HAL_LPTIM_MSPDEINIT_CB_ID LPTIM Base Msp DeInit Callback ID + * @arg @ref HAL_LPTIM_COMPARE_MATCH_CB_ID Compare match Callback ID + * @arg @ref HAL_LPTIM_AUTORELOAD_MATCH_CB_ID Auto-reload match Callback ID + * @arg @ref HAL_LPTIM_TRIGGER_CB_ID External trigger event detection Callback ID + * @arg @ref HAL_LPTIM_COMPARE_WRITE_CB_ID Compare register write complete Callback ID + * @arg @ref HAL_LPTIM_AUTORELOAD_WRITE_CB_ID Auto-reload register write complete Callback ID + * @arg @ref HAL_LPTIM_DIRECTION_UP_CB_ID Up-counting direction change Callback ID + * @arg @ref HAL_LPTIM_DIRECTION_DOWN_CB_ID Down-counting direction change Callback ID + * @arg @ref HAL_LPTIM_UPDATE_EVENT_CB_ID Update event detection Callback ID + * @arg @ref HAL_LPTIM_REP_COUNTER_WRITE_CB_ID Repetition counter register write complete Callback ID + * @arg @ref HAL_LPTIM_UPDATE_EVENT_HALF_CB_ID Update event Half detection Callback ID + * @arg @ref HAL_LPTIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_LPTIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_LPTIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_LPTIM_OVER_CAPTURE_CB_ID Over Capture Callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_LPTIM_UnRegisterCallback(LPTIM_HandleTypeDef *hlptim, + HAL_LPTIM_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (hlptim->State == HAL_LPTIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_LPTIM_MSPINIT_CB_ID : + /* Legacy weak MspInit Callback */ + hlptim->MspInitCallback = HAL_LPTIM_MspInit; + break; + + case HAL_LPTIM_MSPDEINIT_CB_ID : + /* Legacy weak Msp DeInit Callback */ + hlptim->MspDeInitCallback = HAL_LPTIM_MspDeInit; + break; + + case HAL_LPTIM_COMPARE_MATCH_CB_ID : + /* Legacy weak Compare match Callback */ + hlptim->CompareMatchCallback = HAL_LPTIM_CompareMatchCallback; + break; + + case HAL_LPTIM_AUTORELOAD_MATCH_CB_ID : + /* Legacy weak Auto-reload match Callback */ + hlptim->AutoReloadMatchCallback = HAL_LPTIM_AutoReloadMatchCallback; + break; + + case HAL_LPTIM_TRIGGER_CB_ID : + /* Legacy weak External trigger event detection Callback */ + hlptim->TriggerCallback = HAL_LPTIM_TriggerCallback; + break; + + case HAL_LPTIM_COMPARE_WRITE_CB_ID : + /* Legacy weak Compare register write complete Callback */ + hlptim->CompareWriteCallback = HAL_LPTIM_CompareWriteCallback; + break; + + case HAL_LPTIM_AUTORELOAD_WRITE_CB_ID : + /* Legacy weak Auto-reload register write complete Callback */ + hlptim->AutoReloadWriteCallback = HAL_LPTIM_AutoReloadWriteCallback; + break; + + case HAL_LPTIM_DIRECTION_UP_CB_ID : + /* Legacy weak Up-counting direction change Callback */ + hlptim->DirectionUpCallback = HAL_LPTIM_DirectionUpCallback; + break; + + case HAL_LPTIM_DIRECTION_DOWN_CB_ID : + /* Legacy weak Down-counting direction change Callback */ + hlptim->DirectionDownCallback = HAL_LPTIM_DirectionDownCallback; + break; + + case HAL_LPTIM_UPDATE_EVENT_CB_ID : + /* Legacy weak Update event detection Callback */ + hlptim->UpdateEventCallback = HAL_LPTIM_UpdateEventCallback; + break; + + case HAL_LPTIM_REP_COUNTER_WRITE_CB_ID : + /* Legacy weak Repetition counter register write complete Callback */ + hlptim->RepCounterWriteCallback = HAL_LPTIM_RepCounterWriteCallback; + break; + + case HAL_LPTIM_UPDATE_EVENT_HALF_CB_ID : + /* Legacy weak Update event half complete detection Callback */ + hlptim->UpdateEventHalfCpltCallback = HAL_LPTIM_UpdateEventHalfCpltCallback; + break; + + case HAL_LPTIM_ERROR_CB_ID : + /* Legacy weak error Callback */ + hlptim->ErrorCallback = HAL_LPTIM_ErrorCallback; + break; + + case HAL_LPTIM_IC_CAPTURE_CB_ID : + /* Legacy weak IC Capture Callback */ + hlptim->IC_CaptureCallback = HAL_LPTIM_IC_CaptureCallback; + break; + + case HAL_LPTIM_IC_CAPTURE_HALF_CB_ID : + /* Legacy weak IC Capture half complete Callback */ + hlptim->IC_CaptureHalfCpltCallback = HAL_LPTIM_IC_CaptureHalfCpltCallback; + break; + + case HAL_LPTIM_OVER_CAPTURE_CB_ID : + /* Legacy weak IC over capture Callback */ + hlptim->IC_OverCaptureCallback = HAL_LPTIM_IC_OverCaptureCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hlptim->State == HAL_LPTIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_LPTIM_MSPINIT_CB_ID : + /* Legacy weak MspInit Callback */ + hlptim->MspInitCallback = HAL_LPTIM_MspInit; + break; + + case HAL_LPTIM_MSPDEINIT_CB_ID : + /* Legacy weak Msp DeInit Callback */ + hlptim->MspDeInitCallback = HAL_LPTIM_MspDeInit; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup LPTIM_Group5 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Return the LPTIM handle state. + * @param hlptim LPTIM handle + * @retval HAL state + */ +HAL_LPTIM_StateTypeDef HAL_LPTIM_GetState(const LPTIM_HandleTypeDef *hlptim) +{ + /* Return LPTIM handle state */ + return hlptim->State; +} + +/** + * @} + */ + + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup LPTIM_Private_Functions LPTIM Private Functions + * @{ + */ +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) +/** + * @brief Reset interrupt callbacks to the legacy weak callbacks. + * @param lptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @retval None + */ +static void LPTIM_ResetCallback(LPTIM_HandleTypeDef *lptim) +{ + /* Reset the LPTIM callback to the legacy weak callbacks */ + lptim->CompareMatchCallback = HAL_LPTIM_CompareMatchCallback; + lptim->AutoReloadMatchCallback = HAL_LPTIM_AutoReloadMatchCallback; + lptim->TriggerCallback = HAL_LPTIM_TriggerCallback; + lptim->CompareWriteCallback = HAL_LPTIM_CompareWriteCallback; + lptim->AutoReloadWriteCallback = HAL_LPTIM_AutoReloadWriteCallback; + lptim->DirectionUpCallback = HAL_LPTIM_DirectionUpCallback; + lptim->DirectionDownCallback = HAL_LPTIM_DirectionDownCallback; + lptim->UpdateEventCallback = HAL_LPTIM_UpdateEventCallback; + lptim->RepCounterWriteCallback = HAL_LPTIM_RepCounterWriteCallback; + lptim->UpdateEventHalfCpltCallback = HAL_LPTIM_UpdateEventHalfCpltCallback; + lptim->IC_CaptureCallback = HAL_LPTIM_IC_CaptureCallback; + lptim->IC_CaptureHalfCpltCallback = HAL_LPTIM_IC_CaptureHalfCpltCallback; + lptim->IC_OverCaptureCallback = HAL_LPTIM_IC_OverCaptureCallback; + lptim->ErrorCallback = HAL_LPTIM_ErrorCallback; +} +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + +/** + * @brief LPTimer Wait for flag set + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param flag The lptim flag + * @retval HAL status + */ +static HAL_StatusTypeDef LPTIM_WaitForFlag(const LPTIM_HandleTypeDef *hlptim, uint32_t flag) +{ + HAL_StatusTypeDef result = HAL_OK; + uint32_t count = TIMEOUT * (SystemCoreClock / 20UL / 1000UL); + do + { + count--; + if (count == 0UL) + { + result = HAL_TIMEOUT; + } + } while ((!(__HAL_LPTIM_GET_FLAG((hlptim), (flag)))) && (count != 0UL)); + + return result; +} + +/** + * @brief LPTIM DMA error callback + * @param hdma pointer to DMA handle. + * @retval None + */ +void LPTIM_DMAError(DMA_HandleTypeDef *hdma) +{ + LPTIM_HandleTypeDef *hlptim = (LPTIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hlptim->State = HAL_LPTIM_STATE_READY; + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->ErrorCallback(hlptim); +#else + HAL_LPTIM_ErrorCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ +} + +/** + * @brief LPTIM DMA Capture complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void LPTIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) +{ + LPTIM_HandleTypeDef *hlptim = (LPTIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hlptim->State = HAL_LPTIM_STATE_READY; + + if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC1]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_1; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC2]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_2; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC3]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_3; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC4]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_CaptureCallback(hlptim); +#else + HAL_LPTIM_IC_CaptureCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief LPTIM DMA Capture half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void LPTIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) +{ + LPTIM_HandleTypeDef *hlptim = (LPTIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hlptim->State = HAL_LPTIM_STATE_READY; + + if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC1]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_1; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC2]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_2; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC3]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_3; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC4]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->IC_CaptureHalfCpltCallback(hlptim); +#else + HAL_LPTIM_IC_CaptureHalfCpltCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief LPTIM DMA Update event complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void LPTIM_DMAUpdateEventCplt(DMA_HandleTypeDef *hdma) +{ + LPTIM_HandleTypeDef *hlptim = (LPTIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hlptim->State = HAL_LPTIM_STATE_READY; + + if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC1]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_1; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC2]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_2; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC3]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_3; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC4]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->UpdateEventCallback(hlptim); +#else + HAL_LPTIM_UpdateEventCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief LPTIM DMA Capture half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void LPTIM_DMAUpdateEventHalfCplt(DMA_HandleTypeDef *hdma) +{ + LPTIM_HandleTypeDef *hlptim = (LPTIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hlptim->State = HAL_LPTIM_STATE_READY; + + if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC1]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_1; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC2]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_2; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC3]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_3; + } + else if (hdma == hlptim->hdma[LPTIM_DMA_ID_CC4]) + { + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_LPTIM_REGISTER_CALLBACKS == 1) + hlptim->UpdateEventHalfCpltCallback(hlptim); +#else + HAL_LPTIM_UpdateEventHalfCpltCallback(hlptim); +#endif /* USE_HAL_LPTIM_REGISTER_CALLBACKS */ + + hlptim->Channel = HAL_LPTIM_ACTIVE_CHANNEL_CLEARED; +} +/** + * @brief LPTimer Output Compare 1 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The output configuration structure + * @retval None + */ +static HAL_StatusTypeDef LPTIM_OC1_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr1; + + tmpccmr1 = hlptim->Instance->CCMR1; + tmpccmr1 &= ~(LPTIM_CCMR1_CC1P_Msk | LPTIM_CCMR1_CC1SEL_Msk); + + tmpccmr1 |= sConfig->OCPolarity << LPTIM_CCMR1_CC1P_Pos; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP1OK); + + /* Write to CCR1 register */ + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_1, sConfig->Pulse); + + /* Wait for the completion of the write operation to the LPTIM_CCR1 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP1OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Write to CCMR1 register */ + hlptim->Instance->CCMR1 = tmpccmr1; + + return HAL_OK; +} + +/** + * @brief LPTimer Output Compare 2 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The output configuration structure + * @retval None + */ +static HAL_StatusTypeDef LPTIM_OC2_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr1; + + tmpccmr1 = hlptim->Instance->CCMR1; + tmpccmr1 &= ~(LPTIM_CCMR1_CC2P_Msk | LPTIM_CCMR1_CC2SEL_Msk); + tmpccmr1 |= sConfig->OCPolarity << LPTIM_CCMR1_CC2P_Pos; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP2OK); + + /* Write to CCR2 register */ + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_2, sConfig->Pulse); + + /* Wait for the completion of the write operation to the LPTIM_CCR2 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP2OK) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Write to CCMR1 register */ + hlptim->Instance->CCMR1 = tmpccmr1; + + return HAL_OK; +} + +/** + * @brief LPTimer Output Compare 3 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The output configuration structure + * @retval None + */ +static HAL_StatusTypeDef LPTIM_OC3_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr2; + + tmpccmr2 = hlptim->Instance->CCMR2; + tmpccmr2 &= ~(LPTIM_CCMR2_CC3P_Msk | LPTIM_CCMR2_CC3SEL_Msk); + + tmpccmr2 |= sConfig->OCPolarity << LPTIM_CCMR2_CC3P_Pos; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP3OK); + + /* Write to CCR3 register */ + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_3, sConfig->Pulse); + + /* Wait for the completion of the write operation to the LPTIM_CCR3 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP3OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Write to CCMR1 register */ + hlptim->Instance->CCMR2 = tmpccmr2; + + return HAL_OK; +} + +/** + * @brief LPTimer Output Compare 4 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The output configuration structure + * @retval None + */ +static HAL_StatusTypeDef LPTIM_OC4_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_OC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr2; + + tmpccmr2 = hlptim->Instance->CCMR2; + tmpccmr2 &= ~(LPTIM_CCMR2_CC4P_Msk | LPTIM_CCMR2_CC4SEL_Msk); + + tmpccmr2 |= sConfig->OCPolarity << LPTIM_CCMR2_CC4P_Pos; + + /* Enable the Peripheral */ + __HAL_LPTIM_ENABLE(hlptim); + + /* Clear flag */ + __HAL_LPTIM_CLEAR_FLAG(hlptim, LPTIM_FLAG_CMP4OK); + + /* Write to CCR4 register */ + __HAL_LPTIM_COMPARE_SET(hlptim, LPTIM_CHANNEL_4, sConfig->Pulse); + + /* Wait for the completion of the write operation to the LPTIM_CCR4 register */ + if (LPTIM_WaitForFlag(hlptim, LPTIM_FLAG_CMP4OK) == HAL_TIMEOUT) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral */ + __HAL_LPTIM_DISABLE(hlptim); + + /* Write to CCMR1 register */ + hlptim->Instance->CCMR2 = tmpccmr2; + + return HAL_OK; +} + +/** + * @brief LPTimer Input Capture 1 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The input configuration structure + * @retval None + */ +static void LPTIM_IC1_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr1; + uint32_t tmpcfgr2; + + tmpccmr1 = hlptim->Instance->CCMR1; + tmpccmr1 &= ~(LPTIM_CCMR1_IC1PSC_Msk | LPTIM_CCMR1_CC1P_Msk | LPTIM_CCMR1_IC1F_Msk); + tmpccmr1 |= sConfig->ICPrescaler | + sConfig->ICPolarity | + sConfig->ICFilter | + LPTIM_CCMR1_CC1SEL; + + tmpcfgr2 = hlptim->Instance->CFGR2; + tmpcfgr2 &= ~(LPTIM_CFGR2_IC1SEL_Msk); + tmpcfgr2 |= sConfig->ICInputSource; + + /* Write to CCMR1 register */ + hlptim->Instance->CCMR1 = tmpccmr1; + + /* Write to CFGR2 register */ + hlptim->Instance->CFGR2 = tmpcfgr2; +} + +/** + * @brief LPTimer Input Capture 2 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The input configuration structure + * @retval None + */ +static void LPTIM_IC2_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr1; + uint32_t tmpcfgr2; + + tmpccmr1 = hlptim->Instance->CCMR1; + tmpccmr1 &= ~(LPTIM_CCMR1_IC2PSC_Msk | LPTIM_CCMR1_CC2P_Msk | LPTIM_CCMR1_IC2F_Msk); + tmpccmr1 |= (sConfig->ICPrescaler << (LPTIM_CCMR1_IC2PSC_Pos - LPTIM_CCMR1_IC1PSC_Pos)) | + (sConfig->ICPolarity << (LPTIM_CCMR1_CC2P_Pos - LPTIM_CCMR1_CC1P_Pos)) | + (sConfig->ICFilter << (LPTIM_CCMR1_IC2F_Pos - LPTIM_CCMR1_IC1F_Pos)) | + LPTIM_CCMR1_CC2SEL; + + tmpcfgr2 = hlptim->Instance->CFGR2; + tmpcfgr2 &= ~(LPTIM_CFGR2_IC2SEL_Msk); + tmpcfgr2 |= sConfig->ICInputSource; + + /* Write to CCMR1 register */ + hlptim->Instance->CCMR1 = tmpccmr1; + + /* Write to CFGR2 register */ + hlptim->Instance->CFGR2 = tmpcfgr2; +} + +/** + * @brief LPTimer Input Capture 3 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The input configuration structure + * @retval None + */ +static void LPTIM_IC3_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr2; + uint32_t tmpcfgr2; + + tmpccmr2 = hlptim->Instance->CCMR1; + tmpccmr2 &= ~(LPTIM_CCMR2_IC3PSC_Msk | LPTIM_CCMR2_CC3P_Msk | LPTIM_CCMR2_IC3F_Msk); + tmpccmr2 |= sConfig->ICPrescaler | + sConfig->ICPolarity | + sConfig->ICFilter | + LPTIM_CCMR1_CC1SEL; + + tmpcfgr2 = hlptim->Instance->CFGR2; + tmpcfgr2 &= ~(LPTIM_CFGR2_IC3SEL_Msk); + tmpcfgr2 |= sConfig->ICInputSource; + + /* Write to CCMR2 register */ + hlptim->Instance->CCMR2 = tmpccmr2; + + /* Write to CFGR2 register */ + hlptim->Instance->CFGR2 = tmpcfgr2; +} + +/** + * @brief LPTimer Input Capture 4 configuration + * @param hlptim pointer to a LPTIM_HandleTypeDef structure that contains + * the configuration information for LPTIM module. + * @param sConfig The input configuration structure + * @retval None + */ +static void LPTIM_IC4_SetConfig(LPTIM_HandleTypeDef *hlptim, const LPTIM_IC_ConfigTypeDef *sConfig) +{ + uint32_t tmpccmr2; + uint32_t tmpcfgr2; + + tmpccmr2 = hlptim->Instance->CCMR2; + tmpccmr2 &= ~(LPTIM_CCMR2_IC4PSC_Msk | LPTIM_CCMR2_CC4P_Msk | LPTIM_CCMR2_IC4F_Msk); + tmpccmr2 |= (sConfig->ICPrescaler << (LPTIM_CCMR2_IC4PSC_Pos - LPTIM_CCMR2_IC3PSC_Pos)) | + (sConfig->ICPolarity << (LPTIM_CCMR2_CC4P_Pos - LPTIM_CCMR2_CC3P_Pos)) | + (sConfig->ICFilter << (LPTIM_CCMR2_IC4F_Pos - LPTIM_CCMR2_IC3F_Pos)) | + LPTIM_CCMR2_CC3SEL; + + tmpcfgr2 = hlptim->Instance->CFGR2; + tmpcfgr2 &= ~(LPTIM_CFGR2_IC4SEL_Msk); + tmpcfgr2 |= sConfig->ICInputSource; + + /* Write to CCMR2 register */ + hlptim->Instance->CCMR2 = tmpccmr2; + + /* Write to CFGR2 register */ + hlptim->Instance->CFGR2 = tmpcfgr2; +} + +/** + * @} + */ +#endif /* LPTIM1 || LPTIM2 || LPTIM3 */ + +#endif /* HAL_LPTIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_msp_template.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_msp_template.c new file mode 100644 index 0000000..bfe0d84 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_msp_template.c @@ -0,0 +1,76 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_msp_template.c + * @author MCD Application Team + * @brief HAL MSP module. + * This file template is located in the HAL folder and should be copied + * to the user folder. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup HAL_MSP HAL MSP module driver + * @brief HAL MSP module. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup HAL_MSP_Private_Functions + * @{ + */ + +/** + * @brief Initialize the Global MSP. + * @retval None + */ +void HAL_MspInit(void) +{ + /* NOTE : This function is generated automatically by STM32CubeMX and eventually + modified by the user + */ +} + +/** + * @brief DeInitialize the Global MSP. + * @retval None + */ +void HAL_MspDeInit(void) +{ + /* NOTE : This function is generated automatically by STM32CubeMX and eventually + modified by the user + */ +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp.c new file mode 100644 index 0000000..69f2422 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp.c @@ -0,0 +1,1137 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_opamp.c + * @author MCD Application Team + * @brief OPAMP HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the operational amplifier(s) peripheral: + * + OPAMP configuration + * + OPAMP calibration + * Thanks to + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2021 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + =============================================================================== + ##### OPAMP Peripheral Features ##### + ============================================================================== + + [..] The device integrates 1 or 2 operational amplifiers OPAMP1 & OPAMP2 + + (#) The OPAMP(s) provide(s) several exclusive running modes. + (++) Standalone mode + (++) Programmable Gain Amplifier (PGA) mode (Resistor feedback output) + (++) Follower mode + + (#) Each OPAMP(s) can be configured in normal and low power mode with different speeds. + + (#) The OPAMP(s) provide(s) calibration capabilities. + (++) Calibration aims at correcting some offset for running mode. + (++) The OPAMP uses either factory calibration settings OR user defined + calibration (trimming) settings (i.e. trimming mode). + (++) The user defined settings can be figured out using self calibration + handled by HAL_OPAMP_SelfCalibrate, HAL_OPAMPEx_SelfCalibrateAll + (++) HAL_OPAMP_SelfCalibrate: + (+++) Runs automatically the calibration. + (+++) Enables the user trimming mode + (+++) Updates the init structure with trimming values with fresh calibration + results. + The user may store the calibration results for larger + (ex monitoring the trimming as a function of temperature for instance) + (+++) HAL_OPAMPEx_SelfCalibrateAll + runs calibration of all OPAMPs in parallel to save search time. + + (#) Running mode: Standalone mode + (++) Gain is set externally (gain depends on external loads). + (++) Follower mode also possible externally by connecting the inverting input to + the output. + + (#) Running mode: Follower mode + (++) No Inverting Input is connected. + + (#) Running mode: Programmable Gain Amplifier (PGA) mode + (Resistor feedback output) + (++) The OPAMP(s) output(s) can be internally connected to resistor feedback + output. + (++) OPAMP gain is either 2, 4, 8 or 16. + + (#) The OPAMPs inverting input can be selected according to the Reference Manual + "OPAMP function description" chapter. + + (#) The OPAMPs non inverting input can be selected according to the Reference Manual + "OPAMP function description" chapter. + + + ##### How to use this driver ##### + ============================================================================== + [..] + + *** Speed & power mode *** + ============================================ + [..] To run in low power mode with different speed: + + (#) Configure the OPAMP using HAL_OPAMP_Init() function: + (++) Select OPAMP_POWERMODE_LOWPOWER_NORMALSPEED + (++) Select OPAMP_POWERMODE_LOWPOWER_HIGHSPEED + (++) Select OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED + (++) Select OPAMP_POWERMODE_NORMALPOWER_HIGHSPEED + + *** Calibration *** + ============================================ + [..] To run the OPAMP calibration self calibration: + + (#) Start calibration using HAL_OPAMP_SelfCalibrate. + Store the calibration results. + + *** Running mode *** + ============================================ + + [..] To use the OPAMP, perform the following steps: + + (#) Fill in the HAL_OPAMP_MspInit() to + (++) Enable the OPAMP Peripheral clock using macro __HAL_RCC_OPAMP_CLK_ENABLE() + (++) Configure the OPAMP input and output in analog mode using + HAL_GPIO_Init() to map the OPAMP output to the GPIO pin. + + (#) Registrate Callbacks + (++) The compilation define USE_HAL_OPAMP_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + (++) Use Functions @ref HAL_OPAMP_RegisterCallback() to register a user callback, + it allows to register following callbacks: + (+++) MspInitCallback : OPAMP MspInit. + (+++) MspDeInitCallback : OPAMP MspFeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + (++) Use function @ref HAL_OPAMP_UnRegisterCallback() to reset a callback to the default + weak (overridden) function. It allows to reset following callbacks: + (+++) MspInitCallback : OPAMP MspInit. + (+++) MspDeInitCallback : OPAMP MspdeInit. + (+++) All Callbacks + + (#) Configure the OPAMP using HAL_OPAMP_Init() function: + (++) Select the mode + (++) Select the inverting input + (++) Select the non-inverting input + (++) If PGA mode is enabled, Select if inverting input is connected. + (++) Select either factory or user defined trimming mode. + (++) If the user-defined trimming mode is enabled, select PMOS & NMOS trimming values + (typically values set by HAL_OPAMP_SelfCalibrate function). + + (#) Enable the OPAMP using HAL_OPAMP_Start() function. + + (#) Disable the OPAMP using HAL_OPAMP_Stop() function. + + (#) Lock the OPAMP in running mode using HAL_OPAMP_Lock() function. + Caution: On STM32U0, HAL OPAMP lock is software lock only (not + hardware lock as on some other STM32 devices) + + (#) If needed, unlock the OPAMP using HAL_OPAMPEx_Unlock() function. + + *** Running mode: change of configuration while OPAMP ON *** + ============================================ + [..] To Re-configure OPAMP when OPAMP is ON (change on the fly) + (#) If needed, fill in the HAL_OPAMP_MspInit() + (++) This is the case for instance if you wish to use new OPAMP I/O + + (#) Configure the OPAMP using HAL_OPAMP_Init() function: + (++) As in configure case, select first the parameters you wish to modify. + + (#) Change from low power mode to normal power mode (& vice versa) requires + first HAL_OPAMP_DeInit() (force OPAMP OFF) and then HAL_OPAMP_Init(). + In other words, of OPAMP is ON, HAL_OPAMP_Init can NOT change power mode + alone. + + @endverbatim + ****************************************************************************** + #error "Describe Lock implementation for this series" + + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup OPAMP OPAMP + * @brief OPAMP module driver + * @{ + */ + +#ifdef HAL_OPAMP_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup OPAMP_Private_Constants + * @{ + */ + +/* CSR register reset value */ +#define OPAMP_CSR_RESET_VALUE ((uint32_t)0x00000000) + +#define OPAMP_CSR_RESET_BITS (OPAMP_CSR_OPAEN | OPAMP_CSR_OPALPM | OPAMP_CSR_OPAMODE |\ + OPAMP_CSR_PGA_GAIN | OPAMP_CSR_VM_SEL | OPAMP_CSR_VP_SEL |\ + OPAMP_CSR_CALON | OPAMP_CSR_USERTRIM | OPAMP_CSR_CALSEL) + +/* CSR Init masks */ +#define OPAMP_CSR_INIT_MASK_PGA (OPAMP_CSR_OPALPM | OPAMP_CSR_OPAMODE| OPAMP_CSR_PGA_GAIN |\ + OPAMP_CSR_VM_SEL | OPAMP_CSR_VP_SEL | OPAMP_CSR_USERTRIM) + +#define OPAMP_CSR_INIT_MASK_FOLLOWER (OPAMP_CSR_OPALPM | OPAMP_CSR_OPAMODE| OPAMP_CSR_VP_SEL |\ + OPAMP_CSR_USERTRIM) + +#define OPAMP_CSR_INIT_MASK_STANDALONE (OPAMP_CSR_OPALPM | OPAMP_CSR_OPAMODE| OPAMP_CSR_VP_SEL |\ + OPAMP_CSR_VM_SEL | OPAMP_CSR_USERTRIM) + + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup OPAMP_Exported_Functions OPAMP Exported Functions + * @{ + */ + +/** @defgroup OPAMP_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the OPAMP according to the specified + * parameters in the OPAMP_InitTypeDef and initialize the associated handle. + * @note If the selected opamp is locked, initialization can't be performed. + * To unlock the configuration, perform a system reset. + * @param hopamp: OPAMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_OPAMP_Init(OPAMP_HandleTypeDef *hopamp) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t updateotrlpotr; + + /* Check the OPAMP handle allocation and lock status */ + /* Init not allowed if calibration is ongoing */ + if (hopamp == NULL) + { + return HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) + { + return HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY) + { + return HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + + /* Set OPAMP parameters */ + assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode)); + assert_param(IS_OPAMP_FUNCTIONAL_NORMALMODE(hopamp->Init.Mode)); + assert_param(IS_OPAMP_NONINVERTING_INPUT(hopamp->Init.NonInvertingInput)); + +#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1) + if (hopamp->State == HAL_OPAMP_STATE_RESET) + { + if (hopamp->MspInitCallback == NULL) + { + hopamp->MspInitCallback = HAL_OPAMP_MspInit; + } + } +#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */ + + if ((hopamp->Init.Mode) == OPAMP_STANDALONE_MODE) + { + assert_param(IS_OPAMP_INVERTING_INPUT_STANDALONE(hopamp->Init.InvertingInput)); + } + + if ((hopamp->Init.Mode) == OPAMP_PGA_MODE) + { + assert_param(IS_OPAMP_INVERTING_INPUT_PGA(hopamp->Init.InvertingInput)); + } + + if ((hopamp->Init.Mode) == OPAMP_PGA_MODE) + { + assert_param(IS_OPAMP_PGA_GAIN(hopamp->Init.PgaGain)); + } + + assert_param(IS_OPAMP_TRIMMING(hopamp->Init.UserTrimming)); + if ((hopamp->Init.UserTrimming) == OPAMP_TRIMMING_USER) + { + if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED) + { + assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueP)); + assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueN)); + } + else + { + assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValuePLowPower)); + assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueNLowPower)); + } + } + + if (hopamp->State == HAL_OPAMP_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hopamp->Lock = HAL_UNLOCKED; + } + +#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1) + hopamp->MspInitCallback(hopamp); +#else + /* Call MSP init function */ + HAL_OPAMP_MspInit(hopamp); +#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */ + + /* Set operating mode */ + CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALON); + + if (hopamp->Init.Mode == OPAMP_PGA_MODE) + { + MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_INIT_MASK_PGA, \ + hopamp->Init.PowerMode | \ + hopamp->Init.Mode | \ + hopamp->Init.PgaGain | \ + hopamp->Init.InvertingInput | \ + hopamp->Init.NonInvertingInput | \ + hopamp->Init.UserTrimming); + } + + if (hopamp->Init.Mode == OPAMP_FOLLOWER_MODE) + { + /* In Follower mode InvertingInput is Not Applicable */ + MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_INIT_MASK_FOLLOWER, \ + hopamp->Init.PowerMode | \ + hopamp->Init.Mode | \ + hopamp->Init.NonInvertingInput | \ + hopamp->Init.UserTrimming); + } + + if (hopamp->Init.Mode == OPAMP_STANDALONE_MODE) + { + MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_INIT_MASK_STANDALONE, \ + hopamp->Init.PowerMode | \ + hopamp->Init.Mode | \ + hopamp->Init.InvertingInput | \ + hopamp->Init.NonInvertingInput | \ + hopamp->Init.UserTrimming); + } + + if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER) + { + /* Set power mode and associated calibration parameters */ + if ((hopamp->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER_NORMALSPEED)) + { + /* OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED */ + /* Set calibration mode (factory or user) and values for */ + /* transistors differential pair high (PMOS) and low (NMOS) for */ + /* normal mode. */ + updateotrlpotr = (((hopamp->Init.TrimmingValueP) << (OPAMP_INPUT_NONINVERTING)) \ + | (hopamp->Init.TrimmingValueN)); + MODIFY_REG(hopamp->Instance->OTR, OPAMP_OTR_TRIMOFFSETN | OPAMP_OTR_TRIMOFFSETP, updateotrlpotr); + } + else + { + /* OPAMP_POWERMODE_LOWPOWER_NORMALSPEED */ + /* transistors differential pair high (PMOS) and low (NMOS) for */ + /* low power mode. */ + updateotrlpotr = (((hopamp->Init.TrimmingValuePLowPower) << (OPAMP_INPUT_NONINVERTING)) \ + | (hopamp->Init.TrimmingValueNLowPower)); + MODIFY_REG(hopamp->Instance->LPOTR, OPAMP_OTR_TRIMOFFSETN | OPAMP_OTR_TRIMOFFSETP, updateotrlpotr); + } + } + + /* Set the power supply range to high for performance purpose */ + /* The OPAMP_CSR_OPARANGE is common configuration for all OPAMPs */ + /* bit OPAMP_CSR_OPARANGE applies for both OPAMPs */ + MODIFY_REG(OPAMP1_COMMON->CSR, OPAMP_CSR_OPARANGE, OPAMP_CSR_OPARANGE); + + /* Update the OPAMP state*/ + if (hopamp->State == HAL_OPAMP_STATE_RESET) + { + /* From RESET state to READY State */ + hopamp->State = HAL_OPAMP_STATE_READY; + } + /* else: remain in READY or BUSY state (no update) */ + return status; + } +} + +/** + * @brief DeInitialize the OPAMP peripheral. + * @param hopamp: OPAMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_OPAMP_DeInit(OPAMP_HandleTypeDef *hopamp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the OPAMP handle allocation */ + /* DeInit not allowed if calibration is ongoing */ + if (hopamp == NULL) + { + status = HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + + /* Set OPAMP_CSR register to reset value */ + /* Mind that OPAMP1_CSR_OPARANGE of CSR of OPAMP1 remains unchanged (applies to both OPAMPs) */ + /* OPAMP shall be disabled first separately */ + CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAEN); + MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_RESET_BITS, OPAMP_CSR_RESET_VALUE); + +#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1) + if (hopamp->MspDeInitCallback == NULL) + { + hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit; + } + /* DeInit the low level hardware */ + hopamp->MspDeInitCallback(hopamp); +#else + /* DeInit the low level hardware: GPIO, CLOCK and NVIC */ + HAL_OPAMP_MspDeInit(hopamp); +#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */ + /* Update the OPAMP state*/ + hopamp->State = HAL_OPAMP_STATE_RESET; + + /* Process unlocked */ + __HAL_UNLOCK(hopamp); + } + return status; +} + +/** + * @brief Initialize the OPAMP MSP. + * @param hopamp: OPAMP handle + * @retval None + */ +__weak void HAL_OPAMP_MspInit(OPAMP_HandleTypeDef *hopamp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hopamp); + + /* NOTE : This function should not be modified, when the callback is needed, + the function "HAL_OPAMP_MspInit()" must be implemented in the user file. + */ +} + +/** + * @brief DeInitialize OPAMP MSP. + * @param hopamp: OPAMP handle + * @retval None + */ +__weak void HAL_OPAMP_MspDeInit(OPAMP_HandleTypeDef *hopamp) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hopamp); + + /* NOTE : This function should not be modified, when the callback is needed, + the function "HAL_OPAMP_MspDeInit()" must be implemented in the user file. + */ +} + +/** + * @} + */ + + +/** @defgroup OPAMP_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the OPAMP + start, stop and calibration actions. + +@endverbatim + * @{ + */ + +/** + * @brief Start the OPAMP. + * @param hopamp: OPAMP handle + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_OPAMP_Start(OPAMP_HandleTypeDef *hopamp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the OPAMP handle allocation */ + /* Check if OPAMP locked */ + if (hopamp == NULL) + { + status = HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + + if (hopamp->State == HAL_OPAMP_STATE_READY) + { + /* Enable the selected opamp */ + SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAEN); + + /* Update the OPAMP state*/ + /* From HAL_OPAMP_STATE_READY to HAL_OPAMP_STATE_BUSY */ + hopamp->State = HAL_OPAMP_STATE_BUSY; + } + else + { + status = HAL_ERROR; + } + + } + return status; +} + +/** + * @brief Stop the OPAMP. + * @param hopamp: OPAMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_OPAMP_Stop(OPAMP_HandleTypeDef *hopamp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the OPAMP handle allocation */ + /* Check if OPAMP locked */ + /* Check if OPAMP calibration ongoing */ + if (hopamp == NULL) + { + status = HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) + { + status = HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + + if (hopamp->State == HAL_OPAMP_STATE_BUSY) + { + /* Disable the selected opamp */ + CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAEN); + + /* Update the OPAMP state*/ + /* From HAL_OPAMP_STATE_BUSY to HAL_OPAMP_STATE_READY*/ + hopamp->State = HAL_OPAMP_STATE_READY; + } + else + { + status = HAL_ERROR; + } + } + return status; +} + +/** + * @brief Run the self calibration of one OPAMP. + * @note Calibration is performed in the mode specified in OPAMP init + * structure (mode normal or low-power). To perform calibration for + * both modes, repeat this function twice after OPAMP init structure + * accordingly updated. + * @note Calibration runs about 10 ms. + * @param hopamp handle + * @retval Updated offset trimming values (PMOS & NMOS), user trimming is enabled + * @retval HAL status + + */ + +HAL_StatusTypeDef HAL_OPAMP_SelfCalibrate(OPAMP_HandleTypeDef *hopamp) +{ + + HAL_StatusTypeDef status = HAL_OK; + + uint32_t trimmingvaluen; + uint32_t trimmingvaluep; + uint32_t delta; + uint32_t opampmode; + + __IO uint32_t *tmp_opamp_reg_trimming; /* Selection of register of trimming depending on power mode: OTR or LPOTR */ + + /* Check the OPAMP handle allocation */ + /* Check if OPAMP locked */ + if (hopamp == NULL) + { + status = HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) + { + status = HAL_ERROR; + } + else + { + /* Check if OPAMP in calibration mode and calibration not yet enable */ + if (hopamp->State == HAL_OPAMP_STATE_READY) + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode)); + + /* Save OPAMP mode as in */ + /* the calibration is not working in PGA mode */ + opampmode = READ_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAMODE); + + /* Use of standalone mode */ + MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_OPAMODE, OPAMP_STANDALONE_MODE); + + /* user trimming values are used for offset calibration */ + SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM); + + /* Select trimming settings depending on power mode */ + if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED) + { + tmp_opamp_reg_trimming = &hopamp->Instance->OTR; + } + else + { + tmp_opamp_reg_trimming = &hopamp->Instance->LPOTR; + } + + /* Enable calibration */ + SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALON); + + /* 1st calibration - N */ + CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALSEL); + + /* Enable the selected opamp */ + SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAEN); + + /* Init trimming counter */ + /* Medium value */ + trimmingvaluen = 16U; + delta = 8U; + + while (delta != 0U) + { + /* Set candidate trimming */ + /* OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED or OPAMP_POWERMODE_NORMALPOWER_HIGHSPEED */ + MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if (READ_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* OPAMP_CSR_CALOUT is HIGH try higher trimming */ + trimmingvaluen -= delta; + } + else + { + /* OPAMP_CSR_CALOUT is LOW try lower trimming */ + trimmingvaluen += delta; + } + /* Divide range by 2 to continue dichotomy sweep */ + delta >>= 1U; + } + + /* Still need to check if right calibration is current value or one step below */ + /* Indeed the first value that causes the OUTCAL bit to change from 0 to 1 */ + /* Set candidate trimming */ + MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if ((READ_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALOUT)) == 0U) + { + /* Trimming value is actually one value more */ + trimmingvaluen++; + /* Set right trimming */ + MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen); + } + + /* 2nd calibration - P */ + SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALSEL); + + /* Init trimming counter */ + /* Medium value */ + trimmingvaluep = 16U; + delta = 8U; + + while (delta != 0U) + { + /* Set candidate trimming */ + /* OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED or OPAMP_POWERMODE_NORMALPOWER_HIGHSPEED */ + MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep << OPAMP_INPUT_NONINVERTING)); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if (READ_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* OPAMP_CSR_CALOUT is HIGH try higher trimming */ + trimmingvaluep -= delta; + } + else + { + /* OPAMP_CSR_CALOUT is LOW try lower trimming */ + trimmingvaluep += delta; + } + + /* Divide range by 2 to continue dichotomy sweep */ + delta >>= 1U; + } + + /* Still need to check if right calibration is current value or one step below */ + /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0 */ + /* Set candidate trimming */ + MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep << OPAMP_INPUT_NONINVERTING)); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if (READ_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* Trimming value is actually one value more */ + trimmingvaluep++; + MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep << OPAMP_INPUT_NONINVERTING)); + } + + /* Disable the OPAMP */ + CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_OPAEN); + + /* Disable calibration & set normal mode (operating mode) */ + CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_CALON); + + /* Self calibration is successful */ + /* Store calibration(user trimming) results in init structure. */ + + /* Set user trimming mode */ + hopamp->Init.UserTrimming = OPAMP_TRIMMING_USER; + + /* Affect calibration parameters depending on mode normal/low power */ + if ((hopamp->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER_NORMALSPEED)) + { + /* Write calibration result N */ + hopamp->Init.TrimmingValueN = trimmingvaluen; + /* Write calibration result P */ + hopamp->Init.TrimmingValueP = trimmingvaluep; + } + else + { + /* Write calibration result N */ + hopamp->Init.TrimmingValueNLowPower = trimmingvaluen; + /* Write calibration result P */ + hopamp->Init.TrimmingValuePLowPower = trimmingvaluep; + } + + /* Restore OPAMP mode after calibration */ + MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_OPAMODE, opampmode); + } + else + { + /* OPAMP can not be calibrated from this mode */ + status = HAL_ERROR; + } + } + return status; +} + +/** + * @} + */ + +/** @defgroup OPAMP_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the OPAMP data + transfers. + + + +@endverbatim + * @{ + */ + +/** + * @brief Lock the selected OPAMP configuration. + * @param hopamp: OPAMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_OPAMP_Lock(OPAMP_HandleTypeDef *hopamp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the OPAMP handle allocation */ + /* Check if OPAMP locked */ + /* OPAMP can be locked when enabled and running in normal mode */ + /* It is meaningless otherwise */ + if (hopamp == NULL) + { + status = HAL_ERROR; + } + else if (hopamp->State == HAL_OPAMP_STATE_BUSY) + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + + /* OPAMP state changed to locked */ + hopamp->State = HAL_OPAMP_STATE_BUSYLOCKED; + } + else + { + status = HAL_ERROR; + } + return status; +} + +/** + * @brief Return the OPAMP factory trimming value. + * @param hopamp : OPAMP handle + * @param trimmingoffset : Trimming offset (P or N) + * This parameter must be a value of @ref OPAMP_FactoryTrimming + * @note Calibration parameter retrieved is corresponding to the mode + * specified in OPAMP init structure (mode normal or low-power). + * To retrieve calibration parameters for both modes, repeat this + * function after OPAMP init structure accordingly updated. + * @retval Trimming value (P or N): range: 0->31 + * or OPAMP_FACTORYTRIMMING_DUMMY if trimming value is not available + * + */ + +HAL_OPAMP_TrimmingValueTypeDef HAL_OPAMP_GetTrimOffset(const OPAMP_HandleTypeDef *hopamp, uint32_t trimmingoffset) +{ + HAL_OPAMP_TrimmingValueTypeDef trimmingvalue; + __IO const uint32_t *tmp_opamp_reg_trimming; /* Selection of register of trimming depending on power mode: OTR or + LPOTR */ + + /* Check the OPAMP handle allocation */ + /* Value can be retrieved in HAL_OPAMP_STATE_READY state */ + if (hopamp == NULL) + { + return OPAMP_FACTORYTRIMMING_DUMMY; + } + + /* Check the OPAMP handle allocation */ + /* Value can be retrieved in HAL_OPAMP_STATE_READY state */ + if (hopamp->State == HAL_OPAMP_STATE_READY) + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + assert_param(IS_OPAMP_FACTORYTRIMMING(trimmingoffset)); + assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode)); + + /* Check the trimming mode */ + if (READ_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM) != 0U) + { + /* This function must called when OPAMP init parameter "UserTrimming" */ + /* is set to trimming factory, and before OPAMP calibration (function */ + /* "HAL_OPAMP_SelfCalibrate()"). */ + /* Otherwise, factory trimming value cannot be retrieved and error */ + /* status is returned. */ + trimmingvalue = OPAMP_FACTORYTRIMMING_DUMMY; + } + else + { + /* Select trimming settings depending on power mode */ + if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED) + { + tmp_opamp_reg_trimming = &(hopamp->Instance->OTR); + } + else + { + tmp_opamp_reg_trimming = &(hopamp->Instance->LPOTR); + } + + /* Get factory trimming */ + if (trimmingoffset == OPAMP_FACTORYTRIMMING_P) + { + /* OPAMP_FACTORYTRIMMING_P */ + trimmingvalue = ((*tmp_opamp_reg_trimming) & OPAMP_OTR_TRIMOFFSETP) >> OPAMP_INPUT_NONINVERTING; + } + else + { + /* OPAMP_FACTORYTRIMMING_N */ + trimmingvalue = (*tmp_opamp_reg_trimming) & OPAMP_OTR_TRIMOFFSETN; + } + } + } + else + { + return OPAMP_FACTORYTRIMMING_DUMMY; + } + return trimmingvalue; +} + +/** + * @} + */ + + +/** @defgroup OPAMP_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Return the OPAMP handle state. + * @param hopamp : OPAMP handle + * @retval HAL state + */ +HAL_OPAMP_StateTypeDef HAL_OPAMP_GetState(const OPAMP_HandleTypeDef *hopamp) +{ + /* Check the OPAMP handle allocation */ + if (hopamp == NULL) + { + return HAL_OPAMP_STATE_RESET; + } + + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + + /* Return OPAMP handle state */ + return hopamp->State; +} + +/** + * @} + */ + +/** @defgroup OPAMP_Exported_Functions_Group5 Peripheral Callback functions + * @brief Peripheral Callback functions + * +@verbatim + =============================================================================== + ##### Peripheral Callback functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User OPAMP Callback + * To be used instead of the weak (overridden) predefined callback + * @param hopamp : OPAMP handle + * @param CallbackID : ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_OPAMP_MSP_INIT_CB_ID OPAMP MspInit callback ID + * @arg @ref HAL_OPAMP_MSP_DEINIT_CB_ID OPAMP MspDeInit callback ID + * @param pCallback : pointer to the Callback function + * @retval status + */ +HAL_StatusTypeDef HAL_OPAMP_RegisterCallback(OPAMP_HandleTypeDef *hopamp, HAL_OPAMP_CallbackIDTypeDef CallbackID, + pOPAMP_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hopamp); + + if (hopamp->State == HAL_OPAMP_STATE_READY) + { + switch (CallbackID) + { + case HAL_OPAMP_MSP_INIT_CB_ID : + hopamp->MspInitCallback = pCallback; + break; + case HAL_OPAMP_MSP_DEINIT_CB_ID : + hopamp->MspDeInitCallback = pCallback; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else if (hopamp->State == HAL_OPAMP_STATE_RESET) + { + switch (CallbackID) + { + case HAL_OPAMP_MSP_INIT_CB_ID : + hopamp->MspInitCallback = pCallback; + break; + case HAL_OPAMP_MSP_DEINIT_CB_ID : + hopamp->MspDeInitCallback = pCallback; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else + { + /* update return status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hopamp); + return status; +} + +/** + * @brief Unregister a User OPAMP Callback + * OPAMP Callback is redirected to the weak (overridden) predefined callback + * @param hopamp : OPAMP handle + * @param CallbackID : ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_OPAMP_MSP_INIT_CB_ID OPAMP MSP Init Callback ID + * @arg @ref HAL_OPAMP_MSP_DEINIT_CB_ID OPAMP MSP DeInit Callback ID + * @arg @ref HAL_OPAMP_ALL_CB_ID OPAMP All Callbacks + * @retval status + */ +HAL_StatusTypeDef HAL_OPAMP_UnRegisterCallback(OPAMP_HandleTypeDef *hopamp, HAL_OPAMP_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hopamp); + + if (hopamp->State == HAL_OPAMP_STATE_READY) + { + switch (CallbackID) + { + case HAL_OPAMP_MSP_INIT_CB_ID : + hopamp->MspInitCallback = HAL_OPAMP_MspInit; + break; + case HAL_OPAMP_MSP_DEINIT_CB_ID : + hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit; + break; + case HAL_OPAMP_ALL_CB_ID : + hopamp->MspInitCallback = HAL_OPAMP_MspInit; + hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else if (hopamp->State == HAL_OPAMP_STATE_RESET) + { + switch (CallbackID) + { + case HAL_OPAMP_MSP_INIT_CB_ID : + hopamp->MspInitCallback = HAL_OPAMP_MspInit; + break; + case HAL_OPAMP_MSP_DEINIT_CB_ID : + hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else + { + /* update return status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hopamp); + return status; +} +#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */ + +/** + * @} + */ + + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_OPAMP_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp_ex.c new file mode 100644 index 0000000..f4f3c8a --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_opamp_ex.c @@ -0,0 +1,436 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_opamp_ex.c + * @author MCD Application Team + * @brief Extended OPAMP HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the operational amplifier(s)(OPAMP1, OPAMP2 etc) + * peripheral: + * + Extended Initialization and de-initialization functions + * + Extended Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2021 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup OPAMPEx OPAMPEx + * @brief OPAMP Extended HAL module driver + * @{ + */ + +#ifdef HAL_OPAMP_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup OPAMP_Exported_Functions OPAMP Exported Functions + * @{ + */ + +#if defined(OPAMP2) +/** @addtogroup OPAMPEx_Exported_Functions_Group1 + * @brief Extended operation functions + * +@verbatim + =============================================================================== + ##### Extended IO operation functions ##### + =============================================================================== + [..] + (+) OPAMP Self calibration. + +@endverbatim + * @{ + */ + +/* 2 OPAMPS available */ +/* 2 OPAMPS can be calibrated in parallel */ + +/** + * @brief Run the self calibration of the 2 OPAMPs in parallel. + * @note Trimming values (PMOS & NMOS) are updated and user trimming is + * enabled is calibration is successful. + * @note Calibration is performed in the mode specified in OPAMP init + * structure (mode normal or low-power). To perform calibration for + * both modes, repeat this function twice after OPAMP init structure + * accordingly updated. + * @note Calibration runs about 10 ms (5 dichotomy steps, repeated for P + * and N transistors: 10 steps with 1 ms for each step). + * @param hopamp1 handle + * @param hopamp2 handle + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_OPAMPEx_SelfCalibrateAll(OPAMP_HandleTypeDef *hopamp1, OPAMP_HandleTypeDef *hopamp2) +{ + HAL_StatusTypeDef status = HAL_OK; + + uint32_t trimmingvaluen1; + uint32_t trimmingvaluep1; + uint32_t trimmingvaluen2; + uint32_t trimmingvaluep2; + + /* Selection of register of trimming depending on power mode: OTR or LPOTR */ + __IO uint32_t *tmp_opamp1_reg_trimming; + __IO uint32_t *tmp_opamp2_reg_trimming; + + uint32_t delta; + uint32_t opampmode1; + uint32_t opampmode2; + + if ((hopamp1 == NULL) || (hopamp2 == NULL)) + { + status = HAL_ERROR; + } + /* Check if OPAMP in calibration mode and calibration not yet enable */ + else if (hopamp1->State != HAL_OPAMP_STATE_READY) + { + status = HAL_ERROR; + } + else if (hopamp2->State != HAL_OPAMP_STATE_READY) + { + status = HAL_ERROR; + } + else + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp1->Instance)); + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp2->Instance)); + + assert_param(IS_OPAMP_POWERMODE(hopamp1->Init.PowerMode)); + assert_param(IS_OPAMP_POWERMODE(hopamp2->Init.PowerMode)); + + /* Save OPAMP mode as in */ + /* the calibration is not working in PGA mode */ + opampmode1 = READ_BIT(hopamp1->Instance->CSR, OPAMP_CSR_OPAMODE); + opampmode2 = READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_OPAMODE); + + /* Use of standalone mode */ + MODIFY_REG(hopamp1->Instance->CSR, OPAMP_CSR_OPAMODE, OPAMP_STANDALONE_MODE); + MODIFY_REG(hopamp2->Instance->CSR, OPAMP_CSR_OPAMODE, OPAMP_STANDALONE_MODE); + + /* user trimming values are used for offset calibration */ + SET_BIT(hopamp1->Instance->CSR, OPAMP_CSR_USERTRIM); + SET_BIT(hopamp2->Instance->CSR, OPAMP_CSR_USERTRIM); + + /* Select trimming settings depending on power mode */ + if ((hopamp1->Init.PowerMode == OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED) || \ + (hopamp1->Init.PowerMode == OPAMP_POWERMODE_NORMALPOWER_HIGHSPEED)) + { + tmp_opamp1_reg_trimming = &OPAMP1->OTR; + } + else + { + tmp_opamp1_reg_trimming = &OPAMP1->LPOTR; + } + + if ((hopamp2->Init.PowerMode == OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED) || \ + (hopamp2->Init.PowerMode == OPAMP_POWERMODE_NORMALPOWER_HIGHSPEED)) + { + tmp_opamp2_reg_trimming = &OPAMP2->OTR; + } + else + { + tmp_opamp2_reg_trimming = &OPAMP2->LPOTR; + } + + /* Enable calibration */ + SET_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALON); + SET_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALON); + + /* 1st calibration - N */ + CLEAR_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALSEL); + CLEAR_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALSEL); + + /* Enable the selected opamp */ + SET_BIT(hopamp1->Instance->CSR, OPAMP_CSR_OPAEN); + SET_BIT(hopamp2->Instance->CSR, OPAMP_CSR_OPAEN); + + /* Init trimming counter */ + /* Medium value */ + trimmingvaluen1 = 16U; + trimmingvaluen2 = 16U; + delta = 8U; + + while (delta != 0U) + { + /* Set candidate trimming */ + /* OPAMP_POWERMODE_NORMALPOWER_HIGHSPEED or OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED*/ + MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen1); + MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen2); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if (READ_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* OPAMP_CSR_CALOUT is HIGH try lower trimming */ + trimmingvaluen1 -= delta; + } + else + { + /* OPAMP_CSR_CALOUT is LOW try higher trimming */ + trimmingvaluen1 += delta; + } + + if (READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* OPAMP_CSR_CALOUT is HIGH try lower trimming */ + trimmingvaluen2 -= delta; + } + else + { + /* OPAMP_CSR_CALOUT is LOW try higher trimming */ + trimmingvaluen2 += delta; + } + /* Divide range by 2 to continue dichotomy sweep */ + delta >>= 1U; + } + + /* Still need to check if right calibration is current value or one step below */ + /* Indeed the first value that causes the OUTCAL bit to change from 0 to 1 */ + /* Set candidate trimming */ + MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen1); + MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen2); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if ((READ_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALOUT)) == 0U) + { + /* Trimming value is actually one value more */ + trimmingvaluen1++; + MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen1); + } + + if ((READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALOUT)) == 0U) + { + /* Trimming value is actually one value more */ + trimmingvaluen2++; + MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen2); + } + + /* 2nd calibration - P */ + SET_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALSEL); + SET_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALSEL); + + /* Init trimming counter */ + /* Medium value */ + trimmingvaluep1 = 16U; + trimmingvaluep2 = 16U; + delta = 8U; + + while (delta != 0U) + { + /* Set candidate trimming */ + /* OPAMP_POWERMODE_NORMALPOWER_HIGHSPEED or OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED*/ + MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep1 << OPAMP_INPUT_NONINVERTING)); + MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep2 << OPAMP_INPUT_NONINVERTING)); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if (READ_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* OPAMP_CSR_CALOUT is HIGH try higher trimming */ + trimmingvaluep1 -= delta; + } + else + { + /* OPAMP_CSR_CALOUT is HIGH try lower trimming */ + trimmingvaluep1 += delta; + } + + if (READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* OPAMP_CSR_CALOUT is HIGH try higher trimming */ + trimmingvaluep2 -= delta; + } + else + { + /* OPAMP_CSR_CALOUT is LOW try lower trimming */ + trimmingvaluep2 += delta; + } + /* Divide range by 2 to continue dichotomy sweep */ + delta >>= 1U; + } + + /* Still need to check if right calibration is current value or one step below */ + /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0 */ + /* Set candidate trimming */ + MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep1 << OPAMP_INPUT_NONINVERTING)); + MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep2 << OPAMP_INPUT_NONINVERTING)); + + /* OFFTRIMmax delay 1 ms as per datasheet (electrical characteristics */ + /* Offset trim time: during calibration, minimum time needed between */ + /* two steps to have 1 mV accuracy */ + HAL_Delay(OPAMP_TRIMMING_DELAY); + + if (READ_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* Trimming value is actually one value more */ + trimmingvaluep1++; + MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep1 << OPAMP_INPUT_NONINVERTING)); + } + + if (READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALOUT) != 0U) + { + /* Trimming value is actually one value more */ + trimmingvaluep2++; + MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep2 << OPAMP_INPUT_NONINVERTING)); + } + + /* Disable the OPAMPs */ + CLEAR_BIT(hopamp1->Instance->CSR, OPAMP_CSR_OPAEN); + CLEAR_BIT(hopamp2->Instance->CSR, OPAMP_CSR_OPAEN); + + /* Disable calibration & set normal mode (operating mode) */ + CLEAR_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALON); + CLEAR_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALON); + + /* Self calibration is successful */ + /* Store calibration (user trimming) results in init structure. */ + + /* Set user trimming mode */ + hopamp1->Init.UserTrimming = OPAMP_TRIMMING_USER; + hopamp2->Init.UserTrimming = OPAMP_TRIMMING_USER; + + /* Affect calibration parameters depending on mode normal/low power */ + if ((hopamp1->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER_NORMALSPEED) && \ + (hopamp1->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER_HIGHSPEED)) + { + /* Write calibration result N */ + hopamp1->Init.TrimmingValueN = trimmingvaluen1; + /* Write calibration result P */ + hopamp1->Init.TrimmingValueP = trimmingvaluep1; + } + else + { + /* Write calibration result N */ + hopamp1->Init.TrimmingValueNLowPower = trimmingvaluen1; + /* Write calibration result P */ + hopamp1->Init.TrimmingValuePLowPower = trimmingvaluep1; + } + + if ((hopamp2->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER_NORMALSPEED) && \ + (hopamp2->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER_HIGHSPEED)) + { + /* Write calibration result N */ + hopamp2->Init.TrimmingValueN = trimmingvaluen2; + /* Write calibration result P */ + hopamp2->Init.TrimmingValueP = trimmingvaluep2; + } + else + { + /* Write calibration result N */ + hopamp2->Init.TrimmingValueNLowPower = trimmingvaluen2; + /* Write calibration result P */ + hopamp2->Init.TrimmingValuePLowPower = trimmingvaluep2; + } + + /* Update OPAMP state */ + hopamp1->State = HAL_OPAMP_STATE_READY; + hopamp2->State = HAL_OPAMP_STATE_READY; + + /* Restore OPAMP mode after calibration */ + MODIFY_REG(hopamp1->Instance->CSR, OPAMP_CSR_OPAMODE, opampmode1); + MODIFY_REG(hopamp2->Instance->CSR, OPAMP_CSR_OPAMODE, opampmode2); + } + return status; +} + +/** + * @} + */ +#endif /* OPAMP2 */ + +/** @defgroup OPAMPEx_Exported_Functions_Group2 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + (+) OPAMP unlock. + +@endverbatim + * @{ + */ + +/** + * @brief Unlock the selected OPAMP configuration. + * @note This function must be called only when OPAMP is in state "locked". + * @param hopamp: OPAMP handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_OPAMPEx_Unlock(OPAMP_HandleTypeDef *hopamp) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the OPAMP handle allocation */ + /* Check if OPAMP locked */ + if (hopamp == NULL) + { + status = HAL_ERROR; + } + /* Check the OPAMP handle allocation */ + /* Check if OPAMP locked */ + else if (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) + { + /* Check the parameter */ + assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); + + /* OPAMP state changed to locked */ + hopamp->State = HAL_OPAMP_STATE_BUSY; + } + else + { + status = HAL_ERROR; + } + + return status; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_OPAMP_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd.c new file mode 100644 index 0000000..0341786 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd.c @@ -0,0 +1,2256 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_pcd.c + * @author MCD Application Team + * @brief PCD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The PCD HAL driver can be used as follows: + + (#) Declare a PCD_HandleTypeDef handle structure, for example: + PCD_HandleTypeDef hpcd; + + (#) Fill parameters of Init structure in HCD handle + + (#) Call HAL_PCD_Init() API to initialize the PCD peripheral (Core, Device core, ...) + + (#) Initialize the PCD low level resources through the HAL_PCD_MspInit() API: + (##) Enable the PCD/USB Low Level interface clock using + (+++) __HAL_RCC_USB_CLK_ENABLE(); For USB Device FS peripheral + + (##) Initialize the related GPIO clocks + (##) Configure PCD pin-out + (##) Configure PCD NVIC interrupt + + (#)Associate the Upper USB device stack to the HAL PCD Driver: + (##) hpcd.pData = pdev; + + (#)Enable PCD transmission and reception: + (##) HAL_PCD_Start(); + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup PCD PCD + * @brief PCD HAL module driver + * @{ + */ + +#ifdef HAL_PCD_MODULE_ENABLED + +#if defined (USB_DRD_FS) + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup PCD_Private_Macros PCD Private Macros + * @{ + */ +#define PCD_MIN(a, b) (((a) < (b)) ? (a) : (b)) +#define PCD_MAX(a, b) (((a) > (b)) ? (a) : (b)) +/** + * @} + */ + +/* Private functions prototypes ----------------------------------------------*/ +/** @defgroup PCD_Private_Functions PCD Private Functions + * @{ + */ + +static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd); +#if (USE_USB_DOUBLE_BUFFER == 1U) +static HAL_StatusTypeDef HAL_PCD_EP_DB_Transmit(PCD_HandleTypeDef *hpcd, PCD_EPTypeDef *ep, uint16_t wEPVal); +static uint16_t HAL_PCD_EP_DB_Receive(PCD_HandleTypeDef *hpcd, PCD_EPTypeDef *ep, uint16_t wEPVal); +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup PCD_Exported_Functions PCD Exported Functions + * @{ + */ + +/** @defgroup PCD_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the PCD according to the specified + * parameters in the PCD_InitTypeDef and initialize the associated handle. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd) +{ + uint8_t i; + + /* Check the PCD handle allocation */ + if (hpcd == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_PCD_ALL_INSTANCE(hpcd->Instance)); + + if (hpcd->State == HAL_PCD_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hpcd->Lock = HAL_UNLOCKED; + +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->SOFCallback = HAL_PCD_SOFCallback; + hpcd->SetupStageCallback = HAL_PCD_SetupStageCallback; + hpcd->ResetCallback = HAL_PCD_ResetCallback; + hpcd->SuspendCallback = HAL_PCD_SuspendCallback; + hpcd->ResumeCallback = HAL_PCD_ResumeCallback; + hpcd->ConnectCallback = HAL_PCD_ConnectCallback; + hpcd->DisconnectCallback = HAL_PCD_DisconnectCallback; + hpcd->DataOutStageCallback = HAL_PCD_DataOutStageCallback; + hpcd->DataInStageCallback = HAL_PCD_DataInStageCallback; + hpcd->ISOOUTIncompleteCallback = HAL_PCD_ISOOUTIncompleteCallback; + hpcd->ISOINIncompleteCallback = HAL_PCD_ISOINIncompleteCallback; + hpcd->LPMCallback = HAL_PCDEx_LPM_Callback; + hpcd->BCDCallback = HAL_PCDEx_BCD_Callback; + + if (hpcd->MspInitCallback == NULL) + { + hpcd->MspInitCallback = HAL_PCD_MspInit; + } + + /* Init the low level hardware */ + hpcd->MspInitCallback(hpcd); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_PCD_MspInit(hpcd); +#endif /* (USE_HAL_PCD_REGISTER_CALLBACKS) */ + } + + hpcd->State = HAL_PCD_STATE_BUSY; + + /* Disable the Interrupts */ + __HAL_PCD_DISABLE(hpcd); + + /* Init endpoints structures */ + for (i = 0U; i < hpcd->Init.dev_endpoints; i++) + { + /* Init ep structure */ + hpcd->IN_ep[i].is_in = 1U; + hpcd->IN_ep[i].num = i; + /* Control until ep is activated */ + hpcd->IN_ep[i].type = EP_TYPE_CTRL; + hpcd->IN_ep[i].maxpacket = 0U; + hpcd->IN_ep[i].xfer_buff = 0U; + hpcd->IN_ep[i].xfer_len = 0U; + } + + for (i = 0U; i < hpcd->Init.dev_endpoints; i++) + { + hpcd->OUT_ep[i].is_in = 0U; + hpcd->OUT_ep[i].num = i; + /* Control until ep is activated */ + hpcd->OUT_ep[i].type = EP_TYPE_CTRL; + hpcd->OUT_ep[i].maxpacket = 0U; + hpcd->OUT_ep[i].xfer_buff = 0U; + hpcd->OUT_ep[i].xfer_len = 0U; + } + + /* Init Device */ + (void)USB_DevInit(hpcd->Instance, hpcd->Init); + + hpcd->USB_Address = 0U; + hpcd->State = HAL_PCD_STATE_READY; + + /* Activate LPM */ + if (hpcd->Init.lpm_enable == 1U) + { + (void)HAL_PCDEx_ActivateLPM(hpcd); + } + + return HAL_OK; +} + +/** + * @brief DeInitializes the PCD peripheral. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DeInit(PCD_HandleTypeDef *hpcd) +{ + /* Check the PCD handle allocation */ + if (hpcd == NULL) + { + return HAL_ERROR; + } + + hpcd->State = HAL_PCD_STATE_BUSY; + + /* Stop Device */ + if (USB_StopDevice(hpcd->Instance) != HAL_OK) + { + return HAL_ERROR; + } + +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + if (hpcd->MspDeInitCallback == NULL) + { + hpcd->MspDeInitCallback = HAL_PCD_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware */ + hpcd->MspDeInitCallback(hpcd); +#else + /* DeInit the low level hardware: CLOCK, NVIC.*/ + HAL_PCD_MspDeInit(hpcd); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + hpcd->State = HAL_PCD_STATE_RESET; + + return HAL_OK; +} + +/** + * @brief Initializes the PCD MSP. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes PCD MSP. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_MspDeInit could be implemented in the user file + */ +} + +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) +/** + * @brief Register a User USB PCD Callback + * To be used instead of the weak predefined callback + * @param hpcd USB PCD handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_PCD_SOF_CB_ID USB PCD SOF callback ID + * @arg @ref HAL_PCD_SETUPSTAGE_CB_ID USB PCD Setup callback ID + * @arg @ref HAL_PCD_RESET_CB_ID USB PCD Reset callback ID + * @arg @ref HAL_PCD_SUSPEND_CB_ID USB PCD Suspend callback ID + * @arg @ref HAL_PCD_RESUME_CB_ID USB PCD Resume callback ID + * @arg @ref HAL_PCD_CONNECT_CB_ID USB PCD Connect callback ID + * @arg @ref HAL_PCD_DISCONNECT_CB_ID USB PCD Disconnect callback ID + * @arg @ref HAL_PCD_MSPINIT_CB_ID MspDeInit callback ID + * @arg @ref HAL_PCD_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_RegisterCallback(PCD_HandleTypeDef *hpcd, + HAL_PCD_CallbackIDTypeDef CallbackID, + pPCD_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + switch (CallbackID) + { + case HAL_PCD_SOF_CB_ID : + hpcd->SOFCallback = pCallback; + break; + + case HAL_PCD_SETUPSTAGE_CB_ID : + hpcd->SetupStageCallback = pCallback; + break; + + case HAL_PCD_RESET_CB_ID : + hpcd->ResetCallback = pCallback; + break; + + case HAL_PCD_SUSPEND_CB_ID : + hpcd->SuspendCallback = pCallback; + break; + + case HAL_PCD_RESUME_CB_ID : + hpcd->ResumeCallback = pCallback; + break; + + case HAL_PCD_CONNECT_CB_ID : + hpcd->ConnectCallback = pCallback; + break; + + case HAL_PCD_DISCONNECT_CB_ID : + hpcd->DisconnectCallback = pCallback; + break; + + case HAL_PCD_MSPINIT_CB_ID : + hpcd->MspInitCallback = pCallback; + break; + + case HAL_PCD_MSPDEINIT_CB_ID : + hpcd->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hpcd->State == HAL_PCD_STATE_RESET) + { + switch (CallbackID) + { + case HAL_PCD_MSPINIT_CB_ID : + hpcd->MspInitCallback = pCallback; + break; + + case HAL_PCD_MSPDEINIT_CB_ID : + hpcd->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + return status; +} + +/** + * @brief Unregister an USB PCD Callback + * USB PCD callback is redirected to the weak predefined callback + * @param hpcd USB PCD handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_PCD_SOF_CB_ID USB PCD SOF callback ID + * @arg @ref HAL_PCD_SETUPSTAGE_CB_ID USB PCD Setup callback ID + * @arg @ref HAL_PCD_RESET_CB_ID USB PCD Reset callback ID + * @arg @ref HAL_PCD_SUSPEND_CB_ID USB PCD Suspend callback ID + * @arg @ref HAL_PCD_RESUME_CB_ID USB PCD Resume callback ID + * @arg @ref HAL_PCD_CONNECT_CB_ID USB PCD Connect callback ID + * @arg @ref HAL_PCD_DISCONNECT_CB_ID USB PCD Disconnect callback ID + * @arg @ref HAL_PCD_MSPINIT_CB_ID MspDeInit callback ID + * @arg @ref HAL_PCD_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_UnRegisterCallback(PCD_HandleTypeDef *hpcd, HAL_PCD_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hpcd); + + /* Setup Legacy weak Callbacks */ + if (hpcd->State == HAL_PCD_STATE_READY) + { + switch (CallbackID) + { + case HAL_PCD_SOF_CB_ID : + hpcd->SOFCallback = HAL_PCD_SOFCallback; + break; + + case HAL_PCD_SETUPSTAGE_CB_ID : + hpcd->SetupStageCallback = HAL_PCD_SetupStageCallback; + break; + + case HAL_PCD_RESET_CB_ID : + hpcd->ResetCallback = HAL_PCD_ResetCallback; + break; + + case HAL_PCD_SUSPEND_CB_ID : + hpcd->SuspendCallback = HAL_PCD_SuspendCallback; + break; + + case HAL_PCD_RESUME_CB_ID : + hpcd->ResumeCallback = HAL_PCD_ResumeCallback; + break; + + case HAL_PCD_CONNECT_CB_ID : + hpcd->ConnectCallback = HAL_PCD_ConnectCallback; + break; + + case HAL_PCD_DISCONNECT_CB_ID : + hpcd->DisconnectCallback = HAL_PCD_DisconnectCallback; + break; + + case HAL_PCD_MSPINIT_CB_ID : + hpcd->MspInitCallback = HAL_PCD_MspInit; + break; + + case HAL_PCD_MSPDEINIT_CB_ID : + hpcd->MspDeInitCallback = HAL_PCD_MspDeInit; + break; + + default : + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hpcd->State == HAL_PCD_STATE_RESET) + { + switch (CallbackID) + { + case HAL_PCD_MSPINIT_CB_ID : + hpcd->MspInitCallback = HAL_PCD_MspInit; + break; + + case HAL_PCD_MSPDEINIT_CB_ID : + hpcd->MspDeInitCallback = HAL_PCD_MspDeInit; + break; + + default : + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + return status; +} + +/** + * @brief Register USB PCD Data OUT Stage Callback + * To be used instead of the weak HAL_PCD_DataOutStageCallback() predefined callback + * @param hpcd PCD handle + * @param pCallback pointer to the USB PCD Data OUT Stage Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_RegisterDataOutStageCallback(PCD_HandleTypeDef *hpcd, + pPCD_DataOutStageCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->DataOutStageCallback = pCallback; + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Unregister the USB PCD Data OUT Stage Callback + * USB PCD Data OUT Stage Callback is redirected to the weak HAL_PCD_DataOutStageCallback() predefined callback + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_UnRegisterDataOutStageCallback(PCD_HandleTypeDef *hpcd) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->DataOutStageCallback = HAL_PCD_DataOutStageCallback; /* Legacy weak DataOutStageCallback */ + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Register USB PCD Data IN Stage Callback + * To be used instead of the weak HAL_PCD_DataInStageCallback() predefined callback + * @param hpcd PCD handle + * @param pCallback pointer to the USB PCD Data IN Stage Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_RegisterDataInStageCallback(PCD_HandleTypeDef *hpcd, + pPCD_DataInStageCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->DataInStageCallback = pCallback; + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Unregister the USB PCD Data IN Stage Callback + * USB PCD Data OUT Stage Callback is redirected to the weak HAL_PCD_DataInStageCallback() predefined callback + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_UnRegisterDataInStageCallback(PCD_HandleTypeDef *hpcd) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->DataInStageCallback = HAL_PCD_DataInStageCallback; /* Legacy weak DataInStageCallback */ + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Register USB PCD Iso OUT incomplete Callback + * To be used instead of the weak HAL_PCD_ISOOUTIncompleteCallback() predefined callback + * @param hpcd PCD handle + * @param pCallback pointer to the USB PCD Iso OUT incomplete Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_RegisterIsoOutIncpltCallback(PCD_HandleTypeDef *hpcd, + pPCD_IsoOutIncpltCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->ISOOUTIncompleteCallback = pCallback; + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Unregister the USB PCD Iso OUT incomplete Callback + * USB PCD Iso OUT incomplete Callback is redirected + * to the weak HAL_PCD_ISOOUTIncompleteCallback() predefined callback + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_UnRegisterIsoOutIncpltCallback(PCD_HandleTypeDef *hpcd) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->ISOOUTIncompleteCallback = HAL_PCD_ISOOUTIncompleteCallback; /* Legacy weak ISOOUTIncompleteCallback */ + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Register USB PCD Iso IN incomplete Callback + * To be used instead of the weak HAL_PCD_ISOINIncompleteCallback() predefined callback + * @param hpcd PCD handle + * @param pCallback pointer to the USB PCD Iso IN incomplete Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_RegisterIsoInIncpltCallback(PCD_HandleTypeDef *hpcd, + pPCD_IsoInIncpltCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->ISOINIncompleteCallback = pCallback; + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Unregister the USB PCD Iso IN incomplete Callback + * USB PCD Iso IN incomplete Callback is redirected + * to the weak HAL_PCD_ISOINIncompleteCallback() predefined callback + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_UnRegisterIsoInIncpltCallback(PCD_HandleTypeDef *hpcd) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->ISOINIncompleteCallback = HAL_PCD_ISOINIncompleteCallback; /* Legacy weak ISOINIncompleteCallback */ + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Register USB PCD BCD Callback + * To be used instead of the weak HAL_PCDEx_BCD_Callback() predefined callback + * @param hpcd PCD handle + * @param pCallback pointer to the USB PCD BCD Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_RegisterBcdCallback(PCD_HandleTypeDef *hpcd, pPCD_BcdCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->BCDCallback = pCallback; + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Unregister the USB PCD BCD Callback + * USB BCD Callback is redirected to the weak HAL_PCDEx_BCD_Callback() predefined callback + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_UnRegisterBcdCallback(PCD_HandleTypeDef *hpcd) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->BCDCallback = HAL_PCDEx_BCD_Callback; /* Legacy weak HAL_PCDEx_BCD_Callback */ + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Register USB PCD LPM Callback + * To be used instead of the weak HAL_PCDEx_LPM_Callback() predefined callback + * @param hpcd PCD handle + * @param pCallback pointer to the USB PCD LPM Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_RegisterLpmCallback(PCD_HandleTypeDef *hpcd, pPCD_LpmCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->LPMCallback = pCallback; + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} + +/** + * @brief Unregister the USB PCD LPM Callback + * USB LPM Callback is redirected to the weak HAL_PCDEx_LPM_Callback() predefined callback + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_UnRegisterLpmCallback(PCD_HandleTypeDef *hpcd) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hpcd); + + if (hpcd->State == HAL_PCD_STATE_READY) + { + hpcd->LPMCallback = HAL_PCDEx_LPM_Callback; /* Legacy weak HAL_PCDEx_LPM_Callback */ + } + else + { + /* Update the error code */ + hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hpcd); + + return status; +} +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the PCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Start the USB device + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + __HAL_PCD_ENABLE(hpcd); + (void)USB_DevConnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Stop the USB device. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + __HAL_PCD_DISABLE(hpcd); + (void)USB_DevDisconnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + + +/** + * @brief This function handles PCD interrupt request. + * @param hpcd PCD handle + * @retval HAL status + */ +void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd) +{ + uint32_t wIstr = USB_ReadInterrupts(hpcd->Instance); + + if ((wIstr & USB_ISTR_CTR) == USB_ISTR_CTR) + { + /* servicing of the endpoint correct transfer interrupt */ + /* clear of the CTR flag into the sub */ + (void)PCD_EP_ISR_Handler(hpcd); + + return; + } + + if ((wIstr & USB_ISTR_RESET) == USB_ISTR_RESET) + { + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_RESET); + +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->ResetCallback(hpcd); +#else + HAL_PCD_ResetCallback(hpcd); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + (void)HAL_PCD_SetAddress(hpcd, 0U); + + return; + } + + if ((wIstr & USB_ISTR_PMAOVR) == USB_ISTR_PMAOVR) + { + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_PMAOVR); + + return; + } + + if ((wIstr & USB_ISTR_ERR) == USB_ISTR_ERR) + { + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ERR); + + return; + } + + if ((wIstr & USB_ISTR_WKUP) == USB_ISTR_WKUP) + { + hpcd->Instance->CNTR &= ~(USB_CNTR_SUSPRDY); + hpcd->Instance->CNTR &= ~(USB_CNTR_SUSPEN); + + if (hpcd->LPM_State == LPM_L1) + { + hpcd->LPM_State = LPM_L0; +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->LPMCallback(hpcd, PCD_LPM_L0_ACTIVE); +#else + HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L0_ACTIVE); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->ResumeCallback(hpcd); +#else + HAL_PCD_ResumeCallback(hpcd); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_WKUP); + + return; + } + + if ((wIstr & USB_ISTR_SUSP) == USB_ISTR_SUSP) + { + /* Force low-power mode in the macrocell */ + hpcd->Instance->CNTR |= USB_CNTR_SUSPEN; + + /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */ + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SUSP); + + hpcd->Instance->CNTR |= USB_CNTR_SUSPRDY; + +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->SuspendCallback(hpcd); +#else + HAL_PCD_SuspendCallback(hpcd); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + return; + } + + /* Handle LPM Interrupt */ + if ((wIstr & USB_ISTR_L1REQ) == USB_ISTR_L1REQ) + { + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_L1REQ); + if (hpcd->LPM_State == LPM_L0) + { + /* Force suspend and low-power mode before going to L1 state*/ + hpcd->Instance->CNTR |= USB_CNTR_SUSPRDY; + hpcd->Instance->CNTR |= USB_CNTR_SUSPEN; + + hpcd->LPM_State = LPM_L1; + hpcd->BESL = ((uint32_t)hpcd->Instance->LPMCSR & USB_LPMCSR_BESL) >> 2; +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->LPMCallback(hpcd, PCD_LPM_L1_ACTIVE); +#else + HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L1_ACTIVE); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + else + { +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->SuspendCallback(hpcd); +#else + HAL_PCD_SuspendCallback(hpcd); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + + return; + } + + if ((wIstr & USB_ISTR_SOF) == USB_ISTR_SOF) + { + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SOF); + +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->SOFCallback(hpcd); +#else + HAL_PCD_SOFCallback(hpcd); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + return; + } + + if ((wIstr & USB_ISTR_ESOF) == USB_ISTR_ESOF) + { + /* clear ESOF flag in ISTR */ + __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ESOF); + + return; + } +} + + +/** + * @brief Data OUT stage callback. + * @param hpcd PCD handle + * @param epnum endpoint number + * @retval None + */ +__weak void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_DataOutStageCallback could be implemented in the user file + */ +} + +/** + * @brief Data IN stage callback + * @param hpcd PCD handle + * @param epnum endpoint number + * @retval None + */ +__weak void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_DataInStageCallback could be implemented in the user file + */ +} +/** + * @brief Setup stage callback + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_SetupStageCallback could be implemented in the user file + */ +} + +/** + * @brief USB Start Of Frame callback. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_SOFCallback could be implemented in the user file + */ +} + +/** + * @brief USB Reset callback. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_ResetCallback could be implemented in the user file + */ +} + +/** + * @brief Suspend event callback. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_SuspendCallback could be implemented in the user file + */ +} + +/** + * @brief Resume event callback. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_ResumeCallback could be implemented in the user file + */ +} + +/** + * @brief Incomplete ISO OUT callback. + * @param hpcd PCD handle + * @param epnum endpoint number + * @retval None + */ +__weak void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_ISOOUTIncompleteCallback could be implemented in the user file + */ +} + +/** + * @brief Incomplete ISO IN callback. + * @param hpcd PCD handle + * @param epnum endpoint number + * @retval None + */ +__weak void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(epnum); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_ISOINIncompleteCallback could be implemented in the user file + */ +} + +/** + * @brief Connection event callback. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_ConnectCallback could be implemented in the user file + */ +} + +/** + * @brief Disconnection event callback. + * @param hpcd PCD handle + * @retval None + */ +__weak void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCD_DisconnectCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the PCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Connect the USB device + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + (void)USB_DevConnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Disconnect the USB device. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + (void)USB_DevDisconnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Set the USB Device address. + * @param hpcd PCD handle + * @param address new device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address) +{ + __HAL_LOCK(hpcd); + hpcd->USB_Address = address; + (void)USB_SetDevAddress(hpcd->Instance, address); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} +/** + * @brief Open and configure an endpoint. + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @param ep_mps endpoint max packet size + * @param ep_type endpoint type + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, + uint16_t ep_mps, uint8_t ep_type) +{ + HAL_StatusTypeDef ret = HAL_OK; + PCD_EPTypeDef *ep; + + if ((ep_addr & 0x80U) == 0x80U) + { + ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; + ep->is_in = 1U; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; + ep->is_in = 0U; + } + + ep->num = ep_addr & EP_ADDR_MSK; + ep->maxpacket = (uint32_t)ep_mps & 0x7FFU; + ep->type = ep_type; + + /* Set initial data PID. */ + if (ep_type == EP_TYPE_BULK) + { + ep->data_pid_start = 0U; + } + + __HAL_LOCK(hpcd); + (void)USB_ActivateEndpoint(hpcd->Instance, ep); + __HAL_UNLOCK(hpcd); + + return ret; +} + +/** + * @brief Deactivate an endpoint. + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + PCD_EPTypeDef *ep; + + if ((ep_addr & 0x80U) == 0x80U) + { + ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; + ep->is_in = 1U; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; + ep->is_in = 0U; + } + ep->num = ep_addr & EP_ADDR_MSK; + + __HAL_LOCK(hpcd); + (void)USB_DeactivateEndpoint(hpcd->Instance, ep); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + + +/** + * @brief Receive an amount of data. + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @param pBuf pointer to the reception buffer + * @param len amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) +{ + PCD_EPTypeDef *ep; + + ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; + + /*setup and start the Xfer */ + ep->xfer_buff = pBuf; + ep->xfer_len = len; + ep->xfer_count = 0U; + ep->is_in = 0U; + ep->num = ep_addr & EP_ADDR_MSK; + + (void)USB_EPStartXfer(hpcd->Instance, ep); + + return HAL_OK; +} + +/** + * @brief Get Received Data Size + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @retval Data Size + */ +uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef const *hpcd, uint8_t ep_addr) +{ + return hpcd->OUT_ep[ep_addr & EP_ADDR_MSK].xfer_count; +} +/** + * @brief Send an amount of data + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @param pBuf pointer to the transmission buffer + * @param len amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) +{ + PCD_EPTypeDef *ep; + + ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; + + /*setup and start the Xfer */ + ep->xfer_buff = pBuf; + ep->xfer_len = len; + ep->xfer_fill_db = 1U; + ep->xfer_len_db = len; + ep->xfer_count = 0U; + ep->is_in = 1U; + ep->num = ep_addr & EP_ADDR_MSK; + + (void)USB_EPStartXfer(hpcd->Instance, ep); + + return HAL_OK; +} + +/** + * @brief Set a STALL condition over an endpoint + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + PCD_EPTypeDef *ep; + + if (((uint32_t)ep_addr & EP_ADDR_MSK) > hpcd->Init.dev_endpoints) + { + return HAL_ERROR; + } + + if ((0x80U & ep_addr) == 0x80U) + { + ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; + ep->is_in = 1U; + } + else + { + ep = &hpcd->OUT_ep[ep_addr]; + ep->is_in = 0U; + } + + ep->is_stall = 1U; + ep->num = ep_addr & EP_ADDR_MSK; + + __HAL_LOCK(hpcd); + + (void)USB_EPSetStall(hpcd->Instance, ep); + + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Clear a STALL condition over in an endpoint + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + PCD_EPTypeDef *ep; + + if (((uint32_t)ep_addr & 0x0FU) > hpcd->Init.dev_endpoints) + { + return HAL_ERROR; + } + + if ((0x80U & ep_addr) == 0x80U) + { + ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; + ep->is_in = 1U; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; + ep->is_in = 0U; + } + + ep->is_stall = 0U; + ep->num = ep_addr & EP_ADDR_MSK; + + __HAL_LOCK(hpcd); + (void)USB_EPClearStall(hpcd->Instance, ep); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Abort an USB EP transaction. + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Abort(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + HAL_StatusTypeDef ret; + PCD_EPTypeDef *ep; + + if ((0x80U & ep_addr) == 0x80U) + { + ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; + } + + /* Stop Xfer */ + ret = USB_EPStopXfer(hpcd->Instance, ep); + + return ret; +} + +/** + * @brief Flush an endpoint + * @param hpcd PCD handle + * @param ep_addr endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + __HAL_LOCK(hpcd); + + if ((ep_addr & 0x80U) == 0x80U) + { + (void)USB_FlushTxFifo(hpcd->Instance, (uint32_t)ep_addr & EP_ADDR_MSK); + } + else + { + (void)USB_FlushRxFifo(hpcd->Instance); + } + + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Activate remote wakeup signalling + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_ActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) +{ + return (USB_ActivateRemoteWakeup(hpcd->Instance)); +} + +/** + * @brief De-activate remote wakeup signalling. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) +{ + return (USB_DeActivateRemoteWakeup(hpcd->Instance)); +} + +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the PCD handle state. + * @param hpcd PCD handle + * @retval HAL state + */ +PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef const *hpcd) +{ + return hpcd->State; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup PCD_Private_Functions + * @{ + */ + + +/** + * @brief This function handles PCD Endpoint interrupt request. + * @param hpcd PCD handle + * @retval HAL status + */ +static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd) +{ + PCD_EPTypeDef *ep; + uint16_t count; + uint16_t wIstr; + uint16_t wEPVal; + uint16_t TxPctSize; + uint8_t epindex; + +#if (USE_USB_DOUBLE_BUFFER != 1U) + count = 0U; +#endif /* USE_USB_DOUBLE_BUFFER */ + + /* stay in loop while pending interrupts */ + while ((hpcd->Instance->ISTR & USB_ISTR_CTR) != 0U) + { + wIstr = (uint16_t)hpcd->Instance->ISTR; + + /* extract highest priority endpoint number */ + epindex = (uint8_t)(wIstr & USB_ISTR_IDN); + + if (epindex == 0U) + { + /* Decode and service control endpoint interrupt */ + + /* DIR bit = origin of the interrupt */ + if ((wIstr & USB_ISTR_DIR) == 0U) + { + /* DIR = 0 */ + + /* DIR = 0 => IN int */ + /* DIR = 0 implies that (EP_CTR_TX = 1) always */ + PCD_CLEAR_TX_EP_CTR(hpcd->Instance, PCD_ENDP0); + ep = &hpcd->IN_ep[0]; + + ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num); + ep->xfer_buff += ep->xfer_count; + + /* TX COMPLETE */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->DataInStageCallback(hpcd, 0U); +#else + HAL_PCD_DataInStageCallback(hpcd, 0U); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + if ((hpcd->USB_Address > 0U) && (ep->xfer_len == 0U)) + { + hpcd->Instance->DADDR = ((uint16_t)hpcd->USB_Address | USB_DADDR_EF); + hpcd->USB_Address = 0U; + } + } + else + { + /* DIR = 1 */ + + /* DIR = 1 & CTR_RX => SETUP or OUT int */ + /* DIR = 1 & (CTR_TX | CTR_RX) => 2 int pending */ + ep = &hpcd->OUT_ep[0]; + wEPVal = (uint16_t)PCD_GET_ENDPOINT(hpcd->Instance, PCD_ENDP0); + + if ((wEPVal & USB_EP_SETUP) != 0U) + { + /* Get SETUP Packet */ + ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num); + + USB_ReadPMA(hpcd->Instance, (uint8_t *)hpcd->Setup, + ep->pmaadress, (uint16_t)ep->xfer_count); + + /* SETUP bit kept frozen while CTR_RX = 1 */ + PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0); + + /* Process SETUP Packet*/ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->SetupStageCallback(hpcd); +#else + HAL_PCD_SetupStageCallback(hpcd); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + else if ((wEPVal & USB_EP_VTRX) != 0U) + { + PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0); + + /* Get Control Data OUT Packet */ + ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num); + + if ((ep->xfer_count != 0U) && (ep->xfer_buff != 0U)) + { + USB_ReadPMA(hpcd->Instance, ep->xfer_buff, + ep->pmaadress, (uint16_t)ep->xfer_count); + + ep->xfer_buff += ep->xfer_count; + + /* Process Control Data OUT Packet */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->DataOutStageCallback(hpcd, 0U); +#else + HAL_PCD_DataOutStageCallback(hpcd, 0U); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + + wEPVal = (uint16_t)PCD_GET_ENDPOINT(hpcd->Instance, PCD_ENDP0); + + if (((wEPVal & USB_EP_SETUP) == 0U) && ((wEPVal & USB_EP_RX_STRX) != USB_EP_RX_VALID)) + { + PCD_SET_EP_RX_STATUS(hpcd->Instance, PCD_ENDP0, USB_EP_RX_VALID); + } + } + } + } + else + { + /* Decode and service non control endpoints interrupt */ + /* process related endpoint register */ + wEPVal = (uint16_t)PCD_GET_ENDPOINT(hpcd->Instance, epindex); + + if ((wEPVal & USB_EP_VTRX) != 0U) + { + /* clear int flag */ + PCD_CLEAR_RX_EP_CTR(hpcd->Instance, epindex); + ep = &hpcd->OUT_ep[epindex]; + + /* OUT Single Buffering */ + if (ep->doublebuffer == 0U) + { + count = (uint16_t)PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num); + + if (count != 0U) + { + USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, count); + } + } +#if (USE_USB_DOUBLE_BUFFER == 1U) + else + { + /* manage double buffer bulk out */ + if (ep->type == EP_TYPE_BULK) + { + count = HAL_PCD_EP_DB_Receive(hpcd, ep, wEPVal); + } + else /* manage double buffer iso out */ + { + /* free EP OUT Buffer */ + PCD_FREE_USER_BUFFER(hpcd->Instance, ep->num, 0U); + + if ((PCD_GET_ENDPOINT(hpcd->Instance, ep->num) & USB_EP_DTOG_RX) != 0U) + { + /* read from endpoint BUF0Addr buffer */ + count = (uint16_t)PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num); + + if (count != 0U) + { + USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, count); + } + } + else + { + /* read from endpoint BUF1Addr buffer */ + count = (uint16_t)PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num); + + if (count != 0U) + { + USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, count); + } + } + } + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + /* multi-packet on the NON control OUT endpoint */ + ep->xfer_count += count; + ep->xfer_buff += count; + + if ((ep->xfer_len == 0U) || (count < ep->maxpacket)) + { + /* RX COMPLETE */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->DataOutStageCallback(hpcd, ep->num); +#else + HAL_PCD_DataOutStageCallback(hpcd, ep->num); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + else + { + (void)USB_EPStartXfer(hpcd->Instance, ep); + } + } + + if ((wEPVal & USB_EP_VTTX) != 0U) + { + ep = &hpcd->IN_ep[epindex]; + + /* clear int flag */ + PCD_CLEAR_TX_EP_CTR(hpcd->Instance, epindex); + + if (ep->type == EP_TYPE_ISOC) + { + ep->xfer_len = 0U; + +#if (USE_USB_DOUBLE_BUFFER == 1U) + if (ep->doublebuffer != 0U) + { + if ((wEPVal & USB_EP_DTOG_TX) != 0U) + { + PCD_SET_EP_DBUF0_CNT(hpcd->Instance, ep->num, ep->is_in, 0U); + } + else + { + PCD_SET_EP_DBUF1_CNT(hpcd->Instance, ep->num, ep->is_in, 0U); + } + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + /* TX COMPLETE */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->DataInStageCallback(hpcd, ep->num); +#else + HAL_PCD_DataInStageCallback(hpcd, ep->num); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + else + { + /* Manage Single Buffer Transaction */ + if ((wEPVal & USB_EP_KIND) == 0U) + { + /* Multi-packet on the NON control IN endpoint */ + TxPctSize = (uint16_t)PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num); + + if (ep->xfer_len > TxPctSize) + { + ep->xfer_len -= TxPctSize; + } + else + { + ep->xfer_len = 0U; + } + + /* Zero Length Packet? */ + if (ep->xfer_len == 0U) + { + /* TX COMPLETE */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->DataInStageCallback(hpcd, ep->num); +#else + HAL_PCD_DataInStageCallback(hpcd, ep->num); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + else + { + /* Transfer is not yet Done */ + ep->xfer_buff += TxPctSize; + ep->xfer_count += TxPctSize; + (void)USB_EPStartXfer(hpcd->Instance, ep); + } + } +#if (USE_USB_DOUBLE_BUFFER == 1U) + /* Double Buffer bulk IN (bulk transfer Len > Ep_Mps) */ + else + { + (void)HAL_PCD_EP_DB_Transmit(hpcd, ep, wEPVal); + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + } + } + } + } + + return HAL_OK; +} + + +#if (USE_USB_DOUBLE_BUFFER == 1U) +/** + * @brief Manage double buffer bulk out transaction from ISR + * @param hpcd PCD handle + * @param ep current endpoint handle + * @param wEPVal Last snapshot of EPRx register value taken in ISR + * @retval HAL status + */ +static uint16_t HAL_PCD_EP_DB_Receive(PCD_HandleTypeDef *hpcd, + PCD_EPTypeDef *ep, uint16_t wEPVal) +{ + uint16_t count; + + /* Manage Buffer0 OUT */ + if ((wEPVal & USB_EP_DTOG_RX) != 0U) + { + /* Get count of received Data on buffer0 */ + count = (uint16_t)PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num); + + if (ep->xfer_len >= count) + { + ep->xfer_len -= count; + } + else + { + ep->xfer_len = 0U; + } + + if (ep->xfer_len == 0U) + { + /* Set NAK to OUT endpoint since double buffer is enabled */ + PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_NAK); + } + + /* Check if Buffer1 is in blocked state which requires to toggle */ + if ((wEPVal & USB_EP_DTOG_TX) != 0U) + { + PCD_FREE_USER_BUFFER(hpcd->Instance, ep->num, 0U); + } + + if (count != 0U) + { + USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, count); + } + } + /* Manage Buffer 1 DTOG_RX=0 */ + else + { + /* Get count of received data */ + count = (uint16_t)PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num); + + if (ep->xfer_len >= count) + { + ep->xfer_len -= count; + } + else + { + ep->xfer_len = 0U; + } + + if (ep->xfer_len == 0U) + { + /* Set NAK on the current endpoint */ + PCD_SET_EP_RX_STATUS(hpcd->Instance, ep->num, USB_EP_RX_NAK); + } + + /* Need to FreeUser Buffer */ + if ((wEPVal & USB_EP_DTOG_TX) == 0U) + { + PCD_FREE_USER_BUFFER(hpcd->Instance, ep->num, 0U); + } + + if (count != 0U) + { + USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, count); + } + } + + return count; +} + + +/** + * @brief Manage double buffer bulk IN transaction from ISR + * @param hpcd PCD handle + * @param ep current endpoint handle + * @param wEPVal Last snapshot of EPRx register value taken in ISR + * @retval HAL status + */ +static HAL_StatusTypeDef HAL_PCD_EP_DB_Transmit(PCD_HandleTypeDef *hpcd, + PCD_EPTypeDef *ep, uint16_t wEPVal) +{ + uint32_t len; + uint16_t TxPctSize; + + /* Data Buffer0 ACK received */ + if ((wEPVal & USB_EP_DTOG_TX) != 0U) + { + /* multi-packet on the NON control IN endpoint */ + TxPctSize = (uint16_t)PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num); + + if (ep->xfer_len > TxPctSize) + { + ep->xfer_len -= TxPctSize; + } + else + { + ep->xfer_len = 0U; + } + + /* Transfer is completed */ + if (ep->xfer_len == 0U) + { + PCD_SET_EP_DBUF0_CNT(hpcd->Instance, ep->num, ep->is_in, 0U); + PCD_SET_EP_DBUF1_CNT(hpcd->Instance, ep->num, ep->is_in, 0U); + + if (ep->type == EP_TYPE_BULK) + { + /* Set Bulk endpoint in NAK state */ + PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_NAK); + } + + /* TX COMPLETE */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->DataInStageCallback(hpcd, ep->num); +#else + HAL_PCD_DataInStageCallback(hpcd, ep->num); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + if ((wEPVal & USB_EP_DTOG_RX) != 0U) + { + PCD_FREE_USER_BUFFER(hpcd->Instance, ep->num, 1U); + } + + return HAL_OK; + } + else /* Transfer is not yet Done */ + { + /* Need to Free USB Buffer */ + if ((wEPVal & USB_EP_DTOG_RX) != 0U) + { + PCD_FREE_USER_BUFFER(hpcd->Instance, ep->num, 1U); + } + + /* Still there is data to Fill in the next Buffer */ + if (ep->xfer_fill_db == 1U) + { + ep->xfer_buff += TxPctSize; + ep->xfer_count += TxPctSize; + + /* Calculate the len of the new buffer to fill */ + if (ep->xfer_len_db >= ep->maxpacket) + { + len = ep->maxpacket; + ep->xfer_len_db -= len; + } + else if (ep->xfer_len_db == 0U) + { + len = TxPctSize; + ep->xfer_fill_db = 0U; + } + else + { + ep->xfer_fill_db = 0U; + len = ep->xfer_len_db; + ep->xfer_len_db = 0U; + } + + /* Write remaining Data to Buffer */ + /* Set the Double buffer counter for pma buffer0 */ + PCD_SET_EP_DBUF0_CNT(hpcd->Instance, ep->num, ep->is_in, len); + + /* Copy user buffer to USB PMA */ + USB_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, (uint16_t)len); + } + } + } + else /* Data Buffer1 ACK received */ + { + /* multi-packet on the NON control IN endpoint */ + TxPctSize = (uint16_t)PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num); + + if (ep->xfer_len >= TxPctSize) + { + ep->xfer_len -= TxPctSize; + } + else + { + ep->xfer_len = 0U; + } + + /* Transfer is completed */ + if (ep->xfer_len == 0U) + { + PCD_SET_EP_DBUF0_CNT(hpcd->Instance, ep->num, ep->is_in, 0U); + PCD_SET_EP_DBUF1_CNT(hpcd->Instance, ep->num, ep->is_in, 0U); + + if (ep->type == EP_TYPE_BULK) + { + /* Set Bulk endpoint in NAK state */ + PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_NAK); + } + + /* TX COMPLETE */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->DataInStageCallback(hpcd, ep->num); +#else + HAL_PCD_DataInStageCallback(hpcd, ep->num); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + + /* need to Free USB Buff */ + if ((wEPVal & USB_EP_DTOG_RX) == 0U) + { + PCD_FREE_USER_BUFFER(hpcd->Instance, ep->num, 1U); + } + + return HAL_OK; + } + else /* Transfer is not yet Done */ + { + /* Need to Free USB Buffer */ + if ((wEPVal & USB_EP_DTOG_RX) == 0U) + { + PCD_FREE_USER_BUFFER(hpcd->Instance, ep->num, 1U); + } + + /* Still there is data to Fill in the next Buffer */ + if (ep->xfer_fill_db == 1U) + { + ep->xfer_buff += TxPctSize; + ep->xfer_count += TxPctSize; + + /* Calculate the len of the new buffer to fill */ + if (ep->xfer_len_db >= ep->maxpacket) + { + len = ep->maxpacket; + ep->xfer_len_db -= len; + } + else if (ep->xfer_len_db == 0U) + { + len = TxPctSize; + ep->xfer_fill_db = 0U; + } + else + { + len = ep->xfer_len_db; + ep->xfer_len_db = 0U; + ep->xfer_fill_db = 0; + } + + /* Set the Double buffer counter for pma buffer1 */ + PCD_SET_EP_DBUF1_CNT(hpcd->Instance, ep->num, ep->is_in, len); + + /* Copy the user buffer to USB PMA */ + USB_WritePMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, (uint16_t)len); + } + } + } + + /* Enable endpoint IN */ + PCD_SET_EP_TX_STATUS(hpcd->Instance, ep->num, USB_EP_TX_VALID); + + return HAL_OK; +} +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + +/** + * @} + */ +#endif /* defined (USB_DRD_FS) */ +#endif /* HAL_PCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd_ex.c new file mode 100644 index 0000000..42b6ac0 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pcd_ex.c @@ -0,0 +1,331 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_pcd_ex.c + * @author MCD Application Team + * @brief PCD Extended HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Extended features functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup PCDEx PCDEx + * @brief PCD Extended HAL module driver + * @{ + */ + +#ifdef HAL_PCD_MODULE_ENABLED + +#if defined (USB_DRD_FS) +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup PCDEx_Exported_Functions PCDEx Exported Functions + * @{ + */ + +/** @defgroup PCDEx_Exported_Functions_Group1 Peripheral Control functions + * @brief PCDEx control functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Update FIFO configuration + +@endverbatim + * @{ + */ + +/** + * @brief Configure PMA for EP + * @param hpcd Device instance + * @param ep_addr endpoint address + * @param ep_kind endpoint Kind + * USB_SNG_BUF: Single Buffer used + * USB_DBL_BUF: Double Buffer used + * @param pmaadress: EP address in The PMA: In case of single buffer endpoint + * this parameter is 16-bit value providing the address + * in PMA allocated to endpoint. + * In case of double buffer endpoint this parameter + * is a 32-bit value providing the endpoint buffer 0 address + * in the LSB part of 32-bit value and endpoint buffer 1 address + * in the MSB part of 32-bit value. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, uint16_t ep_addr, + uint16_t ep_kind, uint32_t pmaadress) +{ + PCD_EPTypeDef *ep; + + /* initialize ep structure*/ + if ((0x80U & ep_addr) == 0x80U) + { + ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr]; + } + + /* Here we check if the endpoint is single or double Buffer*/ + if (ep_kind == PCD_SNG_BUF) + { + /* Single Buffer */ + ep->doublebuffer = 0U; + /* Configure the PMA */ + ep->pmaadress = (uint16_t)pmaadress; + } +#if (USE_USB_DOUBLE_BUFFER == 1U) + else /* USB_DBL_BUF */ + { + /* Double Buffer Endpoint */ + ep->doublebuffer = 1U; + /* Configure the PMA */ + ep->pmaaddr0 = (uint16_t)(pmaadress & 0xFFFFU); + ep->pmaaddr1 = (uint16_t)((pmaadress & 0xFFFF0000U) >> 16); + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + return HAL_OK; +} + +/** + * @brief Activate BatteryCharging feature. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_ActivateBCD(PCD_HandleTypeDef *hpcd) +{ + USB_DRD_TypeDef *USBx = hpcd->Instance; + hpcd->battery_charging_active = 1U; + + /* Enable BCD feature */ + USBx->BCDR |= USB_BCDR_BCDEN; + + /* Enable DCD : Data Contact Detect */ + USBx->BCDR &= ~(USB_BCDR_PDEN); + USBx->BCDR &= ~(USB_BCDR_SDEN); + USBx->BCDR |= USB_BCDR_DCDEN; + + return HAL_OK; +} + +/** + * @brief Deactivate BatteryCharging feature. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_DeActivateBCD(PCD_HandleTypeDef *hpcd) +{ + USB_DRD_TypeDef *USBx = hpcd->Instance; + hpcd->battery_charging_active = 0U; + + /* Disable BCD feature */ + USBx->BCDR &= ~(USB_BCDR_BCDEN); + + return HAL_OK; +} + +/** + * @brief Handle BatteryCharging Process. + * @param hpcd PCD handle + * @retval HAL status + */ +void HAL_PCDEx_BCD_VBUSDetect(PCD_HandleTypeDef *hpcd) +{ + USB_DRD_TypeDef *USBx = hpcd->Instance; + uint32_t tickstart = HAL_GetTick(); + + /* Wait for Min DCD Timeout */ + HAL_Delay(300U); + + /* Data Pin Contact ? Check Detect flag */ + if ((USBx->BCDR & USB_BCDR_DCDET) == USB_BCDR_DCDET) + { +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->BCDCallback(hpcd, PCD_BCD_CONTACT_DETECTION); +#else + HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_CONTACT_DETECTION); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + /* Primary detection: checks if connected to Standard Downstream Port + (without charging capability) */ + USBx->BCDR &= ~(USB_BCDR_DCDEN); + HAL_Delay(50U); + USBx->BCDR |= (USB_BCDR_PDEN); + HAL_Delay(50U); + + /* If Charger detect ? */ + if ((USBx->BCDR & USB_BCDR_PDET) == USB_BCDR_PDET) + { + /* Start secondary detection to check connection to Charging Downstream + Port or Dedicated Charging Port */ + USBx->BCDR &= ~(USB_BCDR_PDEN); + HAL_Delay(50U); + USBx->BCDR |= (USB_BCDR_SDEN); + HAL_Delay(50U); + + /* If CDP ? */ + if ((USBx->BCDR & USB_BCDR_SDET) == USB_BCDR_SDET) + { + /* Dedicated Downstream Port DCP */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->BCDCallback(hpcd, PCD_BCD_DEDICATED_CHARGING_PORT); +#else + HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_DEDICATED_CHARGING_PORT); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + else + { + /* Charging Downstream Port CDP */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->BCDCallback(hpcd, PCD_BCD_CHARGING_DOWNSTREAM_PORT); +#else + HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_CHARGING_DOWNSTREAM_PORT); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + } + else /* NO */ + { + /* Standard Downstream Port */ +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->BCDCallback(hpcd, PCD_BCD_STD_DOWNSTREAM_PORT); +#else + HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_STD_DOWNSTREAM_PORT); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + + /* Battery Charging capability discovery finished Start Enumeration */ + (void)HAL_PCDEx_DeActivateBCD(hpcd); + + /* Check for the Timeout, else start USB Device */ + if ((HAL_GetTick() - tickstart) > 1000U) + { +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->BCDCallback(hpcd, PCD_BCD_ERROR); +#else + HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_ERROR); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } + else + { +#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) + hpcd->BCDCallback(hpcd, PCD_BCD_DISCOVERY_COMPLETED); +#else + HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_DISCOVERY_COMPLETED); +#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ + } +} + +/** + * @brief Activate LPM feature. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_ActivateLPM(PCD_HandleTypeDef *hpcd) +{ + + USB_DRD_TypeDef *USBx = hpcd->Instance; + hpcd->lpm_active = 1U; + hpcd->LPM_State = LPM_L0; + + USBx->LPMCSR |= USB_LPMCSR_LMPEN; + USBx->LPMCSR |= USB_LPMCSR_LPMACK; + + return HAL_OK; +} + +/** + * @brief Deactivate LPM feature. + * @param hpcd PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_DeActivateLPM(PCD_HandleTypeDef *hpcd) +{ + USB_DRD_TypeDef *USBx = hpcd->Instance; + + hpcd->lpm_active = 0U; + + USBx->LPMCSR &= ~(USB_LPMCSR_LMPEN); + USBx->LPMCSR &= ~(USB_LPMCSR_LPMACK); + + return HAL_OK; +} + + +/** + * @brief Send LPM message to user layer callback. + * @param hpcd PCD handle + * @param msg LPM message + * @retval HAL status + */ +__weak void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(msg); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCDEx_LPM_Callback could be implemented in the user file + */ +} + +/** + * @brief Send BatteryCharging message to user layer callback. + * @param hpcd PCD handle + * @param msg LPM message + * @retval HAL status + */ +__weak void HAL_PCDEx_BCD_Callback(PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hpcd); + UNUSED(msg); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PCDEx_BCD_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* defined (USB_DRD_FS) */ +#endif /* HAL_PCD_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr.c new file mode 100644 index 0000000..b5bc9ea --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr.c @@ -0,0 +1,681 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_pwr.c + * @author MCD Application Team + * @brief PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Power Controller (PWR) peripheral: + * + Initialization/de-initialization functions + * + Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup PWR PWR + * @brief PWR HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup PWR_Private_Defines PWR Private Defines + * @{ + */ + +/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask + * @{ + */ +#define PVD_MODE_IT 0x00010000U /*!< Mask for interruption yielded by PVD threshold crossing */ +#define PVD_MODE_EVT 0x00020000U /*!< Mask for event yielded by PVD threshold crossing */ +#define PVD_RISING_EDGE 0x00000001U /*!< Mask for rising edge set as PVD trigger */ +#define PVD_FALLING_EDGE 0x00000002U /*!< Mask for falling edge set as PVD trigger */ +/** + * @} + */ + +/** @defgroup PWR_Enable_PWR PWR EWUP All Pins + * @{ + */ +#define PWR_EWUP_Msk 0x0000005FU /*!< Mask for all wake-up pins */ +/** + * @} + */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup PWR_Exported_Functions PWR Exported Functions + * @{ + */ + +/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + +@endverbatim + * @{ + */ + +/** + * @brief Deinitialize the HAL PWR peripheral registers to their default reset values. + * @retval None + */ +void HAL_PWR_DeInit(void) +{ + __HAL_RCC_PWR_FORCE_RESET(); + __HAL_RCC_PWR_RELEASE_RESET(); +} + +/** + * @brief Enable access to the backup domain + * (RTC registers, RTC backup data registers). + * @note After reset, the backup domain is protected against + * possible unwanted write accesses. + * @note RTCSEL that sets the RTC clock source selection is in the RTC back-up domain. + * In order to set or modify the RTC clock, the backup domain access must be + * disabled. + * @note LSEON bit that switches on and off the LSE crystal belongs as well to the + * back-up domain. + * @retval None + */ +void HAL_PWR_EnableBkUpAccess(void) +{ + SET_BIT(PWR->CR1, PWR_CR1_DBP); +} + +/** + * @brief Disable access to the backup domain + * (RTC registers, RTC backup data registers). + * @retval None + */ +void HAL_PWR_DisableBkUpAccess(void) +{ + CLEAR_BIT(PWR->CR1, PWR_CR1_DBP); +} +/** + * @} + */ + + +/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions + * @brief Low Power modes configuration functions + * +@verbatim + + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + + [..] + *** PVD configuration *** + ========================= + [..] + (+) The PVD is used to monitor the VDD power supply by comparing it to a + threshold selected by the PVD Level (PLS[2:0] bits in PWR_CR2 register). + + (+) PVDO flag is available to indicate if VDD/VDDA is higher or lower + than the PVD threshold. This event is internally connected to the EXTI + line16 and can generate an interrupt if enabled. This is done through + __HAL_PVD_EXTI_ENABLE_IT() macro. + (+) The PVD is stopped in Standby mode. + + + *** WakeUp pin configuration *** + ================================ + [..] + (+) WakeUp pins are used to wakeup the system from Standby mode or Shutdown mode. + The polarity of these pins can be set to configure event detection on high + level (rising edge) or low level (falling edge). + + + + *** Low Power modes configuration *** + ===================================== + [..] + The devices feature 8 low-power modes: + (+) Low-power Run mode: core and peripherals are running, main regulator off, low power regulator on. + (+) Sleep mode: Cortex-M4 core stopped, peripherals kept running, main and low power regulators on. + (+) Low-power Sleep mode: Cortex-M4 core stopped, peripherals kept running, main regulator off, + low power regulator on. + (+) Stop 0 mode: all clocks are stopped except LSI and LSE, main and low power regulators on. + (+) Stop 1 mode: all clocks are stopped except LSI and LSE, main regulator off, low power regulator on. + (+) Stop 2 mode: all clocks are stopped except LSI and LSE, main regulator off, low power regulator on, + reduced set of waking up IPs compared to Stop 1 mode. + (+) Standby mode with SRAM2: all clocks are stopped except LSI and LSE, SRAM2 content preserved, + main regulator off, low power regulator on. + (+) Standby mode without SRAM2: all clocks are stopped except LSI and LSE, main and low power regulators off. + (+) Shutdown mode: all clocks are stopped except LSE, main and low power regulators off. + + + *** Low-power run mode *** + ========================== + [..] + (+) Entry: (from main run mode) + (++) set LPR bit with HAL_PWREx_EnableLowPowerRunMode() API after having decreased the system clock below 2 MHz. + + (+) Exit: + (++) clear LPR bit then wait for REGLP bit to be reset with HAL_PWREx_DisableLowPowerRunMode() API. Only + then can the system clock frequency be increased above 2 MHz. + + + *** Sleep mode / Low-power sleep mode *** + ========================================= + [..] + (+) Entry: + The Sleep mode / Low-power Sleep mode is entered through HAL_PWR_EnterSLEEPMode() API + in specifying whether or not the regulator is forced to low-power mode and if exit is interrupt + or event-triggered. + (++) PWR_MAINREGULATOR_ON: Sleep mode (regulator in main mode). + (++) PWR_LOWPOWERREGULATOR_ON: Low-power sleep (regulator in low power mode). + In the latter case, the system clock frequency must have been decreased below 2 MHz beforehand. + (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction + (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction + + (+) WFI Exit: + (++) Any peripheral interrupt acknowledged by the nested vectored interrupt + controller (NVIC) or any wake-up event. + + (+) WFE Exit: + (++) Any wake-up event such as an EXTI line configured in event mode. + + [..] When exiting the Low-power sleep mode by issuing an interrupt or a wakeup event, + the MCU is in Low-power Run mode. + + *** Stop 0, Stop 1 and Stop 2 modes *** + =============================== + [..] + (+) Entry: + The Stop 0, Stop 1 or Stop 2 modes are entered through the following API's: + (++) HAL_PWREx_EnterSTOP0Mode() for mode 0 or HAL_PWREx_EnterSTOP1Mode() for mode 1 or + for porting reasons HAL_PWR_EnterSTOPMode(). + (++) HAL_PWREx_EnterSTOP2Mode() for mode 2. + (+) Regulator setting (applicable to HAL_PWR_EnterSTOPMode() only): + (++) PWR_MAINREGULATOR_ON + (++) PWR_LOWPOWERREGULATOR_ON + (+) Exit (interrupt or event-triggered, specified when entering STOP mode): + (++) PWR_STOPENTRY_WFI: enter Stop mode with WFI instruction + (++) PWR_STOPENTRY_WFE: enter Stop mode with WFE instruction + + (+) WFI Exit: + (++) Any EXTI Line (Internal or External) configured in Interrupt mode. + (++) Some specific communication peripherals (USART, LPUART, I2C) interrupts + when programmed in wakeup mode. + (+) WFE Exit: + (++) Any EXTI Line (Internal or External) configured in Event mode. + + [..] + When exiting Stop 0 and Stop 1 modes, the MCU is either in Run mode or in Low-power Run mode + depending on the LPR bit setting. + When exiting Stop 2 mode, the MCU is in Run mode. + + *** Standby mode *** + ==================== + [..] + The Standby mode offers two options: + (+) option a) all clocks off except LSI and LSE, RRS bit set (keeps voltage regulator in low power mode). + SRAM and registers contents are lost except for the SRAM2 content, the RTC registers, RTC backup registers + and Standby circuitry. + (+) option b) all clocks off except LSI and LSE, RRS bit cleared (voltage regulator then disabled). + SRAM and register contents are lost except for the RTC registers, RTC backup registers + and Standby circuitry. + + (++) Entry: + (+++) The Standby mode is entered through HAL_PWR_EnterSTANDBYMode() API. + SRAM1 and register contents are lost except for registers in the Backup domain and + Standby circuitry. SRAM2 content can be preserved if the bit RRS is set in PWR_CR3 register. + To enable this feature, the user can resort to HAL_PWREx_EnableSRAM2ContentRetention() API + to set RRS bit. + + (++) Exit: + (+++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event, + external reset in NRST pin, IWDG reset. + + [..] After waking up from Standby mode, program execution restarts in the same way as after a Reset. + + + *** Shutdown mode *** + ====================== + [..] + In Shutdown mode, + voltage regulator is disabled, all clocks are off except LSE, RRS bit is cleared. + SRAM and registers contents are lost except for backup domain registers. + + (+) Entry: + The Shutdown mode is entered through HAL_PWREx_EnterSHUTDOWNMode() API. + + (+) Exit: + (++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event, + external reset in NRST pin. + + [..] After waking up from Shutdown mode, program execution restarts in the same way as after a Reset. + + + *** Auto-wakeup (AWU) from low-power mode *** + ============================================= + [..] + The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC + Wakeup event, a tamper event or a time-stamp event, without depending on + an external interrupt (Auto-wakeup mode). + + (+) RTC auto-wakeup (AWU) from the Stop, Standby and Shutdown modes + + + (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to + configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function. + + (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it + is necessary to configure the RTC to detect the tamper or time stamp event using the + HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions. + + (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to + configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer_IT() function. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the voltage threshold detected by the Power Voltage Detector (PVD). + * @param sConfigPVD: pointer to a PWR_PVDTypeDef structure that contains the PVD + * configuration information. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage thresholds corresponding to each + * detection level. + * @retval None + */ +HAL_StatusTypeDef HAL_PWR_ConfigPVD(const PWR_PVDTypeDef *sConfigPVD) +{ + /* Check the parameters */ + assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel)); + assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode)); + + /* Set PLS bits according to PVDLevel value */ + MODIFY_REG(PWR->CR2, PWR_CR2_PLS, sConfigPVD->PVDLevel); + + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVD_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVD_EXTI_DISABLE_IT(); + __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); + __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); + + /* Configure interrupt mode */ + if ((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) + { + __HAL_PWR_PVD_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if ((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT) + { + __HAL_PWR_PVD_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if ((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); + } + + if ((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); + } + + return HAL_OK; +} + +/** + * @brief Enable the Power Voltage Detector (PVD). + * @retval None + */ +void HAL_PWR_EnablePVD(void) +{ + SET_BIT(PWR->CR2, PWR_CR2_PVDE); +} + +/** + * @brief Disable the Power Voltage Detector (PVD). + * @retval None + */ +void HAL_PWR_DisablePVD(void) +{ + CLEAR_BIT(PWR->CR2, PWR_CR2_PVDE); +} + +/** + * @brief Enable the WakeUp PINx functionality. + * @param WakeUpPinPolarity: Specifies which Wake-Up pin to enable. + * This parameter can be one of the following legacy values which set the default polarity + * i.e. detection on high level (rising edge): + * @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5 + * + * or one of the following value where the user can explicitly specify the enabled pin and + * the chosen polarity: + * @arg @ref PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW + * @arg @ref PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW + * @arg @ref PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW + * @arg @ref PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW + * @arg @ref PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW + * @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent. + * @retval None + */ +void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity) +{ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity)); + + /* Specifies the Wake-Up pin polarity for the event detection + (rising or falling edge) */ + MODIFY_REG(PWR->CR4, (PWR_EWUP_Msk & WakeUpPinPolarity), (WakeUpPinPolarity >> PWR_WUP_POLARITY_SHIFT)); + + /* Enable wake-up pin */ + SET_BIT(PWR->CR3, (PWR_EWUP_Msk & WakeUpPinPolarity)); +} + +/** + * @brief Disable the WakeUp PINx functionality. + * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable. + * This parameter can be one of the following values: + * @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5 + * @retval None + */ +void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx) +{ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); + + CLEAR_BIT(PWR->CR3, (PWR_EWUP_Msk & WakeUpPinx)); +} + +/** + * @brief Enter Sleep or Low-power Sleep mode. + * @note In Sleep/Low-power Sleep mode, all I/O pins keep the same state as in Run mode. + * @param Regulator: Specifies the regulator state in Sleep/Low-power Sleep mode. + * This parameter can be one of the following values: + * @arg @ref PWR_MAINREGULATOR_ON Sleep mode (regulator in main mode) + * @arg @ref PWR_LOWPOWERREGULATOR_ON Low-power Sleep mode (regulator in low-power mode) + * @note Low-power Sleep mode is entered from Low-power Run mode. Therefore, if not yet + * in Low-power Run mode before calling HAL_PWR_EnterSLEEPMode() with Regulator set + * to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the + * Flash in power-down monde in setting the SLEEP_PD bit in FLASH_ACR register. + * Additionally, the clock frequency must be reduced below 2 MHz. + * Setting SLEEP_PD in FLASH_ACR then appropriately reducing the clock frequency must + * be done before calling HAL_PWR_EnterSLEEPMode() API. + * @note When exiting Low-power Sleep mode, the MCU is in Low-power Run mode. To move in + * Run mode, the user must resort to HAL_PWREx_DisableLowPowerRunMode() API. + * @param SLEEPEntry: Specifies if Sleep mode is entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_SLEEPENTRY_WFI enter Sleep or Low-power Sleep mode with WFI instruction + * @arg @ref PWR_SLEEPENTRY_WFE enter Sleep or Low-power Sleep mode with WFE instruction + * @note When WFI entry is used, tick interrupt have to be disabled if not desired as + * the interrupt wake up source. + * @retval None + */ +void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry)); + + /* Set Regulator parameter */ + if (Regulator == PWR_MAINREGULATOR_ON) + { + /* If in low-power run mode at this point, exit it */ + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) + { + if (HAL_PWREx_DisableLowPowerRunMode() != HAL_OK) + { + return ; + } + } + /* Regulator now in main mode. */ + } + else + { + /* If in run mode, first move to low-power run mode. + The system clock frequency must be below 2 MHz at this point. */ + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF) == RESET) + { + HAL_PWREx_EnableLowPowerRunMode(); + } + } + + /* Clear SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select SLEEP mode entry -------------------------------------------------*/ + if (SLEEPEntry == PWR_SLEEPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } +} + +/** + * @brief Enter Stop 0 mode + * @note This API is named HAL_PWR_EnterSTOPMode to ensure compatibility with legacy code running + * on devices where only "Stop mode" is mentioned with main or low power regulator ON. + * @note In Stop mode, all I/O pins keep the same state as in Run mode. + * @note All clocks in the VCORE domain are stopped; the PLL, the MSI, + * the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability + * (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI + * after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated + * only to the peripheral requesting it. + * SRAM1, SRAM2 and register contents are preserved. + * The BOR is available. + * The voltage regulator can be configured either in normal (Stop 0) or low-power mode (Stop 1). + * @note When exiting Stop 0 or Stop 1 mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register + * is set; the MSI oscillator is selected if STOPWUCK is cleared. + * @note When the voltage regulator operates in low power mode (Stop 1), an additional + * startup delay is incurred when waking up. + * By keeping the internal regulator ON during Stop mode (Stop 0), the consumption + * is higher although the startup time is reduced. + * @param Regulator: Specifies the regulator state in Stop mode. + * This parameter can be one of the following values: + * @arg @ref PWR_MAINREGULATOR_ON Stop 0 mode (main regulator ON) + * @arg @ref PWR_LOWPOWERREGULATOR_ON Stop 1 mode (low power regulator ON) + * @param STOPEntry: Specifies Stop 0 or Stop 1 mode is entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_STOPENTRY_WFI Enter Stop 0 or Stop 1 mode with WFI instruction. + * @arg @ref PWR_STOPENTRY_WFE Enter Stop 0 or Stop 1 mode with WFE instruction. + * @retval None + */ +void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry) +{ + + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + /* Select the regulator state in STOP mode */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPR, Regulator); + /* Stop 0 mode with Main Regulator */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, 0U); + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + /* Select Stop mode entry --------------------------------------------------*/ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} + +/** + * @brief Enter Standby mode. + * @note In Standby mode, the PLL, the HSI, the MSI and the HSE oscillators are switched + * off. The voltage regulator is disabled, except when SRAM2 content is preserved + * in which case the regulator is in low-power mode. + * SRAM1 and register contents are lost except for registers in the Backup domain and + * Standby circuitry. SRAM2 content can be preserved if the bit RRS is set in PWR_CR3 register. + * To enable this feature, the user can resort to HAL_PWREx_EnableSRAM2ContentRetention() API + * to set RRS bit. + * The BOR is available. + * @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state. + * HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() respectively enable Pull Up and + * Pull Down state, HAL_PWREx_DisableGPIOPullUp() and HAL_PWREx_DisableGPIOPullDown() disable the + * same. + * These states are effective in Standby mode only if APC bit is set through + * HAL_PWREx_EnablePullUpPullDownConfig() API. + * @retval None + */ +void HAL_PWR_EnterSTANDBYMode(void) +{ + /* Set Stand-by mode */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, (PWR_CR1_LPMS_1 | PWR_CR1_LPMS_0)); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Request Wait For Interrupt */ + __WFI(); +} + +/** + * @brief Enter Shutdown mode. + * @note In Shutdown mode, the PLL, the HSI, the MSI, the LSI and the HSE oscillators are switched + * off. The voltage regulator is disabled and Vcore domain is powered off. + * SRAM1, SRAM2 and registers contents are lost except for registers in the Backup domain. + * The BOR is not available. + * @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state. + * @retval None + */ +void HAL_PWR_EnterSHUTDOWNMode(void) +{ + + /* Set Shutdown mode */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_2); + + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* This option is used to ensure that store operations are completed */ +#if defined ( __CC_ARM) + __force_stores(); +#endif /* __CC_ARM */ + /* Request Wait For Interrupt */ + __WFI(); +} + +/** + * @brief Indicate Sleep-On-Exit when returning from Handler mode to Thread mode. + * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * Setting this bit is useful when the processor is expected to run only on + * interruptions handling. + * @retval None + */ +void HAL_PWR_EnableSleepOnExit(void) +{ + /* Set SLEEPONEXIT bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + +/** + * @brief Disable Sleep-On-Exit feature when returning from Handler mode to Thread mode. + * @note Clear SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * @retval None + */ +void HAL_PWR_DisableSleepOnExit(void) +{ + /* Clear SLEEPONEXIT bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + +/** + * @brief Enable CORTEX M4 SEVONPEND bit. + * @note Set SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_EnableSEVOnPend(void) +{ + /* Set SEVONPEND bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + +/** + * @brief Disable CORTEX M4 SEVONPEND bit. + * @note Clear SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_DisableSEVOnPend(void) +{ + /* Clear SEVONPEND bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + +/** + * @brief PWR PVD interrupt callback + * @retval None + */ +__weak void HAL_PWR_PVDCallback(void) +{ + /* NOTE : This function should not be modified; when the callback is needed, + the HAL_PWR_PVDCallback can be implemented in the user file + */ +} +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr_ex.c new file mode 100644 index 0000000..cc4c9ef --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_pwr_ex.c @@ -0,0 +1,1363 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_pwr_ex.c + * @author MCD Application Team + * @brief Extended PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Power Controller extension peripheral : + * + Power Supply Control Functions + * + Low Power Control Functions + * + Voltage Monitoring Functions + * + Memories Retention Functions + * + I/O Pull-Up Pull-Down Configuration Functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Call HAL_PWREx_ControlVoltageScaling() and HAL_PWREx_GetVoltageRange() to + set / get the voltage scaling range. + (+) Voltage scaling can be one of the following values : + (++) voltage output scale 1 : 1V2 + => Used when system clock frequency is up to 160 MHz + (++) voltage output scale 2 : 1V1 + => Used when system clock frequency is up to 100 MHz + + (#) Call HAL_PWREx_EnterSTOP1Mode() function to enter the whole system to + Stop 1 mode. Wake-up from Stop 1 mode could be following to an event or + an interrupt according to low power mode intrinsic request called + (__WFI() or __WFE()). (Regulator state on U0 devices is managed + internally but regulator parameter is kept for product compatibility). + + (#) Call HAL_PWREx_EnterSTOP2Mode() function to enter the whole system to + Stop 2 mode. Wake-up from Stop 2 mode could be following to an event or + an interrupt according to low power mode intrinsic request called + (__WFI() or __WFE()). (Regulator state on U0 devices is managed + internally but regulator parameter is kept for product compatibility). + + (#) Call HAL_PWREx_EnableBatteryCharging() and + HAL_PWREx_DisableBatteryCharging() to enable / disable the battery + charging capability when VDD alimentation is available. + + (#) Call HAL_PWREx_ConfigPVM() after setting parameters to be configured + (event mode and PVD type) in order to set up the Peripheral Voltage use + HAL_PWREx_EnablePVM1(),HAL_PWREx_EnablePVM3() and HAL_PWREx_EnablePVM4() + functions and use HAL_PWREx_DisablePVM1(),HAL_PWREx_EnablePVM3() + and HAL_PWREx_EnablePVM4() to stop the PVM VDDx monitoring. + (+) PVM monitored voltages are : + (++) VDDUSB versus 1V2 + (++) VDDADC versus 1V62 + (++) VDDDAC versus 2V2 + + (#) Call HAL_PWREx_PVD_PVM_IRQHandler() function to handle the PWR PVD and + PVM interrupt request. + + (#) Call HAL_PWREx_EnablePullUpPullDownConfig() and + HAL_PWREx_DisablePullUpPullDownConfig() to I/O enable / disable pull-up + and pull-down configuration. + + (#) Call HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() to + apply respectively pull-up and pull-down to selected I/O. + Call HAL_PWREx_DisableGPIOPullUp() and HAL_PWREx_DisableGPIOPullDown() to + disable applied respectively pull-up and pull-down to selected I/O. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup PWREx PWREx + * @brief PWR Extended HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup PWR_Extended_Private_Defines PWR Extended Private Defines + * @{ + */ +#if defined (GPIOE) +/* PORTE pins mask */ +#define PWR_PORTE_AVAILABLE_PINS 0x00000388U /* PE3, PE7..PE9 */ +#endif /* GPIOE */ +#if defined (PWR_PDCRD_PD0) +#define PWR_PORTD_AVAILABLE_PINS 0x00003F7FU /* PD0..PD6, PD8..PD13 */ +#else +#define PWR_PORTD_AVAILABLE_PINS 0x00000004U /* PD2 */ +#endif /* PWR_PDCRD_PD0 */ +/* PORTF pins mask */ +#define PWR_PORTF_AVAILABLE_PINS 0x0000000FU /* PF0..PF3 */ + +/** @defgroup PWREx_PVM_Mode_Mask PWR PVM Mode Mask + * @{ + */ +#define PVM_MODE_IT 0x00010000U /*!< Mask for interruption yielded by PVM threshold crossing */ +#define PVM_MODE_EVT 0x00020000U /*!< Mask for event yielded by PVM threshold crossing */ +#define PVM_RISING_EDGE 0x00000001U /*!< Mask for rising edge set as PVM trigger */ +#define PVM_FALLING_EDGE 0x00000002U /*!< Mask for falling edge set as PVM trigger */ +/** + * @} + */ + +/** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value + * @{ + */ +#define PWR_FLAG_SETTING_DELAY_US 50UL /*!< Time out value for REGLPF and VOSF flags setting */ +/** + * @} + */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup PWREx_Exported_Functions PWR Extended Exported Functions + * @{ + */ + +/** @defgroup PWREx_Exported_Functions_Group1 Power Supply Control Functions + * @brief Power supply control functions + * +@verbatim + =============================================================================== + ##### Power supply control functions ##### + =============================================================================== + [..] + This section provides functions allowing to control power supply. + + [..] + (+) When exiting the Stop or Standby modes, the regulator is the same than + when entering low power modes. The voltage range is the Range 2. + + (+) Both regulators can provide four different voltages (voltage scaling) + and can operate in Stop modes. + Voltage scaling ranges can be one of the following values : + (++) voltage output scale 1 : 1V2 + => Used when system clock frequency is up to 160 MHz + (++) voltage output scale 2 : 1V1 + => Used when system clock frequency is up to 100 MHz + +@endverbatim + * @{ + */ + +/** + * @brief Configure the main internal regulator output voltage. + * @param VoltageScaling specifies the regulator output voltage to achieve + * a tradeoff between performance and power consumption. + * This parameter can be one of the following values: + + * @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode, + * typical output voltage at 1.2 V, + * system frequency up to 80 MHz. + * @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode, + * typical output voltage at 1.0 V, + * system frequency up to 26 MHz. + * @note When moving from Range 1 to Range 2, the system frequency must be decreased to + * a value below 26 MHz before calling HAL_PWREx_ControlVoltageScaling() API. + * When moving from Range 2 to Range 1, the system frequency can be increased to + * a value up to 80 MHz after calling HAL_PWREx_ControlVoltageScaling() API. For + * some devices, the system frequency can be increased up to 120 MHz. + * @note When moving from Range 2 to Range 1, the API waits for VOSF flag to be + * cleared before returning the status. If the flag is not cleared within + * 50 microseconds, HAL_TIMEOUT status is reported. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling) +{ + uint32_t wait_loop_index; + assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling)); + + /* If Set Range 1 */ + if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1) + { + if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE1) + { + /* Set Range 1 */ + MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1); + /* Wait until VOSF is cleared */ + wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U; + while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U)) + { + wait_loop_index--; + } + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) + { + return HAL_TIMEOUT; + } + } + } + else + { + if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE2) + { + /* Set Range 2 */ + MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2); + /* No need to wait for VOSF to be cleared for this transition */ + } + } + return HAL_OK; +} + +/** + * @brief Return Voltage Scaling Range. + * @retval VOS bit field (PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2) + * + */ +uint32_t HAL_PWREx_GetVoltageRange(void) +{ + return (PWR->CR1 & PWR_CR1_VOS); +} + +/** + * @} + */ + +/** @defgroup PWREx_Exported_Functions_Group2 Low Power Control Functions + * @brief Low power control functions + * +@verbatim + =============================================================================== + ##### Low power control functions ##### + =============================================================================== + [..] + This section provides functions allowing to control low power modes. + + *** Low Power modes configuration *** + ===================================== + [..] + This section presents 3 principles low power modes : + + (+) Stop 1 mode : Cortex-M4 is stopped, clocks are stopped and the + regulator is in low power mode. Only autonomous + peripherals can operate in this mode. + + (+) Stop 2 mode : Cortex-M4 is stopped, clocks are stopped and the + regulator is in low power mode. No peripheral can + operate in this mode. Only RAMs content is preserved. + + (+) Shutdown mode : All PWR domains enter Shutdown mode and the VCORE + supply regulator is powered off. The SRAMs and + register contents are lost except for registers in the + Backup domain. + + *** Stop 1 mode *** + =================== + [..] + The Stop 1 mode is based on the Cortex-M4 Deepsleep mode combined with + peripheral clock gating. In Stop 1 mode, all clocks in the VCORE domain + are stopped. + The PLL, MSIS, MSIK, HSI16 and HSE oscillators are disabled. + Some peripherals with the LPBAM capability can switch on HSI16 or MSIS or + MSIK for transferring data. All SRAMs and register contents are preserved, + but the SRAMs can be totally or partially switched off to further reduce + consumption. + The BOR is always available in Stop 1 mode. + + (+) Entry: + The Stop 1 mode is entered by using the HAL_PWREx_EnterSTOP1Mode() + function. + + (++) PWR_STOPENTRY_WFI: enter Stop 1 mode with WFI instruction. + (++) PWR_STOPENTRY_WFE: enter Stop 1 mode with WFE instruction. + + (+) Exit: + Any EXTI line configured in interrupt mode (the corresponding EXTI + interrupt vector must be enabled in the NVIC). The interrupt source + can be external interrupts or peripherals with wakeup capability. + Any peripheral interrupt occurring when the AHB/APB clocks are present + due to an autonomous peripheral clock request (the peripheral vector + must be enabled in the NVIC) + Any EXTI line configured in event mode. + + *** Stop 2 mode *** + =================== + [..] + The Stop 2 mode is based on the Cortex-M4 Deepsleep mode combined with + peripheral clock gating. In Stop 2 mode, all clocks in the VCORE domain + are stopped. + The PLL, MSIS, MSIK, HSI16 and HSE oscillators are disabled. + All SRAMs and register contents are preserved, but the SRAMs can be + totally or partially switched off to further reduce consumption. + The BOR is always available in Stop 2 mode. + + (+) Entry: + The Stop 2 mode is entered by using the HAL_PWREx_EnterSTOP2Mode() + function. + + (++) PWR_STOPENTRY_WFI: enter Stop 2 mode with WFI instruction. + (++) PWR_STOPENTRY_WFE: enter Stop 23 mode with WFE instruction. + + (+) Exit: + WKUPx pin edge, RTC or TAMP event, external Reset in NRST pin, IWDG + Reset, BOR reset. + + *** Shutdown mode *** + ==================== + [..] + The lowest power consumption is reached in Shutdown mode. It is based on + the Deepsleep mode with the voltage regulator disabled. The VCORE domain + is consequently powered off. + The PLL, HSI16, MSIS, MSIK and HSE oscillators are also switched off. + The SRAMs and register contents are lost except for registers in the + Backup domain. + The BOR is not available in Shutdown mode. + No power voltage monitoring is possible in this mode, therefore the switch + to Backup domain is not supported. + + (+) Entry: + The Shutdown mode is entered by using the HAL_PWREx_EnterSHUTDOWNMode() + function. + + (+) Exit: + WKUPx pin edge, RTC/TAMP event, external Reset in NRST pin. + +@endverbatim + * @{ + */ + +/** + * @brief Enter Low-power Run mode + * @note In Low-power Run mode, all I/O pins keep the same state as in Run mode. + * @note When Regulator is set to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the + * Flash in power-down monde in setting the RUN_PD bit in FLASH_ACR register. + * Additionally, the clock frequency must be reduced below 2 MHz. + * Setting RUN_PD in FLASH_ACR then appropriately reducing the clock frequency must + * be done before calling HAL_PWREx_EnableLowPowerRunMode() API. + * @retval None + */ +void HAL_PWREx_EnableLowPowerRunMode(void) +{ + /* Set Regulator parameter */ + SET_BIT(PWR->CR1, PWR_CR1_LPR); +} + +/** + * @brief Exit Low-power Run mode. + * @note Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that + * REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode + * returns HAL_TIMEOUT status). The system clock frequency can then be + * increased above 2 MHz. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void) +{ + uint32_t wait_loop_index; + + /* Clear LPR bit */ + CLEAR_BIT(PWR->CR1, PWR_CR1_LPR); + + /* Wait until REGLPF is reset */ + wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000U) + 1U; + while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U)) + { + wait_loop_index--; + } + if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) + { + return HAL_TIMEOUT; + } + + return HAL_OK; +} + +/** + * @brief Enter Stop 1 mode. + * @note In Stop 1 mode, only low power voltage regulator is ON. + * @note In Stop 1 mode, all I/O pins keep the same state as in Run mode. + * @note All clocks in the VCORE domain are stopped; the PLL, the MSI, + * the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability + * (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI + * after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated + * only to the peripheral requesting it. + * SRAM and register contents are preserved. + * The BOR is available. + * @note When exiting Stop 1 mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register + * is set; the MSI oscillator is selected if STOPWUCK is cleared. + * @note Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode. + * @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction + * @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction + * @retval None + */ +void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Stop 1 mode with Low-Power Regulator */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_0); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select Stop mode entry --------------------------------------------------*/ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} + +/** + * @brief Enter Stop 2 mode. + * @note In Stop 2 mode, only low power voltage regulator is ON. + * @note In Stop 2 mode, all I/O pins keep the same state as in Run mode. + * @note All clocks in the VCORE domain are stopped, the PLL, the MSI, + * the HSI and the HSE oscillators are disabled. Some peripherals with wakeup capability + * (LCD, LPTIM1, I2C3 and LPUART) can switch on the HSI to receive a frame, and switch off the HSI after + * receiving the frame if it is not a wakeup frame. In this case the HSI clock is propagated only + * to the peripheral requesting it. + * SRAM and register contents are preserved. + * The BOR is available. + * The voltage regulator is set in low-power mode but LPR bit must be cleared to enter stop 2 mode. + * Otherwise, Stop 1 mode is entered. + * @note When exiting Stop 2 mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register + * is set; the MSI oscillator is selected if STOPWUCK is cleared. + * @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction + * @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction + * @retval None + */ +void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry) +{ + /* Check the parameter */ + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + /* Clear LPR Bit */ + CLEAR_BIT(PWR->CR1, PWR_CR1_LPR); + /* Set Stop mode 2 */ + MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_1); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select Stop mode entry --------------------------------------------------*/ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} +/** + * @} + */ + +/** @defgroup PWREx_Exported_Functions_Group3 Voltage Monitoring Functions + * @brief Voltage monitoring functions + * +@verbatim + =============================================================================== + ##### Voltage Monitoring Functions ##### + =============================================================================== + [..] + This section provides functions allowing voltage monitoring. + + *** PVM configuration *** + ========================= + [..] + (+) The supplies (VDDADC, VDDDAC and VDDUSB) can be independent from VDD and + can be monitored with three peripheral voltage monitoring (PVM). + + (+) Each PVM output is connected to an EXTI line and can generate an + interrupt if enabled through the EXTI registers. The PVMx output + interrupt is generated when the independent power supply drops below + the PVM threshold and/or when it rises above the PVM threshold, + depending on EXTI line rising/falling edge configuration. + + (+) Each PVM can remain active in Stop 0, Stop 1, Stop 2 modes, and the + PVM interrupt can wake up from the Stop mode. + + *** VBAT charging *** + ===================== + [..] + When VDD is present, it is possible to charge the external battery on VBAT + through an internal resistance. + The VBAT charging is done either through a 5 kOhm resistor or through a 1.5 + kOhm resistor depending on the VBRS bit value in the PWR_BDCR2 register. + The battery charging is enabled by setting VBE bit in the PWR_BDCR2 + register. It is automatically disabled in VBAT mode. + + *** Backup domain monitoring *** + ================================ + [..] + When the Backup domain voltage and temperature monitoring is enabled + (MONEN = 1 in the PWR_BDCR1 register), the Backup domain voltage and the + temperature are monitored. + If the Backup domain voltage monitoring internal tamper is enabled in the + TAMP peripheral (ITAMP1E = 1 in the TAMP_CR1 register), a tamper event is + generated when the Backup domain voltage is above the functional range. + In case the Backup domain voltage is below the functional range, + a Brownout reset is generated, erasing all device including Backup domain. + + *** Backup domain battery *** + ============================= + [..] + (+) To retain the content of the backup registers and supply the RTC + function when VDD is turned off, the VBAT pin can be connected to an + optional backup voltage supplied by a battery or by another source. + The VBAT pin powers the RTC unit, the LSE oscillator and the PC13 to + PC15 I/Os, allowing the RTC to operate even when the main power supply + is turned off. The backup SRAM is optionally powered by VBAT pin when + the BREN bit is set in the PWR Backup domain control register 1 + (PWR_BDCR1). + The switch to the VBAT supply is controlled by the power down reset + embedded in the Reset block. + +@endverbatim + * @{ + */ +#if defined(USB_DRD_FS) +/** + * @brief Enable the Power Voltage Monitoring 1: VDDUSB versus 1.2V. + * @retval None + */ +void HAL_PWREx_EnablePVM1(void) +{ + SET_BIT(PWR->CR2, PWR_PVM_1); +} + +/** + * @brief Disable the Power Voltage Monitoring 1: VDDUSB versus 1.2V. + * @retval None + */ +void HAL_PWREx_DisablePVM1(void) +{ + CLEAR_BIT(PWR->CR2, PWR_PVM_1); +} +#endif /* USB_DRD_FS */ +/** + * @brief Enable the Power Voltage Monitoring 2: VDDA versus 1.62V. + * @retval None + */ +void HAL_PWREx_EnablePVM3(void) +{ + SET_BIT(PWR->CR2, PWR_PVM_3); +} + +/** + * @brief Disable the Power Voltage Monitoring 2: VDDA versus 1.62V. + * @retval None + */ +void HAL_PWREx_DisablePVM3(void) +{ + CLEAR_BIT(PWR->CR2, PWR_PVM_3); +} + +/** + * @brief Enable the Power Voltage Monitoring 3: VDDA versus 2.2V. + * @retval None + */ +void HAL_PWREx_EnablePVM4(void) +{ + SET_BIT(PWR->CR2, PWR_PVM_4); +} + +/** + * @brief Disable the Power Voltage Monitoring 3: VDDA versus 2.2V. + * @retval None + */ +void HAL_PWREx_DisablePVM4(void) +{ + CLEAR_BIT(PWR->CR2, PWR_PVM_4); +} + +/** + * @brief Configure the Peripheral Voltage Monitoring (PVM). + * @param sConfigPVM: pointer to a PWR_PVMTypeDef structure that contains the + * PVM configuration information. + * @note The API configures a single PVM according to the information contained + * in the input structure. To configure several PVMs, the API must be singly + * called for each PVM used. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage thresholds corresponding to each + * detection level and to each monitored supply. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_ConfigPVM(const PWR_PVMTypeDef *sConfigPVM) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType)); + assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode)); + + /* Configure EXTI 35 to 38 interrupts if so required: + scan through PVMType to detect which PVMx is set and + configure the corresponding EXTI line accordingly. */ + switch (sConfigPVM->PVMType) + { +#if defined(USB_DRD_FS) + case PWR_PVM_1: + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVM1_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVM1_EXTI_DISABLE_IT(); + __HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE(); + __HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE(); + + /* Configure interrupt mode */ + if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) + { + __HAL_PWR_PVM1_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) + { + __HAL_PWR_PVM1_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) + { + __HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE(); + } + + if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) + { + __HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE(); + } + break; +#endif /* USB_DRD_FS */ + case PWR_PVM_3: + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVM3_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVM3_EXTI_DISABLE_IT(); + __HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE(); + __HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE(); + + /* Configure interrupt mode */ + if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) + { + __HAL_PWR_PVM3_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) + { + __HAL_PWR_PVM3_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) + { + __HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE(); + } + + if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) + { + __HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE(); + } + break; + case PWR_PVM_4: + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVM4_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVM4_EXTI_DISABLE_IT(); + __HAL_PWR_PVM4_EXTI_DISABLE_FALLING_EDGE(); + __HAL_PWR_PVM4_EXTI_DISABLE_RISING_EDGE(); + + /* Configure interrupt mode */ + if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT) + { + __HAL_PWR_PVM4_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT) + { + __HAL_PWR_PVM4_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE) + { + __HAL_PWR_PVM4_EXTI_ENABLE_RISING_EDGE(); + } + + if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE) + { + __HAL_PWR_PVM4_EXTI_ENABLE_FALLING_EDGE(); + } + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +#if defined(USB_DRD_FS) +/** + * @brief Enable VDDUSB supply. + * @note Remove VDDUSB electrical and logical isolation, once VDDUSB supply is present. + * @retval None + */ +void HAL_PWREx_EnableVddUSB(void) +{ + SET_BIT(PWR->CR2, PWR_CR2_USV); +} + +/** + * @brief Disable VDDUSB supply. + * @retval None + */ +void HAL_PWREx_DisableVddUSB(void) +{ + CLEAR_BIT(PWR->CR2, PWR_CR2_USV); +} +#endif /* USB_DRD_FS */ + +/** + * @brief Enable battery charging. + * When VDD is present, charge the external battery on VBAT through an internal resistor. + * @param ResistorSelection specifies the resistor impedance. + * This parameter can be one of the following values: + * @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5 5 kOhms resistor + * @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor + * @retval None + */ +void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection) +{ + assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection)); + + /* Specify resistor selection */ + MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection); + + /* Enable battery charging */ + SET_BIT(PWR->CR4, PWR_CR4_VBE); +} + +/** + * @brief Disable battery charging. + * @retval None + */ +void HAL_PWREx_DisableBatteryCharging(void) +{ + CLEAR_BIT(PWR->CR4, PWR_CR4_VBE); +} +/** + * @brief This function handles the PWR PVD/PVMx interrupt request. + * @note This API should be called under the PVD_PVM_IRQHandler(). + * @retval None + */ +void HAL_PWREx_PVD_PVM_IRQHandler(void) +{ + /* Check if the Programmable Voltage Detector is enabled (PVD) */ + if (READ_BIT(PWR->CR2, PWR_CR2_PVDE) != 0U) + { + /* Check PWR EXTI Rising flag */ + if (__HAL_PWR_PVD_EXTI_GET_RISING_FLAG() != 0U) + { + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG(); + } + + /* Check PWR EXTI Falling flag */ + if (__HAL_PWR_PVD_EXTI_GET_FALLING_FLAG() != 0U) + { + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG(); + } + } + + /* Next, successively check PVMx exti flags */ +#if defined(USB_DRD_FS) + if (READ_BIT(PWR->CR2, PWR_PVM_1) != 0U) + { + /* Check PWR EXTI Rising flag */ + if (__HAL_PWR_PVM1_EXTI_GET_RISING_FLAG() != 0U) + { + /* PWR PVM interrupt user callback */ + HAL_PWREx_PVM1_Callback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVM1_EXTI_CLEAR_FLAG(); + } + + /* Check PWR EXTI Falling flag */ + if (__HAL_PWR_PVM1_EXTI_GET_FALLING_FLAG() != 0U) + { + /* PWR PVM USB interrupt user callback */ + HAL_PWREx_PVM1_Callback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVM1_EXTI_CLEAR_FLAG(); + } + } +#endif /* USB_DRD_FS */ + if (READ_BIT(PWR->CR2, PWR_PVM_3) != 0U) + { + /* Check PWR EXTI Rising flag */ + if (__HAL_PWR_PVM3_EXTI_GET_RISING_FLAG() != 0U) + { + /* PWR PVM interrupt user callback */ + HAL_PWREx_PVM3_Callback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVM3_EXTI_CLEAR_FLAG(); + } + + /* Check PWR EXTI Falling flag */ + if (__HAL_PWR_PVM3_EXTI_GET_FALLING_FLAG() != 0U) + { + /* PWR PVM ADC interrupt user callback */ + HAL_PWREx_PVM3_Callback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVM3_EXTI_CLEAR_FLAG(); + } + } + + if (READ_BIT(PWR->CR2, PWR_PVM_4) != 0U) + { + /* Check PWR EXTI Rising flag */ + if (__HAL_PWR_PVM4_EXTI_GET_RISING_FLAG() != 0U) + { + /* PWR PVM interrupt user callback */ + HAL_PWREx_PVM4_Callback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVM4_EXTI_CLEAR_FLAG(); + } + + /* Check PWR EXTI Falling flag */ + if (__HAL_PWR_PVM4_EXTI_GET_FALLING_FLAG() != 0U) + { + /* PWR PVM4 for DAC interrupt user callback */ + HAL_PWREx_PVM4_Callback(); + + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVM4_EXTI_CLEAR_FLAG(); + } + } +} + +#if defined(USB_DRD_FS) +/** + * @brief PWR PVM USB interrupt callback + * @retval None + */ +__weak void HAL_PWREx_PVM1_Callback(void) +{ + /* NOTE : This function should not be modified; when the callback is needed, + HAL_PWREx_PVM_USBCallback() API can be implemented in the user file + */ +} +#endif /* USB_DRD_FS */ + +/** + * @brief PWR PVM ADC interrupt callback + * @retval None + */ +__weak void HAL_PWREx_PVM3_Callback(void) +{ + /* NOTE : This function should not be modified; when the callback is needed, + HAL_PWREx_PVM_ADCCallback() API can be implemented in the user file + */ +} + +/** + * @brief PWR PVM DAC interrupt callback + * @retval None + */ +__weak void HAL_PWREx_PVM4_Callback(void) +{ + /* NOTE : This function should not be modified; when the callback is needed, + HAL_PWREx_PVM_DACCallback() API can be implemented in the user file + */ +} + +/** + * @brief Enable Internal Wake-up Line. + * @retval None + */ +void HAL_PWREx_EnableInternalWakeUpLine(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_EIWUL); +} + +/** + * @brief Disable Internal Wake-up Line. + * @retval None + */ +void HAL_PWREx_DisableInternalWakeUpLine(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_EIWUL); +} +/** + * @} + */ + +/** @defgroup PWREx_Exported_Functions_Group4 Memories Retention Functions + * @brief Memories retention functions + * +@verbatim + =============================================================================== + ##### Memories Retention Functions ##### + =============================================================================== + [..] + Several STM32U0 devices RAM are configurable to keep / lose RAMs content + during Stop mode (Stop 0/1/2). + (+) Retained content RAM in Stop modes are : + (++) SRAM + +@endverbatim + * @{ + */ + +/** + * @brief Enable Full SRAM content retention in Standby mode. + * @retval None + */ +void HAL_PWREx_EnableSRAMContentRetention(void) +{ + MODIFY_REG(PWR->CR3, PWR_CR3_RRS, PWR_FULL_SRAM_RETENTION); +} + +/** + * @brief Disable SRAM content retention in Standby mode. + * @retval None + */ +void HAL_PWREx_DisableSRAMContentRetention(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_RRS); +} + +/** + * @brief Enable Flash Power Down. + * @note This API allows to enable flash power down capabilities in low power + * run, low power sleep and stop modes. + * @param PowerMode this can be a combination of following values: + * @arg @ref PWR_FLASHPD_LPRUN + * @arg @ref PWR_FLASHPD_LPSLEEP + * @arg @ref PWR_FLASHPD_STOP + * @retval None + */ +void HAL_PWREx_EnableFlashPowerDown(uint32_t PowerMode) +{ + assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode)); + + PWR->CR1 |= PowerMode; +} + +/** + * @brief Disable Flash Power Down. + * @note This API allows to disable flash power down capabilities in low power + * run, low power sleep and stop modes. + * @param PowerMode this can be a combination of following values: + * @arg @ref PWR_FLASHPD_LPRUN + * @arg @ref PWR_FLASHPD_LPSLEEP + * @arg @ref PWR_FLASHPD_STOP + * @retval None + */ +void HAL_PWREx_DisableFlashPowerDown(uint32_t PowerMode) +{ + assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode)); + + PWR->CR1 &= ~PowerMode; +} + +/** + * @brief Enable Ultra Low Power BORL, BORH and PVD for STOP2 and Standby modes. + * @note All the other modes are not affected by this bit. + * @retval None + */ +void HAL_PWREx_EnableUltraLowPowerMode(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_ENULP); +} + +/** + * @brief Disable Ultra Low Power BORL, BORH and PVD for STOP2 and Standby modes. + * @note All the other modes are not affected by this bit + * @retval None + */ +void HAL_PWREx_DisableUltraLowPowerMode(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_ENULP); +} +/** + * @} + */ + +/** @defgroup PWREx_Exported_Functions_Group5 I/O Pull-Up Pull-Down Configuration Functions + * @brief I/O pull-up / pull-down configuration functions + * +@verbatim + =============================================================================== + ##### Pull-Up Pull-Down Configuration Functions ##### + =============================================================================== + [..] + In Standby and Shutdown mode, pull up and pull down can be configured to + maintain an I/O in the selected state. If the APC bit in the PWR_APCR + register is set, the I/Os can be configured either with a pull-up through + PWR_PUCRx registers (x=A,B,C,D,E,F), or with a pull-down through + PWR_PDCRx registers (x=A,B,C,D,E,F), or can be kept in analog state + if none of the PWR_PUCRx or PWR_PDCRx register is set. + + [..] + The pull-down configuration has highest priority over pull-up + configuration in case both PWR_PUCRx and PWR_PDCRx are set for the same + I/O. + This configuration is lost when exiting the Shutdown but not from Standby + mode. + +@endverbatim + * @{ + */ + +/** + * @brief Enable pull-up and pull-down configuration. + * @note When APC bit is set, the I/O pull-up and pull-down configurations defined in + * PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes. + * @note Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding + * PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher). + * HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there + * is no conflict when setting PUy or PDy bit. + * @retval None + */ +void HAL_PWREx_EnablePullUpPullDownConfig(void) +{ + SET_BIT(PWR->CR3, PWR_CR3_APC); +} + +/** + * @brief Disable pull-up and pull-down configuration. + * @note When APC bit is cleared, the I/O pull-up and pull-down configurations defined in + * PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes. + * @retval None + */ +void HAL_PWREx_DisablePullUpPullDownConfig(void) +{ + CLEAR_BIT(PWR->CR3, PWR_CR3_APC); +} +/** + * @} + */ + +/** + * @brief Enable GPIO pull-up state in Standby and Shutdown modes. + * @note Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in + * pull-up state in Standby and Shutdown modes. + * @note This state is effective in Standby and Shutdown modes only if APC bit + * is set through HAL_PWREx_EnablePullUpPullDownConfig() API. + * @note The configuration is lost when exiting the Shutdown mode due to the + * power-on reset, maintained when exiting the Standby mode. + * @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding + * PDy bit of PWR_PDCRx register is cleared unless it is reserved. + * @note Even if a PUy bit to set is reserved, the other PUy bits entered as input + * parameter at the same time are set. + * @param GPIO_Port Specify the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H + * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. + * @param GPIO_Pin Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less + * I/O pins are available) or the logical OR of several of them to set + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO_Port, uint32_t GPIO_Pin) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO_PORT(GPIO_Port)); + assert_param(IS_PWR_GPIO_PIN_MASK(GPIO_Pin)); + + switch (GPIO_Port) + { + case PWR_GPIO_A: + SET_BIT(PWR->PUCRA, GPIO_Pin); + CLEAR_BIT(PWR->PDCRA, GPIO_Pin); + break; + + case PWR_GPIO_B: + SET_BIT(PWR->PUCRB, GPIO_Pin); + CLEAR_BIT(PWR->PDCRB, GPIO_Pin); + break; + + case PWR_GPIO_C: + SET_BIT(PWR->PUCRC, GPIO_Pin); + CLEAR_BIT(PWR->PDCRC, GPIO_Pin); + break; + + case PWR_GPIO_D: + SET_BIT(PWR->PUCRD, (GPIO_Pin & PWR_PORTD_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PDCRD, (GPIO_Pin & PWR_PORTD_AVAILABLE_PINS)); + break; + +#if defined (GPIOE) + case PWR_GPIO_E: + SET_BIT(PWR->PUCRE, (GPIO_Pin & PWR_PORTE_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PDCRE, (GPIO_Pin & PWR_PORTE_AVAILABLE_PINS)); + break; +#endif /* GPIOE */ + + case PWR_GPIO_F: + SET_BIT(PWR->PUCRF, (GPIO_Pin & PWR_PORTF_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PDCRF, (GPIO_Pin & PWR_PORTF_AVAILABLE_PINS)); + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Disable GPIO pull-up state in Standby mode and Shutdown modes. + * @note Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O + * in pull-up state in Standby and Shutdown modes. + * @note Even if a PUy bit to reset is reserved, the other PUy bits entered as input + * parameter at the same time are reset. + * @param GPIO_Port Specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H + * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. + * @param GPIO_Pin Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less + * I/O pins are available) or the logical OR of several of them to reset + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO_Port, uint32_t GPIO_Pin) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO_PORT(GPIO_Port)); + assert_param(IS_PWR_GPIO_PIN_MASK(GPIO_Pin)); + + switch (GPIO_Port) + { + case PWR_GPIO_A: + CLEAR_BIT(PWR->PUCRA, GPIO_Pin); + break; + + case PWR_GPIO_B: + CLEAR_BIT(PWR->PUCRB, GPIO_Pin); + break; + + case PWR_GPIO_C: + CLEAR_BIT(PWR->PUCRC, GPIO_Pin); + break; + + case PWR_GPIO_D: + CLEAR_BIT(PWR->PUCRD, (GPIO_Pin & PWR_PORTD_AVAILABLE_PINS)); + break; + +#if defined (GPIOE) + case PWR_GPIO_E: + CLEAR_BIT(PWR->PUCRE, (GPIO_Pin & PWR_PORTE_AVAILABLE_PINS)); + break; +#endif /* GPIOE */ + + case PWR_GPIO_F: + CLEAR_BIT(PWR->PUCRF, (GPIO_Pin & PWR_PORTF_AVAILABLE_PINS)); + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Enable GPIO pull-down state in Standby and Shutdown modes. + * @note Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in + * pull-down state in Standby and Shutdown modes. + * @note This state is effective in Standby and Shutdown modes only if APC bit + * is set through HAL_PWREx_EnablePullUpPullDownConfig() API. + * @note The configuration is lost when exiting the Shutdown mode due to the + * power-on reset, maintained when exiting the Standby mode. + * @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding + * PUy bit of PWR_PUCRx register is cleared unless it is reserved. + * @note Even if a PDy bit to set is reserved, the other PDy bits entered as input + * parameter at the same time are set. + * @param GPIO_Port Specify the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H + * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. + * @param GPIO_Pin Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less + * I/O pins are available) or the logical OR of several of them to set + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO_Port, uint32_t GPIO_Pin) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO_PORT(GPIO_Port)); + assert_param(IS_PWR_GPIO_PIN_MASK(GPIO_Pin)); + + switch (GPIO_Port) + { + case PWR_GPIO_A: + SET_BIT(PWR->PDCRA, GPIO_Pin); + CLEAR_BIT(PWR->PUCRA, GPIO_Pin); + break; + + case PWR_GPIO_B: + SET_BIT(PWR->PDCRB, GPIO_Pin); + CLEAR_BIT(PWR->PUCRB, GPIO_Pin); + break; + + case PWR_GPIO_C: + SET_BIT(PWR->PDCRC, GPIO_Pin); + CLEAR_BIT(PWR->PUCRC, GPIO_Pin); + break; + + case PWR_GPIO_D: + SET_BIT(PWR->PDCRD, (GPIO_Pin & PWR_PORTD_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PUCRD, (GPIO_Pin & PWR_PORTD_AVAILABLE_PINS)); + break; + +#if defined (GPIOE) + case PWR_GPIO_E: + SET_BIT(PWR->PDCRE, (GPIO_Pin & PWR_PORTE_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PUCRE, (GPIO_Pin & PWR_PORTE_AVAILABLE_PINS)); + break; +#endif /* GPIOE */ + + case PWR_GPIO_F: + SET_BIT(PWR->PDCRF, (GPIO_Pin & PWR_PORTF_AVAILABLE_PINS)); + CLEAR_BIT(PWR->PUCRF, (GPIO_Pin & PWR_PORTF_AVAILABLE_PINS)); + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Disable GPIO pull-down state in Standby and Shutdown modes. + * @note Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O + * in pull-down state in Standby and Shutdown modes. + * @note Even if a PDy bit to reset is reserved, the other PDy bits entered as input + * parameter at the same time are reset. + * @param GPIO_Port Specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H + * (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral. + * @param GPIO_Pin Specify the I/O pins numbers. + * This parameter can be one of the following values: + * PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less + * I/O pins are available) or the logical OR of several of them to reset + * several bits for a given port in a single API call. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO_Port, uint32_t GPIO_Pin) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_PWR_GPIO_PORT(GPIO_Port)); + assert_param(IS_PWR_GPIO_PIN_MASK(GPIO_Pin)); + + switch (GPIO_Port) + { + case PWR_GPIO_A: + CLEAR_BIT(PWR->PDCRA, GPIO_Pin); + break; + + case PWR_GPIO_B: + CLEAR_BIT(PWR->PDCRB, GPIO_Pin); + break; + + case PWR_GPIO_C: + CLEAR_BIT(PWR->PDCRC, GPIO_Pin); + break; + + case PWR_GPIO_D: + CLEAR_BIT(PWR->PDCRD, (GPIO_Pin & PWR_PORTD_AVAILABLE_PINS)); + break; + +#if defined (GPIOE) + case PWR_GPIO_E: + CLEAR_BIT(PWR->PDCRE, (GPIO_Pin & PWR_PORTE_AVAILABLE_PINS)); + break; +#endif /* GPIOE */ + + case PWR_GPIO_F: + CLEAR_BIT(PWR->PDCRF, (GPIO_Pin & PWR_PORTF_AVAILABLE_PINS)); + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +#endif /* defined (HAL_PWR_MODULE_ENABLED) */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc.c new file mode 100644 index 0000000..ee6e446 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc.c @@ -0,0 +1,1648 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_rcc.c + * @author MCD Application Team + * @brief RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Reset and Clock Control (RCC) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + @verbatim + ============================================================================== + ##### RCC specific features ##### + ============================================================================== + [..] + After reset the device is running from Multiple Speed Internal oscillator + (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache + and I-Cache are disabled, and all peripherals are off except internal + SRAM, Flash and JTAG. + + (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses: + all peripherals mapped on these busses are running at MSI speed. + (+) The clock for all peripherals is switched off, except the SRAM and FLASH. + (+) All GPIOs are in analog mode, except the JTAG pins which + are assigned to be used for debug purpose. + + [..] + Once the device started from reset, the user application has to: + (+) Configure the clock source to be used to drive the System clock + (if the application needs higher frequency/performance) + (+) Configure the System clock frequency and Flash settings + (+) Configure the AHB and APB busses prescalers + (+) Enable the clock for the peripheral(s) to be used + (+) Configure the clock source(s) for peripherals which clocks are not + derived from the System clock (RTC, ADC, USB FS/RNG) + + @endverbatim + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup RCC RCC + * @brief RCC HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup RCC_Private_Constants RCC Private Constants + * @{ + */ +#define LSI_TIMEOUT_VALUE ((uint32_t)17UL) /* 17 ms (LSI maximum timeout is LSI startup time + + LSI_VALUE/128 when LSI prediv is used) */ +#if defined(RCC_CRRCR_HSI48ON) +#define HSI48_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */ +#endif /* RCC_CRRCR_HSI48ON */ +#define PLL_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */ +#define CLOCKSWITCH_TIMEOUT_VALUE ((uint32_t)5000U) /* 5 s */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/** @defgroup RCC_Private_Macros RCC Private Macros + * @{ + */ + +#define RCC_GET_MCO_GPIO_PIN(__RCC_MCOx__) ((__RCC_MCOx__) & GPIO_PIN_MASK) + +#define RCC_GET_MCO_GPIO_AF(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOAF_MASK) >> RCC_MCO_GPIOAF_POS) + +#define RCC_GET_MCO_GPIO_INDEX(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOPORT_MASK) >> RCC_MCO_GPIOPORT_POS) + +#define RCC_GET_MCO_GPIO_PORT(__RCC_MCOx__) \ + (((IOPORT_BASE) + ((0x00000400UL) * RCC_GET_MCO_GPIO_INDEX((__RCC_MCOx__))))) + +#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \ + (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__HAL_RCC_PLLSOURCE__))) +/** + * @} + */ +/* Private variables ---------------------------------------------------------*/ + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup RCC_Private_Functions RCC Private Functions + * @{ + */ +static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup RCC_Exported_Functions RCC Exported Functions + * @{ + */ +/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to configure the internal and external oscillators + (HSE, HSI, LSE, MSI, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB). + + [..] Internal/external clock and PLL configuration + (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through + the PLL as System clock source. + + (+) MSI (Multiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ. + It can be used to generate the clock for the USB OTG FS (48 MHz). + The number of flash wait states is automatically adjusted when MSI range is updated with + HAL_RCC_OscConfig() and the MSI is used as System clock source. + + (+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC + clock source. + + (+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or + through the PLL as System clock source. Can be used also optionally as RTC clock source. + + (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source. + + (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks: + (++) The first output is used to generate the high speed system clock (up to 80MHz). + (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), + the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz). + (++) The third output is used to generate an accurate clock to achieve + high-quality audio performance on SAI interface. + + (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs + (HSE used directly or through PLL as System clock source), the System clock + is automatically switched to HSI and an interrupt is generated if enabled. + The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt) + exception vector. + + (+) MCO (microcontroller clock output): used to output MSI, LSI, HSI, LSE, HSE or + main PLL clock (through a configurable prescaler) on PA8 pin. + + [..] System, AHB and APB busses clocks configuration + (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI, + HSE and main PLL. + The AHB clock (HCLK) is derived from System clock through configurable + prescaler and used to clock the CPU, memory and peripherals mapped + on AHB bus (DMA, GPIO...). APB (PCLK) clocks are derived + from AHB clock through configurable prescalers and used to clock + the peripherals mapped on these busses. You can use + "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. + + -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: + + (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock + divided by 2 to 31. + You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function + to configure this clock. + (+@) USB FS and RNG: USB FS requires a frequency equal to 48 MHz + to work correctly, while the RNG peripherals require a frequency + equal or lower than to 48 MHz. This clock is derived of the main PLL + through PLLQ divider. You have to enable the peripheral clock and use + HAL_RCCEx_PeriphCLKConfig() function to configure this clock. + (+@) IWDG clock which is always the LSI clock. + + + (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 is 48 MHz. + The clock source frequency should be adapted depending on the device voltage range + as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter. + + @endverbatim + + Table 1. HCLK clock frequency for other STM32U0 devices + +-------------------------------------------------------+ + | Latency | HCLK clock frequency (MHz) | + | |-------------------------------------| + | | voltage range 1 | voltage range 2 | + | | 1.2 V | 1.0 V | + |-----------------|------------------|------------------| + |0WS(1 CPU cycles)| HCLK <= 24 | 0 < HCLK <= 8 | + |-----------------|------------------|------------------| + |1WS(2 CPU cycles)| < HCLK <= 48 | 8 < HCLK <= 16 | + |-----------------|------------------|------------------| + |2WS(3 CPU cycles)| HCLK <= 56 | 16 < HCLK <= 18 | + +-------------------------------------------------------+ + + * @{ + */ +/** + * @brief Reset the RCC clock configuration to the default reset state. + * @note The default reset state of the clock configuration is given below: + * - MSI ON and used as system clock source + * - HSE, HSI and PLL OFF + * - AHB, APB prescaler set to 1. + * - CSS, MCO OFF + * - All interrupts disabled + * @note This function doesn't modify the configuration of the + * - Peripheral clocks + * - LSI, LSE and RTC clocks + * @retval None + */ + +HAL_StatusTypeDef HAL_RCC_DeInit(void) +{ + uint32_t tickstart; + + /* Get start tick*/ + tickstart = HAL_GetTick(); + + /* Set MSION bit */ + SET_BIT(RCC->CR, RCC_CR_MSION); + + /* Insure MSIRDY bit is set before writing default MSISRANGE value */ + while (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_MSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set MSIRANGE default value */ + MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, RCC_MSIRANGE_6); + + /* Reset CFGR register (MSI is selected as system clock source) */ + CLEAR_REG(RCC->CFGR); + + /* Update the SystemCoreClock global variable for MSI as system clock source */ + SystemCoreClock = MSI_VALUE; + + /* Configure the source of time base considering new system clock settings */ + if (HAL_InitTick(uwTickPrio) != HAL_OK) + { + return HAL_ERROR; + } + + /* Insure MSI selected as system clock source */ + /* Get start tick */ + tickstart = HAL_GetTick(); + + /* Wait till clock switch is ready */ + while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U) + { + if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Reset HSION, HSIKERON, HSIASFS, HSEON, HSECSSON, PLLON bits */ + CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON); + + /* Reset HSEBYP bits */ + CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + + /* Wait till PLL is disabled */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Reset PLLCFGR register */ + CLEAR_REG(RCC->PLLCFGR); + SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN_4); + + /* Disable all interrupts */ + CLEAR_REG(RCC->CIER); + + /* Clear all interrupts flags */ + CLEAR_REG(RCC->CICR); + + /* Reset all CSR flags */ + SET_BIT(RCC->CSR, RCC_CSR_RMVF); + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = MSI_VALUE; + + /* Adapt Systick interrupt period */ + if (HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK) + { + return HAL_ERROR; + } + else + { + return HAL_OK; + } +} + +/** + * @brief Initialize the RCC Oscillators according to the specified parameters in the + * RCC_OscInitTypeDef. + * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC Oscillators. + * @note The PLL is not disabled when used as system clock. + * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not + * supported by this macro. User should request a transition to LSE Off + * first and then LSE On or LSE Bypass. + * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not + * supported by this macro. User should request a transition to HSE Off + * first and then HSE On or HSE Bypass. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t tickstart; + HAL_StatusTypeDef status; + uint32_t sysclk_source; + uint32_t pll_config; + + /* Check the parameters */ + assert_param(RCC_OscInitStruct != NULL); + assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); + + sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE(); + pll_config = __HAL_RCC_GET_PLL_OSCSOURCE(); + + /*----------------------------- MSI Configuration --------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) + { + /* Check the parameters */ + assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState)); + assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue)); + assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange)); + + /* Check if MSI is used as system clock or as PLL source when PLL is selected as system clock */ + if ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_MSI) || + ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (pll_config == RCC_PLLSOURCE_MSI))) + { + if ((READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF)) + { + return HAL_ERROR; + } + + /* Otherwise, just the calibration and MSI range change are allowed */ + else + { + /* To correctly read data from FLASH memory, the number of wait states (LATENCY) + must be correctly programmed according to the frequency of the CPU clock + (HCLK) and the supply voltage of the device. */ + if (RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE()) + { + /* First increase number of wait states update if necessary */ + if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) + { + return HAL_ERROR; + } + + /* Selects the Multiple Speed oscillator (MSI) clock range .*/ + __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); + /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ + __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); + } + else + { + /* Else, keep current flash latency while decreasing applies */ + /* Selects the Multiple Speed oscillator (MSI) clock range .*/ + __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); + /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ + __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); + + /* Decrease number of wait states update if necessary */ + /* Only possible when MSI is the System clock source */ + if (sysclk_source == RCC_SYSCLKSOURCE_STATUS_MSI) + { + if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) + { + return HAL_ERROR; + } + } + } + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) \ + >> RCC_CFGR_HPRE_Pos] & 0x1FU); + + /* Configure the source of time base considering new system clocks settings*/ + status = HAL_InitTick(uwTickPrio); + if (status != HAL_OK) + { + return status; + } + } + } + else + { + /* Check the MSI State */ + if (RCC_OscInitStruct->MSIState != RCC_MSI_OFF) + { + /* Enable the Internal High Speed oscillator (MSI). */ + __HAL_RCC_MSI_ENABLE(); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait till MSI is ready */ + while (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_MSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + /* Selects the Multiple Speed oscillator (MSI) clock range .*/ + __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); + /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ + __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); + + } + else + { + /* Disable the Internal High Speed oscillator (MSI). */ + __HAL_RCC_MSI_DISABLE(); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait till MSI is ready */ + while (READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_MSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*------------------------------- HSE Configuration ------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) + { + /* Check the parameters */ + assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); + + /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ + if ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_HSE) || + ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (pll_config == RCC_PLLSOURCE_HSE))) + { + if ((READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) + { + return HAL_ERROR; + } + } + else + { + /* Set the new HSE configuration ---------------------------------------*/ + __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); + + /* Check the HSE State */ + if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + /* Wait till HSE is ready */ + while (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is disabled */ + while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*----------------------------- HSI Configuration --------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); + assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); + + /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ + if ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_HSI) || + ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (pll_config == RCC_PLLSOURCE_HSI))) + { + /* When HSI is used as system clock it will not be disabled */ + if ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF)) + { + return HAL_ERROR; + } + /* Otherwise, just the calibration is allowed */ + else + { + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + } + else + { + /* Check the HSI State */ + if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF) + { + /* Enable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + else + { + /* Disable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is disabled */ + while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*------------------------------ LSI Configuration -------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) + { + /* Check the parameters */ + assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); + assert_param(IS_RCC_LSIDIV(RCC_OscInitStruct->LSIDiv)); + + /* Check the LSI State */ + if ((RCC_OscInitStruct->LSIState) != RCC_LSI_OFF) + { + /* Apply prescaler value */ + if (RCC_OscInitStruct->LSIDiv == RCC_LSI_DIV1) + { + CLEAR_BIT(RCC->CSR, RCC_CSR_LSIPREDIV); + } + else + { + SET_BIT(RCC->CSR, RCC_CSR_LSIPREDIV); + } + /* Enable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + + /*------------------------------ LSE Configuration -------------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) + { + FlagStatus pwrclkchanged = RESET; + + /* Check the parameters */ + assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); + + /* Update LSE configuration in Backup Domain control register */ + /* Requires to enable write access to Backup Domain of necessary */ + if (HAL_IS_BIT_CLR(RCC->APBENR1, RCC_APBENR1_PWREN)) + { + __HAL_RCC_PWR_CLK_ENABLE(); + pwrclkchanged = SET; + } + + if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) + { + /* Enable write access to Backup domain */ + SET_BIT(PWR->CR1, PWR_CR1_DBP); + + /* Wait for Backup domain Write protection disable */ + tickstart = HAL_GetTick(); + + while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) + { + if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /* Set the new LSE configuration -----------------------------------------*/ + if ((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEON) != 0U) + { + if ((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEBYP) != 0U) + { + /* LSE oscillator bypass enable */ + SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); + SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); + } + else + { + /* LSE oscillator enable */ + SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); + } + } + else + { + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); + } + + /* Check the LSE State */ + if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Enable LSESYS additionally if requested */ + if ((RCC_OscInitStruct->LSEState & RCC_BDCR_LSESYSEN) != 0U) + { + SET_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN); + + /* Wait till LSESYS is ready */ + while (READ_BIT(RCC->BDCR, RCC_BDCR_LSESYSRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Make sure LSESYSEN/LSESYSRDY are reset */ + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN); + + /* Wait till LSESYSRDY is cleared */ + while (READ_BIT(RCC->BDCR, RCC_BDCR_LSESYSRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is disabled */ + while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + if (READ_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN) != 0U) + { + /* Reset LSESYSEN once LSE is disabled */ + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN); + + /* Wait till LSESYSRDY is cleared */ + while (READ_BIT(RCC->BDCR, RCC_BDCR_LSESYSRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + + /* Restore clock configuration if changed */ + if (pwrclkchanged == SET) + { + __HAL_RCC_PWR_CLK_DISABLE(); + } + } +#if defined(RCC_CRRCR_HSI48ON) + /*------------------------------ HSI48 Configuration -----------------------*/ + if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); + + /* Check the HSI48 State */ + if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) + { + /* Enable the Internal Low Speed oscillator (HSI48). */ + __HAL_RCC_HSI48_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI48 is ready */ + while (READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the Internal Low Speed oscillator (HSI48). */ + __HAL_RCC_HSI48_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI48 is disabled */ + while (READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } +#endif /* RCC_CRRCR_HSI48ON */ + /*-------------------------------- PLL Configuration -----------------------*/ + /* Check the parameters */ + assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); + + if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE) + { + /* Check if the PLL is used as system clock or not */ + if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON) + { + /* Check the parameters */ + assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); + assert_param(IS_RCC_PLL_DIVM_VALUE(RCC_OscInitStruct->PLL.PLLM)); + assert_param(IS_RCC_PLL_MULN_VALUE(RCC_OscInitStruct->PLL.PLLN)); + assert_param(IS_RCC_PLL_DIVP_VALUE(RCC_OscInitStruct->PLL.PLLP)); + assert_param(IS_RCC_PLL_DIVQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); + assert_param(IS_RCC_PLL_DIVR_VALUE(RCC_OscInitStruct->PLL.PLLR)); + + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Configure the main PLL clock source, multiplication and division factors. */ + __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, + RCC_OscInitStruct->PLL.PLLM, + RCC_OscInitStruct->PLL.PLLN, + RCC_OscInitStruct->PLL.PLLP, + RCC_OscInitStruct->PLL.PLLQ, + RCC_OscInitStruct->PLL.PLLR); + + /* Enable PLL System Clock output */ + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_DIVR); + + /* Enable the main PLL. */ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is disabled */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + return HAL_ERROR; + } + } + return HAL_OK; +} + +HAL_StatusTypeDef HAL_RCC_ClockConfig(const RCC_ClkInitTypeDef *const RCC_ClkInitStruct, uint32_t FLatency) +{ + HAL_StatusTypeDef halstatus; + uint32_t tickstart; + + /* Check the parameters */ + assert_param(RCC_ClkInitStruct != NULL); + assert_param(IS_RCC_CLOCKTYPE((uint8_t)RCC_ClkInitStruct->ClockType)); + assert_param(IS_FLASH_LATENCY(FLatency)); + + /* To correctly read data from FLASH memory, the number of wait states (LATENCY) + must be correctly programmed according to the frequency of the CPU clock + (HCLK) and the supply voltage of the device. */ + + /* Increasing the number of wait states because of higher CPU frequency */ + if (FLatency > __HAL_FLASH_GET_LATENCY()) + { + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if (__HAL_FLASH_GET_LATENCY() != FLatency) + { + return HAL_ERROR; + } + } + + /*------------------------- SYSCLK Configuration ---------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) + { + assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); + + /* PLL is selected as System Clock Source */ + if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) + { + /* Check the PLL ready flag */ + if (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) + { + return HAL_ERROR; + } + } + else + { + if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + /* Check the HSE ready flag */ + if (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) + { + return HAL_ERROR; + } + } + /* MSI is selected as System Clock Source */ + else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI) + { + /* Check the MSI ready flag */ + if (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) + { + return HAL_ERROR; + } + } + /* HSI is selected as System Clock Source */ + else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI) + { + /* Check the HSI ready flag */ + if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) + { + return HAL_ERROR; + } + } + + /* LSI is selected as System Clock Source */ + else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_LSI) + { + /* Check the LSI ready flag */ + if (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U) + { + return HAL_ERROR; + } + } + + /* LSE is selected as System Clock Source */ + else + { + /* Check the LSE ready flag */ + if (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U) + { + return HAL_ERROR; + } + } + } + + MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource); + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + + while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) + { + if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + /*-------------------------- HCLK Configuration --------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) + { + /* Set the new HCLK clock divider */ + assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); + } + + /* Decreasing the number of wait states because of lower CPU frequency */ + if (FLatency < __HAL_FLASH_GET_LATENCY()) + { + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if (__HAL_FLASH_GET_LATENCY() != FLatency) + { + return HAL_ERROR; + } + } + + /*-------------------------- PCLK Configuration ---------------------------*/ + if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) + { + assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider); + } + + /* Update the SystemCoreClock global variable */ + SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) \ + >> RCC_CFGR_HPRE_Pos] & 0x1FU); + + /* Configure the source of time base considering new system clocks settings*/ + halstatus = HAL_InitTick(TICK_INT_PRIORITY); + + return halstatus; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions + * @brief RCC clocks control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to: + + (+) Output clock to MCO pin. + (+) Retrieve current clock frequencies. + (+) Enable the Clock Security System. + +@endverbatim + * @{ + */ + +/** + * @brief Select the clock source to output on MCO pin(PA8). + * @note PA8 should be configured in alternate function mode. + * @param RCC_MCOx specifies the output direction for the clock source. + * For STM32U0xx family this parameter can have these values: + * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). + * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA9). + * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PF2). + * @arg @ref RCC_MCO2 Clock source to output on MCO2 pin(PA10). + * @arg @ref RCC_MCO2 Clock source to output on MCO2 pin(PC2). + * @arg @ref RCC_MCO2 Clock source to output on MCO2 pin(PA8). + * @param RCC_MCOSource specifies the clock source to output. + * This parameter can be one of the following values: + * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO + * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_PLLR main PLL clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source + * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_NOCLOCK MCO output disabled, no clock on MCO + * @arg @ref RCC_MCO2SOURCE_SYSCLK system clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_MSI MSI clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_HSI HSI clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_HSE HSE clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_PLLR main PLL clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_LSI LSI clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_LSE LSE clock selected as MCO source + * @arg @ref RCC_MCO2SOURCE_HSI48 HSI48 clock selected as MCO source + * @param RCC_MCODiv specifies the MCO prescaler. + * This parameter can be one of the following values: + * @arg @ref RCC_MCO1DIV_1 division by 1 applied to MCO clock + * @arg @ref RCC_MCO1DIV_2 division by 2 applied to MCO clock + * @arg @ref RCC_MCO1DIV_4 division by 4 applied to MCO clock + * @arg @ref RCC_MCO1DIV_8 division by 8 applied to MCO clock + * @arg @ref RCC_MCO1DIV_16 division by 16 applied to MCO clock + * @arg @ref RCC_MCO1DIV_32 division by 32 applied to MCO clock + * @arg @ref RCC_MCO1DIV_64 division by 64 applied to MCO clock + * @arg @ref RCC_MCO1DIV_128 division by 128 applied to MCO clock + * @arg @ref RCC_MCO1DIV_256 division by 256 applied to MCO clock + * @arg @ref RCC_MCO1DIV_512 division by 512 applied to MCO clock + * @arg @ref RCC_MCO1DIV_1024 division by 1024 applied to MCO clock + * @arg @ref RCC_MCO2DIV_1 division by 1 applied to MCO clock + * @arg @ref RCC_MCO2DIV_2 division by 2 applied to MCO clock + * @arg @ref RCC_MCO2DIV_4 division by 4 applied to MCO clock + * @arg @ref RCC_MCO2DIV_8 division by 8 applied to MCO clock + * @arg @ref RCC_MCO2DIV_16 division by 16 applied to MCO clock + * @arg @ref RCC_MCO2DIV_32 division by 32 applied to MCO clock + * @arg @ref RCC_MCO2DIV_64 division by 64 applied to MCO clock + * @arg @ref RCC_MCO2DIV_128 division by 128 applied to MCO clock + * @arg @ref RCC_MCO2DIV_256 division by 256 applied to MCO clock + * @arg @ref RCC_MCO2DIV_512 division by 512 applied to MCO clock + * @arg @ref RCC_MCO2DIV_1024 division by 1024 applied to MCO clock + * @retval None + */ +void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) +{ + GPIO_InitTypeDef GPIO_InitStruct; + uint32_t mcoindex; + uint32_t mco_gpio_index; + GPIO_TypeDef *mco_gpio_port; + /* Check the parameters */ + assert_param(IS_RCC_MCO(RCC_MCOx)); + + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; + GPIO_InitStruct.Pull = GPIO_NOPULL; + + /* Get MCOx selection */ + mcoindex = RCC_MCOx & RCC_MCO_INDEX_MASK; + + /* Get MCOx GPIO Port */ + mco_gpio_port = (GPIO_TypeDef *) RCC_GET_MCO_GPIO_PORT(RCC_MCOx); + /* MCOx Clock Enable */ + mco_gpio_index = RCC_GET_MCO_GPIO_INDEX(RCC_MCOx); + SET_BIT(RCC->IOPENR, (1UL << mco_gpio_index)); + + /* Configure the MCOx pin in alternate function mode */ + GPIO_InitStruct.Pin = RCC_GET_MCO_GPIO_PIN(RCC_MCOx); + GPIO_InitStruct.Alternate = RCC_GET_MCO_GPIO_AF(RCC_MCOx); + HAL_GPIO_Init(mco_gpio_port, &GPIO_InitStruct); + + if (mcoindex == RCC_MCO1_INDEX) + { + assert_param(IS_RCC_MCO1DIV(RCC_MCODiv)); + assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); + + /* Mask MCO1 and MCO1PRE[3:0] bits then Select MCO1 clock source and pre-scaler */ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1SEL | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv)); + } + else if (mcoindex == RCC_MCO2_INDEX) + { + assert_param(IS_RCC_MCO2DIV(RCC_MCODiv)); + assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); + + /* Mask MCO2 and MCO2PRE[3:0] bits then Select MCO2 clock source and pre-scaler */ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2SEL | RCC_CFGR_MCO2PRE), (RCC_MCOSource | RCC_MCODiv)); + } + else + { + /* unexpected case: added to resolve MISRA 15.7 rule */ + } +} + +/** + * @brief Return the SYSCLK frequency. + * + * @note The system frequency computed by this function is not the real + * frequency in the chip. It is calculated based on the predefined + * constant and the selected clock source: + * @note If SYSCLK source is MSI, function returns values based on MSI + * Value as defined by the MSI range. + * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) + * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) + * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**), + * HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors. + * @note (*) HSI_VALUE is a constant defined in stm32u0xx_hal_conf.h file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (**) HSE_VALUE is a constant defined in stm32u0xx_hal_conf.h file (default value + * 8 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * + * @note The result of this function could be not correct when using fractional + * value for HSE crystal. + * + * @note This function can be used by the user application to compute the + * baudrate for the communication peripherals or configure other parameters. + * + * @note Each time SYSCLK changes, this function must be called to update the + * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. + * + * + * @retval SYSCLK frequency + */ +uint32_t HAL_RCC_GetSysClockFreq(void) +{ + uint32_t msirange = 0U; + uint32_t sysclockfreq = 0U; + uint32_t pllvco; + uint32_t pllsource; + uint32_t pllr; + uint32_t pllm; + uint32_t sysclk_source; + uint32_t pll_oscsource; + uint32_t pllsourcefreq; + + sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE(); + pll_oscsource = __HAL_RCC_GET_PLL_OSCSOURCE(); + + if ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_MSI) || + ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (pll_oscsource == RCC_PLLSOURCE_MSI))) + { + /* MSI or PLL with MSI source used as system clock source */ + + /* Get SYSCLK source */ + if (READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == 0U) + { + /* MSISRANGE from RCC_CSR applies */ + msirange = READ_BIT(RCC->CSR, RCC_CSR_MSISTBYRG) >> RCC_CSR_MSISTBYRG_Pos; + } + else + { + /* MSIRANGE from RCC_CR applies */ + msirange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE) >> RCC_CR_MSIRANGE_Pos; + } + /*MSI frequency range in HZ*/ + if (msirange > 11U) + { + msirange = 0U; + } + msirange = MSIRangeTable[msirange]; + + if (sysclk_source == RCC_SYSCLKSOURCE_STATUS_MSI) + { + /* MSI used as system clock source */ + sysclockfreq = msirange; + } + } + else if (sysclk_source == RCC_SYSCLKSOURCE_STATUS_HSI) + { + /* HSI used as system clock source */ + sysclockfreq = HSI_VALUE; + } + else if (sysclk_source == RCC_SYSCLKSOURCE_STATUS_HSE) + { + /* HSE used as system clock source */ + sysclockfreq = HSE_VALUE; + } + else if (sysclk_source == RCC_SYSCLKSOURCE_STATUS_LSI) + { + /* LSI used as system clock source */ + sysclockfreq = LSI_VALUE; + } + else if (sysclk_source == RCC_SYSCLKSOURCE_STATUS_LSE) + { + /* LSE used as system clock source */ + sysclockfreq = LSE_VALUE; + } + else + { + /* unexpected case: sysclockfreq at 0 */ + } + + if (sysclk_source == RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + /* PLL used as system clock source */ + /* The allowed input (pllinput/M) frequency range is from 2.66 to 16 MHZ */ + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE) * PLLN / PLLM + SYSCLK = PLL_VCO / PLLR + */ + pllsource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC); + pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ; + + switch (pllsource) + { + case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllsourcefreq = HSI_VALUE; + break; + + case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + pllsourcefreq = HSE_VALUE; + break; + + case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + default: + pllsourcefreq = msirange; + break; + } + pllvco = (pllsourcefreq * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)) / pllm ; + pllr = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U); + sysclockfreq = pllvco / pllr; + } + + return sysclockfreq; +} + +/** + * @brief Return the HCLK frequency. + * @note Each time HCLK changes, this function must be called to update the + * right HCLK value. Otherwise, any configuration based on this function will be incorrect. + * + * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency. + * @retval HCLK frequency in Hz + */ +uint32_t HAL_RCC_GetHCLKFreq(void) +{ + return SystemCoreClock; +} + +/** + * @brief Return the PCLK frequency. + * @note Each time PCLK changes, this function must be called to update the + * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. + * @retval PCLK1 frequency in Hz + */ +uint32_t HAL_RCC_GetPCLK1Freq(void) +{ + /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ + return (HAL_RCC_GetHCLKFreq() >> (APBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_PPRE) >> RCC_CFGR_PPRE_Pos] & 0x1FU)); +} + +/** + * @brief Configure the RCC_OscInitStruct according to the internal + * RCC configuration registers. + * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that + * will be configured. + * @retval None + */ +void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t regval; + + /* Check the parameters */ + assert_param(RCC_OscInitStruct != NULL); +#if defined(RCC_CRRCR_HSI48ON) + /* Set all possible values for the Oscillator type parameter ---------------*/ + RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ + RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48; +#else + /* Set all possible values for the Oscillator type parameter ---------------*/ + RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ + RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; +#endif /* RCC_CRRCR_HSI48ON */ + /* Get the HSE configuration -----------------------------------------------*/ + if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP) + { + RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; + } + else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) + { + RCC_OscInitStruct->HSEState = RCC_HSE_ON; + } + else + { + RCC_OscInitStruct->HSEState = RCC_HSE_OFF; + } + + /* Get the HSI configuration -----------------------------------------------*/ + if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION) + { + RCC_OscInitStruct->HSIState = RCC_HSI_ON; + } + else + { + RCC_OscInitStruct->HSIState = RCC_HSI_OFF; + } + RCC_OscInitStruct->HSICalibrationValue = ((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos); + + /* Get the MSI configuration -----------------------------------------------*/ + if ((RCC->CR & RCC_CR_MSION) == RCC_CR_MSION) + { + RCC_OscInitStruct->MSIState = RCC_MSI_ON; + } + else + { + RCC_OscInitStruct->MSIState = RCC_MSI_OFF; + } + + RCC_OscInitStruct->MSICalibrationValue = READ_BIT(RCC->ICSCR, RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_Pos; + RCC_OscInitStruct->MSIClockRange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE); + + /* Get the LSE configuration -----------------------------------------------*/ + /* Get BDCR register */ + regval = RCC->BDCR; + if (READ_BIT(RCC->BDCR, RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) + { + if (((regval & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) + && ((regval & RCC_BDCR_LSESYSEN) == RCC_BDCR_LSESYSEN)) + { + RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; + } + else + { + RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS_RTC_ONLY; + } + } + else if (READ_BIT(RCC->BDCR, RCC_BDCR_LSEON) == RCC_BDCR_LSEON) + { + if (READ_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN) == RCC_BDCR_LSESYSEN) + { + RCC_OscInitStruct->LSEState = RCC_LSE_ON; + } + else + { + RCC_OscInitStruct->LSEState = RCC_LSE_ON_RTC_ONLY; + } + } + else + { + RCC_OscInitStruct->LSEState = RCC_LSE_OFF; + } + + /* Get the LSI configuration -----------------------------------------------*/ + if (READ_BIT(RCC->CSR, RCC_CSR_LSION) == RCC_CSR_LSION) + { + RCC_OscInitStruct->LSIState = RCC_LSI_ON; + } + else + { + RCC_OscInitStruct->LSIState = RCC_LSI_OFF; + } + + if ((RCC->CSR & RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV) + { + RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV128; + } + else + { + RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV1; + } +#if defined(RCC_CRRCR_HSI48ON) + /* Get the HSI48 configuration ---------------------------------------------*/ + if (READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON) + { + RCC_OscInitStruct->HSI48State = RCC_HSI48_ON; + } + else + { + RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; + } +#endif /* RCC_CRRCR_HSI48ON */ + /* Get the PLL configuration -----------------------------------------------*/ + if (READ_BIT(RCC->CR, RCC_CR_PLLON) == RCC_CR_PLLON) + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; + } + else + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; + } + RCC_OscInitStruct->PLL.PLLSource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC); + RCC_OscInitStruct->PLL.PLLM = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM)); + RCC_OscInitStruct->PLL.PLLN = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos; + RCC_OscInitStruct->PLL.PLLQ = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ))); + RCC_OscInitStruct->PLL.PLLR = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR))); + RCC_OscInitStruct->PLL.PLLP = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP))); + +} + +/** + * @brief Configure the RCC_ClkInitStruct according to the internal + * RCC configuration registers. + * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that + * will be configured. + * @param pFLatency Pointer on the Flash Latency. + * @retval None + */ +void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) +{ + /* Check the parameters */ + assert_param(RCC_ClkInitStruct != NULL); + assert_param(pFLatency != NULL); + + /* Set all possible values for the Clock type parameter --------------------*/ + RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1; + + /* Get the SYSCLK configuration --------------------------------------------*/ + RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); + + /* Get the HCLK configuration ----------------------------------------------*/ + RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); + + /* Get the APB1 configuration ----------------------------------------------*/ + RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE); + + /* Get the Flash Wait State (Latency) configuration ------------------------*/ + *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); +} + +/** + * @brief Enables the Clock Security System. + * @note If a failure is detected on the HSE oscillator clock, this oscillator + * is automatically disabled and an interrupt is generated to inform the + * software about the failure (Clock Security System Interrupt, CSSI), + * allowing the MCU to perform rescue operations. The CSSI is linked to + * the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector. + * @retval None + */ +void HAL_RCC_EnableCSS(void) +{ + SET_BIT(RCC->CR, RCC_CR_CSSON) ; +} + +/* * @brief Handle the RCC Clock Security System interrupt request. + * @note This API should be called under the NMI_Handler(). + * @retval None + */ +void HAL_RCC_NMI_IRQHandler(void) +{ + /* Check RCC CSSF interrupt flag */ + if (__HAL_RCC_GET_IT(RCC_IT_CSS)) + { + /* RCC Clock Security System interrupt user callback */ + HAL_RCC_CSSCallback(); + + /* Clear RCC CSS pending bit */ + __HAL_RCC_CLEAR_IT(RCC_IT_CSS); + } +} + +/** + * @brief RCC Clock Security System interrupt callback. + * @retval none + */ +__weak void HAL_RCC_CSSCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RCC_CSSCallback should be implemented in the user file + */ +} + +/** + * @brief Get and clear reset flags + * @note Once reset flags are retrieved, this API is clearing them in order + * to isolate next reset reason. + * @retval can be a combination of @ref RCC_Reset_Flag + */ +uint32_t HAL_RCC_GetResetSource(void) +{ + uint32_t reset; + + /* Get all reset flags */ + reset = RCC->CSR & RCC_RESET_FLAG_ALL; + + /* Clear Reset flags */ + RCC->CSR |= RCC_CSR_RMVF; + + return reset; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup RCC_Private_Functions + * @{ + */ +/** + * @brief Update number of Flash wait states in line with MSI range and current + voltage range. + * @param msirange MSI range value from RCC_MSISRANGE_0 to RCC_MSISRANGE_15 + * @retval HAL status + */ +static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange) +{ + uint32_t vos; + uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */ + + if (__HAL_RCC_PWR_IS_CLK_ENABLED()) + { + vos = HAL_PWREx_GetVoltageRange(); + } + else + { + __HAL_RCC_PWR_CLK_ENABLE(); + vos = HAL_PWREx_GetVoltageRange(); + __HAL_RCC_PWR_CLK_DISABLE(); + } + + if (vos == PWR_REGULATOR_VOLTAGE_SCALE1) + { + if (msirange > RCC_MSIRANGE_8) + { + /* MSI > 16Mhz */ + if (msirange > RCC_MSIRANGE_11) + { + /* MSI 48Mhz */ + latency = FLASH_LATENCY_2; /* 2WS */ + } + else if (msirange > RCC_MSIRANGE_9) + { + /* MSI 24Mhz or 32Mhz */ + latency = FLASH_LATENCY_1; /* 1WS */ + } + else + { + /* MSI 16Mhz */ + latency = FLASH_LATENCY_0; /* 0WS */ + } + } + /* else MSI <= 16Mhz default FLASH_LATENCY_0 0WS */ + } + else + { + if (msirange >= RCC_MSIRANGE_8) + { + /* MSI > 16Mhz */ + latency = FLASH_LATENCY_2; /* 3WS */ + } + else if (msirange == RCC_MSIRANGE_7) + { + /* MSI 8Mhz */ + latency = FLASH_LATENCY_1; /* 1WS */ + } + else + { + /* MSI 16Mhz */ + latency = FLASH_LATENCY_0; /* 0WS */ + } + /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */ + } + + __HAL_FLASH_SET_LATENCY(latency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if ((FLASH->ACR & FLASH_ACR_LATENCY) != latency) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc_ex.c new file mode 100644 index 0000000..23ab1e1 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rcc_ex.c @@ -0,0 +1,1912 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_rcc_ex.c + * @author MCD Application Team + * @brief Extended RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities RCC extended peripheral: + * + Extended Peripheral Control functions + * + Extended Clock management functions + * + Extended Clock Recovery System Control functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup RCCEx RCCEx + * @brief RCC Extended HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @defgroup RCCEx_Private_Constants RCCEx Private Constants + * @{ + */ +#define __LSCO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() +#define LSCO_GPIO_PORT GPIOA +#define LSCO_PIN GPIO_PIN_2 + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup RCCEx_Private_Functions RCCEx Private Functions + * @{ + */ +static HAL_StatusTypeDef RCCEx_PLLSource_Enable(uint32_t PllSource); + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions + * @{ + */ + +/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extended Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the RCC Clocks + frequencies. + [..] + (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to + select the RTC clock source; in this case the Backup domain will be reset in + order to modify the RTC Clock source, as consequence RTC registers (including + the backup registers) are set to their reset values. + +@endverbatim + * @{ + */ +/** + * @brief Initialize the RCC extended peripherals clocks according to the specified + * parameters in the RCC_PeriphCLKInitTypeDef. + * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that + * contains a field PeriphClockSelection which can be a combination of the following values: + * @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART2 LPUART2 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART3 LPUART3 peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM3 LPTIM3 peripheral clock + * @arg @ref RCC_PERIPHCLK_TIM1 TIM1 peripheral clock + * @arg @ref RCC_PERIPHCLK_TIM15 TIM15 peripheral clock + * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock + * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock + * + * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select + * the RTC clock source: in this case the access to Backup domain is enabled. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(const RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tmpregister; + uint32_t tickstart; + HAL_StatusTypeDef ret = HAL_OK; /* Intermediate status */ + HAL_StatusTypeDef status = HAL_OK; /* Final status */ + + /* Check the parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); + + /*-------------------------- RTC clock source configuration ----------------------*/ + if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) + { + FlagStatus pwrclkchanged = RESET; + + /* Check for RTC Parameters used to output RTCCLK */ + assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection)); + + /* Enable Power Clock */ + if (__HAL_RCC_PWR_IS_CLK_DISABLED()) + { + __HAL_RCC_PWR_CLK_ENABLE(); + pwrclkchanged = SET; + } + + /* Enable write access to Backup domain */ + SET_BIT(PWR->CR1, PWR_CR1_DBP); + + /* Wait for Backup domain Write protection disable */ + tickstart = HAL_GetTick(); + + while (READ_BIT(PWR->CR1, PWR_CR1_DBP) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) + { + ret = HAL_TIMEOUT; + break; + } + } + + if (ret == HAL_OK) + { + /* Reset the Backup domain only if the RTC Clock source selection is modified from default */ + tmpregister = READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL); + + if ((tmpregister != RCC_RTCCLKSOURCE_NONE) && (tmpregister != PeriphClkInit->RTCClockSelection)) + { + /* Store the content of BDCR register before the reset of Backup Domain */ + tmpregister = READ_BIT(RCC->BDCR, ~(RCC_BDCR_RTCSEL)); + /* RTC Clock selection can be changed only if the Backup Domain is reset */ + __HAL_RCC_BACKUPRESET_FORCE(); + __HAL_RCC_BACKUPRESET_RELEASE(); + /* Restore the Content of BDCR register */ + RCC->BDCR = tmpregister; + } + + /* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */ + if (HAL_IS_BIT_SET(tmpregister, RCC_BDCR_LSEON)) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) + { + ret = HAL_TIMEOUT; + break; + } + } + } + + if (ret == HAL_OK) + { + /* Apply new RTC clock source selection */ + __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); + } + else + { + /* set overall return value */ + status = ret; + } + } + else + { + /* set overall return value */ + status = ret; + } + + /* Restore clock configuration if changed */ + if (pwrclkchanged == SET) + { + __HAL_RCC_PWR_CLK_DISABLE(); + } + } + + /*-------------------------- USART1 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) + { + /* Check the parameters */ + assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection)); + + /* Configure the USART1 clock source */ + __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection); + } + + /*-------------------------- USART2 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) + { + /* Check the parameters */ + assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection)); + + /* Configure the USART2 clock source */ + __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection); + } + + /*-------------------------- LPUART1 clock source configuration ------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1) + { + /* Check the parameters */ + assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection)); + + /* Configure the LPUART1 clock source */ + __HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection); + } + + /*-------------------------- LPUART2 clock source configuration ------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART2) == RCC_PERIPHCLK_LPUART2) + { + /* Check the parameters */ + assert_param(IS_RCC_LPUART2CLKSOURCE(PeriphClkInit->Lpuart2ClockSelection)); + + /* Configure the LPUART2 clock source */ + __HAL_RCC_LPUART2_CONFIG(PeriphClkInit->Lpuart2ClockSelection); + } +#if defined (LPUART3) + /*-------------------------- LPUART3 clock source configuration ------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART3) == RCC_PERIPHCLK_LPUART3) + { + /* Check the parameters */ + assert_param(IS_RCC_LPUART3CLKSOURCE(PeriphClkInit->Lpuart3ClockSelection)); + + /* Configure the LPUART3 clock source */ + __HAL_RCC_LPUART3_CONFIG(PeriphClkInit->Lpuart3ClockSelection); + } +#endif /* LPUART3 */ + /*-------------------------- I2C1 clock source configuration ---------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection)); + + /* Configure the I2C1 clock source */ + __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection); + } + + /*-------------------------- I2C3 clock source configuration ---------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3) + { + /* Check the parameters */ + assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection)); + + /* Configure the I2C3 clock source */ + __HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection); + } + + /*----------------------- LPTIM1 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1)) + { + assert_param(IS_RCC_LPTIM1CLKSOURCE(PeriphClkInit->Lptim1ClockSelection)); + __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection); + } + + /*-------------------------- LPTIM2 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM2) == (RCC_PERIPHCLK_LPTIM2)) + { + assert_param(IS_RCC_LPTIM2CLKSOURCE(PeriphClkInit->Lptim2ClockSelection)); + __HAL_RCC_LPTIM2_CONFIG(PeriphClkInit->Lptim2ClockSelection); + } +#if defined (LPTIM3) + /*----------------------- LPTIM3 clock source configuration -------------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM3) == (RCC_PERIPHCLK_LPTIM3)) + { + assert_param(IS_RCC_LPTIM3CLKSOURCE(PeriphClkInit->Lptim3ClockSelection)); + __HAL_RCC_LPTIM3_CONFIG(PeriphClkInit->Lptim3ClockSelection); + } +#endif /* LPTIM3 */ + /*-------------------------- ADC clock source configuration ----------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC) + { + /* Check the parameters */ + assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection)); + if (PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLP) + { + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_DIVP); + } + /* Configure the ADC1 clock source */ + __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection); + } +#if defined (USB_DRD_FS) + /*-------------------------- USB clock source configuration ----------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB) + { + /* Check the parameters */ + assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection)); + if (PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLLQ) + { + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_DIVQ); + } + /* Configure the USB clock source */ + __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection); + + } +#endif /* USB_DRD_FS */ + /*-------------------------- RNG clock source configuration ----------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RNG) == RCC_PERIPHCLK_RNG) + { + /* Check the parameters */ + assert_param(IS_RCC_RNGCLKSOURCE(PeriphClkInit->RngClockSelection)); + if (PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLLQ) + { + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_DIVQ); + } + /* Configure the RNG clock source */ + __HAL_RCC_RNG_CONFIG(PeriphClkInit->RngClockSelection); + + } + /*-------------------------- TIM1 clock source configuration ----------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_TIM1) == RCC_PERIPHCLK_TIM1) + { + + /* Check the parameters */ + assert_param(IS_RCC_TIM1CLKSOURCE(PeriphClkInit->Tim1ClockSelection)); + if (PeriphClkInit->Tim1ClockSelection == RCC_TIM1CLKSOURCE_PLLQ) + { + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_DIVQ); + } + /* Configure the TIM1 clock source */ + __HAL_RCC_TIM1_CONFIG(PeriphClkInit->Tim1ClockSelection); + + } + /*-------------------------- TIM15 clock source configuration ----------------*/ + if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_TIM15) == RCC_PERIPHCLK_TIM15) + { + /* Check the parameters */ + assert_param(IS_RCC_TIM15CLKSOURCE(PeriphClkInit->Tim15ClockSelection)); + if (PeriphClkInit->Tim15ClockSelection == RCC_TIM15CLKSOURCE_PLLQ) + { + __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_DIVQ); + } + /* Configure the TIM1 clock source */ + __HAL_RCC_TIM15_CONFIG(PeriphClkInit->Tim15ClockSelection); + + } + + return status; +} +/** + * @brief Get the RCC_ClkInitStruct according to the internal RCC configuration registers. + * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that + * returns the configuration information for the Extended Peripherals + * clocks(USART1, USART2, LPUART1, LPUART2, LPUART3, I2C1, I2C2, I2C3, I2C4, LPTIM1, + * LPTIM2, LPTIM3, USB, TIM1, LCD, SPI1, SPI2, SPI3, RTC, RNG, ADC, DAC, IWDG). + * @retval None + */ +void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + /* Set all possible values for the extended clock type parameter------------*/ + PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | \ + RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_LPUART2 | RCC_PERIPHCLK_I2C1 | \ + RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | \ + RCC_PERIPHCLK_TIM1 | RCC_PERIPHCLK_TIM15 | RCC_PERIPHCLK_RNG | \ + RCC_PERIPHCLK_ADC ; + +#if defined(LPUART3) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_LPUART3; +#endif /* LPUART3*/ +#if defined(LPTIM3) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_LPTIM3; +#endif /* LPTIM3 */ +#if defined(USB_DRD_FS) + PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB; +#endif /* USB_DRD_FS */ + /* Get the RTC clock source ---------------------------------------------*/ + PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE(); + + /* Get the USART1 clock source ---------------------------------------------*/ + PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE(); + + /* Get the USART2 clock source ---------------------------------------------*/ + PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE(); + + /* Get the LPUART1 clock source --------------------------------------------*/ + PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE(); + + /* Get the LPUART2 clock source --------------------------------------------*/ + PeriphClkInit->Lpuart2ClockSelection = __HAL_RCC_GET_LPUART2_SOURCE(); + +#if defined (LPUART3) + /* Get the LPUART3 clock source --------------------------------------------*/ + PeriphClkInit->Lpuart3ClockSelection = __HAL_RCC_GET_LPUART3_SOURCE(); +#endif /* LPUART3 */ + + /* Get the I2C1 clock source -----------------------------------------------*/ + PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE(); + + /* Get the I2C3 clock source -----------------------------------------------*/ + PeriphClkInit->I2c3ClockSelection = __HAL_RCC_GET_I2C3_SOURCE(); + + /* Get the LPTIM1 clock source ---------------------------------------------*/ + PeriphClkInit->Lptim1ClockSelection = __HAL_RCC_GET_LPTIM1_SOURCE(); + + /* Get the LPTIM2 clock source ---------------------------------------------*/ + PeriphClkInit->Lptim2ClockSelection = __HAL_RCC_GET_LPTIM2_SOURCE(); + +#if defined (LPTIM3) + /* Get the LPTIM3 clock source ---------------------------------------------*/ + PeriphClkInit->Lptim3ClockSelection = __HAL_RCC_GET_LPTIM3_SOURCE(); +#endif /* LPTIM3 */ + + /* Get the ADC clock source -----------------------------------------------*/ + PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE(); + + /* Get the TIM1 clock source -----------------------------------------------*/ + PeriphClkInit->Tim1ClockSelection = __HAL_RCC_GET_TIM1_SOURCE(); + + /* Get the TIM15 clock source -----------------------------------------------*/ + PeriphClkInit->Tim15ClockSelection = __HAL_RCC_GET_TIM15_SOURCE(); + +#if defined (USB_DRD_FS) + /* Get the USB clock source -------------------------------------------------*/ + PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE(); +#endif /* USB_DRD_FS */ + + /* Get the RNG clock source -------------------------------------------------*/ + PeriphClkInit->RngClockSelection = __HAL_RCC_GET_RNG_SOURCE(); + +} + +/** + * @brief Return the peripheral clock frequency for peripherals with clock source from PLLSAIs + * @note Return 0 if peripheral clock identifier not managed by this API + * @param PeriphClk Peripheral clock identifier + * This parameter can be one of the following values: + * @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock + * @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPTIM3 LPTIM3 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART2 LPUART2 peripheral clock + * @arg @ref RCC_PERIPHCLK_LPUART3 LPUART3 peripheral clock + * @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock + * @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock + * @arg @ref RCC_PERIPHCLK_USART3 USART3 peripheral clock + * @arg @ref RCC_PERIPHCLK_USART4 USART4 peripheral clock + * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB) + * @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock (only for devices with RNG) + * @arg @ref RCC_PERIPHCLK_TIM1 TIM1 peripheral clock (only for devices with TIM1) + * @arg @ref RCC_PERIPHCLK_TIM15 TIM15 peripheral clock (only for devices with TIM15) + * @retval Frequency in Hz + */ +uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk) +{ + uint32_t frequency = 0U; + uint32_t srcclk; /* no init needed */ + PLL_ClocksTypeDef pll_freq; + uint32_t msirange; + /* Check the parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClk)); + + if (PeriphClk == RCC_PERIPHCLK_RTC) + { + /* Get the current RCC_PERIPHCLK_RTC source */ + srcclk = __HAL_RCC_GET_RTC_SOURCE(); + + switch (srcclk) + { + case RCC_RTCCLKSOURCE_LSE: + /* Check if LSE is ready */ + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + case RCC_RTCCLKSOURCE_LSI: + /* Check if LSI is ready */ + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)) + { +#if defined(RCC_CSR_LSIPREDIV) + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIPREDIV)) + { + frequency = LSI_VALUE / 128U; + } + else +#endif /* RCC_CSR_LSIPREDIV */ + { + frequency = LSI_VALUE; + } + } + break; + case RCC_RTCCLKSOURCE_HSE: + /* Check if HSE is ready */ + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)) + { + frequency = HSE_VALUE / 32U; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + } + else + { + /* Other external peripheral clock source than RTC */ + switch (PeriphClk) + { + case RCC_PERIPHCLK_USART1: + { + /* Get the current USART1 source */ + srcclk = __HAL_RCC_GET_USART1_SOURCE(); + + switch (srcclk) + { + case RCC_USART1CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_USART1CLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_USART1CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_USART1CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + + break; + } + + case RCC_PERIPHCLK_USART2: + { + /* Get the current USART2 source */ + srcclk = __HAL_RCC_GET_USART2_SOURCE(); + + switch (srcclk) + { + case RCC_USART2CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_USART2CLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_USART2CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_USART2CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + + break; + } + + /* USART3 and USART4 source */ + case RCC_PERIPHCLK_USART3: + case RCC_PERIPHCLK_USART4: + { + frequency = HAL_RCC_GetPCLK1Freq(); + break; + } + + case RCC_PERIPHCLK_LPUART1: + { + /* Get the current LPUART1 source */ + srcclk = __HAL_RCC_GET_LPUART1_SOURCE(); + + switch (srcclk) + { + case RCC_LPUART1CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_LPUART1CLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_LPUART1CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_LPUART1CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } + case RCC_PERIPHCLK_LPUART2: + { + /* Get the current LPUART2 source */ + srcclk = __HAL_RCC_GET_LPUART2_SOURCE(); + + switch (srcclk) + { + case RCC_LPUART2CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_LPUART2CLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_LPUART2CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_LPUART2CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } +#if defined(LPUART3) + case RCC_PERIPHCLK_LPUART3: + { + /* Get the current LPUART3 source */ + srcclk = __HAL_RCC_GET_LPUART3_SOURCE(); + + switch (srcclk) + { + case RCC_LPUART3CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_LPUART3CLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_LPUART3CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_LPUART3CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } +#endif /* LPUART3 */ + case RCC_PERIPHCLK_ADC: + { + srcclk = __HAL_RCC_GET_ADC_SOURCE(); + + switch (srcclk) + { + case RCC_ADCCLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_ADCCLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + else + { + frequency = 0U; + } + break; + case RCC_ADCCLKSOURCE_PLLP: + HAL_RCCEx_GetPLLClockFreq(&pll_freq); + frequency = pll_freq.PLL_P_Frequency; + break; + + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } + + case RCC_PERIPHCLK_I2C1: + { + /* Get the current I2C1 source */ + srcclk = __HAL_RCC_GET_I2C1_SOURCE(); + + switch (srcclk) + { + case RCC_I2C1CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_I2C1CLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_I2C1CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + + break; + } + + case RCC_PERIPHCLK_I2C3: + { + /* Get the current I2C3 source */ + srcclk = __HAL_RCC_GET_I2C3_SOURCE(); + + switch (srcclk) + { + case RCC_I2C3CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_I2C3CLKSOURCE_SYSCLK: + frequency = HAL_RCC_GetSysClockFreq(); + break; + case RCC_I2C3CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + + break; + } + + case RCC_PERIPHCLK_LPTIM1: + { + /* Get the current LPTIM1 source */ + srcclk = __HAL_RCC_GET_LPTIM1_SOURCE(); + + switch (srcclk) + { + case RCC_LPTIM1CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_LPTIM1CLKSOURCE_LSI: + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)) + { +#if defined(RCC_CSR_LSIPREDIV) + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIPREDIV)) + { + frequency = LSI_VALUE / 128U; + } + else +#endif /* RCC_CSR_LSIPREDIV */ + { + frequency = LSI_VALUE; + } + } + break; + case RCC_LPTIM1CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_LPTIM1CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + + break; + } + + case RCC_PERIPHCLK_LPTIM2: + { + /* Get the current LPTIM2 source */ + srcclk = __HAL_RCC_GET_LPTIM2_SOURCE(); + + switch (srcclk) + { + case RCC_LPTIM2CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_LPTIM2CLKSOURCE_LSI: + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)) + { +#if defined(RCC_CSR_LSIPREDIV) + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIPREDIV)) + { + frequency = LSI_VALUE / 128U; + } + else +#endif /* RCC_CSR_LSIPREDIV */ + { + frequency = LSI_VALUE; + } + } + break; + case RCC_LPTIM2CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_LPTIM2CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } +#if defined (LPTIM3) + case RCC_PERIPHCLK_LPTIM3: + { + /* Get the current LPTIM3 source */ + srcclk = __HAL_RCC_GET_LPTIM3_SOURCE(); + + switch (srcclk) + { + case RCC_LPTIM3CLKSOURCE_PCLK1: + frequency = HAL_RCC_GetPCLK1Freq(); + break; + case RCC_LPTIM3CLKSOURCE_LSI: + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)) + { +#if defined(RCC_CSR_LSIPREDIV) + if (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIPREDIV)) + { + frequency = LSI_VALUE / 128U; + } + else +#endif /* RCC_CSR_LSIPREDIV */ + { + frequency = LSI_VALUE; + } + } + break; + case RCC_LPTIM3CLKSOURCE_HSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)) + { + frequency = HSI_VALUE; + } + break; + case RCC_LPTIM3CLKSOURCE_LSE: + if (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)) + { + frequency = LSE_VALUE; + } + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + + break; + } +#endif /* LPTIM3 */ + case RCC_PERIPHCLK_TIM1: + { + /* Get the current TIM1 source */ + srcclk = __HAL_RCC_GET_TIM1_SOURCE(); + switch (srcclk) + { + case RCC_TIM1CLKSOURCE_PCLK1: + if ((READ_BIT(RCC->CFGR, RCC_CFGR_PPRE) == RCC_HCLK_DIV1)) + { + frequency = HAL_RCC_GetPCLK1Freq(); + } + else + { + frequency = (HAL_RCC_GetPCLK1Freq() * 2U); + } + break; + case RCC_TIM1CLKSOURCE_PLLQ: + HAL_RCCEx_GetPLLClockFreq(&pll_freq); + frequency = pll_freq.PLL_Q_Frequency; + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } + case RCC_PERIPHCLK_TIM15: + { + /* Get the current TIM15 source */ + srcclk = __HAL_RCC_GET_TIM15_SOURCE(); + switch (srcclk) + { + case RCC_TIM15CLKSOURCE_PCLK1: + if ((READ_BIT(RCC->CFGR, RCC_CFGR_PPRE) == RCC_HCLK_DIV1)) + { + frequency = HAL_RCC_GetPCLK1Freq(); + } + else + { + frequency = (HAL_RCC_GetPCLK1Freq() * 2U); + } + break; + case RCC_TIM15CLKSOURCE_PLLQ: + HAL_RCCEx_GetPLLClockFreq(&pll_freq); + frequency = pll_freq.PLL_Q_Frequency; + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } +#if defined (USB_DRD_FS) + case RCC_PERIPHCLK_USB: + { + /* Get the current USB source */ + srcclk = __HAL_RCC_GET_USB_SOURCE(); + switch (srcclk) + { + case RCC_USBCLKSOURCE_HSI48: + frequency = HSI48_VALUE; + break; + case RCC_USBCLKSOURCE_MSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY)) + { + msirange = (__HAL_RCC_GET_MSI_RANGE() >> 4U); + if (msirange > 11U) + { + msirange = 11U; + } + frequency = MSIRangeTable[msirange]; + } + break; + case RCC_USBCLKSOURCE_PLLQ: + HAL_RCCEx_GetPLLClockFreq(&pll_freq); + frequency = pll_freq.PLL_Q_Frequency; + break; + /* Clock not enabled for USB */ + case RCC_USBCLKSOURCE_NONE: + frequency = 0U; + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } +#endif /* USB_DRD_FS */ + case RCC_PERIPHCLK_RNG: + { + /* Get the current RNG source */ + srcclk = __HAL_RCC_GET_RNG_SOURCE(); + switch (srcclk) + { + case RCC_RNGCLKSOURCE_HSI48: + frequency = HSI48_VALUE; + break; + case RCC_RNGCLKSOURCE_MSI: + if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY)) + { + msirange = (__HAL_RCC_GET_MSI_RANGE() >> 4U); + if (msirange > 11U) + { + msirange = 11U; + } + frequency = MSIRangeTable[msirange]; + } + break; + case RCC_RNGCLKSOURCE_PLLQ: + HAL_RCCEx_GetPLLClockFreq(&pll_freq); + frequency = pll_freq.PLL_Q_Frequency; + break; + /* Clock not enabled for RNG */ + case RCC_RNGCLKSOURCE_NONE: + frequency = 0U; + break; + default: + /* No clock source, frequency default init at 0 */ + break; + } + break; + } + default: + break; + } + } + return (frequency); +} + +/** + * @brief Returns the PLL clock frequencies :PLL_P_Frequency,PLL_R_Frequency and PLL_Q_Frequency + * @note The PLL clock frequencies computed by this function is not the real + * frequency in the chip. It is calculated based on the predefined + * constant and the selected clock source: + * @note The function returns values based on HSE_VALUE, HSI_VALUE or MSI Value multiplied/divided by the PLL factors + * @note This function can be used by the user application to compute the + * baud-rate for the communication peripherals or configure other parameters. + * + * @note Each time PLLCLK changes, this function must be called to update the + * right PLLCLK value. Otherwise, any configuration based on this function will be incorrect. + * @param PLL_Clocks structure. + * @retval None + */ + +void HAL_RCCEx_GetPLLClockFreq(PLL_ClocksTypeDef *PLL_Clocks) +{ + uint32_t pllsource; + uint32_t pllm; + uint32_t plln; + uint32_t pllvco; + uint32_t msirange; + + plln = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos); + pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); + pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U; + msirange = (__HAL_RCC_GET_MSI_RANGE() >> 4U); + if (msirange > 11U) + { + msirange = 11U; + } + switch (pllsource) + { + + case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllvco = (HSI_VALUE / pllm) * plln; + break; + + case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllvco = ((MSIRangeTable[msirange] / pllm) * plln); + break; + + case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + pllvco = (HSE_VALUE / pllm) * plln; + break; + + default: + pllvco = ((MSIRangeTable[msirange] / pllm) * plln); + break; + } + + if (__HAL_RCC_GET_PLLCLKOUT_CONFIG(RCC_PLL_DIVP) != 0U) + { + PLL_Clocks->PLL_P_Frequency = (uint32_t)(pllvco / (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) \ + >> RCC_PLLCFGR_PLLP_Pos) + 1U)); + } + else + { + PLL_Clocks->PLL_P_Frequency = 0; + } + + if (__HAL_RCC_GET_PLLCLKOUT_CONFIG(RCC_PLL_DIVQ) != 0U) + { + PLL_Clocks->PLL_Q_Frequency = (uint32_t)(pllvco / (((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) \ + >> RCC_PLLCFGR_PLLQ_Pos) + 1U)); + } + else + { + PLL_Clocks->PLL_Q_Frequency = 0; + } + + if (__HAL_RCC_GET_PLLCLKOUT_CONFIG(RCC_PLL_DIVR) != 0U) + { + PLL_Clocks->PLL_R_Frequency = (uint32_t)(pllvco / (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) \ + >> RCC_PLLCFGR_PLLR_Pos) + 1U)); + } + else + { + PLL_Clocks->PLL_R_Frequency = 0; + } +} + +/** + * @brief Enable PLL. + * @param PLLInit pointer to an RCC_PLLInitTypeDef structure that + * contains the configuration information for the PLL + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_EnablePLL(RCC_PLLInitTypeDef *PLLInit) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* check for PLL Parameters used to output PLLCLK */ + assert_param(IS_RCC_PLLSOURCE(PLLInit->PLLSource)); + assert_param(IS_RCC_PLL_DIVM_VALUE(PLLInit->PLLM)); + assert_param(IS_RCC_PLL_MULN_VALUE(PLLInit->PLLN)); + assert_param(IS_RCC_PLL_DIVP_VALUE(PLLInit->PLLP)); + assert_param(IS_RCC_PLL_DIVQ_VALUE(PLLInit->PLLQ)); + assert_param(IS_RCC_PLL_DIVR_VALUE(PLLInit->PLLR)); + assert_param(IS_RCC_PLLCLOCKOUT_VALUE(PLLInit->PLLClockOut)); + + /* Disable the PLL */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready to be updated */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > 2U) /* PLL_TIMEOUT_VALUE) */ + { + status = HAL_TIMEOUT; + break; + } + } + + if (status == HAL_OK) + { + /* Make sure PLLSource is ready */ + status = RCCEx_PLLSource_Enable(PLLInit->PLLSource); + + if (status == HAL_OK) + { + /* Configure the PLL clock source, multiplication factor N, */ + /* and division factors M, P, Q and R */ + __HAL_RCC_PLL_CONFIG(PLLInit->PLLSource, PLLInit->PLLM, PLLInit->PLLN, + PLLInit->PLLP, PLLInit->PLLQ, PLLInit->PLLR); + + /* Configure the PLL Clock output(s) */ + __HAL_RCC_PLLCLKOUT_ENABLE(PLLInit->PLLClockOut); + + /* Enable the PLL again by setting PLLON to 1*/ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > 2U) /* PLL_TIMEOUT_VALUE) */ + { + status = HAL_TIMEOUT; + break; + } + } + } + } + + return status; +} + +/** + * @brief Disable PLL. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_DisablePLL(void) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* Disable the PLL */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) + { + if ((HAL_GetTick() - tickstart) > 2U) /* PLL_TIMEOUT_VALUE) */ + { + status = HAL_TIMEOUT; + break; + } + } + + /* To save power disable the PLL Source, FRACN and Clock outputs */ + CLEAR_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLREN | RCC_PLLCFGR_PLLQEN | RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLSRC); + + return status; +} + +/** + * @brief Configure the oscillator clock source for wakeup from Stop and CSS backup clock. + * @param WakeUpClk Wakeup clock + * This parameter can be one of the following values: + * @arg @ref RCC_STOP_WAKEUPCLOCK_MSI MSI oscillator selection + * @arg @ref RCC_STOP_WAKEUPCLOCK_HSI HSI oscillator selection + * @note This function shall not be called after the Clock Security System on HSE has been + * enabled. + * @retval None + */ +void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk) +{ + assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk)); + + __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk); +} + +/** + * @brief Configure the MSI range after standby mode. + * @note After Standby its frequency can be selected between 3 possible values (1, 3.072 or 4 MHz). + * @param MSIRange MSI range + * This parameter can be one of the following values: + * @arg @ref RCC_MSIRANGE_4 Range 4 around 4 MHz (reset value) + * @arg @ref RCC_MSIRANGE_5 Range 5 around 2 MHz + * @arg @ref RCC_MSIRANGE_6 Range 6 around 1.5 MHz + * @arg @ref RCC_MSIRANGE_7 Range 7 around 1 MHz + * @retval None + */ +void HAL_RCCEx_StandbyMSIRangeConfig(uint32_t MSIRange) +{ + assert_param(IS_RCC_MSI_STANDBY_CLOCK_RANGE(MSIRange)); + + __HAL_RCC_MSI_STANDBY_RANGE_CONFIG(MSIRange); +} + +/** + * @brief Enable the PLL-mode of the MSI. + * @note Prior to enable the PLL-mode of the MSI for automatic hardware + * calibration LSE oscillator is to be enabled with HAL_RCC_OscConfig(). + * @retval None + */ +void HAL_RCCEx_EnableMSIPLLMode(void) +{ + SET_BIT(RCC->CR, RCC_CR_MSIPLLEN); +} + +/** + * @brief Disable the PLL-mode of the MSI. + * @note PLL-mode of the MSI is automatically reset when LSE oscillator is disabled. + * @retval None + */ +void HAL_RCCEx_DisableMSIPLLMode(void) +{ + CLEAR_BIT(RCC->CR, RCC_CR_MSIPLLEN); +} + +/** + * @brief Enables the LSE Clock Security System. + * @retval None + */ +void HAL_RCCEx_EnableLSECSS(void) +{ + SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; +} + +/** + * @brief Disables the LSE Clock Security System. + * @note Once enabled this bit cannot be disabled, except after an LSE failure detection + * (LSECSSD=1). In that case the software MUST disable the LSECSSON bit. + * Reset by power on reset and RTC software reset (RTCRST bit). + * @retval None + */ +void HAL_RCCEx_DisableLSECSS(void) +{ + /* Disable LSE CSS */ + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; +} + +/** + * @brief Enable the LSE Clock Security System IT & corresponding EXTI line. + * @note LSE Clock Security System IT is mapped on RTC EXTI line 27 + * @retval None + */ +void HAL_RCCEx_EnableLSECSS_IT(void) +{ + /* Enable LSE CSS */ + SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ; + /* Enable LSE CSS IT */ + __HAL_RCC_ENABLE_IT(RCC_IT_LSECSS); + /* Enable IT on EXTI Line 27 */ + __HAL_RCC_LSECSS_EXTI_ENABLE_IT(); + __HAL_RCC_LSECSS_EXTI_ENABLE_RISING_EDGE(); +} + +/** + * @brief Handle the RCC LSE Clock Security System interrupt request. + * @retval None + */ +void HAL_RCCEx_LSECSS_IRQHandler(void) +{ + /* Check RCC LSE CSSF flag */ + if (__HAL_RCC_GET_IT(RCC_IT_LSECSS)) + { + /* RCC LSE Clock Security System interrupt user callback */ + HAL_RCCEx_LSECSS_Callback(); + + /* Clear RCC LSE CSS pending bit */ + __HAL_RCC_CLEAR_IT(RCC_IT_LSECSS); + } +} + +/** + * @brief RCCEx LSE Clock Security System interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_LSECSS_Callback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCCEx_LSECSS_Callback should be implemented in the user file + */ +} + +/** + * @brief Select the Low Speed clock source to output on LSCO pin (PA2). + * @param LSCOSource specifies the Low Speed clock source to output. + * This parameter can be one of the following values: + * @arg @ref RCC_LSCOSOURCE_LSI LSI clock selected as LSCO source + * @arg @ref RCC_LSCOSOURCE_LSE LSE clock selected as LSCO source + * @retval None + */ +void HAL_RCCEx_EnableLSCO(uint32_t LSCOSource) +{ + GPIO_InitTypeDef GPIO_InitStruct = {0}; + FlagStatus pwrclkchanged = RESET; + FlagStatus backupchanged = RESET; + + /* Check the parameters */ + assert_param(IS_RCC_LSCOSOURCE(LSCOSource)); + + /* LSCO Pin Clock Enable */ + __LSCO_CLK_ENABLE(); +#if defined (LSCO_PIN) + /* Configure the LSCO pin in analog mode */ + GPIO_InitStruct.Pin = LSCO_PIN; + GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; + GPIO_InitStruct.Pull = GPIO_NOPULL; + HAL_GPIO_Init(LSCO_GPIO_PORT, &GPIO_InitStruct); +#endif /* LSCO_PIN */ + /* Update LSCOSEL clock source in Backup Domain control register */ + if (__HAL_RCC_PWR_IS_CLK_DISABLED()) + { + __HAL_RCC_PWR_CLK_ENABLE(); + pwrclkchanged = SET; + } + if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) + { + HAL_PWR_EnableBkUpAccess(); + backupchanged = SET; + } + + MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL | RCC_BDCR_LSCOEN, LSCOSource | RCC_BDCR_LSCOEN); + + if (backupchanged == SET) + { + HAL_PWR_DisableBkUpAccess(); + } + if (pwrclkchanged == SET) + { + __HAL_RCC_PWR_CLK_DISABLE(); + } +} + +/** + * @brief Disable the Low Speed clock output. + * @retval None + */ +void HAL_RCCEx_DisableLSCO(void) +{ + FlagStatus pwrclkchanged = RESET; + FlagStatus backupchanged = RESET; + + /* Update LSCOEN bit in Backup Domain control register */ + if (__HAL_RCC_PWR_IS_CLK_DISABLED()) + { + __HAL_RCC_PWR_CLK_ENABLE(); + pwrclkchanged = SET; + } + if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) + { + /* Enable access to the backup domain */ + HAL_PWR_EnableBkUpAccess(); + backupchanged = SET; + } + + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSCOEN); + + /* Restore previous configuration */ + if (backupchanged == SET) + { + /* Disable access to the backup domain */ + HAL_PWR_DisableBkUpAccess(); + } + if (pwrclkchanged == SET) + { + __HAL_RCC_PWR_CLK_DISABLE(); + } +} + +/** + * @} + */ + +#if defined(CRS) + +/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions + * @brief Extended Clock Recovery System Control functions + * +@verbatim + =============================================================================== + ##### Extended Clock Recovery System Control functions ##### + =============================================================================== + [..] + For devices with Clock Recovery System feature (CRS), RCC Extension HAL driver can be used as follows: + + (#) In System clock config, HSI48 needs to be enabled + + (#) Enable CRS clock in IP MSP init which will use CRS functions + + (#) Call CRS functions as follows: + (##) Prepare synchronization configuration necessary for HSI48 calibration + (+++) Default values can be set for frequency Error Measurement (reload and error limit) + and also HSI48 oscillator smooth trimming. + (+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate + directly reload value with target and synchronization frequencies values + (##) Call function HAL_RCCEx_CRSConfig which + (+++) Resets CRS registers to their default values. + (+++) Configures CRS registers with synchronization configuration + (+++) Enables automatic calibration and frequency error counter feature + Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the + periodic USB SOF will not be generated by the host. No SYNC signal will therefore be + provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock + precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs + should be used as SYNC signal. + + (##) A polling function is provided to wait for complete synchronization + (+++) Call function HAL_RCCEx_CRSWaitSynchronization() + (+++) According to CRS status, user can decide to adjust again the calibration or continue + application if synchronization is OK + + (#) User can retrieve information related to synchronization in calling function + HAL_RCCEx_CRSGetSynchronizationInfo() + + (#) Regarding synchronization status and synchronization information, user can try a new calibration + in changing synchronization configuration and call again HAL_RCCEx_CRSConfig. + Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), + it means that the actual frequency is lower than the target (and so, that the TRIM value should be + incremented), while when it is detected during the upcounting phase it means that the actual frequency + is higher (and that the TRIM value should be decremented). + + (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go + through CRS Handler (CRS_IRQn/CRS_IRQHandler) + (++) Call function HAL_RCCEx_CRSConfig() + (++) Enable CRS_IRQn (thanks to NVIC functions) + (++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT) + (++) Implement CRS status management in the following user callbacks called from + HAL_RCCEx_CRS_IRQHandler(): + (+++) HAL_RCCEx_CRS_SyncOkCallback() + (+++) HAL_RCCEx_CRS_SyncWarnCallback() + (+++) HAL_RCCEx_CRS_ExpectedSyncCallback() + (+++) HAL_RCCEx_CRS_ErrorCallback() + + (#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate(). + This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler) + +@endverbatim + * @{ + */ + +/** + * @brief Start automatic synchronization for polling mode + * @param pInit Pointer on RCC_CRSInitTypeDef structure + * @retval None + */ +void HAL_RCCEx_CRSConfig(const RCC_CRSInitTypeDef *const pInit) +{ + uint32_t value; /* no init needed */ + + /* Check the parameters */ + assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler)); + assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source)); + assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity)); + assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue)); + assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue)); + assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue)); + + /* CONFIGURATION */ + + /* Before configuration, reset CRS registers to their default values*/ + __HAL_RCC_CRS_FORCE_RESET(); + __HAL_RCC_CRS_RELEASE_RESET(); + + /* Set the SYNCDIV[2:0] bits according to Prescaler value */ + /* Set the SYNCSRC[1:0] bits according to Source value */ + /* Set the SYNCSPOL bit according to Polarity value */ + value = (pInit->Prescaler | pInit->Source | pInit->Polarity); + /* Set the RELOAD[15:0] bits according to ReloadValue value */ + value |= pInit->ReloadValue; + /* Set the FELIM[7:0] bits according to ErrorLimitValue value */ + value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_Pos); + WRITE_REG(CRS->CFGR, value); + + /* Adjust HSI48 oscillator smooth trimming */ + /* Set the TRIM[6:0] bits according to RCC_CRS_HSI48CalibrationValue value */ + MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_Pos)); + + /* START AUTOMATIC SYNCHRONIZATION*/ + + /* Enable Automatic trimming & Frequency error counter */ + SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN); +} + +/** + * @brief Generate the software synchronization event + * @retval None + */ +void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void) +{ + SET_BIT(CRS->CR, CRS_CR_SWSYNC); +} + +/** + * @brief Return synchronization info + * @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure + * @retval None + */ +void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo) +{ + /* Check the parameter */ + assert_param(pSynchroInfo != (void *)NULL); + + /* Get the reload value */ + pSynchroInfo->ReloadValue = (READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD)); + + /* Get HSI48 oscillator smooth trimming */ + pSynchroInfo->HSI48CalibrationValue = (READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_Pos); + + /* Get Frequency error capture */ + pSynchroInfo->FreqErrorCapture = (READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_Pos); + + /* Get Frequency error direction */ + pSynchroInfo->FreqErrorDirection = (READ_BIT(CRS->ISR, CRS_ISR_FEDIR)); +} + +/** + * @brief Wait for CRS Synchronization status. + * @param Timeout Duration of the timeout + * @note Timeout is based on the maximum time to receive a SYNC event based on synchronization + * frequency. + * @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned. + * @retval Combination of Synchronization status + * This parameter can be a combination of the following values: + * @arg @ref RCC_CRS_TIMEOUT + * @arg @ref RCC_CRS_SYNCOK + * @arg @ref RCC_CRS_SYNCWARN + * @arg @ref RCC_CRS_SYNCERR + * @arg @ref RCC_CRS_SYNCMISS + * @arg @ref RCC_CRS_TRIMOVF + */ +uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout) +{ + uint32_t crsstatus = RCC_CRS_NONE; + uint32_t tickstart; + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait for CRS flag or timeout detection */ + do + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + crsstatus = RCC_CRS_TIMEOUT; + } + } + /* Check CRS SYNCOK flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK)) + { + /* CRS SYNC event OK */ + crsstatus |= RCC_CRS_SYNCOK; + + /* Clear CRS SYNC event OK bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK); + } + + /* Check CRS SYNCWARN flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN)) + { + /* CRS SYNC warning */ + crsstatus |= RCC_CRS_SYNCWARN; + + /* Clear CRS SYNCWARN bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN); + } + + /* Check CRS TRIM overflow flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF)) + { + /* CRS SYNC Error */ + crsstatus |= RCC_CRS_TRIMOVF; + + /* Clear CRS Error bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF); + } + + /* Check CRS Error flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR)) + { + /* CRS SYNC Error */ + crsstatus |= RCC_CRS_SYNCERR; + + /* Clear CRS Error bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR); + } + + /* Check CRS SYNC Missed flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS)) + { + /* CRS SYNC Missed */ + crsstatus |= RCC_CRS_SYNCMISS; + + /* Clear CRS SYNC Missed bit */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS); + } + + /* Check CRS Expected SYNC flag */ + if (__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC)) + { + /* frequency error counter reached a zero value */ + __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC); + } + } while (RCC_CRS_NONE == crsstatus); + + return crsstatus; +} + +/** + * @brief Handle the Clock Recovery System interrupt request. + * @retval None + */ +void HAL_RCCEx_CRS_IRQHandler(void) +{ + uint32_t crserror = RCC_CRS_NONE; + /* Get current IT flags and IT sources values */ + uint32_t itflags = READ_REG(CRS->ISR); + uint32_t itsources = READ_REG(CRS->CR); + + /* Check CRS SYNCOK flag */ + if (((itflags & RCC_CRS_FLAG_SYNCOK) != 0U) && ((itsources & RCC_CRS_IT_SYNCOK) != 0U)) + { + /* Clear CRS SYNC event OK flag */ + WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC); + + /* user callback */ + HAL_RCCEx_CRS_SyncOkCallback(); + } + /* Check CRS SYNCWARN flag */ + else if (((itflags & RCC_CRS_FLAG_SYNCWARN) != 0U) && ((itsources & RCC_CRS_IT_SYNCWARN) != 0U)) + { + /* Clear CRS SYNCWARN flag */ + WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC); + + /* user callback */ + HAL_RCCEx_CRS_SyncWarnCallback(); + } + /* Check CRS Expected SYNC flag */ + else if (((itflags & RCC_CRS_FLAG_ESYNC) != 0U) && ((itsources & RCC_CRS_IT_ESYNC) != 0U)) + { + /* frequency error counter reached a zero value */ + WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC); + + /* user callback */ + HAL_RCCEx_CRS_ExpectedSyncCallback(); + } + /* Check CRS Error flags */ + else + { + if (((itflags & RCC_CRS_FLAG_ERR) != 0U) && ((itsources & RCC_CRS_IT_ERR) != 0U)) + { + if ((itflags & RCC_CRS_FLAG_SYNCERR) != 0U) + { + crserror |= RCC_CRS_SYNCERR; + } + if ((itflags & RCC_CRS_FLAG_SYNCMISS) != 0U) + { + crserror |= RCC_CRS_SYNCMISS; + } + if ((itflags & RCC_CRS_FLAG_TRIMOVF) != 0U) + { + crserror |= RCC_CRS_TRIMOVF; + } + + /* Clear CRS Error flags */ + WRITE_REG(CRS->ICR, CRS_ICR_ERRC); + + /* user error callback */ + HAL_RCCEx_CRS_ErrorCallback(crserror); + } + } +} + +/** + * @brief RCCEx Clock Recovery System SYNCOK interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_CRS_SyncOkCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file + */ +} + +/** + * @brief RCCEx Clock Recovery System SYNCWARN interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_CRS_SyncWarnCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file + */ +} + +/** + * @brief RCCEx Clock Recovery System Expected SYNC interrupt callback. + * @retval none + */ +__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file + */ +} + +/** + * @brief RCCEx Clock Recovery System Error interrupt callback. + * @param Error Combination of Error status. + * This parameter can be a combination of the following values: + * @arg @ref RCC_CRS_SYNCERR + * @arg @ref RCC_CRS_SYNCMISS + * @arg @ref RCC_CRS_TRIMOVF + * @retval none + */ +__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(Error); + + /* NOTE : This function should not be modified, when the callback is needed, + the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file + */ +} + +/** + * @} + */ + +#endif /* CRS */ + +/** @addtogroup RCCEx_Private_Functions + * @{ + */ + +static HAL_StatusTypeDef RCCEx_PLLSource_Enable(uint32_t PllSource) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + switch (PllSource) + { + case RCC_PLLSOURCE_MSI: + /* Check whether MSI in not ready and enable it */ + if (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) + { + /* Enable the Internal Multi Speed oscillator (MSI). */ + __HAL_RCC_MSI_ENABLE(); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait till MSI is ready */ + while (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_MSI_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + } + break; + + case RCC_PLLSOURCE_HSI: + /* Check whether HSI in not ready and enable it */ + if (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) + { + /* Enable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_ENABLE(); + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait till MSI is ready */ + while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_HSI_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + } + break; + + case RCC_PLLSOURCE_HSE: + /* Check whether HSE in not ready and enable it */ + if (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) + { + /* Enable the External High Speed oscillator (HSE). */ + SET_BIT(RCC->CR, RCC_CR_HSEON); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is ready */ + while (READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > RCC_HSE_TIMEOUT_VALUE) + { + status = HAL_TIMEOUT; + break; + } + } + } + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng.c new file mode 100644 index 0000000..4159e5f --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng.c @@ -0,0 +1,1025 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_rng.c + * @author MCD Application Team + * @brief RNG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Random Number Generator (RNG) peripheral: + * + Initialization and configuration functions + * + Peripheral Control functions + * + Peripheral State functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The RNG HAL driver can be used as follows: + + (#) Enable the RNG controller clock using __HAL_RCC_RNG_CLK_ENABLE() macro + in HAL_RNG_MspInit(). + (#) Activate the RNG peripheral using HAL_RNG_Init() function. + (#) Wait until the 32 bit Random Number Generator contains a valid + random data using (polling/interrupt) mode. + (#) Get the 32 bit random number using HAL_RNG_GenerateRandomNumber() function. + + ##### Callback registration ##### + ================================== + + [..] + The compilation define USE_HAL_RNG_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function HAL_RNG_RegisterCallback() to register a user callback. + Function HAL_RNG_RegisterCallback() allows to register following callbacks: + (+) ErrorCallback : RNG Error Callback. + (+) MspInitCallback : RNG MspInit. + (+) MspDeInitCallback : RNG MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function HAL_RNG_UnRegisterCallback() to reset a callback to the default + weak (overridden) function. + HAL_RNG_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) ErrorCallback : RNG Error Callback. + (+) MspInitCallback : RNG MspInit. + (+) MspDeInitCallback : RNG MspDeInit. + + [..] + For specific callback ReadyDataCallback, use dedicated register callbacks: + respectively HAL_RNG_RegisterReadyDataCallback() , HAL_RNG_UnRegisterReadyDataCallback(). + + [..] + By default, after the HAL_RNG_Init() and when the state is HAL_RNG_STATE_RESET + all callbacks are set to the corresponding weak (overridden) functions: + example HAL_RNG_ErrorCallback(). + Exception done for MspInit and MspDeInit functions that are respectively + reset to the legacy weak (overridden) functions in the HAL_RNG_Init() + and HAL_RNG_DeInit() only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the HAL_RNG_Init() and HAL_RNG_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand). + + [..] + Callbacks can be registered/unregistered in HAL_RNG_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_RNG_STATE_READY or HAL_RNG_STATE_RESET state, thus registered (user) + MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_RNG_RegisterCallback() before calling HAL_RNG_DeInit() + or HAL_RNG_Init() function. + + [..] + When The compilation define USE_HAL_RNG_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available + and weak (overridden) callbacks are used. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#if defined (RNG) + +/** @addtogroup RNG + * @brief RNG HAL module driver. + * @{ + */ + +#ifdef HAL_RNG_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup RNG_Private_Constants RNG Private Constants + * @{ + */ +#define RNG_TIMEOUT_VALUE 4U +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions prototypes ----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup RNG_Exported_Functions + * @{ + */ + +/** @addtogroup RNG_Exported_Functions_Group1 + * @brief Initialization and configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the RNG according to the specified parameters + in the RNG_InitTypeDef and create the associated handle + (+) DeInitialize the RNG peripheral + (+) Initialize the RNG MSP + (+) DeInitialize RNG MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the RNG peripheral and creates the associated handle. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_Init(RNG_HandleTypeDef *hrng) +{ + uint32_t tickstart; + /* Check the RNG handle allocation */ + if (hrng == NULL) + { + return HAL_ERROR; + } + /* Check the parameters */ + assert_param(IS_RNG_ALL_INSTANCE(hrng->Instance)); + assert_param(IS_RNG_CED(hrng->Init.ClockErrorDetection)); + +#if (USE_HAL_RNG_REGISTER_CALLBACKS == 1) + if (hrng->State == HAL_RNG_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrng->Lock = HAL_UNLOCKED; + + hrng->ReadyDataCallback = HAL_RNG_ReadyDataCallback; /* Legacy weak ReadyDataCallback */ + hrng->ErrorCallback = HAL_RNG_ErrorCallback; /* Legacy weak ErrorCallback */ + + if (hrng->MspInitCallback == NULL) + { + hrng->MspInitCallback = HAL_RNG_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware */ + hrng->MspInitCallback(hrng); + } +#else + if (hrng->State == HAL_RNG_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrng->Lock = HAL_UNLOCKED; + + /* Init the low level hardware */ + HAL_RNG_MspInit(hrng); + } +#endif /* USE_HAL_RNG_REGISTER_CALLBACKS */ + + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Disable RNG */ + __HAL_RNG_DISABLE(hrng); + + /* Clock Error Detection Configuration when CONDRT bit is set to 1 */ + MODIFY_REG(hrng->Instance->CR, RNG_CR_CED | RNG_CR_CONDRST, hrng->Init.ClockErrorDetection | RNG_CR_CONDRST); + + /* Writing bit CONDRST=0 */ + CLEAR_BIT(hrng->Instance->CR, RNG_CR_CONDRST); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for conditioning reset process to be completed */ + while (HAL_IS_BIT_SET(hrng->Instance->CR, RNG_CR_CONDRST)) + { + if ((HAL_GetTick() - tickstart) > RNG_TIMEOUT_VALUE) + { + /* New check to avoid false timeout detection in case of preemption */ + if (HAL_IS_BIT_SET(hrng->Instance->CR, RNG_CR_CONDRST)) + { + hrng->State = HAL_RNG_STATE_READY; + hrng->ErrorCode = HAL_RNG_ERROR_TIMEOUT; + return HAL_ERROR; + } + } + } + + /* Enable the RNG Peripheral */ + __HAL_RNG_ENABLE(hrng); + + /* verify that no seed error */ + if (__HAL_RNG_GET_IT(hrng, RNG_IT_SEI) != RESET) + { + hrng->State = HAL_RNG_STATE_ERROR; + return HAL_ERROR; + } + /* Get tick */ + tickstart = HAL_GetTick(); + /* Check if data register contains valid random data */ + while (__HAL_RNG_GET_FLAG(hrng, RNG_FLAG_DRDY) != SET) + { + if ((HAL_GetTick() - tickstart) > RNG_TIMEOUT_VALUE) + { + /* New check to avoid false timeout detection in case of preemption */ + if (__HAL_RNG_GET_FLAG(hrng, RNG_FLAG_DRDY) != SET) + { + hrng->State = HAL_RNG_STATE_ERROR; + hrng->ErrorCode = HAL_RNG_ERROR_TIMEOUT; + return HAL_ERROR; + } + } + } + + /* Initialize the RNG state */ + hrng->State = HAL_RNG_STATE_READY; + + /* Initialise the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_NONE; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the RNG peripheral. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_DeInit(RNG_HandleTypeDef *hrng) +{ + uint32_t tickstart; + + /* Check the RNG handle allocation */ + if (hrng == NULL) + { + return HAL_ERROR; + } + + /* Clear Clock Error Detection bit when CONDRT bit is set to 1 */ + MODIFY_REG(hrng->Instance->CR, RNG_CR_CED | RNG_CR_CONDRST, RNG_CED_ENABLE | RNG_CR_CONDRST); + + /* Writing bit CONDRST=0 */ + CLEAR_BIT(hrng->Instance->CR, RNG_CR_CONDRST); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for conditioning reset process to be completed */ + while (HAL_IS_BIT_SET(hrng->Instance->CR, RNG_CR_CONDRST)) + { + if ((HAL_GetTick() - tickstart) > RNG_TIMEOUT_VALUE) + { + /* New check to avoid false timeout detection in case of preemption */ + if (HAL_IS_BIT_SET(hrng->Instance->CR, RNG_CR_CONDRST)) + { + hrng->State = HAL_RNG_STATE_READY; + hrng->ErrorCode = HAL_RNG_ERROR_TIMEOUT; + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + return HAL_ERROR; + } + } + } + + /* Disable the RNG Peripheral */ + CLEAR_BIT(hrng->Instance->CR, RNG_CR_IE | RNG_CR_RNGEN); + + /* Clear RNG interrupt status flags */ + CLEAR_BIT(hrng->Instance->SR, RNG_SR_CEIS | RNG_SR_SEIS); + +#if (USE_HAL_RNG_REGISTER_CALLBACKS == 1) + if (hrng->MspDeInitCallback == NULL) + { + hrng->MspDeInitCallback = HAL_RNG_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware */ + hrng->MspDeInitCallback(hrng); +#else + /* DeInit the low level hardware */ + HAL_RNG_MspDeInit(hrng); +#endif /* USE_HAL_RNG_REGISTER_CALLBACKS */ + + /* Update the RNG state */ + hrng->State = HAL_RNG_STATE_RESET; + + /* Initialise the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_NONE; + + /* Release Lock */ + __HAL_UNLOCK(hrng); + + /* Return the function status */ + return HAL_OK; +} + +/** + * @brief Initializes the RNG MSP. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_MspInit(RNG_HandleTypeDef *hrng) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_MspInit must be implemented in the user file. + */ +} + +/** + * @brief DeInitializes the RNG MSP. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_MspDeInit(RNG_HandleTypeDef *hrng) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_MspDeInit must be implemented in the user file. + */ +} + +#if (USE_HAL_RNG_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User RNG Callback + * To be used instead of the weak predefined callback + * @param hrng RNG handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_RNG_ERROR_CB_ID Error callback ID + * @arg @ref HAL_RNG_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_RNG_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_RegisterCallback(RNG_HandleTypeDef *hrng, HAL_RNG_CallbackIDTypeDef CallbackID, + pRNG_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + return HAL_ERROR; + } + + if (HAL_RNG_STATE_READY == hrng->State) + { + switch (CallbackID) + { + case HAL_RNG_ERROR_CB_ID : + hrng->ErrorCallback = pCallback; + break; + + case HAL_RNG_MSPINIT_CB_ID : + hrng->MspInitCallback = pCallback; + break; + + case HAL_RNG_MSPDEINIT_CB_ID : + hrng->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_RNG_STATE_RESET == hrng->State) + { + switch (CallbackID) + { + case HAL_RNG_MSPINIT_CB_ID : + hrng->MspInitCallback = pCallback; + break; + + case HAL_RNG_MSPDEINIT_CB_ID : + hrng->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister an RNG Callback + * RNG callback is redirected to the weak predefined callback + * @param hrng RNG handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_RNG_ERROR_CB_ID Error callback ID + * @arg @ref HAL_RNG_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_RNG_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_UnRegisterCallback(RNG_HandleTypeDef *hrng, HAL_RNG_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + + if (HAL_RNG_STATE_READY == hrng->State) + { + switch (CallbackID) + { + case HAL_RNG_ERROR_CB_ID : + hrng->ErrorCallback = HAL_RNG_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_RNG_MSPINIT_CB_ID : + hrng->MspInitCallback = HAL_RNG_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_RNG_MSPDEINIT_CB_ID : + hrng->MspDeInitCallback = HAL_RNG_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_RNG_STATE_RESET == hrng->State) + { + switch (CallbackID) + { + case HAL_RNG_MSPINIT_CB_ID : + hrng->MspInitCallback = HAL_RNG_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_RNG_MSPDEINIT_CB_ID : + hrng->MspDeInitCallback = HAL_RNG_MspDeInit; /* Legacy weak MspInit */ + break; + + default : + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Register Data Ready RNG Callback + * To be used instead of the weak HAL_RNG_ReadyDataCallback() predefined callback + * @param hrng RNG handle + * @param pCallback pointer to the Data Ready Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_RegisterReadyDataCallback(RNG_HandleTypeDef *hrng, pRNG_ReadyDataCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hrng); + + if (HAL_RNG_STATE_READY == hrng->State) + { + hrng->ReadyDataCallback = pCallback; + } + else + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hrng); + return status; +} + +/** + * @brief UnRegister the Data Ready RNG Callback + * Data Ready RNG Callback is redirected to the weak HAL_RNG_ReadyDataCallback() predefined callback + * @param hrng RNG handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_UnRegisterReadyDataCallback(RNG_HandleTypeDef *hrng) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hrng); + + if (HAL_RNG_STATE_READY == hrng->State) + { + hrng->ReadyDataCallback = HAL_RNG_ReadyDataCallback; /* Legacy weak ReadyDataCallback */ + } + else + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hrng); + return status; +} + +#endif /* USE_HAL_RNG_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @addtogroup RNG_Exported_Functions_Group2 + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Get the 32 bit Random number + (+) Get the 32 bit Random number with interrupt enabled + (+) Handle RNG interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief Generates a 32-bit random number. + * @note This function checks value of RNG_FLAG_DRDY flag to know if valid + * random number is available in the DR register (RNG_FLAG_DRDY flag set + * whenever a random number is available through the RNG_DR register). + * After transitioning from 0 to 1 (random number available), + * RNG_FLAG_DRDY flag remains high until output buffer becomes empty after reading + * four words from the RNG_DR register, i.e. further function calls + * will immediately return a new u32 random number (additional words are + * available and can be read by the application, till RNG_FLAG_DRDY flag remains high). + * @note When no more random number data is available in DR register, RNG_FLAG_DRDY + * flag is automatically cleared. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param random32bit pointer to generated random number variable if successful. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_RNG_GenerateRandomNumber(RNG_HandleTypeDef *hrng, uint32_t *random32bit) +{ + uint32_t tickstart; + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hrng); + + /* Check RNG peripheral state */ + if (hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + /* Check if there is a seed error */ + if (__HAL_RNG_GET_IT(hrng, RNG_IT_SEI) != RESET) + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_SEED; + /* Reset from seed error */ + status = RNG_RecoverSeedError(hrng); + if (status == HAL_ERROR) + { + return status; + } + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if data register contains valid random data */ + while (__HAL_RNG_GET_FLAG(hrng, RNG_FLAG_DRDY) == RESET) + { + if ((HAL_GetTick() - tickstart) > RNG_TIMEOUT_VALUE) + { + /* New check to avoid false timeout detection in case of preemption */ + if (__HAL_RNG_GET_FLAG(hrng, RNG_FLAG_DRDY) == RESET) + { + hrng->State = HAL_RNG_STATE_READY; + hrng->ErrorCode = HAL_RNG_ERROR_TIMEOUT; + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + return HAL_ERROR; + } + } + } + + /* Get a 32bit Random number */ + hrng->RandomNumber = hrng->Instance->DR; + /* In case of seed error, the value available in the RNG_DR register must not + be used as it may not have enough entropy */ + if (__HAL_RNG_GET_IT(hrng, RNG_IT_SEI) != RESET) + { + /* Update the error code and status */ + hrng->ErrorCode = HAL_RNG_ERROR_SEED; + status = HAL_ERROR; + } + else /* No seed error */ + { + *random32bit = hrng->RandomNumber; + } + hrng->State = HAL_RNG_STATE_READY; + } + else + { + hrng->ErrorCode = HAL_RNG_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + return status; +} + +/** + * @brief Generates a 32-bit random number in interrupt mode. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_GenerateRandomNumber_IT(RNG_HandleTypeDef *hrng) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hrng); + + /* Check RNG peripheral state */ + if (hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Enable the RNG Interrupts: Data Ready, Clock error, Seed error */ + __HAL_RNG_ENABLE_IT(hrng); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + hrng->ErrorCode = HAL_RNG_ERROR_BUSY; + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Handles RNG interrupt request. + * @note In the case of a clock error, the RNG is no more able to generate + * random numbers because the PLL48CLK clock is not correct. User has + * to check that the clock controller is correctly configured to provide + * the RNG clock and clear the CEIS bit using __HAL_RNG_CLEAR_IT(). + * The clock error has no impact on the previously generated + * random numbers, and the RNG_DR register contents can be used. + * @note In the case of a seed error, the generation of random numbers is + * interrupted as long as the SECS bit is '1'. If a number is + * available in the RNG_DR register, it must not be used because it may + * not have enough entropy. In this case, it is recommended to clear the + * SEIS bit using __HAL_RNG_CLEAR_IT(), then disable and enable + * the RNG peripheral to reinitialize and restart the RNG. + * @note User-written HAL_RNG_ErrorCallback() API is called once whether SEIS + * or CEIS are set. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + + */ +void HAL_RNG_IRQHandler(RNG_HandleTypeDef *hrng) +{ + uint32_t rngclockerror = 0U; + uint32_t itflag = hrng->Instance->SR; + + /* RNG clock error interrupt occurred */ + if ((itflag & RNG_IT_CEI) == RNG_IT_CEI) + { + /* Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_CLOCK; + rngclockerror = 1U; + } + else if ((itflag & RNG_IT_SEI) == RNG_IT_SEI) + { + /* Check if Seed Error Current Status (SECS) is set */ + if ((itflag & RNG_FLAG_SECS) != RNG_FLAG_SECS) + { + /* RNG IP performed the reset automatically (auto-reset) */ + /* Clear bit SEIS */ + CLEAR_BIT(hrng->Instance->SR, RNG_IT_SEI); + } + else + { + /* Seed Error has not been recovered : Update the error code */ + hrng->ErrorCode = HAL_RNG_ERROR_SEED; + rngclockerror = 1U; + /* Disable the IT */ + __HAL_RNG_DISABLE_IT(hrng); + } + } + else + { + /* Nothing to do */ + } + + if (rngclockerror == 1U) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_ERROR; + +#if (USE_HAL_RNG_REGISTER_CALLBACKS == 1) + /* Call registered Error callback */ + hrng->ErrorCallback(hrng); +#else + /* Call legacy weak Error callback */ + HAL_RNG_ErrorCallback(hrng); +#endif /* USE_HAL_RNG_REGISTER_CALLBACKS */ + + /* Clear the clock error flag */ + __HAL_RNG_CLEAR_IT(hrng, RNG_IT_CEI | RNG_IT_SEI); + + return; + } + + /* Check RNG data ready interrupt occurred */ + if ((itflag & RNG_IT_DRDY) == RNG_IT_DRDY) + { + /* Generate random number once, so disable the IT */ + __HAL_RNG_DISABLE_IT(hrng); + + /* Get the 32bit Random number (DRDY flag automatically cleared) */ + hrng->RandomNumber = hrng->Instance->DR; + + if (hrng->State != HAL_RNG_STATE_ERROR) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + +#if (USE_HAL_RNG_REGISTER_CALLBACKS == 1) + /* Call registered Data Ready callback */ + hrng->ReadyDataCallback(hrng, hrng->RandomNumber); +#else + /* Call legacy weak Data Ready callback */ + HAL_RNG_ReadyDataCallback(hrng, hrng->RandomNumber); +#endif /* USE_HAL_RNG_REGISTER_CALLBACKS */ + } + } +} + +/** + * @brief Read latest generated random number. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval random value + */ +uint32_t HAL_RNG_ReadLastRandomNumber(const RNG_HandleTypeDef *hrng) +{ + return (hrng->RandomNumber); +} + +/** + * @brief Data Ready callback in non-blocking mode. + * @note When RNG_FLAG_DRDY flag value is set, first random number has been read + * from DR register in IRQ Handler and is provided as callback parameter. + * Depending on valid data available in the conditioning output buffer, + * additional words can be read by the application from DR register till + * DRDY bit remains high. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param random32bit generated random number. + * @retval None + */ +__weak void HAL_RNG_ReadyDataCallback(RNG_HandleTypeDef *hrng, uint32_t random32bit) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + UNUSED(random32bit); + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_ReadyDataCallback must be implemented in the user file. + */ +} + +/** + * @brief RNG error callbacks. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_ErrorCallback(RNG_HandleTypeDef *hrng) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrng); + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_ErrorCallback must be implemented in the user file. + */ +} +/** + * @} + */ + + +/** @addtogroup RNG_Exported_Functions_Group3 + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the RNG state. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL state + */ +HAL_RNG_StateTypeDef HAL_RNG_GetState(const RNG_HandleTypeDef *hrng) +{ + return hrng->State; +} + +/** + * @brief Return the RNG handle error code. + * @param hrng: pointer to a RNG_HandleTypeDef structure. + * @retval RNG Error Code + */ +uint32_t HAL_RNG_GetError(const RNG_HandleTypeDef *hrng) +{ + /* Return RNG Error Code */ + return hrng->ErrorCode; +} +/** + * @} + */ + +/** + * @} + */ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup RNG_Private_Functions + * @{ + */ + +/** + * @brief RNG sequence to recover from a seed error + * @param hrng pointer to a RNG_HandleTypeDef structure. + * @retval HAL status + */ +HAL_StatusTypeDef RNG_RecoverSeedError(RNG_HandleTypeDef *hrng) +{ + __IO uint32_t count = 0U; + + /*Check if seed error current status (SECS)is set */ + if (__HAL_RNG_GET_FLAG(hrng, RNG_FLAG_SECS) == RESET) + { + /* RNG performed the reset automatically (auto-reset) */ + /* Clear bit SEIS */ + CLEAR_BIT(hrng->Instance->SR, RNG_IT_SEI); + } + else /* Sequence to fully recover from a seed error*/ + { + /* Writing bit CONDRST=1*/ + SET_BIT(hrng->Instance->CR, RNG_CR_CONDRST); + /* Writing bit CONDRST=0*/ + CLEAR_BIT(hrng->Instance->CR, RNG_CR_CONDRST); + + /* Wait for conditioning reset process to be completed */ + count = RNG_TIMEOUT_VALUE; + do + { + count-- ; + if (count == 0U) + { + hrng->State = HAL_RNG_STATE_READY; + hrng->ErrorCode |= HAL_RNG_ERROR_TIMEOUT; + /* Process Unlocked */ + __HAL_UNLOCK(hrng); +#if (USE_HAL_RNG_REGISTER_CALLBACKS == 1) + /* Call registered Error callback */ + hrng->ErrorCallback(hrng); +#else + /* Call legacy weak Error callback */ + HAL_RNG_ErrorCallback(hrng); +#endif /* USE_HAL_RNG_REGISTER_CALLBACKS */ + return HAL_ERROR; + } + } while (HAL_IS_BIT_SET(hrng->Instance->CR, RNG_CR_CONDRST)); + + if (__HAL_RNG_GET_IT(hrng, RNG_IT_SEI) != RESET) + { + /* Clear bit SEIS */ + CLEAR_BIT(hrng->Instance->SR, RNG_IT_SEI); + } + + /* Wait for SECS to be cleared */ + count = RNG_TIMEOUT_VALUE; + do + { + count-- ; + if (count == 0U) + { + hrng->State = HAL_RNG_STATE_READY; + hrng->ErrorCode |= HAL_RNG_ERROR_TIMEOUT; + /* Process Unlocked */ + __HAL_UNLOCK(hrng); +#if (USE_HAL_RNG_REGISTER_CALLBACKS == 1) + /* Call registered Error callback */ + hrng->ErrorCallback(hrng); +#else + /* Call legacy weak Error callback */ + HAL_RNG_ErrorCallback(hrng); +#endif /* USE_HAL_RNG_REGISTER_CALLBACKS */ + return HAL_ERROR; + } + } while (HAL_IS_BIT_SET(hrng->Instance->SR, RNG_FLAG_SECS)); + } + /* Update the error code */ + hrng->ErrorCode &= ~ HAL_RNG_ERROR_SEED; + return HAL_OK; +} + +/** + * @} + */ + + +#endif /* HAL_RNG_MODULE_ENABLED */ +/** + * @} + */ + +#endif /* RNG */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng_ex.c new file mode 100644 index 0000000..4339d85 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rng_ex.c @@ -0,0 +1,339 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_rng_ex.c + * @author MCD Application Team + * @brief Extended RNG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Random Number Generator (RNG) peripheral: + * + Lock configuration functions + * + Reset the RNG + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#if defined(RNG) + +/** @addtogroup RNGEx + * @brief RNG Extended HAL module driver. + * @{ + */ + +#ifdef HAL_RNG_MODULE_ENABLED +#if defined(RNG_CR_CONDRST) +/* Private types -------------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup RNGEx_Private_Constants + * @{ + */ +#define RNG_TIMEOUT_VALUE 2U +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions prototypes ----------------------------------------------*/ +/* Private functions --------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup RNGEx_Exported_Functions RNGEx Exported Functions + * @{ + */ + +/** @defgroup RNGEx_Exported_Functions_Group1 Configuration and lock functions + * @brief Configuration functions + * +@verbatim + =============================================================================== + ##### Configuration and lock functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the RNG with the specified parameters in the RNG_ConfigTypeDef + (+) Lock RNG configuration Allows user to lock a configuration until next reset. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the RNG with the specified parameters in the + * RNG_ConfigTypeDef. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param pConf pointer to a RNG_ConfigTypeDef structure that contains + * the configuration information for RNG module + + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNGEx_SetConfig(RNG_HandleTypeDef *hrng, const RNG_ConfigTypeDef *pConf) +{ + uint32_t tickstart; + uint32_t cr_value; + HAL_StatusTypeDef status ; + + /* Check the RNG handle allocation */ + if ((hrng == NULL) || (pConf == NULL)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_RNG_ALL_INSTANCE(hrng->Instance)); + assert_param(IS_RNG_CLOCK_DIVIDER(pConf->ClockDivider)); + assert_param(IS_RNG_NIST_COMPLIANCE(pConf->NistCompliance)); + assert_param(IS_RNG_CONFIG1(pConf->Config1)); + assert_param(IS_RNG_CONFIG2(pConf->Config2)); + assert_param(IS_RNG_CONFIG3(pConf->Config3)); + assert_param(IS_RNG_ARDIS(pConf->AutoReset)); + + /* Check RNG peripheral state */ + if (hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Disable RNG */ + __HAL_RNG_DISABLE(hrng); + + /* RNG CR register configuration. Set value in CR register for : + - NIST Compliance setting + - Clock divider value + - Automatic reset to clear SECS bit + - CONFIG 1, CONFIG 2 and CONFIG 3 values */ + cr_value = (uint32_t)(pConf->ClockDivider | pConf->NistCompliance | pConf->AutoReset + | (pConf->Config1 << RNG_CR_RNG_CONFIG1_Pos) + | (pConf->Config2 << RNG_CR_RNG_CONFIG2_Pos) + | (pConf->Config3 << RNG_CR_RNG_CONFIG3_Pos)); + + MODIFY_REG(hrng->Instance->CR, RNG_CR_NISTC | RNG_CR_CLKDIV | RNG_CR_RNG_CONFIG1 + | RNG_CR_RNG_CONFIG2 | RNG_CR_RNG_CONFIG3 | RNG_CR_ARDIS, + (uint32_t)(RNG_CR_CONDRST | cr_value)); + + /* RNG health test control in accordance with NIST */ + WRITE_REG(hrng->Instance->HTCR, pConf->HealthTest); + + /* Writing bit CONDRST=0*/ + CLEAR_BIT(hrng->Instance->CR, RNG_CR_CONDRST); + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for conditioning reset process to be completed */ + while (HAL_IS_BIT_SET(hrng->Instance->CR, RNG_CR_CONDRST)) + { + if ((HAL_GetTick() - tickstart) > RNG_TIMEOUT_VALUE) + { + /* New check to avoid false timeout detection in case of prememption */ + if (HAL_IS_BIT_SET(hrng->Instance->CR, RNG_CR_CONDRST)) + { + hrng->State = HAL_RNG_STATE_READY; + hrng->ErrorCode = HAL_RNG_ERROR_TIMEOUT; + return HAL_ERROR; + } + } + } + + /* Enable RNG */ + __HAL_RNG_ENABLE(hrng); + + /* Initialize the RNG state */ + hrng->State = HAL_RNG_STATE_READY; + + /* function status */ + status = HAL_OK; + } + else + { + hrng->ErrorCode = HAL_RNG_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return the function status */ + return status; +} + +/** + * @brief Get the RNG Configuration and fill parameters in the + * RNG_ConfigTypeDef. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param pConf pointer to a RNG_ConfigTypeDef structure that contains + * the configuration information for RNG module + + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNGEx_GetConfig(RNG_HandleTypeDef *hrng, RNG_ConfigTypeDef *pConf) +{ + + HAL_StatusTypeDef status ; + + /* Check the RNG handle allocation */ + if ((hrng == NULL) || (pConf == NULL)) + { + return HAL_ERROR; + } + + /* Check RNG peripheral state */ + if (hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Get RNG parameters */ + pConf->Config1 = (uint32_t)((hrng->Instance->CR & RNG_CR_RNG_CONFIG1) >> RNG_CR_RNG_CONFIG1_Pos) ; + pConf->Config2 = (uint32_t)((hrng->Instance->CR & RNG_CR_RNG_CONFIG2) >> RNG_CR_RNG_CONFIG2_Pos); + pConf->Config3 = (uint32_t)((hrng->Instance->CR & RNG_CR_RNG_CONFIG3) >> RNG_CR_RNG_CONFIG3_Pos); + pConf->ClockDivider = (hrng->Instance->CR & RNG_CR_CLKDIV); + pConf->NistCompliance = (hrng->Instance->CR & RNG_CR_NISTC); + pConf->AutoReset = (hrng->Instance->CR & RNG_CR_ARDIS); + pConf->HealthTest = (hrng->Instance->HTCR); + + /* Initialize the RNG state */ + hrng->State = HAL_RNG_STATE_READY; + + /* function status */ + status = HAL_OK; + } + else + { + hrng->ErrorCode |= HAL_RNG_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return the function status */ + return status; +} + +/** + * @brief RNG current configuration lock. + * @note This function allows to lock RNG peripheral configuration. + * Once locked, HW RNG reset has to be performed prior any further + * configuration update. + * @param hrng pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNGEx_LockConfig(RNG_HandleTypeDef *hrng) +{ + HAL_StatusTypeDef status; + + /* Check the RNG handle allocation */ + if (hrng == NULL) + { + return HAL_ERROR; + } + + /* Check RNG peripheral state */ + if (hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Perform RNG configuration Lock */ + MODIFY_REG(hrng->Instance->CR, RNG_CR_CONFIGLOCK, RNG_CR_CONFIGLOCK); + + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_READY; + + /* function status */ + status = HAL_OK; + } + else + { + hrng->ErrorCode = HAL_RNG_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return the function status */ + return status; +} + + +/** + * @} + */ + +/** @defgroup RNGEx_Exported_Functions_Group2 Recover from seed error function + * @brief Recover from seed error function + * +@verbatim + =============================================================================== + ##### Recover from seed error function ##### + =============================================================================== + [..] This section provide function allowing to: + (+) Recover from a seed error + +@endverbatim + * @{ + */ + +/** + * @brief RNG sequence to recover from a seed error + * @param hrng: pointer to a RNG_HandleTypeDef structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNGEx_RecoverSeedError(RNG_HandleTypeDef *hrng) +{ + HAL_StatusTypeDef status; + + /* Check the RNG handle allocation */ + if (hrng == NULL) + { + return HAL_ERROR; + } + + /* Check RNG peripheral state */ + if (hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* sequence to fully recover from a seed error */ + status = RNG_RecoverSeedError(hrng); + } + else + { + hrng->ErrorCode = HAL_RNG_ERROR_BUSY; + status = HAL_ERROR; + } + + /* Return the function status */ + return status; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* RNG_CR_CONDRST */ +#endif /* HAL_RNG_MODULE_ENABLED */ +/** + * @} + */ + +#endif /* RNG */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c new file mode 100644 index 0000000..aea6b9f --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c @@ -0,0 +1,2038 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_rtc.c + * @author GPM Application Team + * @brief RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real-Time Clock (RTC) peripheral: + * + Initialization/de-initialization functions + * + Calendar (Time and Date) configuration + * + Alarms (Alarm A and Alarm B) configuration + * + WakeUp Timer configuration + * + TimeStamp configuration + * + Tampers configuration + * + Backup Data Registers configuration + * + RTC Tamper and TimeStamp Pins Selection + * + Interrupts and flags management + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + =============================================================================== + ##### RTC Operating Condition ##### + =============================================================================== + [..] The real-time clock (RTC) and the RTC backup registers can be powered + from the VBAT voltage when the main VDD supply is powered off. + To retain the content of the RTC backup registers and supply the RTC + when VDD is turned off, VBAT pin can be connected to an optional + standby voltage supplied by a battery or by another source. + + ##### Backup Domain Reset ##### + =============================================================================== + [..] The backup domain reset sets all RTC registers and the RCC_BDCR register + to their reset values. + A backup domain reset is generated when one of the following events occurs: + (#) Software reset, triggered by setting the BDRST bit in the + RCC Backup domain control register (RCC_BDCR). + (#) VDD or VBAT power on, if both supplies have previously been powered off. + (#) Tamper detection event resets all data backup registers. + + ##### Backup Domain Access ##### + ================================================================== + [..] After reset, the backup domain (RTC registers and RTC backup data registers) + is protected against possible unwanted write accesses. + [..] To enable access to the RTC Domain and RTC registers, proceed as follows: + (+) Enable the Power Controller (PWR) APB1 interface clock using the + __HAL_RCC_PWR_CLK_ENABLE() function. + (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function. + (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function. + (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function. + + [..] To enable access to the RTC Domain and RTC registers, proceed as follows: + (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for + PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32) + (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro. + + ##### How to use RTC Driver ##### + =================================================================== + [..] + (+) Enable the RTC domain access (see description in the section above). + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** Time and Date configuration *** + =================================== + [..] + (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime() + and HAL_RTC_SetDate() functions. + (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions. + + *** Alarm configuration *** + =========================== + [..] + (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function. + You can also configure the RTC Alarm with interrupt mode using the + HAL_RTC_SetAlarm_IT() function. + (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function. + + ##### RTC and low power modes ##### + ================================================================== + [..] The MCU can be woken up from a low power mode by an RTC alternate + function. + [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), + RTC wakeup, RTC tamper event detection and RTC time stamp event detection. + These RTC alternate functions can wake up the system from the Stop and + Standby low power modes. + [..] The system can also wake up from low power modes without depending + on an external interrupt (Auto-wakeup mode), by using the RTC alarm + or the RTC wakeup events. + [..] The RTC provides a programmable time base for waking up from the + Stop or Standby mode at regular intervals. + Wakeup from STOP and STANDBY modes is possible only when the RTC clock source + is LSE or LSI. + + *** Callback registration *** + ============================================= + When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. This is the recommended configuration + in order to optimize memory/code consumption footprint/performances. + + The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback. + + Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks: + (+) AlarmAEventCallback : RTC Alarm A Event callback. + (+) AlarmBEventCallback : RTC Alarm B Event callback. + (+) TimeStampEventCallback : RTC TimeStamp Event callback. + (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. + (+) SSRUEventCallback : RTC SSRU Event callback. + (+) Tamper1EventCallback : RTC Tamper 1 Event callback. + (+) Tamper2EventCallback : RTC Tamper 2 Event callback. + (+) Tamper3EventCallback : RTC Tamper 3 Event callback. + (+) Tamper4EventCallback : RTC Tamper 4 Event callback. + (+) Tamper5EventCallback : RTC Tamper 5 Event callback. + (+) InternalTamper3EventCallback : RTC InternalTamper 3 Event callback. + (+) InternalTamper4EventCallback : RTC InternalTamper 4 Event callback. + (+) InternalTamper5EventCallback : RTC InternalTamper 5 Event callback. + (+) InternalTamper6EventCallback : RTC InternalTamper 6 Event callback. + (+) MspInitCallback : RTC MspInit callback. + (+) MspDeInitCallback : RTC MspDeInit callback. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default + weak function. + @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) AlarmAEventCallback : RTC Alarm A Event callback. + (+) AlarmBEventCallback : RTC Alarm B Event callback. + (+) TimeStampEventCallback : RTC TimeStamp Event callback. + (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. + (+) SSRUEventCallback : RTC SSRU Event callback. + (+) Tamper1EventCallback : RTC Tamper 1 Event callback. + (+) Tamper2EventCallback : RTC Tamper 2 Event callback. + (+) Tamper3EventCallback : RTC Tamper 3 Event callback. + (+) Tamper4EventCallback : RTC Tamper 4 Event callback. + (+) Tamper5EventCallback : RTC Tamper 5 Event callback. + (+) InternalTamper3EventCallback : RTC Internal Tamper 3 Event callback. + (+) InternalTamper4EventCallback : RTC Internal Tamper 4 Event callback. + (+) InternalTamper5EventCallback : RTC Internal Tamper 5 Event callback. + (+) InternalTamper6EventCallback : RTC Internal Tamper 6 Event callback. + (+) MspInitCallback : RTC MspInit callback. + (+) MspDeInitCallback : RTC MspDeInit callback. + + By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET, + all callbacks are set to the corresponding weak functions : + examples @ref AlarmAEventCallback(), @ref TimeStampEventCallback(). + Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function + in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null + (not registered beforehand). + If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) + + Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit() + or @ref HAL_RTC_Init() function. + + When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + + +/** @addtogroup RTC + * @brief RTC HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup RTC_Exported_Functions + * @{ + */ + +/** @addtogroup RTC_Exported_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to initialize and configure the + RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable + RTC registers Write protection, enter and exit the RTC initialization mode, + RTC registers synchronization check and reference clock detection enable. + (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base. + It is split into 2 programmable prescalers to minimize power consumption. + (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler. + (++) When both prescalers are used, it is recommended to configure the + asynchronous prescaler to a high value to minimize power consumption. + (#) All RTC registers are Write protected. Writing to the RTC registers + is enabled by writing a key into the Write Protection register, RTC_WPR. + (#) To configure the RTC Calendar, user application should enter + initialization mode. In this mode, the calendar counter is stopped + and its value can be updated. When the initialization sequence is + complete, the calendar restarts counting after 4 RTCCLK cycles. + (#) To read the calendar through the shadow registers after Calendar + initialization, calendar update or after wakeup from low power modes + the software must first clear the RSF flag. The software must then + wait until it is set again before reading the calendar, which means + that the calendar registers have been correctly copied into the + RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function + implements the above software sequence (RSF clear and RSF check). + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the RTC peripheral + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the RTC peripheral state */ + if (hrtc != NULL) + { + status = HAL_OK; + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); + assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat)); + assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv)); + assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv)); + assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut)); + assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap)); + assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity)); + assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType)); + assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp)); + assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode)); + assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU)); + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + if (hrtc->State == HAL_RTC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrtc->Lock = HAL_UNLOCKED; + + hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ + hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */ + hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ + hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak + WakeUpTimerEventCallback */ + hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback; /* Legacy weak SSRUEventCallback */ + hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ + hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ + hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ + hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback; /* Legacy weak Tamper4EventCallback */ + hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback; /* Legacy weak Tamper5EventCallback */ + hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; /* Legacy weak + InternalTamper1EventCallback */ + hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; /* Legacy weak + InternalTamper2EventCallback */ + hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; /* Legacy weak + InternalTamper3EventCallback */ + hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; /* Legacy weak + InternalTamper5EventCallback */ + + if (hrtc->MspInitCallback == NULL) + { + hrtc->MspInitCallback = HAL_RTC_MspInit; + } + /* Init the low level hardware */ + hrtc->MspInitCallback(hrtc); + + if (hrtc->MspDeInitCallback == NULL) + { + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + } + } +#else + if (hrtc->State == HAL_RTC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrtc->Lock = HAL_UNLOCKED; + + /* Initialize RTC MSP */ + HAL_RTC_MspInit(hrtc); + } +#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */ + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if (RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + status = HAL_ERROR; + } + else + { + /* Clear RTC_CR FMT, OSEL and POL Bits */ + CLEAR_BIT(RTC->CR, (RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE)); + /* Set RTC_CR register */ + SET_BIT(RTC->CR, (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity)); + + /* Configure the RTC PRER */ + WRITE_REG(RTC->PRER, ((hrtc->Init.SynchPrediv) | (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos))); + + /* Configure the Binary mode */ + MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU); + + /* Exit Initialization mode */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); + + /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U) + { + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + status = HAL_ERROR; + } + } + + if (status == HAL_OK) + { + MODIFY_REG(RTC->CR, \ + RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN, \ + hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + } + } + } + + return status; +} + +/** + * @brief DeInitialize the RTC peripheral. + * @note This function does not reset the RTC Backup Data registers. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status; + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + status = RTC_EnterInitMode(hrtc); + + /* Set Initialization mode */ + if (status != HAL_OK) + { + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + } + else + { + /* Reset all RTC CR register bits */ + CLEAR_REG(RTC->CR); + WRITE_REG(RTC->DR, (uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0)); + CLEAR_REG(RTC->TR); + WRITE_REG(RTC->WUTR, RTC_WUTR_WUT); + WRITE_REG(RTC->PRER, ((uint32_t)(RTC_PRER_PREDIV_A | 0xFFU))); + CLEAR_REG(RTC->ALRMAR); + CLEAR_REG(RTC->ALRMBR); + CLEAR_REG(RTC->SHIFTR); + CLEAR_REG(RTC->CALR); + CLEAR_REG(RTC->ALRMASSR); + CLEAR_REG(RTC->ALRMBSSR); + WRITE_REG(RTC->SCR, RTC_SCR_CITSF | RTC_SCR_CTSOVF | RTC_SCR_CTSF | RTC_SCR_CWUTF | RTC_SCR_CALRBF | \ + RTC_SCR_CALRAF); + + /* Exit initialization mode */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); + + status = HAL_RTC_WaitForSynchro(hrtc); + + if (status != HAL_OK) + { + hrtc->State = HAL_RTC_STATE_ERROR; + } + else + { + /* Reset TAMP registers */ + CLEAR_REG(TAMP->CR1); + CLEAR_REG(TAMP->CR2); + CLEAR_REG(TAMP->CR3); + CLEAR_REG(TAMP->FLTCR); + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + if (status == HAL_OK) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + if (hrtc->MspDeInitCallback == NULL) + { + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + } + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + hrtc->MspDeInitCallback(hrtc); + +#else + /* De-Initialize RTC MSP */ + HAL_RTC_MspDeInit(hrtc); +#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */ + + hrtc->State = HAL_RTC_STATE_RESET; + } + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return status; +} + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User RTC Callback + * To be used instead of the weak predefined callback + * @param hrtc RTC handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID + * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID + * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID + * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID + * @arg @ref HAL_RTC_SSRU_EVENT_CB_ID SSRU Event Callback ID + * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID + * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID + * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID + * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID + * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, + pRTC_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hrtc); + + if (HAL_RTC_STATE_READY == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_ALARM_A_EVENT_CB_ID : + hrtc->AlarmAEventCallback = pCallback; + break; + + case HAL_RTC_ALARM_B_EVENT_CB_ID : + hrtc->AlarmBEventCallback = pCallback; + break; + + case HAL_RTC_TIMESTAMP_EVENT_CB_ID : + hrtc->TimeStampEventCallback = pCallback; + break; + + case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : + hrtc->WakeUpTimerEventCallback = pCallback; + break; + + case HAL_RTC_SSRU_EVENT_CB_ID : + hrtc->SSRUEventCallback = pCallback; + break; + + case HAL_RTC_TAMPER1_EVENT_CB_ID : + hrtc->Tamper1EventCallback = pCallback; + break; + + case HAL_RTC_TAMPER2_EVENT_CB_ID : + hrtc->Tamper2EventCallback = pCallback; + break; + + case HAL_RTC_TAMPER3_EVENT_CB_ID : + hrtc->Tamper3EventCallback = pCallback; + break; + + case HAL_RTC_TAMPER4_EVENT_CB_ID : + hrtc->Tamper4EventCallback = pCallback; + break; + + case HAL_RTC_TAMPER5_EVENT_CB_ID : + hrtc->Tamper5EventCallback = pCallback; + break; + + case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID : + hrtc->InternalTamper3EventCallback = pCallback; + break; + + case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID : + hrtc->InternalTamper4EventCallback = pCallback; + break; + + case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID : + hrtc->InternalTamper5EventCallback = pCallback; + break; + + case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID : + hrtc->InternalTamper6EventCallback = pCallback; + break; + + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = pCallback; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_RTC_STATE_RESET == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = pCallback; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return status; +} + +/** + * @brief Unregister an RTC Callback + * RTC callback is redirected to the weak predefined callback + * @param hrtc RTC handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * This parameter can be one of the following values: + * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID + * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID + * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID + * @arg @ref HAL_RTC_SSRU_EVENT_CB_ID SSRU Callback ID + * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID + * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID + * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID + * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID + * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID + * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID + * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID + * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID + * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hrtc); + + if (HAL_RTC_STATE_READY == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_ALARM_A_EVENT_CB_ID : + hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ + break; + + case HAL_RTC_ALARM_B_EVENT_CB_ID : + hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */ + break; + + case HAL_RTC_TIMESTAMP_EVENT_CB_ID : + hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ + break; + + case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : + hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */ + break; + + case HAL_RTC_SSRU_EVENT_CB_ID : + hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback; /* Legacy weak SSRUEventCallback */ + break; + + case HAL_RTC_TAMPER1_EVENT_CB_ID : + hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ + break; + + case HAL_RTC_TAMPER2_EVENT_CB_ID : + hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ + break; + + case HAL_RTC_TAMPER3_EVENT_CB_ID : + hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ + break; + + case HAL_RTC_TAMPER4_EVENT_CB_ID : + hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback; /* Legacy weak Tamper4EventCallback */ + break; + + case HAL_RTC_TAMPER5_EVENT_CB_ID : + hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback; /* Legacy weak Tamper5EventCallback */ + break; + + case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID : + hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; /* Legacy weak + InternalTamper3EventCallback */ + break; + + case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID : + hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; /* Legacy weak + InternalTamper3EventCallback */ + break; + + case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID : + hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; /* Legacy weak + InternalTamper5EventCallback */ + break; + + case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID : + hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; /* Legacy weak + InternalTamper8EventCallback */ + break; + + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = HAL_RTC_MspInit; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_RTC_STATE_RESET == hrtc->State) + { + switch (CallbackID) + { + case HAL_RTC_MSPINIT_CB_ID : + hrtc->MspInitCallback = HAL_RTC_MspInit; + break; + + case HAL_RTC_MSPDEINIT_CB_ID : + hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return status; +} +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + +/** + * @brief Initialize the RTC MSP. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the RTC MSP. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup RTC_Exported_Functions_Group2 + * @brief RTC Time and Date functions + * +@verbatim + =============================================================================== + ##### RTC Time and Date functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Time and Date features + +@endverbatim + * @{ + */ + +/** + * @brief Set RTC current time. + * @param hrtc RTC handle + * @param sTime Pointer to Time structure + * if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically + reset to 0xFFFFFFFF. else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to + the A 7-bit async prescaler (RTC_PRER_PREDIV_A) + * @note DayLightSaving and StoreOperation interfaces are deprecated. + * To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions. + * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds. + * if Binary mode is RTC_BINARY_ONLY, this parameter is not used + * else this parameter can be one of the following values + * @arg RTC_FORMAT_BIN: Binary format + * @arg RTC_FORMAT_BCD: BCD format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg; + +#ifdef USE_FULL_ASSERT + /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration. */ + if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE) + { + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + } +#endif /* USE_FULL_ASSERT */ + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if (RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Check Binary mode ((32-bit free-running counter) */ + if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY) + { + if (Format == RTC_FORMAT_BIN) + { + if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(sTime->Hours)); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(sTime->Hours)); + } + assert_param(IS_RTC_MINUTES(sTime->Minutes)); + assert_param(IS_RTC_SECONDS(sTime->Seconds)); + + tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \ + (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos)); + + } + else + { + if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours))); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours))); + } + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds))); + tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \ + ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \ + ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \ + ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos)); + } + + /* Set the RTC_TR register */ + WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK)); + + /* Clear the bits to be configured (Deprecated. Use HAL_RTC_DST_xxx functions instead) */ + CLEAR_BIT(RTC->CR, RTC_CR_BKP); + + /* Configure the RTC_CR register (Deprecated. Use HAL_RTC_DST_xxx functions instead) */ + SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation)); + } + + /* Exit Initialization mode */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); + + /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U) + { + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + __HAL_UNLOCK(hrtc); + + return HAL_OK; + } +} + +/** + * @brief Get RTC current time. + * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds + * value in second fraction ratio with time unit following generic formula: + * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit + * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values + * in the higher-order calendar shadow registers to ensure consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers until Current date is read + * to ensure consistency between the time and date values. + * @param hrtc RTC handle + * @param sTime + * if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated + * else + * Pointer to Time structure with Hours, Minutes and Seconds fields returned + * with input format (BIN or BCD), also SubSeconds field returning the + * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler + * factor to be used for second fraction ratio computation. + * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds. + * if Binary mode is RTC_BINARY_ONLY, this parameter is not used + * else this parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary format + * @arg RTC_FORMAT_BCD: BCD format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetTime(const RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg; + + UNUSED(hrtc); + /* Get subseconds structure field from the corresponding register */ + sTime->SubSeconds = READ_REG(RTC->SSR); + + if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY) + { + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get SecondFraction structure field from the corresponding register field */ + sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S); + + /* Get the TR register */ + tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos); + sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos); + sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos); + sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos); + + /* Check the input parameters format */ + if (Format == RTC_FORMAT_BIN) + { + /* Convert the time structure parameters to Binary format */ + sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); + sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); + sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); + } + } + + return HAL_OK; +} + +/** + * @brief Set RTC current date. + * @param hrtc RTC handle + * @param sDate Pointer to date structure + * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary format + * @arg RTC_FORMAT_BCD: BCD format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U)) + { + sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU); + } + + assert_param(IS_RTC_WEEKDAY(sDate->WeekDay)); + + if (Format == RTC_FORMAT_BIN) + { + assert_param(IS_RTC_YEAR(sDate->Year)); + assert_param(IS_RTC_MONTH(sDate->Month)); + assert_param(IS_RTC_DATE(sDate->Date)); + + datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \ + ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos)); + } + else + { + assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year))); + assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month))); + assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date))); + + datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \ + (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \ + (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \ + (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos)); + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if (RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Set the RTC_DR register */ + WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK)); + + /* Exit Initialization mode */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); + + /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U) + { + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY ; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; + } +} + +/** + * @brief Get RTC current date. + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values + * in the higher-order calendar shadow registers to ensure consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers until Current date is read. + * @param hrtc RTC handle + * @param sDate Pointer to Date structure + * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary format + * @arg RTC_FORMAT_BCD: BCD format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetDate(const RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg; + + UNUSED(hrtc); + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the DR register */ + datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos); + sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos); + sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos); + sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos); + + /* Check the input parameters format */ + if (Format == RTC_FORMAT_BIN) + { + /* Convert the date structure parameters to Binary format */ + sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); + sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); + sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); + } + return HAL_OK; +} + +/** + * @brief Daylight Saving Time, add one hour to the calendar in one + * single operation without going through the initialization procedure. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_Add1Hour(const RTC_HandleTypeDef *hrtc) +{ + UNUSED(hrtc); + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + SET_BIT(RTC->CR, RTC_CR_ADD1H); + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); +} + +/** + * @brief Daylight Saving Time, subtracts one hour from the calendar in one + * single operation without going through the initialization procedure. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_Sub1Hour(const RTC_HandleTypeDef *hrtc) +{ + UNUSED(hrtc); + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + SET_BIT(RTC->CR, RTC_CR_SUB1H); + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); +} + +/** + * @brief Daylight Saving Time, sets the store operation bit. + * @note It can be used by the software in order to memorize the DST status. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_SetStoreOperation(const RTC_HandleTypeDef *hrtc) +{ + UNUSED(hrtc); + SET_BIT(RTC->CR, RTC_CR_BKP); +} + +/** + * @brief Daylight Saving Time, clears the store operation bit. + * @param hrtc pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_DST_ClearStoreOperation(const RTC_HandleTypeDef *hrtc) +{ + UNUSED(hrtc); + CLEAR_BIT(RTC->CR, RTC_CR_BKP); +} + +/** + * @brief Daylight Saving Time, reads the store operation bit. + * @param hrtc RTC handle + * @retval operation see RTC_StoreOperation_Definitions + */ +uint32_t HAL_RTC_DST_ReadStoreOperation(const RTC_HandleTypeDef *hrtc) +{ + UNUSED(hrtc); + return READ_BIT(RTC->CR, RTC_CR_BKP); +} + +/** + * @} + */ + +/** @addtogroup RTC_Exported_Functions_Group3 + * @brief RTC Alarm functions + * +@verbatim + =============================================================================== + ##### RTC Alarm functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Alarm feature + +@endverbatim + * @{ + */ +/** + * @brief Set the specified RTC Alarm. + * @param hrtc RTC handle + * @param sAlarm Pointer to Alarm structure + * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used + * sAlarm->AlarmTime.SubSeconds + * sAlarm->AlarmSubSecondMask + * sAlarm->BinaryAutoClr + * @param Format of the entered parameters. + * if Binary mode is RTC_BINARY_ONLY, this parameter is not used + * else this parameter can be one of the following values + * @arg RTC_FORMAT_BIN: Binary format + * @arg RTC_FORMAT_BCD: BCD format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + uint32_t tmpreg = 0; + uint32_t binaryMode; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + +#ifdef USE_FULL_ASSERT + /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */ + if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE) + { + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + } + else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY) + { + assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask)); + assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr)); + } + else /* RTC_BINARY_MIX */ + { + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + + the upper SSR bits */ + assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= \ + (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos))); + } +#endif /* USE_FULL_ASSERT */ + + /* Get Binary mode (32-bit free-running counter configuration) */ + binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN); + + if (binaryMode != RTC_BINARY_ONLY) + { + if (Format == RTC_FORMAT_BIN) + { + if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else /* format BCD */ + { + if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + +#ifdef USE_FULL_ASSERT + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + +#endif /* USE_FULL_ASSERT */ + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + } + + /* Configure the Alarm register */ + if (sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable the Alarm A interrupt */ + /* In case of interrupt mode is used, the interrupt source must disabled */ + CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE)); + /* Clear flag alarm A */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRAF); + + if (binaryMode == RTC_BINARY_ONLY) + { + WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr); + } + else + { + WRITE_REG(RTC->ALRMAR, tmpreg); + WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask); + } + + WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds); + + if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE) + { + /* Configure the Alarm A output clear */ + SET_BIT(RTC->CR, RTC_CR_ALRAFCLR); + } + else + { + /* Disable the Alarm A output clear */ + CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR); + } + /* Configure the Alarm state: Enable Alarm */ + SET_BIT(RTC->CR, RTC_CR_ALRAE); + } + else + { + /* Disable the Alarm B interrupt */ + /* In case of interrupt mode is used, the interrupt source must disabled */ + CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE)); + /* Clear flag alarm B */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRBF); + + if (binaryMode == RTC_BINARY_ONLY) + { + WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr); + } + else + { + WRITE_REG(RTC->ALRMBR, tmpreg); + WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask); + } + + WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds); + if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE) + { + /* Configure the Alarm B output clear */ + SET_BIT(RTC->CR, RTC_CR_ALRBFCLR); + } + else + { + /* Disable the Alarm B output clear */ + CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR); + } + /* Configure the Alarm state: Enable Alarm */ + SET_BIT(RTC->CR, RTC_CR_ALRBE); + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Set the specified RTC Alarm with Interrupt. + * @param hrtc RTC handle + * @param sAlarm Pointer to Alarm structure + * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used + * sAlarm->AlarmTime.SubSeconds + * sAlarm->AlarmSubSecondMask + * sAlarm->BinaryAutoClr + * @param Format Specifies the format of the entered parameters. + * if Binary mode is RTC_BINARY_ONLY, this parameter is not used + * else this parameter can be one of the following values + * @arg RTC_FORMAT_BIN: Binary format + * @arg RTC_FORMAT_BCD: BCD format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + uint32_t tmpreg = 0; + uint32_t binaryMode; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + +#ifdef USE_FULL_ASSERT + /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */ + if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE) + { + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + } + else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY) + { + assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask)); + assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr)); + } + else /* RTC_BINARY_MIX */ + { + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + + the upper SSR bits */ + assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= \ + (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos))); + } +#endif /* USE_FULL_ASSERT */ + + /* Get Binary mode (32-bit free-running counter configuration) */ + binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN); + + if (binaryMode != RTC_BINARY_ONLY) + { + if (Format == RTC_FORMAT_BIN) + { + if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else /* Format BCD */ + { + if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U) + { + assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + +#ifdef USE_FULL_ASSERT + if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); + } + +#endif /* USE_FULL_ASSERT */ + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + + } + } + + /* Configure the Alarm registers */ + if (sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable the Alarm A interrupt */ + CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE); + /* Clear flag alarm A */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRAF); + + if (binaryMode == RTC_BINARY_ONLY) + { + RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr; + } + else + { + WRITE_REG(RTC->ALRMAR, tmpreg); + WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask); + } + + WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds); + + if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE) + { + /* Configure the Alarm A output clear */ + SET_BIT(RTC->CR, RTC_CR_ALRAFCLR); + } + else + { + /* Disable the Alarm A output clear*/ + CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR); + } + + /* Configure the Alarm interrupt */ + SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE); + } + else + { + /* Disable the Alarm B interrupt */ + CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE); + /* Clear flag alarm B */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRBF); + + if (binaryMode == RTC_BINARY_ONLY) + { + WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr); + } + else + { + WRITE_REG(RTC->ALRMBR, tmpreg); + WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask); + } + + WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds); + + if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE) + { + /* Configure the Alarm B Output clear */ + SET_BIT(RTC->CR, RTC_CR_ALRBFCLR); + + } + else + { + /* Disable the Alarm B Output clear */ + CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR); + } + + /* Configure the Alarm interrupt */ + SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE); + } + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivate the specified RTC Alarm. + * @param hrtc RTC handle + * @param Alarm Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: AlarmA + * @arg RTC_ALARM_B: AlarmB + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm) +{ + /* Check the parameters */ + assert_param(IS_RTC_ALARM(Alarm)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* In case of interrupt mode is used, the interrupt source must disabled */ + if (Alarm == RTC_ALARM_A) + { + CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE); + CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR); + } + else + { + CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE); + CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMBSSR_SSCLR); + } + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Get the RTC Alarm value and masks. + * @param hrtc RTC handle + * @param sAlarm Pointer to Date structure + * @param Alarm Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: AlarmA + * @arg RTC_ALARM_B: AlarmB + * @param Format Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary format + * @arg RTC_FORMAT_BCD: BCD format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetAlarm(const RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, + uint32_t Format) +{ + uint32_t tmpreg; + uint32_t subsecondtmpreg; + + UNUSED(hrtc); + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(Alarm)); + + if (Alarm == RTC_ALARM_A) + { + /* AlarmA */ + sAlarm->Alarm = RTC_ALARM_A; + + tmpreg = READ_REG(RTC->ALRMAR); + subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMASSR) & RTC_ALRMASSR_SS); + + /* Fill the structure with the read parameters */ + sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos); + sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos); + sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos); + sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos); + sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; + sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos); + sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL); + sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL); + } + else + { + sAlarm->Alarm = RTC_ALARM_B; + + tmpreg = READ_REG(RTC->ALRMBR); + subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMBSSR) & RTC_ALRMBSSR_SS); + + /* Fill the structure with the read parameters */ + sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos); + sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos); + sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos); + sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos); + sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; + sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos); + sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL); + sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL); + } + + if (Format == RTC_FORMAT_BIN) + { + sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes); + sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds); + sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + } + + return HAL_OK; +} + +/** + * @brief Handle Alarm interrupt request. + * @param hrtc RTC handle + * @retval None + */ +void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc) +{ + /* Get interrupt status */ + uint32_t tmp = READ_REG(RTC->MISR); + + if ((tmp & RTC_MISR_ALRAMF) != 0U) + { + /* Clear the AlarmA interrupt pending bit */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRAF); + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Compare Match registered Callback */ + hrtc->AlarmAEventCallback(hrtc); +#else + HAL_RTC_AlarmAEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + if ((tmp & RTC_MISR_ALRBMF) != 0U) + { + /* Clear the AlarmB interrupt pending bit */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRBF); + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Compare Match registered Callback */ + hrtc->AlarmBEventCallback(hrtc); +#else + HAL_RTCEx_AlarmBEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Alarm A callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTC_AlarmAEventCallback could be implemented in the user file + */ +} + +/** + * @brief Handle AlarmA Polling request. + * @param hrtc RTC handle + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + while (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm interrupt pending bit */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRAF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup RTC_Exported_Functions_Group4 + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Wait for RTC Time and Date Synchronization + +@endverbatim + * @{ + */ + +/** + * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are + * synchronized with RTC APB clock. + * @note The RTC Resynchronization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @note To read the calendar through the shadow registers after Calendar + * initialization, calendar update or after wakeup from low power modes + * the software must first clear the RSF flag. + * The software must then wait until it is set again before reading + * the calendar, which means that the calendar registers have been + * correctly copied into the RTC_TR and RTC_DR shadow registers. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_WaitForSynchro(const RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart; + + UNUSED(hrtc); + /* Clear RSF flag */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_RSF); + + tickstart = HAL_GetTick(); + + /* Wait the registers to be synchronised */ + while (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup RTC_Exported_Functions_Group5 + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Get RTC state + +@endverbatim + * @{ + */ +/** + * @brief Return the RTC handle state. + * @param hrtc RTC handle + * @retval HAL state + */ +HAL_RTCStateTypeDef HAL_RTC_GetState(const RTC_HandleTypeDef *hrtc) +{ + /* Return RTC handle state */ + return hrtc->State; +} + +/** + * @} + */ +/** + * @} + */ + +/** @addtogroup RTC_Private_Functions + * @{ + */ +/** + * @brief Enter the RTC Initialization mode. + * @note The RTC Initialization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef RTC_EnterInitMode(const RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart; + + UNUSED(hrtc); + /* Check if the Initialization mode is set */ + if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U) + { + /* Set the Initialization mode */ + SET_BIT(RTC->ICSR, RTC_ICSR_INIT); + + tickstart = HAL_GetTick(); + /* Wait till RTC is in INIT state and if Time out is reached exit */ + while (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + return HAL_OK; +} + +/** + * @brief Exit the RTC Initialization mode. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Exit Initialization mode */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); + + /* If CR_BYPSHAD bit = 0, wait for synchro */ + if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U) + { + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + status = HAL_TIMEOUT; + } + } + else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry. */ + { + /* Clear BYPSHAD bit */ + CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD); + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + status = HAL_TIMEOUT; + } + /* Restore BYPSHAD bit */ + SET_BIT(RTC->CR, RTC_CR_BYPSHAD); + } + return status; +} +/** + * @brief Convert a 2 digit decimal to BCD format. + * @param Value Byte to be converted + * @retval Converted byte + */ +uint8_t RTC_ByteToBcd2(uint8_t Value) +{ + uint32_t bcdhigh = 0U; + uint8_t tmp_Value = Value; + + while (tmp_Value >= 10U) + { + bcdhigh++; + tmp_Value -= 10U; + } + + return ((uint8_t)(bcdhigh << 4U) | tmp_Value); +} + +/** + * @brief Convert from 2 digit BCD to Binary. + * @param Value BCD value to be converted + * @retval Converted word + */ +uint8_t RTC_Bcd2ToByte(uint8_t Value) +{ + uint32_t tmp; + tmp = (((uint32_t)Value & 0xF0U) >> 4) * 10U; + return (uint8_t)(tmp + ((uint32_t)Value & 0x0FU)); +} + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc_ex.c new file mode 100644 index 0000000..22178d2 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc_ex.c @@ -0,0 +1,2112 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_rtc_ex.c + * @author GPM Application Team + * @brief Extended RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real Time Clock (RTC) Extended peripheral: + * + RTC Time Stamp functions + * + RTC Tamper functions + * + RTC Wake-up functions + * + Extended Control functions + * + Extended RTC features functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (+) Enable the RTC domain access. + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** RTC Wakeup configuration *** + ================================ + [..] + (+) To configure the RTC Wakeup Clock source and Counter use the HAL_RTCEx_SetWakeUpTimer() + function. You can also configure the RTC Wakeup timer with interrupt mode + using the HAL_RTCEx_SetWakeUpTimer_IT() function. + (+) To read the RTC WakeUp Counter register, use the HAL_RTCEx_GetWakeUpTimer() + function. + + *** Outputs configuration *** + ============================= + [..] The RTC has 2 different outputs: + (+) RTC_ALARM: this output is used to manage the RTC Alarm A, Alarm B + and WaKeUp signals. + To output the selected RTC signal, use the HAL_RTC_Init() function. + (+) RTC_CALIB: this output is 512Hz signal or 1Hz. + To enable the RTC_CALIB, use the HAL_RTCEx_SetCalibrationOutPut() function. + (+) Two pins can be used as RTC_ALARM or RTC_CALIB (PC13, PB2) managed on + the RTC_OR register. + (+) When the RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin is + automatically configured in output alternate function. + + *** Smooth digital Calibration configuration *** + ================================================ + [..] + (+) Configure the RTC Original Digital Calibration Value and the corresponding + calibration cycle period (32s,16s and 8s) using the HAL_RTCEx_SetSmoothCalib() + function. + + *** TimeStamp configuration *** + =============================== + [..] + (+) Enable the RTC TimeStamp using the HAL_RTCEx_SetTimeStamp() function. + You can also configure the RTC TimeStamp with interrupt mode using the + HAL_RTCEx_SetTimeStamp_IT() function. + (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTCEx_GetTimeStamp() + function. + + *** Internal TimeStamp configuration *** + =============================== + [..] + (+) Enable the RTC internal TimeStamp using the HAL_RTCEx_SetInternalTimeStamp() function. + User has to check internal timestamp occurrence using __HAL_RTC_INTERNAL_TIMESTAMP_GET_FLAG. + (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTCEx_GetTimeStamp() + function. + + *** Tamper configuration *** + ============================ + [..] + (+) Enable the RTC Tamper and configure the Tamper filter count, trigger Edge + or Level according to the Tamper filter (if equal to 0 Edge else Level) + value, sampling frequency, NoErase, MaskFlag, precharge or discharge and + Pull-UP using the HAL_RTCEx_SetTamper() function. You can configure RTC Tamper + with interrupt mode using HAL_RTCEx_SetTamper_IT() function. + (+) The default configuration of the Tamper erases the backup registers. To avoid + erase, enable the NoErase field on the RTC_TAMPCR register. + (+) With new RTC tamper configuration, you have to call HAL_RTC_Init() in order to + perform TAMP base address offset calculation. + (+) If you do not intend to have tamper using RTC clock, you can bypass its initialization + by setting ClockEnable inti field to RTC_CLOCK_DISABLE. + (+) Enable Internal tamper using HAL_RTCEx_SetInternalTamper. IT mode can be chosen using + setting Interrupt field. + + *** Backup Data Registers configuration *** + =========================================== + [..] + (+) To write to the RTC Backup Data registers, use the HAL_RTCEx_BKUPWrite() + function. + (+) To read the RTC Backup Data registers, use the HAL_RTCEx_BKUPRead() + function. + (+) Before calling these functions you have to call HAL_RTC_Init() in order to + perform TAMP base address offset calculation. + + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup RTCEx + * @brief RTC Extended HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define TAMP_ALL (TAMP_CR1_TAMP1E | TAMP_CR1_TAMP2E | TAMP_CR1_TAMP3E | \ + TAMP_CR1_TAMP4E | TAMP_CR1_TAMP5E ) + + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup RTCEx_Exported_Functions + * @{ + */ + + +/** @addtogroup RTCEx_Exported_Functions_Group1 + * @brief RTC TimeStamp and Tamper functions + * +@verbatim + =============================================================================== + ##### RTC TimeStamp and Tamper functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure TimeStamp feature + +@endverbatim + * @{ + */ + +/** + * @brief Set TimeStamp. + * @note This API must be called before enabling the TimeStamp feature. + * @param hrtc RTC handle + * @param TimeStampEdge Specifies the pin edge on which the TimeStamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the + * rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the + * falling edge of the related pin. + * @param RTC_TimeStampPin specifies the RTC TimeStamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_DEFAULT: PC13 is selected as RTC TimeStamp Pin. + * The RTC TimeStamp Pin is per default PC13, but for reasons of + * compatibility, this parameter is required. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + UNUSED(RTC_TimeStampPin); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Get the RTC_CR register and clear the bits to be configured */ + CLEAR_BIT(RTC->CR, (RTC_CR_TSEDGE | RTC_CR_TSE)); + + /* Configure the Time Stamp TSEDGE and Enable bits */ + SET_BIT(RTC->CR, (uint32_t)TimeStampEdge | RTC_CR_TSE); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Set TimeStamp with Interrupt. + * @note This API must be called before enabling the TimeStamp feature. + * @param hrtc RTC handle + * @param TimeStampEdge Specifies the pin edge on which the TimeStamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the + * rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the + * falling edge of the related pin. + * @param RTC_TimeStampPin Specifies the RTC TimeStamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_DEFAULT: PC13 is selected as RTC TimeStamp Pin. + * The RTC TimeStamp Pin is per default PC13, but for reasons of + * compatibility, this parameter is required. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + UNUSED(RTC_TimeStampPin); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* RTC timestamp Interrupt Configuration: EXTI configuration */ + __HAL_RTC_TIMESTAMP_EXTI_ENABLE_IT(); + + /* Get the RTC_CR register and clear the bits to be configured */ + CLEAR_BIT(RTC->CR, (RTC_CR_TSEDGE | RTC_CR_TSE)); + + /* Configure the Time Stamp TSEDGE before Enable bit to avoid unwanted TSF setting. */ + SET_BIT(RTC->CR, (uint32_t)TimeStampEdge); + + /* Enable timestamp and IT */ + SET_BIT(RTC->CR, RTC_CR_TSE | RTC_CR_TSIE); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivate TimeStamp. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* In case of interrupt mode is used, the interrupt source must disabled */ + CLEAR_BIT(RTC->CR, (RTC_CR_TSEDGE | RTC_CR_TSE | RTC_CR_TSIE)); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Set Internal TimeStamp. + * @note This API must be called before enabling the internal TimeStamp feature. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetInternalTimeStamp(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Configure the internal Time Stamp Enable bits */ + SET_BIT(RTC->CR, RTC_CR_ITSE); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivate Internal TimeStamp. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateInternalTimeStamp(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Configure the internal Time Stamp Enable bits */ + CLEAR_BIT(RTC->CR, RTC_CR_ITSE); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Get the RTC TimeStamp value. + * @param hrtc RTC handle + * @param sTimeStamp Pointer to Time structure + * if BinMode = RTC_BINARY_ONLY, sTimeStamp->SubSeconds only is used + * @param sTimeStampDate Pointer to Date structure + * if BinMode = RTC_BINARY_ONLY, this parameter is not used. + * @param Format specifies the format of the entered parameters. + * if BinMode = RTC_BINARY_ONLY, this parameter is not used + * else this parameter can be one of the following values + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(const RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTimeStamp, + RTC_DateTypeDef *sTimeStampDate, uint32_t Format) +{ + uint32_t tmptime; + uint32_t tmpdate; + UNUSED(hrtc); + + sTimeStamp->SubSeconds = READ_REG(RTC->TSSSR); + if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY) + { + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the TimeStamp time and date registers values */ + tmptime = READ_BIT(RTC->TSTR, RTC_TR_RESERVED_MASK); + tmpdate = READ_BIT(RTC->TSDR, RTC_DR_RESERVED_MASK); + + /* Fill the Time structure fields with the read parameters */ + sTimeStamp->Hours = (uint8_t)((tmptime & (RTC_TSTR_HT | RTC_TSTR_HU)) >> RTC_TSTR_HU_Pos); + sTimeStamp->Minutes = (uint8_t)((tmptime & (RTC_TSTR_MNT | RTC_TSTR_MNU)) >> RTC_TSTR_MNU_Pos); + sTimeStamp->Seconds = (uint8_t)((tmptime & (RTC_TSTR_ST | RTC_TSTR_SU)) >> RTC_TSTR_SU_Pos); + sTimeStamp->TimeFormat = (uint8_t)((tmptime & (RTC_TSTR_PM)) >> RTC_TSTR_PM_Pos); + sTimeStamp->SubSeconds = READ_BIT(RTC->TSSSR, RTC_TSSSR_SS); + + /* Fill the Date structure fields with the read parameters */ + sTimeStampDate->Year = 0U; + sTimeStampDate->Month = (uint8_t)((tmpdate & (RTC_TSDR_MT | RTC_TSDR_MU)) >> RTC_TSDR_MU_Pos); + sTimeStampDate->Date = (uint8_t)(tmpdate & (RTC_TSDR_DT | RTC_TSDR_DU)); + sTimeStampDate->WeekDay = (uint8_t)((tmpdate & (RTC_TSDR_WDU)) >> RTC_TSDR_WDU_Pos); + + /* Check the input parameters format */ + if (Format == RTC_FORMAT_BIN) + { + /* Convert the TimeStamp structure parameters to Binary format */ + sTimeStamp->Hours = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Hours); + sTimeStamp->Minutes = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Minutes); + sTimeStamp->Seconds = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Seconds); + + /* Convert the DateTimeStamp structure parameters to Binary format */ + sTimeStampDate->Month = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Month); + sTimeStampDate->Date = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Date); + sTimeStampDate->WeekDay = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->WeekDay); + } + } + + /* Clear the TIMESTAMP Flags */ + WRITE_REG(RTC->SCR, (RTC_SCR_CITSF | RTC_SCR_CTSF)); + + return HAL_OK; +} + +/** + * @brief Handle TimeStamp interrupt request. + * @param hrtc RTC handle + * @retval None + */ +void HAL_RTCEx_TimeStampIRQHandler(RTC_HandleTypeDef *hrtc) +{ + if (READ_BIT(RTC->MISR, RTC_MISR_TSMF) != 0U) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call TimeStampEvent registered Callback */ + hrtc->TimeStampEventCallback(hrtc); +#else + HAL_RTCEx_TimeStampEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + /* Clearing flags after the Callback because the content + of RTC_TSTR and RTC_TSDR are cleared when TSF bit is reset. */ + WRITE_REG(RTC->SCR, RTC_SCR_CITSF | RTC_SCR_CTSF); + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + + +/** + * @brief TimeStamp callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_TimeStampEventCallback could be implemented in the user file + */ +} + + +/** + * @brief Handle TimeStamp polling request. + * @param hrtc RTC handle + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + while (READ_BIT(RTC->SR, RTC_SR_TSF) == 0U) + { + if (READ_BIT(RTC->SR, RTC_SR_TSOVF) != 0U) + { + /* Clear the TIMESTAMP OverRun Flag */ + WRITE_REG(RTC->SCR, RTC_SCR_CTSOVF); + + /* Change TIMESTAMP state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup RTCEx_Exported_Functions_Group2 + * @brief RTC Wake-up functions + * +@verbatim + =============================================================================== + ##### RTC Wake-up functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Wake-up feature + +@endverbatim + * @{ + */ + +/** + * @brief Set wake up timer. + * @param hrtc RTC handle + * @param WakeUpCounter Wake up counter + * @param WakeUpClock Wake up clock + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Check RTC WUTWF flag is reset only when wake up timer enabled*/ + if (READ_BIT(RTC->CR, RTC_CR_WUTE) != 0U) + { + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is reset and if Time out is reached exit */ + while (READ_BIT(RTC->ICSR, RTC_ICSR_WUTWF) != 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Disable Wake Up timer */ + CLEAR_BIT(RTC->CR, RTC_CR_WUTE); + + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while (READ_BIT(RTC->ICSR, RTC_ICSR_WUTWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Configure the clock source */ + MODIFY_REG(RTC->CR, RTC_CR_WUCKSEL, (uint32_t)WakeUpClock); + + /* Configure the Wakeup Timer counter */ + WRITE_REG(RTC->WUTR, (uint32_t)WakeUpCounter); + + /* Enable the Wakeup Timer */ + SET_BIT(RTC->CR, RTC_CR_WUTE); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Set wake up timer with interrupt. + * @param hrtc RTC handle + * @param WakeUpCounter Wake up counter + * @param WakeUpClock Wake up clock + * @param WakeUpAutoClr Wake up auto clear value (look at WUTOCLR in reference manual) + * - No effect if WakeUpAutoClr is set to zero + * - This feature is meaningful in case of Low power mode to avoid + * any RTC software execution after Wake Up. + * That is why when WakeUpAutoClr is set, + * EXTI is configured as EVENT instead of Interrupt to avoid useless IRQ handler execution. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock, + uint32_t WakeUpAutoClr) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + /* (0x0000<=WUTOCLR<=WUT) */ + assert_param(WakeUpAutoClr <= WakeUpCounter); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Check RTC WUTWF flag is reset only when wake up timer enabled*/ + if (READ_BIT(RTC->CR, RTC_CR_WUTE) != 0U) + { + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is reset and if Time out is reached exit */ + while (READ_BIT(RTC->ICSR, RTC_ICSR_WUTWF) != 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + /* Disable the Wake-Up timer */ + CLEAR_BIT(RTC->CR, RTC_CR_WUTE); + + /* Clear flag Wake-Up */ + WRITE_REG(RTC->SCR, RTC_SCR_CWUTF); + + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while (READ_BIT(RTC->ICSR, RTC_ICSR_WUTWF) == 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Configure the Wakeup Timer counter and auto clear value */ + WRITE_REG(RTC->WUTR, (uint32_t)(WakeUpCounter | (WakeUpAutoClr << RTC_WUTR_WUTOCLR_Pos))); + + /* Configure the clock source */ + MODIFY_REG(RTC->CR, RTC_CR_WUCKSEL, (uint32_t)WakeUpClock); + + /* In case of WUT autoclr, the IRQ handler should not be called */ + if (WakeUpAutoClr != 0U) + { + /* RTC WakeUpTimer EXTI Configuration: Event configuration */ + __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_EVENT(); + } + else + { + /* RTC WakeUpTimer EXTI Configuration: Interrupt configuration */ + __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT(); + } + + /* Configure the Interrupt in the RTC_CR register and Enable the Wakeup Timer*/ + SET_BIT(RTC->CR, (RTC_CR_WUTIE | RTC_CR_WUTE)); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivate wake up timer counter. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc) +{ + + /* Process Locked */ + __HAL_LOCK(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the Wakeup Timer */ + /* In case of interrupt mode is used, the interrupt source must disabled */ + CLEAR_BIT(RTC->CR, (RTC_CR_WUTE | RTC_CR_WUTIE)); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Get wake up timer counter. + * @param hrtc RTC handle + * @retval Counter value + */ +uint32_t HAL_RTCEx_GetWakeUpTimer(const RTC_HandleTypeDef *hrtc) +{ + UNUSED(hrtc); + /* Get the counter value */ + return (uint32_t)(READ_BIT(RTC->WUTR, RTC_WUTR_WUT)); +} + +/** + * @brief Handle Wake Up Timer interrupt request. + * @param hrtc RTC handle + * @retval None + */ +void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc) +{ + /* Get the pending status of the WAKEUPTIMER Interrupt */ + if (READ_BIT(RTC->MISR, RTC_MISR_WUTMF) != 0U) + { + /* Clear the WAKEUPTIMER interrupt pending bit */ + WRITE_REG(RTC->SCR, RTC_SCR_CWUTF); + +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call WakeUpTimerEvent registered Callback */ + hrtc->WakeUpTimerEventCallback(hrtc); +#else + /* WAKEUPTIMER callback */ + HAL_RTCEx_WakeUpTimerEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Wake Up Timer callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_WakeUpTimerEventCallback could be implemented in the user file + */ +} + + +/** + * @brief Handle Wake Up Timer Polling. + * @param hrtc RTC handle + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + while (READ_BIT(RTC->SR, RTC_SR_WUTF) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the WAKEUPTIMER Flag */ + WRITE_REG(RTC->SCR, RTC_SCR_CWUTF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + + +/** @addtogroup RTCEx_Exported_Functions_Group3 + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extended Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Write a data in a specified RTC Backup data register + (+) Read a data in a specified RTC Backup data register + (+) Set the Coarse calibration parameters. + (+) Deactivate the Coarse calibration parameters + (+) Set the Smooth calibration parameters. + (+) Set Low Power calibration parameter. + (+) Configure the Synchronization Shift Control Settings. + (+) Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Deactivate the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Enable the RTC reference clock detection. + (+) Disable the RTC reference clock detection. + (+) Enable the Bypass Shadow feature. + (+) Disable the Bypass Shadow feature. + +@endverbatim + * @{ + */ + + +/** + * @brief Set the Smooth calibration parameters. + * @note To deactivate the smooth calibration, the field SmoothCalibPlusPulses + * must be equal to SMOOTHCALIB_PLUSPULSES_RESET and the field + * SmoothCalibMinusPulsesValue must be equal to 0. + * @param hrtc RTC handle + * @param SmoothCalibPeriod Select the Smooth Calibration Period. + * This parameter can be one of the following values : + * @arg RTC_SMOOTHCALIB_PERIOD_32SEC: The smooth calibration period is 32s. + * @arg RTC_SMOOTHCALIB_PERIOD_16SEC: The smooth calibration period is 16s. + * @arg RTC_SMOOTHCALIB_PERIOD_8SEC: The smooth calibration period is 8s. + * @param SmoothCalibPlusPulses Select to Set or reset the CALP bit. + * This parameter can be one of the following values: + * @arg RTC_SMOOTHCALIB_PLUSPULSES_SET: Add one RTCCLK pulse every 2*11 pulses. + * @arg RTC_SMOOTHCALIB_PLUSPULSES_RESET: No RTCCLK pulses are added. + * @param SmoothCalibMinusPulsesValue Select the value of CALM[8:0] bits. + * This parameter can be one any value from 0 to 0x000001FF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef *hrtc, uint32_t SmoothCalibPeriod, + uint32_t SmoothCalibPlusPulses, uint32_t SmoothCalibMinusPulsesValue) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(SmoothCalibPeriod)); + assert_param(IS_RTC_SMOOTH_CALIB_PLUS(SmoothCalibPlusPulses)); + assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmoothCalibMinusPulsesValue)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* check if a calibration is pending*/ + if (READ_BIT(RTC->ICSR, RTC_ICSR_RECALPF) != 0U) + { + tickstart = HAL_GetTick(); + + /* check if a calibration is pending*/ + while (READ_BIT(RTC->ICSR, RTC_ICSR_RECALPF) != 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Smooth calibration settings */ + MODIFY_REG(RTC->CALR, (RTC_CALR_CALP | RTC_CALR_CALW8 | RTC_CALR_CALW16 | RTC_CALR_CALM), + (uint32_t)(SmoothCalibPeriod | SmoothCalibPlusPulses | SmoothCalibMinusPulsesValue)); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Select the low power Calibration mode. + * @param hrtc: RTC handle + * @param LowPowerCalib: Low power Calibration mode. + * This parameter can be one of the following values : + * @arg RTC_LPCAL_SET: Low power mode. + * @arg RTC_LPCAL_RESET: High consumption mode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetLowPowerCalib(RTC_HandleTypeDef *hrtc, uint32_t LowPowerCalib) +{ + /* Check the parameters */ + assert_param(IS_RTC_LOW_POWER_CALIB(LowPowerCalib)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Smooth calibration settings */ + MODIFY_REG(RTC->CALR, RTC_CALR_LPCAL, LowPowerCalib); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configure the Synchronization Shift Control Settings. + * @note When REFCKON is set, firmware must not write to Shift control register. + * @param hrtc RTC handle + * @param ShiftAdd1S Select to add or not 1 second to the time calendar. + * This parameter can be one of the following values: + * @arg RTC_SHIFTADD1S_SET: Add one second to the clock calendar. + * @arg RTC_SHIFTADD1S_RESET: No effect. + * @param ShiftSubFS Select the number of Second Fractions to substitute. + * This parameter can be one any value from 0 to 0x7FFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef *hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_RTC_SHIFT_ADD1S(ShiftAdd1S)); + assert_param(IS_RTC_SHIFT_SUBFS(ShiftSubFS)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + tickstart = HAL_GetTick(); + + /* Wait until the shift is completed*/ + while (READ_BIT(RTC->ICSR, RTC_ICSR_SHPF) != 0U) + { + if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + /* Check if the reference clock detection is disabled */ + if (READ_BIT(RTC->CR, RTC_CR_REFCKON) == 0U) + { + /* Configure the Shift settings */ + MODIFY_REG(RTC->SHIFTR, RTC_SHIFTR_SUBFS, (uint32_t)(ShiftSubFS) | (uint32_t)(ShiftAdd1S)); + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U) + { + if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + } + else + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc RTC handle + * @param CalibOutput Select the Calibration output Selection . + * This parameter can be one of the following values: + * @arg RTC_CALIBOUTPUT_512HZ: A signal has a regular waveform at 512Hz. + * @arg RTC_CALIBOUTPUT_1HZ: A signal has a regular waveform at 1Hz. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef *hrtc, uint32_t CalibOutput) +{ + /* Check the parameters */ + assert_param(IS_RTC_CALIB_OUTPUT(CalibOutput)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Configure the RTC_CR register */ + MODIFY_REG(RTC->CR, RTC_CR_COSEL, CalibOutput); + + /* Enable calibration output */ + SET_BIT(RTC->CR, RTC_CR_COE); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivate the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable calibration output */ + CLEAR_BIT(RTC->CR, RTC_CR_COE); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Enable the RTC reference clock detection. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if (RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Enable clockref detection */ + SET_BIT(RTC->CR, RTC_CR_REFCKON); + + /* Exit Initialization mode */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Disable the RTC reference clock detection. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if (RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Disable clockref detection */ + CLEAR_BIT(RTC->CR, RTC_CR_REFCKON); + + /* Exit Initialization mode */ + CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT); + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Enable the Bypass Shadow feature. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Set the BYPSHAD bit */ + SET_BIT(RTC->CR, RTC_CR_BYPSHAD); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Disable the Bypass Shadow feature. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Reset the BYPSHAD bit */ + CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Set SSR Underflow detection with Interrupt. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSSRU_IT(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Enable IT SSRU */ + __HAL_RTC_SSRU_ENABLE_IT(hrtc, RTC_IT_SSRU); + + /* RTC SSRU Interrupt Configuration: EXTI configuration */ + __HAL_RTC_SSRU_EXTI_ENABLE_IT(); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivate SSR Underflow. + * @param hrtc RTC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateSSRU(RTC_HandleTypeDef *hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_SSRU_DISABLE_IT(hrtc, RTC_IT_SSRU); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Handle SSR underflow interrupt request. + * @param hrtc RTC handle + * @retval None + */ +void HAL_RTCEx_SSRUIRQHandler(RTC_HandleTypeDef *hrtc) +{ + if ((RTC->MISR & RTC_MISR_SSRUMF) != 0u) + { + /* Immediately clear flags */ + RTC->SCR = RTC_SCR_CSSRUF; + + /* SSRU callback */ +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call SSRUEvent registered Callback */ + hrtc->SSRUEventCallback(hrtc); +#else + HAL_RTCEx_SSRUEventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief SSR underflow callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_SSRUEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_SSRUEventCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup RTCEx_Exported_Functions_Group4 + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) RTC Alarm B callback + (+) RTC Poll for Alarm B request + +@endverbatim + * @{ + */ + +/** + * @brief Alarm B callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_AlarmBEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_AlarmBEventCallback could be implemented in the user file + */ +} + +/** + * @brief Handle Alarm B Polling request. + * @param hrtc RTC handle + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForAlarmBEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + while (READ_BIT(RTC->SR, RTC_SR_ALRBF) == 0U) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm Flag */ + WRITE_REG(RTC->SCR, RTC_SCR_CALRBF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup RTCEx_Exported_Functions_Group5 + * @brief Extended RTC Tamper functions + * +@verbatim + ============================================================================== + ##### Tamper functions ##### + ============================================================================== + [..] + (+) Before calling any tamper or internal tamper function, you have to call first + HAL_RTC_Init() function. + (+) In that one you can select to output tamper event on RTC pin. + [..] + (+) Enable the Tamper and configure the Tamper filter count, trigger Edge + or Level according to the Tamper filter (if equal to 0 Edge else Level) + value, sampling frequency, NoErase, MaskFlag, precharge or discharge and + Pull-UP, timestamp using the HAL_RTCEx_SetTamper() function. + You can configure Tamper with interrupt mode using HAL_RTCEx_SetTamper_IT() function. + (+) The default configuration of the Tamper erases the backup registers. To avoid + erase, enable the NoErase field on the TAMP_TAMPCR register. + [..] + (+) Enable Internal Tamper and configure it with interrupt, timestamp using + the HAL_RTCEx_SetInternalTamper() function. + +@endverbatim + * @{ + */ + + +/** + * @brief Set Tamper + * @param hrtc RTC handle + * @param sTamper Pointer to Tamper Structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper(const RTC_HandleTypeDef *hrtc, const RTC_TamperTypeDef *sTamper) +{ + uint32_t tmpreg; + + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sTamper->NoErase)); + assert_param(IS_RTC_TAMPER_MASKFLAG_STATE(sTamper->MaskFlag)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + /* Mask flag only supported by TAMPER 1, 2 and 3 */ + assert_param(!((sTamper->MaskFlag != RTC_TAMPERMASK_FLAG_DISABLE) && (sTamper->Tamper > RTC_TAMPER_3))); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + /* Trigger and Filter have exclusive configurations */ + assert_param(((sTamper->Filter != RTC_TAMPERFILTER_DISABLE) && ((sTamper->Trigger == RTC_TAMPERTRIGGER_LOWLEVEL) || \ + (sTamper->Trigger == RTC_TAMPERTRIGGER_HIGHLEVEL))) + || ((sTamper->Filter == RTC_TAMPERFILTER_DISABLE) && \ + ((sTamper->Trigger == RTC_TAMPERTRIGGER_RISINGEDGE) || \ + (sTamper->Trigger == RTC_TAMPERTRIGGER_FALLINGEDGE)))); + + /* Configuration register 2 */ + tmpreg = READ_REG(TAMP->CR2); + tmpreg &= ~((sTamper->Tamper << TAMP_CR2_TAMP1TRG_Pos) | (sTamper->Tamper << TAMP_CR2_TAMP1MSK_Pos) | \ + (sTamper->Tamper << TAMP_CR2_TAMP1POM_Pos)); + + if ((sTamper->Trigger == RTC_TAMPERTRIGGER_HIGHLEVEL) || (sTamper->Trigger == RTC_TAMPERTRIGGER_FALLINGEDGE)) + { + tmpreg |= (sTamper->Tamper << TAMP_CR2_TAMP1TRG_Pos); + } + + if (sTamper->MaskFlag != RTC_TAMPERMASK_FLAG_DISABLE) + { + tmpreg |= (sTamper->Tamper << TAMP_CR2_TAMP1MSK_Pos); + } + + if (sTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_ENABLE) + { + tmpreg |= (sTamper->Tamper << TAMP_CR2_TAMP1POM_Pos); + } + WRITE_REG(TAMP->CR2, tmpreg); + + /* Filter control register */ + WRITE_REG(TAMP->FLTCR, sTamper->Filter | sTamper->SamplingFrequency | sTamper->PrechargeDuration | \ + sTamper->TamperPullUp); + + /* Timestamp on tamper */ + if (READ_BIT(RTC->CR, RTC_CR_TAMPTS) != sTamper->TimeStampOnTamperDetection) + { + MODIFY_REG(RTC->CR, RTC_CR_TAMPTS, sTamper->TimeStampOnTamperDetection); + } + + /* Control register 1 */ + SET_BIT(TAMP->CR1, sTamper->Tamper); + + return HAL_OK; +} + + +/** + * @brief Set Tamper in IT mode + * @param hrtc RTC handle + * @param sTamper Pointer to Tamper Structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(const RTC_HandleTypeDef *hrtc, const RTC_TamperTypeDef *sTamper) +{ + uint32_t tmpreg; + + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sTamper->NoErase)); + assert_param(IS_RTC_TAMPER_MASKFLAG_STATE(sTamper->MaskFlag)); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + + /* Configuration register 2 */ + tmpreg = READ_REG(TAMP->CR2); + tmpreg &= ~((sTamper->Tamper << TAMP_CR2_TAMP1TRG_Pos) | (sTamper->Tamper << TAMP_CR2_TAMP1MSK_Pos) | \ + (sTamper->Tamper << TAMP_CR2_TAMP1POM_Pos)); + + if (sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE) + { + tmpreg |= (sTamper->Tamper << TAMP_CR2_TAMP1TRG_Pos); + } + + if (sTamper->MaskFlag != RTC_TAMPERMASK_FLAG_DISABLE) + { + /* Feature only supported by TAMPER 1, 2 and 3 */ + if (sTamper->Tamper < RTC_TAMPER_4) + { + tmpreg |= (sTamper->Tamper << TAMP_CR2_TAMP1MSK_Pos); + } + else + { + return HAL_ERROR; + } + } + + if (sTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_ENABLE) + { + tmpreg |= (sTamper->Tamper << TAMP_CR2_TAMP1POM_Pos); + } + WRITE_REG(TAMP->CR2, tmpreg); + + /* Filter control register */ + WRITE_REG(TAMP->FLTCR, sTamper->Filter | sTamper->SamplingFrequency | sTamper->PrechargeDuration | \ + sTamper->TamperPullUp); + + /* Timestamp on tamper */ + if (READ_BIT(RTC->CR, RTC_CR_TAMPTS) != sTamper->TimeStampOnTamperDetection) + { + MODIFY_REG(RTC->CR, RTC_CR_TAMPTS, sTamper->TimeStampOnTamperDetection); + } + + /* RTC Tamper Interrupt Configuration: EXTI configuration */ + __HAL_RTC_TAMPER_EXTI_ENABLE_IT(); + + /* Interrupt enable register */ + SET_BIT(TAMP->IER, sTamper->Tamper); + + /* Control register 1 */ + SET_BIT(TAMP->CR1, sTamper->Tamper); + + return HAL_OK; +} + +/** + * @brief Deactivate Tamper. + * @param hrtc RTC handle + * @param Tamper Selected tamper pin. + * This parameter can be a combination of the following values: + * @arg RTC_TAMPER_1 + * @arg RTC_TAMPER_2 + * @arg RTC_TAMPER_3 + * @arg RTC_TAMPER_4 + * @arg RTC_TAMPER_5 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(const RTC_HandleTypeDef *hrtc, uint32_t Tamper) +{ + UNUSED(hrtc); + assert_param(IS_RTC_TAMPER(Tamper)); + + /* Disable the selected Tamper pin */ + CLEAR_BIT(TAMP->CR1, Tamper); + + /* Clear tamper mask/noerase/trigger configuration */ + CLEAR_BIT(TAMP->CR2, (Tamper << TAMP_CR2_TAMP1TRG_Pos) | (Tamper << TAMP_CR2_TAMP1MSK_Pos) | \ + (Tamper << TAMP_CR2_TAMP1POM_Pos)); + + /* Clear tamper interrupt mode configuration */ + CLEAR_BIT(TAMP->IER, Tamper); + + /* Clear tamper interrupt and event flags (WO register) */ + WRITE_REG(TAMP->SCR, Tamper); + + return HAL_OK; +} + +/** + * @brief Tamper event polling. + * @param hrtc RTC handle + * @param Tamper Selected tamper pin. + * This parameter can be a combination of the following values: + * @arg RTC_TAMPER_1 + * @arg RTC_TAMPER_2 + * @arg RTC_TAMPER_3 + * @arg RTC_TAMPER_4 + * @arg RTC_TAMPER_5 + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamperEvent(RTC_HandleTypeDef *hrtc, uint32_t Tamper, uint32_t Timeout) +{ + UNUSED(hrtc); + assert_param(IS_RTC_TAMPER(Tamper)); + + uint32_t tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while (READ_BIT(TAMP->SR, Tamper) != Tamper) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + WRITE_REG(TAMP->SCR, Tamper); + + return HAL_OK; +} + +/** + * @brief Set Internal Tamper + * @param hrtc RTC handle + * @param sIntTamper Pointer to Internal Tamper Structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetInternalTamper(const RTC_HandleTypeDef *hrtc, + const RTC_InternalTamperTypeDef *sIntTamper) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* Check the parameters */ + assert_param(IS_RTC_INTERNAL_TAMPER(sIntTamper->IntTamper)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sIntTamper->TimeStampOnTamperDetection)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sIntTamper->NoErase)); + + /* timestamp on internal tamper */ + if (READ_BIT(RTC->CR, RTC_CR_TAMPTS) != sIntTamper->TimeStampOnTamperDetection) + { + MODIFY_REG(RTC->CR, RTC_CR_TAMPTS, sIntTamper->TimeStampOnTamperDetection); + } + + /* Control register 1 */ + SET_BIT(TAMP->CR1, sIntTamper->IntTamper); + + if (sIntTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_DISABLE) + { + /* Control register 3 */ + SET_BIT(TAMP->CR3, (sIntTamper->IntTamper >> (TAMP_CR1_ITAMP3E_Pos - TAMP_CR3_ITAMP3POM_Pos))); + } + return HAL_OK; +} + + +/** + * @brief Set Internal Tamper in interrupt mode. + * @param hrtc RTC handle + * @param sIntTamper Pointer to Internal Tamper Structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetInternalTamper_IT(const RTC_HandleTypeDef *hrtc, + const RTC_InternalTamperTypeDef *sIntTamper) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* Check the parameters */ + assert_param(IS_RTC_INTERNAL_TAMPER(sIntTamper->IntTamper)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sIntTamper->TimeStampOnTamperDetection)); + assert_param(IS_RTC_TAMPER_ERASE_MODE(sIntTamper->NoErase)); + + /* timestamp on internal tamper */ + if (READ_BIT(RTC->CR, RTC_CR_TAMPTS) != sIntTamper->TimeStampOnTamperDetection) + { + MODIFY_REG(RTC->CR, RTC_CR_TAMPTS, sIntTamper->TimeStampOnTamperDetection); + } + + /* RTC Tamper Interrupt Configuration: EXTI configuration */ + __HAL_RTC_TAMPER_EXTI_ENABLE_IT(); + + /* Interrupt enable register */ + SET_BIT(TAMP->IER, sIntTamper->IntTamper); + + /* Control register 1 */ + SET_BIT(TAMP->CR1, sIntTamper->IntTamper); + + if (sIntTamper->NoErase != RTC_TAMPER_ERASE_BACKUP_DISABLE) + { + /* Control register 3 */ + SET_BIT(TAMP->CR3, (sIntTamper->IntTamper >> (TAMP_CR1_ITAMP3E_Pos - TAMP_CR3_ITAMP3POM_Pos))); + } + return HAL_OK; +} + +/** + * @brief Deactivate Internal Tamper. + * @param hrtc RTC handle + * @param IntTamper Selected internal tamper event. + * This parameter can be any combination of existing internal tampers. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateInternalTamper(const RTC_HandleTypeDef *hrtc, uint32_t IntTamper) +{ + UNUSED(hrtc); + assert_param(IS_RTC_INTERNAL_TAMPER(IntTamper)); + + /* Disable the selected Tamper pin */ + CLEAR_BIT(TAMP->CR1, IntTamper); + + /* Clear internal tamper interrupt mode configuration */ + CLEAR_BIT(TAMP->IER, IntTamper); + + /* Clear internal tamper interrupt */ + WRITE_REG(TAMP->SCR, IntTamper); + + return HAL_OK; +} + + +/** + * @brief Internal Tamper event polling. + * @param hrtc RTC handle + * @param IntTamper selected tamper. + * This parameter can be any combination of existing internal tampers. + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForInternalTamperEvent(RTC_HandleTypeDef *hrtc, uint32_t IntTamper, uint32_t Timeout) +{ + UNUSED(hrtc); + assert_param(IS_RTC_INTERNAL_TAMPER(IntTamper)); + + uint32_t tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while (READ_BIT(TAMP->SR, IntTamper) != IntTamper) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + WRITE_REG(TAMP->SCR, IntTamper); + + return HAL_OK; +} + +/** + * @brief Handle Tamper interrupt request. + * @param hrtc RTC handle + * @retval None + */ +void HAL_RTCEx_TamperIRQHandler(RTC_HandleTypeDef *hrtc) +{ + /* Get interrupt status */ + uint32_t tmp = READ_REG(TAMP->MISR); + + /* Immediately clear flags */ + WRITE_REG(TAMP->SCR, tmp); + + /* Check Tamper1 status */ + if ((tmp & RTC_TAMPER_1) == RTC_TAMPER_1) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Tamper 1 Event registered Callback */ + hrtc->Tamper1EventCallback(hrtc); +#else + /* Tamper1 callback */ + HAL_RTCEx_Tamper1EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Check Tamper2 status */ + if ((tmp & RTC_TAMPER_2) == RTC_TAMPER_2) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Tamper 2 Event registered Callback */ + hrtc->Tamper2EventCallback(hrtc); +#else + /* Tamper2 callback */ + HAL_RTCEx_Tamper2EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Check Tamper3 status */ + if ((tmp & RTC_TAMPER_3) == RTC_TAMPER_3) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Tamper 3 Event registered Callback */ + hrtc->Tamper3EventCallback(hrtc); +#else + /* Tamper3 callback */ + HAL_RTCEx_Tamper3EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Check Tamper4 status */ + if ((tmp & RTC_TAMPER_4) == RTC_TAMPER_4) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Tamper 4 Event registered Callback */ + hrtc->Tamper4EventCallback(hrtc); +#else + /* Tamper4 callback */ + HAL_RTCEx_Tamper4EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Check Tamper5 status */ + if ((tmp & RTC_TAMPER_5) == RTC_TAMPER_5) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Tamper 5 Event registered Callback */ + hrtc->Tamper5EventCallback(hrtc); +#else + /* Tamper5 callback */ + HAL_RTCEx_Tamper5EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Check Internal Tamper3 status */ + if ((tmp & RTC_INT_TAMPER_3) == RTC_INT_TAMPER_3) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Internal Tamper 3 Event registered Callback */ + hrtc->InternalTamper3EventCallback(hrtc); +#else + /* Internal Tamper3 callback */ + HAL_RTCEx_InternalTamper3EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Check Internal Tamper4 status */ + if ((tmp & RTC_INT_TAMPER_4) == RTC_INT_TAMPER_4) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Internal Tamper 4 Event registered Callback */ + hrtc->InternalTamper4EventCallback(hrtc); +#else + /* Internal Tamper4 callback */ + HAL_RTCEx_InternalTamper4EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + + /* Check Internal Tamper5 status */ + if ((tmp & RTC_INT_TAMPER_5) == RTC_INT_TAMPER_5) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Internal Tamper 5 Event registered Callback */ + hrtc->InternalTamper5EventCallback(hrtc); +#else + /* Internal Tamper5 callback */ + HAL_RTCEx_InternalTamper5EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } + /* Check Internal Tamper6 status */ + if ((tmp & RTC_INT_TAMPER_6) == RTC_INT_TAMPER_6) + { +#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) + /* Call Internal Tamper 6 Event registered Callback */ + hrtc->InternalTamper6EventCallback(hrtc); +#else + /* Internal Tamper6 callback */ + HAL_RTCEx_InternalTamper6EventCallback(hrtc); +#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ + } +} + +/** + * @brief Tamper 1 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper1EventCallback could be implemented in the user file + */ +} + + +/** + * @brief Tamper 2 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper2EventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 3 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_Tamper3EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper3EventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 4 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_Tamper4EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper4EventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 5 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_Tamper5EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_Tamper5EventCallback could be implemented in the user file + */ +} + +/** + * @brief Internal Tamper 3 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_InternalTamper3EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_InternalTamper3EventCallback could be implemented in the user file + */ +} + +/** + * @brief Internal Tamper 4 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_InternalTamper4EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_InternalTamperEventCallback could be implemented in the user file + */ +} + +/** + * @brief Internal Tamper 5 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_InternalTamper5EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_InternalTamper5EventCallback could be implemented in the user file + */ +} + +/** + * @brief Internal Tamper 6 callback. + * @param hrtc RTC handle + * @retval None + */ +__weak void HAL_RTCEx_InternalTamper6EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hrtc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_RTCEx_InternalTamper6EventCallback could be implemented in the user file + */ +} + +/** + * @} + */ + + +/** @addtogroup RTCEx_Exported_Functions_Group6 + * @brief Extended RTC Backup register functions + * +@verbatim + =============================================================================== + ##### Extended RTC Backup register functions ##### + =============================================================================== + [..] + (+) Before calling any tamper or internal tamper function, you have to call first + HAL_RTC_Init() function. + (+) In that ine you can select to output tamper event on RTC pin. + [..] + This subsection provides functions allowing to + (+) Write a data in a specified RTC Backup data register + (+) Read a data in a specified RTC Backup data register +@endverbatim + * @{ + */ + + +/** + * @brief Write a data in a specified RTC Backup data register. + * @param hrtc RTC handle + * @param BackupRegister RTC Backup data Register number. + * This parameter can be RTC_BKP_DRx where x can be from 0 to RTC_BACKUP_NB + * @param Data Data to be written in the specified Backup data register. + * @retval None + */ +void HAL_RTCEx_BKUPWrite(const RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data) +{ + uint32_t tmp; + + UNUSED(hrtc); + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t) &(TAMP->BKP0R); + tmp += (BackupRegister * 4U); + + /* Write the specified register */ + *(__IO uint32_t *)tmp = (uint32_t)Data; +} + + +/** + * @brief Reads data from the specified RTC Backup data Register. + * @param hrtc RTC handle + * @param BackupRegister RTC Backup data Register number. + * This parameter can be RTC_BKP_DRx where x can be from 0 to RTC_BACKUP_NB + * @retval Read value + */ +uint32_t HAL_RTCEx_BKUPRead(const RTC_HandleTypeDef *hrtc, uint32_t BackupRegister) +{ + uint32_t tmp; + + UNUSED(hrtc); + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t) &(TAMP->BKP0R); + tmp += (BackupRegister * 4U); + + /* Read the specified register */ + return (*(__IO uint32_t *)tmp); +} + +/** + * @brief Reset the RTC Backup data Register and the device secrets. + * @param hrtc RTC handle + * @retval None + */ +void HAL_RTCEx_BKUPErase(const RTC_HandleTypeDef *hrtc) +{ + UNUSED(hrtc); + WRITE_REG(TAMP->CR2, TAMP_CR2_BKERASE); +} +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ + +/** + * @} + */ + + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard.c new file mode 100644 index 0000000..5939557 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard.c @@ -0,0 +1,3178 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_smartcard.c + * @author MCD Application Team + * @brief SMARTCARD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the SMARTCARD peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Error functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The SMARTCARD HAL driver can be used as follows: + + (#) Declare a SMARTCARD_HandleTypeDef handle structure (eg. SMARTCARD_HandleTypeDef hsmartcard). + (#) Associate a USART to the SMARTCARD handle hsmartcard. + (#) Initialize the SMARTCARD low level resources by implementing the HAL_SMARTCARD_MspInit() API: + (++) Enable the USARTx interface clock. + (++) USART pins configuration: + (+++) Enable the clock for the USART GPIOs. + (+++) Configure the USART pins (TX as alternate function pull-up, RX as alternate function Input). + (++) NVIC configuration if you need to use interrupt process (HAL_SMARTCARD_Transmit_IT() + and HAL_SMARTCARD_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (++) DMA Configuration if you need to use DMA process (HAL_SMARTCARD_Transmit_DMA() + and HAL_SMARTCARD_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx channel. + (+++) Associate the initialized DMA handle to the SMARTCARD DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Tx/Rx channel. + + (#) Program the Baud Rate, Parity, Mode(Receiver/Transmitter), clock enabling/disabling and accordingly, + the clock parameters (parity, phase, last bit), prescaler value, guard time and NACK on transmission + error enabling or disabling in the hsmartcard handle Init structure. + + (#) If required, program SMARTCARD advanced features (TX/RX pins swap, TimeOut, auto-retry counter,...) + in the hsmartcard handle AdvancedInit structure. + + (#) Initialize the SMARTCARD registers by calling the HAL_SMARTCARD_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_SMARTCARD_MspInit() API. + [..] + (@) The specific SMARTCARD interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_SMARTCARD_ENABLE_IT() and __HAL_SMARTCARD_DISABLE_IT() inside the transmit and receive process. + + [..] + [..] Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_SMARTCARD_Transmit() + (+) Receive an amount of data in blocking mode using HAL_SMARTCARD_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non-blocking mode using HAL_SMARTCARD_Transmit_IT() + (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback() + (+) Receive an amount of data in non-blocking mode using HAL_SMARTCARD_Receive_IT() + (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback() + (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non-blocking mode (DMA) using HAL_SMARTCARD_Transmit_DMA() + (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback() + (+) Receive an amount of data in non-blocking mode (DMA) using HAL_SMARTCARD_Receive_DMA() + (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback() is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback() + (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback() + + *** SMARTCARD HAL driver macros list *** + ======================================== + [..] + Below the list of most used macros in SMARTCARD HAL driver. + + (+) __HAL_SMARTCARD_GET_FLAG : Check whether or not the specified SMARTCARD flag is set + (+) __HAL_SMARTCARD_CLEAR_FLAG : Clear the specified SMARTCARD pending flag + (+) __HAL_SMARTCARD_ENABLE_IT: Enable the specified SMARTCARD interrupt + (+) __HAL_SMARTCARD_DISABLE_IT: Disable the specified SMARTCARD interrupt + (+) __HAL_SMARTCARD_GET_IT_SOURCE: Check whether or not the specified SMARTCARD interrupt is enabled + + [..] + (@) You can refer to the SMARTCARD HAL driver header file for more useful macros + + ##### Callback registration ##### + ================================== + + [..] + The compilation define USE_HAL_SMARTCARD_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function HAL_SMARTCARD_RegisterCallback() to register a user callback. + Function HAL_SMARTCARD_RegisterCallback() allows to register following callbacks: + (+) TxCpltCallback : Tx Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) RxFifoFullCallback : Rx Fifo Full Callback. + (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. + (+) MspInitCallback : SMARTCARD MspInit. + (+) MspDeInitCallback : SMARTCARD MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function HAL_SMARTCARD_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_SMARTCARD_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TxCpltCallback : Tx Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) RxFifoFullCallback : Rx Fifo Full Callback. + (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. + (+) MspInitCallback : SMARTCARD MspInit. + (+) MspDeInitCallback : SMARTCARD MspDeInit. + + [..] + By default, after the HAL_SMARTCARD_Init() and when the state is HAL_SMARTCARD_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback(). + Exception done for MspInit and MspDeInit functions that are respectively + reset to the legacy weak functions in the HAL_SMARTCARD_Init() + and HAL_SMARTCARD_DeInit() only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the HAL_SMARTCARD_Init() and HAL_SMARTCARD_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand). + + [..] + Callbacks can be registered/unregistered in HAL_SMARTCARD_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_SMARTCARD_STATE_READY or HAL_SMARTCARD_STATE_RESET state, thus registered (user) + MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_SMARTCARD_RegisterCallback() before calling HAL_SMARTCARD_DeInit() + or HAL_SMARTCARD_Init() function. + + [..] + When The compilation define USE_HAL_SMARTCARD_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available + and weak callbacks are used. + + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup SMARTCARD SMARTCARD + * @brief HAL SMARTCARD module driver + * @{ + */ + +#ifdef HAL_SMARTCARD_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup SMARTCARD_Private_Constants SMARTCARD Private Constants + * @{ + */ +#define SMARTCARD_TEACK_REACK_TIMEOUT 1000U /*!< SMARTCARD TX or RX enable acknowledge time-out value */ + +#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \ + USART_CR1_RE | USART_CR1_OVER8| \ + USART_CR1_FIFOEN)) /*!< USART CR1 fields of parameters set by SMARTCARD_SetConfig API */ + +#define USART_CR2_CLK_FIELDS ((uint32_t)(USART_CR2_CLKEN | USART_CR2_CPOL | \ + USART_CR2_CPHA | USART_CR2_LBCL)) /*!< SMARTCARD clock-related USART CR2 fields of parameters */ + +#define USART_CR2_FIELDS ((uint32_t)(USART_CR2_RTOEN | USART_CR2_CLK_FIELDS | \ + USART_CR2_STOP)) /*!< USART CR2 fields of parameters set by SMARTCARD_SetConfig API */ + +#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_ONEBIT | USART_CR3_NACK | USART_CR3_SCARCNT | \ + USART_CR3_TXFTCFG | USART_CR3_RXFTCFG )) /*!< USART CR3 fields of parameters set by SMARTCARD_SetConfig API */ + +#define USART_BRR_MIN 0x10U /*!< USART BRR minimum authorized value */ + +#define USART_BRR_MAX 0x0000FFFFU /*!< USART BRR maximum authorized value */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup SMARTCARD_Private_Functions + * @{ + */ +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) +void SMARTCARD_InitCallbacksToDefault(SMARTCARD_HandleTypeDef *hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ +static HAL_StatusTypeDef SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsmartcard); +static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsmartcard); +static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsmartcard); +static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Flag, + FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); +static void SMARTCARD_EndTxTransfer(SMARTCARD_HandleTypeDef *hsmartcard); +static void SMARTCARD_EndRxTransfer(SMARTCARD_HandleTypeDef *hsmartcard); +#if defined(HAL_DMA_MODULE_ENABLED) +static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMATxAbortCallback(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMARxAbortCallback(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +#endif /* HAL_DMA_MODULE_ENABLED */ +static void SMARTCARD_TxISR(SMARTCARD_HandleTypeDef *hsmartcard); +static void SMARTCARD_TxISR_FIFOEN(SMARTCARD_HandleTypeDef *hsmartcard); +static void SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard); +static void SMARTCARD_RxISR(SMARTCARD_HandleTypeDef *hsmartcard); +static void SMARTCARD_RxISR_FIFOEN(SMARTCARD_HandleTypeDef *hsmartcard); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup SMARTCARD_Exported_Functions SMARTCARD Exported Functions + * @{ + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx + associated to the SmartCard. + (+) These parameters can be configured: + (++) Baud Rate + (++) Parity: parity should be enabled, frame Length is fixed to 8 bits plus parity + (++) Receiver/transmitter modes + (++) Synchronous mode (and if enabled, phase, polarity and last bit parameters) + (++) Prescaler value + (++) Guard bit time + (++) NACK enabling or disabling on transmission error + + (+) The following advanced features can be configured as well: + (++) TX and/or RX pin level inversion + (++) data logical level inversion + (++) RX and TX pins swap + (++) RX overrun detection disabling + (++) DMA disabling on RX error + (++) MSB first on communication line + (++) Time out enabling (and if activated, timeout value) + (++) Block length + (++) Auto-retry counter + [..] + The HAL_SMARTCARD_Init() API follows the USART synchronous configuration procedures + (details for the procedures are available in reference manual). + +@endverbatim + + The USART frame format is given in the following table: + + Table 1. USART frame format. + +---------------------------------------------------------------+ + | M1M0 bits | PCE bit | USART frame | + |-----------------------|---------------------------------------| + | 01 | 1 | | SB | 8 bit data | PB | STB | | + +---------------------------------------------------------------+ + + + * @{ + */ + +/** + * @brief Initialize the SMARTCARD mode according to the specified + * parameters in the SMARTCARD_HandleTypeDef and initialize the associated handle. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Check the SMARTCARD handle allocation */ + if (hsmartcard == NULL) + { + return HAL_ERROR; + } + + /* Check the USART associated to the SMARTCARD handle */ + assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance)); + + if (hsmartcard->gState == HAL_SMARTCARD_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsmartcard->Lock = HAL_UNLOCKED; + +#if USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1 + SMARTCARD_InitCallbacksToDefault(hsmartcard); + + if (hsmartcard->MspInitCallback == NULL) + { + hsmartcard->MspInitCallback = HAL_SMARTCARD_MspInit; + } + + /* Init the low level hardware */ + hsmartcard->MspInitCallback(hsmartcard); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_SMARTCARD_MspInit(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ + } + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Disable the Peripheral to set smartcard mode */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* In SmartCard mode, the following bits must be kept cleared: + - LINEN in the USART_CR2 register, + - HDSEL and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(hsmartcard->Instance->CR2, USART_CR2_LINEN); + CLEAR_BIT(hsmartcard->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN)); + + /* set the USART in SMARTCARD mode */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_SCEN); + + /* Set the SMARTCARD Communication parameters */ + if (SMARTCARD_SetConfig(hsmartcard) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* Set the SMARTCARD transmission completion indication */ + SMARTCARD_TRANSMISSION_COMPLETION_SETTING(hsmartcard); + + if (hsmartcard->AdvancedInit.AdvFeatureInit != SMARTCARD_ADVFEATURE_NO_INIT) + { + SMARTCARD_AdvFeatureConfig(hsmartcard); + } + + /* Enable the Peripheral */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* TEACK and/or REACK to check before moving hsmartcard->gState and hsmartcard->RxState to Ready */ + return (SMARTCARD_CheckIdleState(hsmartcard)); +} + +/** + * @brief DeInitialize the SMARTCARD peripheral. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Check the SMARTCARD handle allocation */ + if (hsmartcard == NULL) + { + return HAL_ERROR; + } + + /* Check the USART/UART associated to the SMARTCARD handle */ + assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance)); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Disable the Peripheral */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + WRITE_REG(hsmartcard->Instance->CR1, 0x0U); + WRITE_REG(hsmartcard->Instance->CR2, 0x0U); + WRITE_REG(hsmartcard->Instance->CR3, 0x0U); + WRITE_REG(hsmartcard->Instance->RTOR, 0x0U); + WRITE_REG(hsmartcard->Instance->GTPR, 0x0U); + + /* DeInit the low level hardware */ +#if USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1 + if (hsmartcard->MspDeInitCallback == NULL) + { + hsmartcard->MspDeInitCallback = HAL_SMARTCARD_MspDeInit; + } + /* DeInit the low level hardware */ + hsmartcard->MspDeInitCallback(hsmartcard); +#else + HAL_SMARTCARD_MspDeInit(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ + + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsmartcard->gState = HAL_SMARTCARD_STATE_RESET; + hsmartcard->RxState = HAL_SMARTCARD_STATE_RESET; + + /* Process Unlock */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; +} + +/** + * @brief Initialize the SMARTCARD MSP. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_MspInit can be implemented in the user file + */ +} + +/** + * @brief DeInitialize the SMARTCARD MSP. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_MspDeInit can be implemented in the user file + */ +} + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User SMARTCARD Callback + * To be used to override the weak predefined callback + * @note The HAL_SMARTCARD_RegisterCallback() may be called before HAL_SMARTCARD_Init() + * in HAL_SMARTCARD_STATE_RESET to register callbacks for HAL_SMARTCARD_MSPINIT_CB_ID + * and HAL_SMARTCARD_MSPDEINIT_CB_ID + * @param hsmartcard smartcard handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_SMARTCARD_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_SMARTCARD_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_SMARTCARD_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_SMARTCARD_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_SMARTCARD_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID + * @arg @ref HAL_SMARTCARD_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID + * @arg @ref HAL_SMARTCARD_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_SMARTCARD_MSPDEINIT_CB_ID MspDeInit Callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_RegisterCallback(SMARTCARD_HandleTypeDef *hsmartcard, + HAL_SMARTCARD_CallbackIDTypeDef CallbackID, + pSMARTCARD_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + switch (CallbackID) + { + + case HAL_SMARTCARD_TX_COMPLETE_CB_ID : + hsmartcard->TxCpltCallback = pCallback; + break; + + case HAL_SMARTCARD_RX_COMPLETE_CB_ID : + hsmartcard->RxCpltCallback = pCallback; + break; + + case HAL_SMARTCARD_ERROR_CB_ID : + hsmartcard->ErrorCallback = pCallback; + break; + + case HAL_SMARTCARD_ABORT_COMPLETE_CB_ID : + hsmartcard->AbortCpltCallback = pCallback; + break; + + case HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID : + hsmartcard->AbortTransmitCpltCallback = pCallback; + break; + + case HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID : + hsmartcard->AbortReceiveCpltCallback = pCallback; + break; + + case HAL_SMARTCARD_RX_FIFO_FULL_CB_ID : + hsmartcard->RxFifoFullCallback = pCallback; + break; + + case HAL_SMARTCARD_TX_FIFO_EMPTY_CB_ID : + hsmartcard->TxFifoEmptyCallback = pCallback; + break; + + case HAL_SMARTCARD_MSPINIT_CB_ID : + hsmartcard->MspInitCallback = pCallback; + break; + + case HAL_SMARTCARD_MSPDEINIT_CB_ID : + hsmartcard->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hsmartcard->gState == HAL_SMARTCARD_STATE_RESET) + { + switch (CallbackID) + { + case HAL_SMARTCARD_MSPINIT_CB_ID : + hsmartcard->MspInitCallback = pCallback; + break; + + case HAL_SMARTCARD_MSPDEINIT_CB_ID : + hsmartcard->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister an SMARTCARD callback + * SMARTCARD callback is redirected to the weak predefined callback + * @note The HAL_SMARTCARD_UnRegisterCallback() may be called before HAL_SMARTCARD_Init() + * in HAL_SMARTCARD_STATE_RESET to un-register callbacks for HAL_SMARTCARD_MSPINIT_CB_ID + * and HAL_SMARTCARD_MSPDEINIT_CB_ID + * @param hsmartcard smartcard handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_SMARTCARD_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_SMARTCARD_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_SMARTCARD_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_SMARTCARD_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_SMARTCARD_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID + * @arg @ref HAL_SMARTCARD_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID + * @arg @ref HAL_SMARTCARD_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_SMARTCARD_MSPDEINIT_CB_ID MspDeInit Callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_UnRegisterCallback(SMARTCARD_HandleTypeDef *hsmartcard, + HAL_SMARTCARD_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_SMARTCARD_STATE_READY == hsmartcard->gState) + { + switch (CallbackID) + { + case HAL_SMARTCARD_TX_COMPLETE_CB_ID : + hsmartcard->TxCpltCallback = HAL_SMARTCARD_TxCpltCallback; /* Legacy weak TxCpltCallback */ + break; + + case HAL_SMARTCARD_RX_COMPLETE_CB_ID : + hsmartcard->RxCpltCallback = HAL_SMARTCARD_RxCpltCallback; /* Legacy weak RxCpltCallback */ + break; + + case HAL_SMARTCARD_ERROR_CB_ID : + hsmartcard->ErrorCallback = HAL_SMARTCARD_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_SMARTCARD_ABORT_COMPLETE_CB_ID : + hsmartcard->AbortCpltCallback = HAL_SMARTCARD_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID : + hsmartcard->AbortTransmitCpltCallback = HAL_SMARTCARD_AbortTransmitCpltCallback; /* Legacy weak + AbortTransmitCpltCallback*/ + break; + + case HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID : + hsmartcard->AbortReceiveCpltCallback = HAL_SMARTCARD_AbortReceiveCpltCallback; /* Legacy weak + AbortReceiveCpltCallback */ + break; + + case HAL_SMARTCARD_RX_FIFO_FULL_CB_ID : + hsmartcard->RxFifoFullCallback = HAL_SMARTCARDEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */ + break; + + case HAL_SMARTCARD_TX_FIFO_EMPTY_CB_ID : + hsmartcard->TxFifoEmptyCallback = HAL_SMARTCARDEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ + break; + + case HAL_SMARTCARD_MSPINIT_CB_ID : + hsmartcard->MspInitCallback = HAL_SMARTCARD_MspInit; /* Legacy weak MspInitCallback */ + break; + + case HAL_SMARTCARD_MSPDEINIT_CB_ID : + hsmartcard->MspDeInitCallback = HAL_SMARTCARD_MspDeInit; /* Legacy weak MspDeInitCallback */ + break; + + default : + /* Update the error code */ + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_SMARTCARD_STATE_RESET == hsmartcard->gState) + { + switch (CallbackID) + { + case HAL_SMARTCARD_MSPINIT_CB_ID : + hsmartcard->MspInitCallback = HAL_SMARTCARD_MspInit; + break; + + case HAL_SMARTCARD_MSPDEINIT_CB_ID : + hsmartcard->MspDeInitCallback = HAL_SMARTCARD_MspDeInit; + break; + + default : + /* Update the error code */ + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group2 IO operation functions + * @brief SMARTCARD Transmit and Receive functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SMARTCARD data transfers. + + [..] + Smartcard is a single wire half duplex communication protocol. + The Smartcard interface is designed to support asynchronous protocol Smartcards as + defined in the ISO 7816-3 standard. The USART should be configured as: + (+) 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register + (+) 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2 register. + + [..] + (#) There are two modes of transfer: + (##) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (##) Non-Blocking mode: The communication is performed using Interrupts + or DMA, the relevant API's return the HAL status. + The end of the data processing will be indicated through the + dedicated SMARTCARD IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + (##) The HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback() user callbacks + will be executed respectively at the end of the Transmit or Receive process + The HAL_SMARTCARD_ErrorCallback() user callback will be executed when a communication + error is detected. + + (#) Blocking mode APIs are : + (##) HAL_SMARTCARD_Transmit() + (##) HAL_SMARTCARD_Receive() + + (#) Non Blocking mode APIs with Interrupt are : + (##) HAL_SMARTCARD_Transmit_IT() + (##) HAL_SMARTCARD_Receive_IT() + (##) HAL_SMARTCARD_IRQHandler() + + (#) Non Blocking mode functions with DMA are : + (##) HAL_SMARTCARD_Transmit_DMA() + (##) HAL_SMARTCARD_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (##) HAL_SMARTCARD_TxCpltCallback() + (##) HAL_SMARTCARD_RxCpltCallback() + (##) HAL_SMARTCARD_ErrorCallback() + + [..] + (#) Non-Blocking mode transfers could be aborted using Abort API's : + (##) HAL_SMARTCARD_Abort() + (##) HAL_SMARTCARD_AbortTransmit() + (##) HAL_SMARTCARD_AbortReceive() + (##) HAL_SMARTCARD_Abort_IT() + (##) HAL_SMARTCARD_AbortTransmit_IT() + (##) HAL_SMARTCARD_AbortReceive_IT() + + (#) For Abort services based on interrupts (HAL_SMARTCARD_Abortxxx_IT), + a set of Abort Complete Callbacks are provided: + (##) HAL_SMARTCARD_AbortCpltCallback() + (##) HAL_SMARTCARD_AbortTransmitCpltCallback() + (##) HAL_SMARTCARD_AbortReceiveCpltCallback() + + (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. + Errors are handled as follows : + (##) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is + to be evaluated by user : this concerns Frame Error, + Parity Error or Noise Error in Interrupt mode reception . + Received character is then retrieved and stored in Rx buffer, + Error code is set to allow user to identify error type, + and HAL_SMARTCARD_ErrorCallback() user callback is executed. Transfer is kept ongoing on SMARTCARD side. + If user wants to abort it, Abort services should be called by user. + (##) Error is considered as Blocking : Transfer could not be completed properly and is aborted. + This concerns Frame Error in Interrupt mode transmission, Overrun Error in Interrupt + mode reception and all errors in DMA mode. + Error code is set to allow user to identify error type, + and HAL_SMARTCARD_ErrorCallback() user callback is executed. + +@endverbatim + * @{ + */ + +/** + * @brief Send an amount of data in blocking mode. + * @note When FIFO mode is enabled, writing a data in the TDR register adds one + * data to the TXFIFO. Write operations to the TDR register are performed + * when TXFNF flag is set. From hardware perspective, TXFNF flag and + * TXE are mapped on the same bit-field. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param pData pointer to data buffer. + * @param Size amount of data to be sent. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsmartcard, const uint8_t *pData, uint16_t Size, + uint32_t Timeout) +{ + uint32_t tickstart; + const uint8_t *ptmpdata = pData; + + /* Check that a Tx process is not already ongoing */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + if ((ptmpdata == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY_TX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + /* Disable the Peripheral first to update mode for TX master */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* In case of TX only mode, if NACK is enabled, the USART must be able to monitor + the bidirectional line to detect a NACK signal in case of parity error. + Therefore, the receiver block must be enabled as well (RE bit must be set). */ + if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX) + && (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLE)) + { + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); + } + /* Enable Tx */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TE); + + /* Enable the Peripheral */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* Perform a TX/RX FIFO Flush */ + __HAL_SMARTCARD_FLUSH_DRREGISTER(hsmartcard); + + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsmartcard->TxXferSize = Size; + hsmartcard->TxXferCount = Size; + + while (hsmartcard->TxXferCount > 0U) + { + hsmartcard->TxXferCount--; + if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + hsmartcard->Instance->TDR = (uint8_t)(*ptmpdata & 0xFFU); + ptmpdata++; + } + if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_TRANSMISSION_COMPLETION_FLAG(hsmartcard), RESET, + tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Disable the Peripheral first to update mode */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX) + && (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLE)) + { + /* In case of TX only mode, if NACK is enabled, receiver block has been enabled + for Transmit phase. Disable this receiver block. */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); + } + if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX_RX) + || (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLE)) + { + /* Perform a TX FIFO Flush at end of Tx phase, as all sent bytes are appearing in Rx Data register */ + __HAL_SMARTCARD_FLUSH_DRREGISTER(hsmartcard); + } + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* At end of Tx process, restore hsmartcard->gState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO + * is not empty. Read operations from the RDR register are performed when + * RXFNE flag is set. From hardware perspective, RXFNE flag and + * RXNE are mapped on the same bit-field. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param pData pointer to data buffer. + * @param Size amount of data to be received. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size, + uint32_t Timeout) +{ + uint32_t tickstart; + uint8_t *ptmpdata = pData; + + /* Check that a Rx process is not already ongoing */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) + { + if ((ptmpdata == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsmartcard->RxState = HAL_SMARTCARD_STATE_BUSY_RX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + hsmartcard->RxXferSize = Size; + hsmartcard->RxXferCount = Size; + + /* Check the remain data to be received */ + while (hsmartcard->RxXferCount > 0U) + { + hsmartcard->RxXferCount--; + + if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + *ptmpdata = (uint8_t)(hsmartcard->Instance->RDR & (uint8_t)0x00FF); + ptmpdata++; + } + + /* At end of Rx process, restore hsmartcard->RxState to Ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in interrupt mode. + * @note When FIFO mode is disabled, USART interrupt is generated whenever + * USART_TDR register is empty, i.e one interrupt per data to transmit. + * @note When FIFO mode is enabled, USART interrupt is generated whenever + * TXFIFO threshold reached. In that case the interrupt rate depends on + * TXFIFO threshold configuration. + * @note This function sets the hsmartcard->TxIsr function pointer according to + * the FIFO mode (data transmission processing depends on FIFO mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param pData pointer to data buffer. + * @param Size amount of data to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsmartcard, const uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY_TX; + + hsmartcard->pTxBuffPtr = pData; + hsmartcard->TxXferSize = Size; + hsmartcard->TxXferCount = Size; + hsmartcard->TxISR = NULL; + + /* Disable the Peripheral first to update mode for TX master */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* In case of TX only mode, if NACK is enabled, the USART must be able to monitor + the bidirectional line to detect a NACK signal in case of parity error. + Therefore, the receiver block must be enabled as well (RE bit must be set). */ + if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX) + && (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLE)) + { + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); + } + /* Enable Tx */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TE); + + /* Enable the Peripheral */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* Perform a TX/RX FIFO Flush */ + __HAL_SMARTCARD_FLUSH_DRREGISTER(hsmartcard); + + /* Configure Tx interrupt processing */ + if (hsmartcard->FifoMode == SMARTCARD_FIFOMODE_ENABLE) + { + /* Set the Tx ISR function pointer */ + hsmartcard->TxISR = SMARTCARD_TxISR_FIFOEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Enable the SMARTCARD Error Interrupt: (Frame error) */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + /* Enable the TX FIFO threshold interrupt */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_TXFTIE); + } + else + { + /* Set the Tx ISR function pointer */ + hsmartcard->TxISR = SMARTCARD_TxISR; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Enable the SMARTCARD Error Interrupt: (Frame error) */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + /* Enable the SMARTCARD Transmit Data Register Empty Interrupt */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in interrupt mode. + * @note When FIFO mode is disabled, USART interrupt is generated whenever + * USART_RDR register can be read, i.e one interrupt per data to receive. + * @note When FIFO mode is enabled, USART interrupt is generated whenever + * RXFIFO threshold reached. In that case the interrupt rate depends on + * RXFIFO threshold configuration. + * @note This function sets the hsmartcard->RxIsr function pointer according to + * the FIFO mode (data reception processing depends on FIFO mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param pData pointer to data buffer. + * @param Size amount of data to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsmartcard->RxState = HAL_SMARTCARD_STATE_BUSY_RX; + + hsmartcard->pRxBuffPtr = pData; + hsmartcard->RxXferSize = Size; + hsmartcard->RxXferCount = Size; + + /* Configure Rx interrupt processing */ + if ((hsmartcard->FifoMode == SMARTCARD_FIFOMODE_ENABLE) && (Size >= hsmartcard->NbRxDataToProcess)) + { + /* Set the Rx ISR function pointer */ + hsmartcard->RxISR = SMARTCARD_RxISR_FIFOEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Enable the SMARTCART Parity Error interrupt and RX FIFO Threshold interrupt */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_RXFTIE); + } + else + { + /* Set the Rx ISR function pointer */ + hsmartcard->RxISR = SMARTCARD_RxISR; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Enable the SMARTCARD Parity Error and Data Register not empty Interrupts */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE); + } + + /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Send an amount of data in DMA mode. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param pData pointer to data buffer. + * @param Size amount of data to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsmartcard, const uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY_TX; + + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsmartcard->pTxBuffPtr = pData; + hsmartcard->TxXferSize = Size; + hsmartcard->TxXferCount = Size; + + /* Disable the Peripheral first to update mode for TX master */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* In case of TX only mode, if NACK is enabled, the USART must be able to monitor + the bidirectional line to detect a NACK signal in case of parity error. + Therefore, the receiver block must be enabled as well (RE bit must be set). */ + if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX) + && (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLE)) + { + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); + } + /* Enable Tx */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TE); + + /* Enable the Peripheral */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* Perform a TX/RX FIFO Flush */ + __HAL_SMARTCARD_FLUSH_DRREGISTER(hsmartcard); + + /* Set the SMARTCARD DMA transfer complete callback */ + hsmartcard->hdmatx->XferCpltCallback = SMARTCARD_DMATransmitCplt; + + /* Set the SMARTCARD error callback */ + hsmartcard->hdmatx->XferErrorCallback = SMARTCARD_DMAError; + + /* Set the DMA abort callback */ + hsmartcard->hdmatx->XferAbortCallback = NULL; + + /* Enable the SMARTCARD transmit DMA channel */ + if (HAL_DMA_Start_IT(hsmartcard->hdmatx, (uint32_t)hsmartcard->pTxBuffPtr, (uint32_t)&hsmartcard->Instance->TDR, + Size) == HAL_OK) + { + /* Clear the TC flag in the ICR register */ + CLEAR_BIT(hsmartcard->Instance->ICR, USART_ICR_TCCF); + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Enable the UART Error Interrupt: (Frame error) */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the SMARTCARD associated USART CR3 register */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + /* Set error code to DMA */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Restore hsmartcard->State to ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + return HAL_ERROR; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in DMA mode. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param pData pointer to data buffer. + * @param Size amount of data to be received. + * @note The SMARTCARD-associated USART parity is enabled (PCE = 1), + * the received data contain the parity bit (MSB position). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsmartcard->RxState = HAL_SMARTCARD_STATE_BUSY_RX; + + hsmartcard->pRxBuffPtr = pData; + hsmartcard->RxXferSize = Size; + + /* Set the SMARTCARD DMA transfer complete callback */ + hsmartcard->hdmarx->XferCpltCallback = SMARTCARD_DMAReceiveCplt; + + /* Set the SMARTCARD DMA error callback */ + hsmartcard->hdmarx->XferErrorCallback = SMARTCARD_DMAError; + + /* Set the DMA abort callback */ + hsmartcard->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(hsmartcard->hdmarx, (uint32_t)&hsmartcard->Instance->RDR, (uint32_t)hsmartcard->pRxBuffPtr, + Size) == HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Enable the SMARTCARD Parity Error Interrupt */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); + + /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the SMARTCARD associated USART CR3 register */ + SET_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); + + return HAL_OK; + } + else + { + /* Set error code to DMA */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + /* Restore hsmartcard->State to ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + return HAL_ERROR; + } + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Abort ongoing transfers (blocking mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SMARTCARD Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Abort(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable RTOIE, EOBIE, TXEIE, TCIE, RXNE, PE, RXFT, TXFT and + ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, + (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE | USART_CR1_RTOIE | + USART_CR1_EOBIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE)); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the SMARTCARD DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); + + /* Abort the SMARTCARD DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (hsmartcard->hdmatx != NULL) + { + /* Set the SMARTCARD DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hsmartcard->hdmatx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hsmartcard->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(hsmartcard->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } + + /* Disable the SMARTCARD DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); + + /* Abort the SMARTCARD DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (hsmartcard->hdmarx != NULL) + { + /* Set the SMARTCARD DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hsmartcard->hdmarx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hsmartcard->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(hsmartcard->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Tx and Rx transfer counters */ + hsmartcard->TxXferCount = 0U; + hsmartcard->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | + SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* Reset Handle ErrorCode to No Error */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (blocking mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SMARTCARD Interrupts (Tx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_AbortTransmit(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable TCIE, TXEIE and TXFTIE interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_TXFTIE); + + /* Check if a receive process is ongoing or not. If not disable ERR IT */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) + { + /* Disable the SMARTCARD Error Interrupt: (Frame error) */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the SMARTCARD DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); + + /* Abort the SMARTCARD DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (hsmartcard->hdmatx != NULL) + { + /* Set the SMARTCARD DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hsmartcard->hdmatx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hsmartcard->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(hsmartcard->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Tx transfer counter */ + hsmartcard->TxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, SMARTCARD_CLEAR_FEF); + + /* Restore hsmartcard->gState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (blocking mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SMARTCARD Interrupts (Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_AbortReceive(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable RTOIE, EOBIE, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE | + USART_CR1_EOBIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* Check if a Transmit process is ongoing or not. If not disable ERR IT */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + /* Disable the SMARTCARD Error Interrupt: (Frame error) */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the SMARTCARD DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); + + /* Abort the SMARTCARD DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (hsmartcard->hdmarx != NULL) + { + /* Set the SMARTCARD DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hsmartcard->hdmarx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(hsmartcard->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(hsmartcard->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Rx transfer counter */ + hsmartcard->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | + SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->RxState to Ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing transfers (Interrupt mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SMARTCARD Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Abort_IT(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint32_t abortcplt = 1U; + + /* Disable RTOIE, EOBIE, TXEIE, TCIE, RXNE, PE, RXFT, TXFT and + ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, + (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE | USART_CR1_RTOIE | + USART_CR1_EOBIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE)); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If DMA Tx and/or DMA Rx Handles are associated to SMARTCARD Handle, + DMA Abort complete callbacks should be initialised before any call + to DMA Abort functions */ + /* DMA Tx Handle is valid */ + if (hsmartcard->hdmatx != NULL) + { + /* Set DMA Abort Complete callback if SMARTCARD DMA Tx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) + { + hsmartcard->hdmatx->XferAbortCallback = SMARTCARD_DMATxAbortCallback; + } + else + { + hsmartcard->hdmatx->XferAbortCallback = NULL; + } + } + /* DMA Rx Handle is valid */ + if (hsmartcard->hdmarx != NULL) + { + /* Set DMA Abort Complete callback if SMARTCARD DMA Rx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + { + hsmartcard->hdmarx->XferAbortCallback = SMARTCARD_DMARxAbortCallback; + } + else + { + hsmartcard->hdmarx->XferAbortCallback = NULL; + } + } + + /* Disable the SMARTCARD DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable DMA Tx at UART level */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); + + /* Abort the SMARTCARD DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (hsmartcard->hdmatx != NULL) + { + /* SMARTCARD Tx DMA Abort callback has already been initialised : + will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hsmartcard->hdmatx) != HAL_OK) + { + hsmartcard->hdmatx->XferAbortCallback = NULL; + } + else + { + abortcplt = 0U; + } + } + } + + /* Disable the SMARTCARD DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); + + /* Abort the SMARTCARD DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (hsmartcard->hdmarx != NULL) + { + /* SMARTCARD Rx DMA Abort callback has already been initialised : + will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hsmartcard->hdmarx) != HAL_OK) + { + hsmartcard->hdmarx->XferAbortCallback = NULL; + abortcplt = 1U; + } + else + { + abortcplt = 0U; + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ + if (abortcplt == 1U) + { + /* Reset Tx and Rx transfer counters */ + hsmartcard->TxXferCount = 0U; + hsmartcard->RxXferCount = 0U; + + /* Clear ISR function pointers */ + hsmartcard->RxISR = NULL; + hsmartcard->TxISR = NULL; + + /* Reset errorCode */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | + SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hsmartcard->AbortCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort complete callback */ + HAL_SMARTCARD_AbortCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (Interrupt mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SMARTCARD Interrupts (Tx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_AbortTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable TCIE, TXEIE and TXFTIE interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_TXFTIE); + + /* Check if a receive process is ongoing or not. If not disable ERR IT */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) + { + /* Disable the SMARTCARD Error Interrupt: (Frame error) */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the SMARTCARD DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); + + /* Abort the SMARTCARD DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (hsmartcard->hdmatx != NULL) + { + /* Set the SMARTCARD DMA Abort callback : + will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ + hsmartcard->hdmatx->XferAbortCallback = SMARTCARD_DMATxOnlyAbortCallback; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hsmartcard->hdmatx) != HAL_OK) + { + /* Call Directly hsmartcard->hdmatx->XferAbortCallback function in case of error */ + hsmartcard->hdmatx->XferAbortCallback(hsmartcard->hdmatx); + } + } + else + { + /* Reset Tx transfer counter */ + hsmartcard->TxXferCount = 0U; + + /* Clear TxISR function pointers */ + hsmartcard->TxISR = NULL; + + /* Restore hsmartcard->gState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hsmartcard->AbortTransmitCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_SMARTCARD_AbortTransmitCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Reset Tx transfer counter */ + hsmartcard->TxXferCount = 0U; + + /* Clear TxISR function pointers */ + hsmartcard->TxISR = NULL; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, SMARTCARD_CLEAR_FEF); + + /* Restore hsmartcard->gState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hsmartcard->AbortTransmitCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_SMARTCARD_AbortTransmitCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (Interrupt mode). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SMARTCARD Interrupts (Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_AbortReceive_IT(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable RTOIE, EOBIE, RXNE, PE, RXFT and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE | + USART_CR1_EOBIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* Check if a Transmit process is ongoing or not. If not disable ERR IT */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + /* Disable the SMARTCARD Error Interrupt: (Frame error) */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the SMARTCARD DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); + + /* Abort the SMARTCARD DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (hsmartcard->hdmarx != NULL) + { + /* Set the SMARTCARD DMA Abort callback : + will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ + hsmartcard->hdmarx->XferAbortCallback = SMARTCARD_DMARxOnlyAbortCallback; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hsmartcard->hdmarx) != HAL_OK) + { + /* Call Directly hsmartcard->hdmarx->XferAbortCallback function in case of error */ + hsmartcard->hdmarx->XferAbortCallback(hsmartcard->hdmarx); + } + } + else + { + /* Reset Rx transfer counter */ + hsmartcard->RxXferCount = 0U; + + /* Clear RxISR function pointer */ + hsmartcard->RxISR = NULL; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | + SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->RxState to Ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hsmartcard->AbortReceiveCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_SMARTCARD_AbortReceiveCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Reset Rx transfer counter */ + hsmartcard->RxXferCount = 0U; + + /* Clear RxISR function pointer */ + hsmartcard->RxISR = NULL; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | + SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->RxState to Ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hsmartcard->AbortReceiveCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_SMARTCARD_AbortReceiveCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Handle SMARTCARD interrupt requests. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint32_t isrflags = READ_REG(hsmartcard->Instance->ISR); + uint32_t cr1its = READ_REG(hsmartcard->Instance->CR1); + uint32_t cr3its = READ_REG(hsmartcard->Instance->CR3); + uint32_t errorflags; + uint32_t errorcode; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF)); + if (errorflags == 0U) + { + /* SMARTCARD in mode Receiver ---------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) + || ((cr3its & USART_CR3_RXFTIE) != 0U))) + { + if (hsmartcard->RxISR != NULL) + { + hsmartcard->RxISR(hsmartcard); + } + return; + } + } + + /* If some errors occur */ + if ((errorflags != 0U) + && ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U) + || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)) != 0U)))) + { + /* SMARTCARD parity error interrupt occurred -------------------------------------*/ + if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) + { + __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_PEF); + + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_PE; + } + + /* SMARTCARD frame error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_FEF); + + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_FE; + } + + /* SMARTCARD noise error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_NEF); + + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_NE; + } + + /* SMARTCARD Over-Run interrupt occurred -----------------------------------------*/ + if (((isrflags & USART_ISR_ORE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) + || ((cr3its & USART_CR3_RXFTIE) != 0U) + || ((cr3its & USART_CR3_EIE) != 0U))) + { + __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_OREF); + + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_ORE; + } + + /* SMARTCARD receiver timeout interrupt occurred -----------------------------------------*/ + if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U)) + { + __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_RTOF); + + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_RTO; + } + + /* Call SMARTCARD Error Call back function if need be --------------------------*/ + if (hsmartcard->ErrorCode != HAL_SMARTCARD_ERROR_NONE) + { + /* SMARTCARD in mode Receiver ---------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) + || ((cr3its & USART_CR3_RXFTIE) != 0U))) + { + if (hsmartcard->RxISR != NULL) + { + hsmartcard->RxISR(hsmartcard); + } + } + + /* If Error is to be considered as blocking : + - Receiver Timeout error in Reception + - Overrun error in Reception + - any error occurs in DMA mode reception + */ + errorcode = hsmartcard->ErrorCode; + if ((HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + || ((errorcode & (HAL_SMARTCARD_ERROR_RTO | HAL_SMARTCARD_ERROR_ORE)) != 0U)) + { + /* Blocking error : transfer is aborted + Set the SMARTCARD state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + SMARTCARD_EndRxTransfer(hsmartcard); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the SMARTCARD DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); + + /* Abort the SMARTCARD DMA Rx channel */ + if (hsmartcard->hdmarx != NULL) + { + /* Set the SMARTCARD DMA Abort callback : + will lead to call HAL_SMARTCARD_ErrorCallback() at end of DMA abort procedure */ + hsmartcard->hdmarx->XferAbortCallback = SMARTCARD_DMAAbortOnError; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hsmartcard->hdmarx) != HAL_OK) + { + /* Call Directly hsmartcard->hdmarx->XferAbortCallback function in case of error */ + hsmartcard->hdmarx->XferAbortCallback(hsmartcard->hdmarx); + } + } + else + { +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hsmartcard->ErrorCallback(hsmartcard); +#else + /* Call legacy weak user error callback */ + HAL_SMARTCARD_ErrorCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hsmartcard->ErrorCallback(hsmartcard); +#else + /* Call legacy weak user error callback */ + HAL_SMARTCARD_ErrorCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + /* other error type to be considered as blocking : + - Frame error in Transmission + */ + else if ((hsmartcard->gState == HAL_SMARTCARD_STATE_BUSY_TX) + && ((errorcode & HAL_SMARTCARD_ERROR_FE) != 0U)) + { + /* Blocking error : transfer is aborted + Set the SMARTCARD state ready to be able to start again the process, + Disable Tx Interrupts, and disable Tx DMA request, if ongoing */ + SMARTCARD_EndTxTransfer(hsmartcard); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Disable the SMARTCARD DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); + + /* Abort the SMARTCARD DMA Tx channel */ + if (hsmartcard->hdmatx != NULL) + { + /* Set the SMARTCARD DMA Abort callback : + will lead to call HAL_SMARTCARD_ErrorCallback() at end of DMA abort procedure */ + hsmartcard->hdmatx->XferAbortCallback = SMARTCARD_DMAAbortOnError; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hsmartcard->hdmatx) != HAL_OK) + { + /* Call Directly hsmartcard->hdmatx->XferAbortCallback function in case of error */ + hsmartcard->hdmatx->XferAbortCallback(hsmartcard->hdmatx); + } + } + else + { +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hsmartcard->ErrorCallback(hsmartcard); +#else + /* Call legacy weak user error callback */ + HAL_SMARTCARD_ErrorCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hsmartcard->ErrorCallback(hsmartcard); +#else + /* Call legacy weak user error callback */ + HAL_SMARTCARD_ErrorCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hsmartcard->ErrorCallback(hsmartcard); +#else + /* Call legacy weak user error callback */ + HAL_SMARTCARD_ErrorCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + } + } + return; + + } /* End if some error occurs */ + + /* SMARTCARD in mode Receiver, end of block interruption ------------------------*/ + if (((isrflags & USART_ISR_EOBF) != 0U) && ((cr1its & USART_CR1_EOBIE) != 0U)) + { + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + __HAL_UNLOCK(hsmartcard); +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hsmartcard->RxCpltCallback(hsmartcard); +#else + /* Call legacy weak Rx complete callback */ + HAL_SMARTCARD_RxCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + /* Clear EOBF interrupt after HAL_SMARTCARD_RxCpltCallback() call for the End of Block information + to be available during HAL_SMARTCARD_RxCpltCallback() processing */ + __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_EOBF); + return; + } + + /* SMARTCARD in mode Transmitter ------------------------------------------------*/ + if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) + && (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U) + || ((cr3its & USART_CR3_TXFTIE) != 0U))) + { + if (hsmartcard->TxISR != NULL) + { + hsmartcard->TxISR(hsmartcard); + } + return; + } + + /* SMARTCARD in mode Transmitter (transmission end) ------------------------*/ + if (__HAL_SMARTCARD_GET_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication) != RESET) + { + if (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication) != RESET) + { + SMARTCARD_EndTransmit_IT(hsmartcard); + return; + } + } + + /* SMARTCARD TX Fifo Empty occurred ----------------------------------------------*/ + if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U)) + { +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Tx Fifo Empty Callback */ + hsmartcard->TxFifoEmptyCallback(hsmartcard); +#else + /* Call legacy weak Tx Fifo Empty Callback */ + HAL_SMARTCARDEx_TxFifoEmptyCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + return; + } + + /* SMARTCARD RX Fifo Full occurred ----------------------------------------------*/ + if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U)) + { +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Rx Fifo Full Callback */ + hsmartcard->RxFifoFullCallback(hsmartcard); +#else + /* Call legacy weak Rx Fifo Full Callback */ + HAL_SMARTCARDEx_RxFifoFullCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + return; + } +} + +/** + * @brief Tx Transfer completed callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_TxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_RxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief SMARTCARD error callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_ErrorCallback can be implemented in the user file. + */ +} + +/** + * @brief SMARTCARD Abort Complete callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_AbortCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_AbortCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief SMARTCARD Abort Complete callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_AbortTransmitCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_AbortTransmitCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief SMARTCARD Abort Receive Complete callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_AbortReceiveCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARD_AbortReceiveCpltCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief SMARTCARD State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of SmartCard + handle and also return Peripheral Errors occurred during communication process + (+) HAL_SMARTCARD_GetState() API can be helpful to check in run-time the state + of the SMARTCARD peripheral. + (+) HAL_SMARTCARD_GetError() checks in run-time errors that could occur during + communication. + +@endverbatim + * @{ + */ + +/** + * @brief Return the SMARTCARD handle state. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval SMARTCARD handle state + */ +HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(const SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Return SMARTCARD handle state */ + uint32_t temp1; + uint32_t temp2; + temp1 = (uint32_t)hsmartcard->gState; + temp2 = (uint32_t)hsmartcard->RxState; + + return (HAL_SMARTCARD_StateTypeDef)(temp1 | temp2); +} + +/** + * @brief Return the SMARTCARD handle error code. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval SMARTCARD handle Error Code + */ +uint32_t HAL_SMARTCARD_GetError(const SMARTCARD_HandleTypeDef *hsmartcard) +{ + return hsmartcard->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup SMARTCARD_Private_Functions SMARTCARD Private Functions + * @{ + */ + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) +/** + * @brief Initialize the callbacks to their default values. + * @param hsmartcard SMARTCARD handle. + * @retval none + */ +void SMARTCARD_InitCallbacksToDefault(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Init the SMARTCARD Callback settings */ + hsmartcard->TxCpltCallback = HAL_SMARTCARD_TxCpltCallback; /* Legacy weak TxCpltCallback */ + hsmartcard->RxCpltCallback = HAL_SMARTCARD_RxCpltCallback; /* Legacy weak RxCpltCallback */ + hsmartcard->ErrorCallback = HAL_SMARTCARD_ErrorCallback; /* Legacy weak ErrorCallback */ + hsmartcard->AbortCpltCallback = HAL_SMARTCARD_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + hsmartcard->AbortTransmitCpltCallback = HAL_SMARTCARD_AbortTransmitCpltCallback; /* Legacy weak + AbortTransmitCpltCallback */ + hsmartcard->AbortReceiveCpltCallback = HAL_SMARTCARD_AbortReceiveCpltCallback; /* Legacy weak + AbortReceiveCpltCallback */ + hsmartcard->RxFifoFullCallback = HAL_SMARTCARDEx_RxFifoFullCallback; /* Legacy weak + RxFifoFullCallback */ + hsmartcard->TxFifoEmptyCallback = HAL_SMARTCARDEx_TxFifoEmptyCallback; /* Legacy weak + TxFifoEmptyCallback */ + +} +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ + +/** + * @brief Configure the SMARTCARD associated USART peripheral. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint32_t tmpreg; + uint32_t clocksource; + HAL_StatusTypeDef ret = HAL_OK; + static const uint16_t SMARTCARDPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U}; + uint32_t pclk; + + /* Check the parameters */ + assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance)); + assert_param(IS_SMARTCARD_BAUDRATE(hsmartcard->Init.BaudRate)); + assert_param(IS_SMARTCARD_WORD_LENGTH(hsmartcard->Init.WordLength)); + assert_param(IS_SMARTCARD_STOPBITS(hsmartcard->Init.StopBits)); + assert_param(IS_SMARTCARD_PARITY(hsmartcard->Init.Parity)); + assert_param(IS_SMARTCARD_MODE(hsmartcard->Init.Mode)); + assert_param(IS_SMARTCARD_POLARITY(hsmartcard->Init.CLKPolarity)); + assert_param(IS_SMARTCARD_PHASE(hsmartcard->Init.CLKPhase)); + assert_param(IS_SMARTCARD_LASTBIT(hsmartcard->Init.CLKLastBit)); + assert_param(IS_SMARTCARD_ONE_BIT_SAMPLE(hsmartcard->Init.OneBitSampling)); + assert_param(IS_SMARTCARD_NACK(hsmartcard->Init.NACKEnable)); + assert_param(IS_SMARTCARD_TIMEOUT(hsmartcard->Init.TimeOutEnable)); + assert_param(IS_SMARTCARD_AUTORETRY_COUNT(hsmartcard->Init.AutoRetryCount)); + assert_param(IS_SMARTCARD_CLOCKPRESCALER(hsmartcard->Init.ClockPrescaler)); + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* In SmartCard mode, M and PCE are forced to 1 (8 bits + parity). + * Oversampling is forced to 16 (OVER8 = 0). + * Configure the Parity and Mode: + * set PS bit according to hsmartcard->Init.Parity value + * set TE and RE bits according to hsmartcard->Init.Mode value */ + tmpreg = (((uint32_t)hsmartcard->Init.Parity) | ((uint32_t)hsmartcard->Init.Mode) | + ((uint32_t)hsmartcard->Init.WordLength)); + MODIFY_REG(hsmartcard->Instance->CR1, USART_CR1_FIELDS, tmpreg); + + /*-------------------------- USART CR2 Configuration -----------------------*/ + tmpreg = hsmartcard->Init.StopBits; + /* Synchronous mode is activated by default */ + tmpreg |= (uint32_t) USART_CR2_CLKEN | hsmartcard->Init.CLKPolarity; + tmpreg |= (uint32_t) hsmartcard->Init.CLKPhase | hsmartcard->Init.CLKLastBit; + tmpreg |= (uint32_t) hsmartcard->Init.TimeOutEnable; + MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_FIELDS, tmpreg); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Configure + * - one-bit sampling method versus three samples' majority rule + * according to hsmartcard->Init.OneBitSampling + * - NACK transmission in case of parity error according + * to hsmartcard->Init.NACKEnable + * - autoretry counter according to hsmartcard->Init.AutoRetryCount */ + + tmpreg = (uint32_t) hsmartcard->Init.OneBitSampling | hsmartcard->Init.NACKEnable; + tmpreg |= ((uint32_t)hsmartcard->Init.AutoRetryCount << USART_CR3_SCARCNT_Pos); + MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_FIELDS, tmpreg); + + /*--------------------- SMARTCARD clock PRESC Configuration ----------------*/ + /* Configure + * - SMARTCARD Clock Prescaler: set PRESCALER according to hsmartcard->Init.ClockPrescaler value */ + MODIFY_REG(hsmartcard->Instance->PRESC, USART_PRESC_PRESCALER, hsmartcard->Init.ClockPrescaler); + + /*-------------------------- USART GTPR Configuration ----------------------*/ + tmpreg = (hsmartcard->Init.Prescaler | ((uint32_t)hsmartcard->Init.GuardTime << USART_GTPR_GT_Pos)); + MODIFY_REG(hsmartcard->Instance->GTPR, (uint16_t)(USART_GTPR_GT | USART_GTPR_PSC), (uint16_t)tmpreg); + + /*-------------------------- USART RTOR Configuration ----------------------*/ + tmpreg = ((uint32_t)hsmartcard->Init.BlockLength << USART_RTOR_BLEN_Pos); + if (hsmartcard->Init.TimeOutEnable == SMARTCARD_TIMEOUT_ENABLE) + { + assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsmartcard->Init.TimeOutValue)); + tmpreg |= (uint32_t) hsmartcard->Init.TimeOutValue; + } + WRITE_REG(hsmartcard->Instance->RTOR, tmpreg); + + /*-------------------------- USART BRR Configuration -----------------------*/ + SMARTCARD_GETCLOCKSOURCE(hsmartcard, clocksource); + pclk = HAL_RCCEx_GetPeriphCLKFreq(clocksource); + + tmpreg = (uint32_t)(((pclk / SMARTCARDPrescTable[hsmartcard->Init.ClockPrescaler]) + + (hsmartcard->Init.BaudRate / 2U)) / hsmartcard->Init.BaudRate); + + /* USARTDIV must be greater than or equal to 0d16 */ + if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX)) + { + hsmartcard->Instance->BRR = (uint16_t)tmpreg; + } + else + { + ret = HAL_ERROR; + } + + /* Initialize the number of data to process during RX/TX ISR execution */ + hsmartcard->NbTxDataToProcess = 1U; + hsmartcard->NbRxDataToProcess = 1U; + + /* Clear ISR function pointers */ + hsmartcard->RxISR = NULL; + hsmartcard->TxISR = NULL; + + return ret; +} + + +/** + * @brief Configure the SMARTCARD associated USART peripheral advanced features. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Check whether the set of advanced features to configure is properly set */ + assert_param(IS_SMARTCARD_ADVFEATURE_INIT(hsmartcard->AdvancedInit.AdvFeatureInit)); + + /* if required, configure TX pin active level inversion */ + if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_TXINVERT_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_TXINV(hsmartcard->AdvancedInit.TxPinLevelInvert)); + MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_TXINV, hsmartcard->AdvancedInit.TxPinLevelInvert); + } + + /* if required, configure RX pin active level inversion */ + if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXINVERT_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_RXINV(hsmartcard->AdvancedInit.RxPinLevelInvert)); + MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_RXINV, hsmartcard->AdvancedInit.RxPinLevelInvert); + } + + /* if required, configure data inversion */ + if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DATAINVERT_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_DATAINV(hsmartcard->AdvancedInit.DataInvert)); + MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_DATAINV, hsmartcard->AdvancedInit.DataInvert); + } + + /* if required, configure RX/TX pins swap */ + if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_SWAP_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_SWAP(hsmartcard->AdvancedInit.Swap)); + MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_SWAP, hsmartcard->AdvancedInit.Swap); + } + + /* if required, configure RX overrun detection disabling */ + if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXOVERRUNDISABLE_INIT)) + { + assert_param(IS_SMARTCARD_OVERRUN(hsmartcard->AdvancedInit.OverrunDisable)); + MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_OVRDIS, hsmartcard->AdvancedInit.OverrunDisable); + } + + /* if required, configure DMA disabling on reception error */ + if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DMADISABLEONERROR_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_DMAONRXERROR(hsmartcard->AdvancedInit.DMADisableonRxError)); + MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_DDRE, hsmartcard->AdvancedInit.DMADisableonRxError); + } + + /* if required, configure MSB first on communication line */ + if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_MSBFIRST_INIT)) + { + assert_param(IS_SMARTCARD_ADVFEATURE_MSBFIRST(hsmartcard->AdvancedInit.MSBFirst)); + MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_MSBFIRST, hsmartcard->AdvancedInit.MSBFirst); + } + +} + +/** + * @brief Check the SMARTCARD Idle State. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint32_t tickstart; + + /* Initialize the SMARTCARD ErrorCode */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if ((hsmartcard->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, USART_ISR_TEACK, RESET, tickstart, + SMARTCARD_TEACK_REACK_TIMEOUT) != HAL_OK) + { + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + /* Check if the Receiver is enabled */ + if ((hsmartcard->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + /* Wait until REACK flag is set */ + if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, USART_ISR_REACK, RESET, tickstart, + SMARTCARD_TEACK_REACK_TIMEOUT) != HAL_OK) + { + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + + /* Initialize the SMARTCARD states */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; +} + +/** + * @brief Handle SMARTCARD Communication Timeout. It waits + * until a flag is no longer in the specified status. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param Flag Specifies the SMARTCARD flag to check. + * @param Status The actual Flag status (SET or RESET). + * @param Tickstart Tick start value + * @param Timeout Timeout duration. + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Flag, + FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while ((__HAL_SMARTCARD_GET_FLAG(hsmartcard, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) + interrupts for the interrupt process */ + CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + + +/** + * @brief End ongoing Tx transfer on SMARTCARD peripheral (following error detection or Transmit completion). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_EndTxTransfer(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable TXEIE, TCIE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + /* At end of Tx process, restore hsmartcard->gState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; +} + + +/** + * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_EndRxTransfer(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + /* At end of Rx process, restore hsmartcard->RxState to Ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; +} + + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief DMA SMARTCARD transmit process complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + hsmartcard->TxXferCount = 0U; + + /* Disable the DMA transfer for transmit request by resetting the DMAT bit + in the SMARTCARD associated USART CR3 register */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); + + /* Enable the SMARTCARD Transmit Complete Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication); +} + +/** + * @brief DMA SMARTCARD receive process complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + hsmartcard->RxXferCount = 0U; + + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by resetting the DMAR bit + in the SMARTCARD associated USART CR3 register */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore hsmartcard->RxState to Ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hsmartcard->RxCpltCallback(hsmartcard); +#else + /* Call legacy weak Rx complete callback */ + HAL_SMARTCARD_RxCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} + +/** + * @brief DMA SMARTCARD communication error callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + + /* Stop SMARTCARD DMA Tx request if ongoing */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_BUSY_TX) + { + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) + { + hsmartcard->TxXferCount = 0U; + SMARTCARD_EndTxTransfer(hsmartcard); + } + } + + /* Stop SMARTCARD DMA Rx request if ongoing */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_BUSY_RX) + { + if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) + { + hsmartcard->RxXferCount = 0U; + SMARTCARD_EndRxTransfer(hsmartcard); + } + } + + hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_DMA; +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hsmartcard->ErrorCallback(hsmartcard); +#else + /* Call legacy weak user error callback */ + HAL_SMARTCARD_ErrorCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} + +/** + * @brief DMA SMARTCARD communication abort callback, when initiated by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma DMA handle. + * @retval None + */ +static void SMARTCARD_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + hsmartcard->RxXferCount = 0U; + hsmartcard->TxXferCount = 0U; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hsmartcard->ErrorCallback(hsmartcard); +#else + /* Call legacy weak user error callback */ + HAL_SMARTCARD_ErrorCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} + +/** + * @brief DMA SMARTCARD Tx communication abort callback, when initiated by user + * (To be called at end of DMA Tx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Rx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void SMARTCARD_DMATxAbortCallback(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + + hsmartcard->hdmatx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hsmartcard->hdmarx != NULL) + { + if (hsmartcard->hdmarx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + hsmartcard->TxXferCount = 0U; + hsmartcard->RxXferCount = 0U; + + /* Reset errorCode */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | + SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hsmartcard->AbortCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort complete callback */ + HAL_SMARTCARD_AbortCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} + + +/** + * @brief DMA SMARTCARD Rx communication abort callback, when initiated by user + * (To be called at end of DMA Rx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Tx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void SMARTCARD_DMARxAbortCallback(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + + hsmartcard->hdmarx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hsmartcard->hdmatx != NULL) + { + if (hsmartcard->hdmatx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + hsmartcard->TxXferCount = 0U; + hsmartcard->RxXferCount = 0U; + + /* Reset errorCode */ + hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | + SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hsmartcard->AbortCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort complete callback */ + HAL_SMARTCARD_AbortCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} + + +/** + * @brief DMA SMARTCARD Tx communication abort callback, when initiated by user by a call to + * HAL_SMARTCARD_AbortTransmit_IT API (Abort only Tx transfer) + * (This callback is executed at end of DMA Tx Abort procedure following user abort request, + * and leads to user Tx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void SMARTCARD_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + + hsmartcard->TxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, SMARTCARD_CLEAR_FEF); + + /* Restore hsmartcard->gState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hsmartcard->AbortTransmitCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_SMARTCARD_AbortTransmitCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} + +/** + * @brief DMA SMARTCARD Rx communication abort callback, when initiated by user by a call to + * HAL_SMARTCARD_AbortReceive_IT API (Abort only Rx transfer) + * (This callback is executed at end of DMA Rx Abort procedure following user abort request, + * and leads to user Rx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void SMARTCARD_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); + + hsmartcard->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, + SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | + SMARTCARD_CLEAR_RTOF | SMARTCARD_CLEAR_EOBF); + + /* Restore hsmartcard->RxState to Ready */ + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hsmartcard->AbortReceiveCpltCallback(hsmartcard); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_SMARTCARD_AbortReceiveCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Send an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_SMARTCARD_Transmit_IT() + * and when the FIFO mode is disabled. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_TxISR(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Check that a Tx process is ongoing */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_BUSY_TX) + { + if (hsmartcard->TxXferCount == 0U) + { + /* Disable the SMARTCARD Transmit Data Register Empty Interrupt */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + + /* Enable the SMARTCARD Transmit Complete Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication); + } + else + { + hsmartcard->Instance->TDR = (uint8_t)(*hsmartcard->pTxBuffPtr & 0xFFU); + hsmartcard->pTxBuffPtr++; + hsmartcard->TxXferCount--; + } + } +} + +/** + * @brief Send an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_SMARTCARD_Transmit_IT() + * and when the FIFO mode is enabled. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_TxISR_FIFOEN(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint16_t nb_tx_data; + + /* Check that a Tx process is ongoing */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_BUSY_TX) + { + for (nb_tx_data = hsmartcard->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--) + { + if (hsmartcard->TxXferCount == 0U) + { + /* Disable the SMARTCARD Transmit Data Register Empty Interrupt */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + + /* Enable the SMARTCARD Transmit Complete Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication); + } + else if (READ_BIT(hsmartcard->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U) + { + hsmartcard->Instance->TDR = (uint8_t)(*hsmartcard->pTxBuffPtr & 0xFFU); + hsmartcard->pTxBuffPtr++; + hsmartcard->TxXferCount--; + } + else + { + /* Nothing to do */ + } + } + } +} + +/** + * @brief Wrap up transmission in non-blocking mode. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable the SMARTCARD Transmit Complete Interrupt */ + __HAL_SMARTCARD_DISABLE_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication); + + /* Check if a receive process is ongoing or not. If not disable ERR IT */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) + { + /* Disable the SMARTCARD Error Interrupt: (Frame error) */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + } + + /* Disable the Peripheral first to update mode */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX) + && (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLE)) + { + /* In case of TX only mode, if NACK is enabled, receiver block has been enabled + for Transmit phase. Disable this receiver block. */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); + } + if ((hsmartcard->Init.Mode == SMARTCARD_MODE_TX_RX) + || (hsmartcard->Init.NACKEnable == SMARTCARD_NACK_ENABLE)) + { + /* Perform a TX FIFO Flush at end of Tx phase, as all sent bytes are appearing in Rx Data register */ + __HAL_SMARTCARD_FLUSH_DRREGISTER(hsmartcard); + } + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); + + /* Tx process is ended, restore hsmartcard->gState to Ready */ + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Clear TxISR function pointer */ + hsmartcard->TxISR = NULL; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Tx complete callback */ + hsmartcard->TxCpltCallback(hsmartcard); +#else + /* Call legacy weak Tx complete callback */ + HAL_SMARTCARD_TxCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ +} + +/** + * @brief Receive an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_SMARTCARD_Receive_IT() + * and when the FIFO mode is disabled. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_RxISR(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Check that a Rx process is ongoing */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_BUSY_RX) + { + *hsmartcard->pRxBuffPtr = (uint8_t)(hsmartcard->Instance->RDR & (uint8_t)0xFF); + hsmartcard->pRxBuffPtr++; + + hsmartcard->RxXferCount--; + if (hsmartcard->RxXferCount == 0U) + { + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + + /* Check if a transmit process is ongoing or not. If not disable ERR IT */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + } + + /* Disable the SMARTCARD Parity Error Interrupt */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); + + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* Clear RxISR function pointer */ + hsmartcard->RxISR = NULL; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hsmartcard->RxCpltCallback(hsmartcard); +#else + /* Call legacy weak Rx complete callback */ + HAL_SMARTCARD_RxCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_SMARTCARD_SEND_REQ(hsmartcard, SMARTCARD_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @brief Receive an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_SMARTCARD_Receive_IT() + * and when the FIFO mode is enabled. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +static void SMARTCARD_RxISR_FIFOEN(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint16_t nb_rx_data; + uint16_t rxdatacount; + + /* Check that a Rx process is ongoing */ + if (hsmartcard->RxState == HAL_SMARTCARD_STATE_BUSY_RX) + { + for (nb_rx_data = hsmartcard->NbRxDataToProcess ; nb_rx_data > 0U ; nb_rx_data--) + { + *hsmartcard->pRxBuffPtr = (uint8_t)(hsmartcard->Instance->RDR & (uint8_t)0xFF); + hsmartcard->pRxBuffPtr++; + + hsmartcard->RxXferCount--; + if (hsmartcard->RxXferCount == 0U) + { + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + + /* Check if a transmit process is ongoing or not. If not disable ERR IT */ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); + } + + /* Disable the SMARTCARD Parity Error Interrupt */ + CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); + + hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; + + /* Clear RxISR function pointer */ + hsmartcard->RxISR = NULL; + +#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hsmartcard->RxCpltCallback(hsmartcard); +#else + /* Call legacy weak Rx complete callback */ + HAL_SMARTCARD_RxCpltCallback(hsmartcard); +#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ + } + } + + /* When remaining number of bytes to receive is less than the RX FIFO + threshold, next incoming frames are processed as if FIFO mode was + disabled (i.e. one interrupt per received frame). + */ + rxdatacount = hsmartcard->RxXferCount; + if (((rxdatacount != 0U)) && (rxdatacount < hsmartcard->NbRxDataToProcess)) + { + /* Disable the UART RXFT interrupt*/ + CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_RXFTIE); + + /* Update the RxISR function pointer */ + hsmartcard->RxISR = SMARTCARD_RxISR; + + /* Enable the UART Data Register Not Empty interrupt */ + SET_BIT(hsmartcard->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_SMARTCARD_SEND_REQ(hsmartcard, SMARTCARD_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @} + */ + +#endif /* HAL_SMARTCARD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard_ex.c new file mode 100644 index 0000000..0703046 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_smartcard_ex.c @@ -0,0 +1,495 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_smartcard_ex.c + * @author MCD Application Team + * @brief SMARTCARD HAL module driver. + * This file provides extended firmware functions to manage the following + * functionalities of the SmartCard. + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================= + ##### SMARTCARD peripheral extended features ##### + ============================================================================= + [..] + The Extended SMARTCARD HAL driver can be used as follows: + + (#) After having configured the SMARTCARD basic features with HAL_SMARTCARD_Init(), + then program SMARTCARD advanced features if required (TX/RX pins swap, TimeOut, + auto-retry counter,...) in the hsmartcard AdvancedInit structure. + + (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming. + + -@- When SMARTCARD operates in FIFO mode, FIFO mode must be enabled prior + starting RX/TX transfers. Also RX/TX FIFO thresholds must be + configured prior starting RX/TX transfers. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup SMARTCARDEx SMARTCARDEx + * @brief SMARTCARD Extended HAL module driver + * @{ + */ +#ifdef HAL_SMARTCARD_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup SMARTCARDEx_Private_Constants SMARTCARD Extended Private Constants + * @{ + */ +/* UART RX FIFO depth */ +#define RX_FIFO_DEPTH 8U + +/* UART TX FIFO depth */ +#define TX_FIFO_DEPTH 8U +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void SMARTCARDEx_SetNbDataToProcess(SMARTCARD_HandleTypeDef *hsmartcard); + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SMARTCARDEx_Exported_Functions SMARTCARD Extended Exported Functions + * @{ + */ + +/** @defgroup SMARTCARDEx_Exported_Functions_Group1 Extended Peripheral Control functions + * @brief Extended control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the SMARTCARD. + (+) HAL_SMARTCARDEx_BlockLength_Config() API allows to configure the Block Length on the fly + (+) HAL_SMARTCARDEx_TimeOut_Config() API allows to configure the receiver timeout value on the fly + (+) HAL_SMARTCARDEx_EnableReceiverTimeOut() API enables the receiver timeout feature + (+) HAL_SMARTCARDEx_DisableReceiverTimeOut() API disables the receiver timeout feature + +@endverbatim + * @{ + */ + +/** @brief Update on the fly the SMARTCARD block length in RTOR register. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param BlockLength SMARTCARD block length (8-bit long at most) + * @retval None + */ +void HAL_SMARTCARDEx_BlockLength_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t BlockLength) +{ + MODIFY_REG(hsmartcard->Instance->RTOR, USART_RTOR_BLEN, ((uint32_t)BlockLength << USART_RTOR_BLEN_Pos)); +} + +/** @brief Update on the fly the receiver timeout value in RTOR register. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @param TimeOutValue receiver timeout value in number of baud blocks. The timeout + * value must be less or equal to 0x0FFFFFFFF. + * @retval None + */ +void HAL_SMARTCARDEx_TimeOut_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t TimeOutValue) +{ + assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsmartcard->Init.TimeOutValue)); + MODIFY_REG(hsmartcard->Instance->RTOR, USART_RTOR_RTO, TimeOutValue); +} + +/** @brief Enable the SMARTCARD receiver timeout feature. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_EnableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard) +{ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Set the USART RTOEN bit */ + SET_BIT(hsmartcard->Instance->CR2, USART_CR2_RTOEN); + + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** @brief Disable the SMARTCARD receiver timeout feature. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_DisableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard) +{ + if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Clear the USART RTOEN bit */ + CLEAR_BIT(hsmartcard->Instance->CR2, USART_CR2_RTOEN); + + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @} + */ + +/** @defgroup SMARTCARDEx_Exported_Functions_Group2 Extended Peripheral IO operation functions + * @brief SMARTCARD Transmit and Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of FIFO mode related callback functions. + + (#) TX/RX Fifos Callbacks: + (++) HAL_SMARTCARDEx_RxFifoFullCallback() + (++) HAL_SMARTCARDEx_TxFifoEmptyCallback() + +@endverbatim + * @{ + */ + +/** + * @brief SMARTCARD RX Fifo full callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARDEx_RxFifoFullCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARDEx_RxFifoFullCallback can be implemented in the user file. + */ +} + +/** + * @brief SMARTCARD TX Fifo empty callback. + * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARDEx_TxFifoEmptyCallback(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hsmartcard); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SMARTCARDEx_TxFifoEmptyCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup SMARTCARDEx_Exported_Functions_Group3 Extended Peripheral FIFO Control functions + * @brief SMARTCARD control functions + * +@verbatim + =============================================================================== + ##### Peripheral FIFO Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SMARTCARD + FIFO feature. + (+) HAL_SMARTCARDEx_EnableFifoMode() API enables the FIFO mode + (+) HAL_SMARTCARDEx_DisableFifoMode() API disables the FIFO mode + (+) HAL_SMARTCARDEx_SetTxFifoThreshold() API sets the TX FIFO threshold + (+) HAL_SMARTCARDEx_SetRxFifoThreshold() API sets the RX FIFO threshold +@endverbatim + * @{ + */ + +/** + * @brief Enable the FIFO mode. + * @param hsmartcard SMARTCARD handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_EnableFifoMode(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(hsmartcard->Instance)); + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Save actual SMARTCARD configuration */ + tmpcr1 = READ_REG(hsmartcard->Instance->CR1); + + /* Disable SMARTCARD */ + __HAL_SMARTCARD_DISABLE(hsmartcard); + + /* Enable FIFO mode */ + SET_BIT(tmpcr1, USART_CR1_FIFOEN); + hsmartcard->FifoMode = SMARTCARD_FIFOMODE_ENABLE; + + /* Restore SMARTCARD configuration */ + WRITE_REG(hsmartcard->Instance->CR1, tmpcr1); + + /* Determine the number of data to process during RX/TX ISR execution */ + SMARTCARDEx_SetNbDataToProcess(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; +} + +/** + * @brief Disable the FIFO mode. + * @param hsmartcard SMARTCARD handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_DisableFifoMode(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(hsmartcard->Instance)); + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Save actual SMARTCARD configuration */ + tmpcr1 = READ_REG(hsmartcard->Instance->CR1); + + /* Disable SMARTCARD */ + __HAL_SMARTCARD_DISABLE(hsmartcard); + + /* Enable FIFO mode */ + CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN); + hsmartcard->FifoMode = SMARTCARD_FIFOMODE_DISABLE; + + /* Restore SMARTCARD configuration */ + WRITE_REG(hsmartcard->Instance->CR1, tmpcr1); + + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; +} + +/** + * @brief Set the TXFIFO threshold. + * @param hsmartcard SMARTCARD handle. + * @param Threshold TX FIFO threshold value + * This parameter can be one of the following values: + * @arg @ref SMARTCARD_TXFIFO_THRESHOLD_1_8 + * @arg @ref SMARTCARD_TXFIFO_THRESHOLD_1_4 + * @arg @ref SMARTCARD_TXFIFO_THRESHOLD_1_2 + * @arg @ref SMARTCARD_TXFIFO_THRESHOLD_3_4 + * @arg @ref SMARTCARD_TXFIFO_THRESHOLD_7_8 + * @arg @ref SMARTCARD_TXFIFO_THRESHOLD_8_8 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_SetTxFifoThreshold(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Threshold) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(hsmartcard->Instance)); + assert_param(IS_SMARTCARD_TXFIFO_THRESHOLD(Threshold)); + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Save actual SMARTCARD configuration */ + tmpcr1 = READ_REG(hsmartcard->Instance->CR1); + + /* Disable SMARTCARD */ + __HAL_SMARTCARD_DISABLE(hsmartcard); + + /* Update TX threshold configuration */ + MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_TXFTCFG, Threshold); + + /* Determine the number of data to process during RX/TX ISR execution */ + SMARTCARDEx_SetNbDataToProcess(hsmartcard); + + /* Restore SMARTCARD configuration */ + MODIFY_REG(hsmartcard->Instance->CR1, USART_CR1_UE, tmpcr1); + + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; +} + +/** + * @brief Set the RXFIFO threshold. + * @param hsmartcard SMARTCARD handle. + * @param Threshold RX FIFO threshold value + * This parameter can be one of the following values: + * @arg @ref SMARTCARD_RXFIFO_THRESHOLD_1_8 + * @arg @ref SMARTCARD_RXFIFO_THRESHOLD_1_4 + * @arg @ref SMARTCARD_RXFIFO_THRESHOLD_1_2 + * @arg @ref SMARTCARD_RXFIFO_THRESHOLD_3_4 + * @arg @ref SMARTCARD_RXFIFO_THRESHOLD_7_8 + * @arg @ref SMARTCARD_RXFIFO_THRESHOLD_8_8 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARDEx_SetRxFifoThreshold(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Threshold) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(hsmartcard->Instance)); + assert_param(IS_SMARTCARD_RXFIFO_THRESHOLD(Threshold)); + + /* Process Locked */ + __HAL_LOCK(hsmartcard); + + hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; + + /* Save actual SMARTCARD configuration */ + tmpcr1 = READ_REG(hsmartcard->Instance->CR1); + + /* Disable SMARTCARD */ + __HAL_SMARTCARD_DISABLE(hsmartcard); + + /* Update RX threshold configuration */ + MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_RXFTCFG, Threshold); + + /* Determine the number of data to process during RX/TX ISR execution */ + SMARTCARDEx_SetNbDataToProcess(hsmartcard); + + /* Restore SMARTCARD configuration */ + MODIFY_REG(hsmartcard->Instance->CR1, USART_CR1_UE, tmpcr1); + + hsmartcard->gState = HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsmartcard); + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup SMARTCARDEx_Private_Functions SMARTCARD Extended Private Functions + * @{ + */ + +/** + * @brief Calculate the number of data to process in RX/TX ISR. + * @note The RX FIFO depth and the TX FIFO depth is extracted from + * the USART configuration registers. + * @param hsmartcard SMARTCARD handle. + * @retval None + */ +static void SMARTCARDEx_SetNbDataToProcess(SMARTCARD_HandleTypeDef *hsmartcard) +{ + uint8_t rx_fifo_depth; + uint8_t tx_fifo_depth; + uint8_t rx_fifo_threshold; + uint8_t tx_fifo_threshold; + /* 2 0U/1U added for MISRAC2012-Rule-18.1_b and MISRAC2012-Rule-18.1_d */ + static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U}; + static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U}; + + if (hsmartcard->FifoMode == SMARTCARD_FIFOMODE_DISABLE) + { + hsmartcard->NbTxDataToProcess = 1U; + hsmartcard->NbRxDataToProcess = 1U; + } + else + { + rx_fifo_depth = RX_FIFO_DEPTH; + tx_fifo_depth = TX_FIFO_DEPTH; + rx_fifo_threshold = (uint8_t)(READ_BIT(hsmartcard->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos); + tx_fifo_threshold = (uint8_t)(READ_BIT(hsmartcard->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos); + hsmartcard->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) / \ + (uint16_t)denominator[tx_fifo_threshold]; + hsmartcard->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) / \ + (uint16_t)denominator[rx_fifo_threshold]; + } +} + +/** + * @} + */ + +#endif /* HAL_SMARTCARD_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi.c new file mode 100644 index 0000000..080714b --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi.c @@ -0,0 +1,4429 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_spi.c + * @author MCD Application Team + * @brief SPI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Serial Peripheral Interface (SPI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The SPI HAL driver can be used as follows: + + (#) Declare a SPI_HandleTypeDef handle structure, for example: + SPI_HandleTypeDef hspi; + + (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API: + (##) Enable the SPIx interface clock + (##) SPI pins configuration + (+++) Enable the clock for the SPI GPIOs + (+++) Configure these SPI pins as alternate function push-pull + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the SPIx interrupt priority + (+++) Enable the NVIC SPI IRQ handle + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Stream/Channel + (+++) Enable the DMAx clock + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx Stream/Channel + (+++) Associate the initialized hdma_tx(or _rx) handle to the hspi DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream/Channel + + (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS + management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure. + + (#) Initialize the SPI registers by calling the HAL_SPI_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_SPI_MspInit() API. + [..] + Circular mode restriction: + (#) The DMA circular mode cannot be used when the SPI is configured in these modes: + (##) Master 2Lines RxOnly + (##) Master 1Line Rx + (#) The CRC feature is not managed when the DMA circular mode is enabled + (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs + the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks + [..] + Master Receive mode restriction: + (#) In Master unidirectional receive-only mode (MSTR =1, BIDIMODE=0, RXONLY=1) or + bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0), to ensure that the SPI + does not initiate a new transfer the following procedure has to be respected: + (##) HAL_SPI_DeInit() + (##) HAL_SPI_Init() + [..] + Callback registration: + + (#) The compilation flag USE_HAL_SPI_REGISTER_CALLBACKS when set to 1U + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_SPI_RegisterCallback() to register an interrupt callback. + + Function HAL_SPI_RegisterCallback() allows to register following callbacks: + (++) TxCpltCallback : SPI Tx Completed callback + (++) RxCpltCallback : SPI Rx Completed callback + (++) TxRxCpltCallback : SPI TxRx Completed callback + (++) TxHalfCpltCallback : SPI Tx Half Completed callback + (++) RxHalfCpltCallback : SPI Rx Half Completed callback + (++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback + (++) ErrorCallback : SPI Error callback + (++) AbortCpltCallback : SPI Abort callback + (++) MspInitCallback : SPI Msp Init callback + (++) MspDeInitCallback : SPI Msp DeInit callback + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + + (#) Use function HAL_SPI_UnRegisterCallback to reset a callback to the default + weak function. + HAL_SPI_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (++) TxCpltCallback : SPI Tx Completed callback + (++) RxCpltCallback : SPI Rx Completed callback + (++) TxRxCpltCallback : SPI TxRx Completed callback + (++) TxHalfCpltCallback : SPI Tx Half Completed callback + (++) RxHalfCpltCallback : SPI Rx Half Completed callback + (++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback + (++) ErrorCallback : SPI Error callback + (++) AbortCpltCallback : SPI Abort callback + (++) MspInitCallback : SPI Msp Init callback + (++) MspDeInitCallback : SPI Msp DeInit callback + + [..] + By default, after the HAL_SPI_Init() and when the state is HAL_SPI_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_SPI_MasterTxCpltCallback(), HAL_SPI_MasterRxCpltCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the HAL_SPI_Init()/ HAL_SPI_DeInit() only when + these callbacks are null (not registered beforehand). + If MspInit or MspDeInit are not null, the HAL_SPI_Init()/ HAL_SPI_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + + [..] + Callbacks can be registered/unregistered in HAL_SPI_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in HAL_SPI_STATE_READY or HAL_SPI_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + Then, the user first registers the MspInit/MspDeInit user callbacks + using HAL_SPI_RegisterCallback() before calling HAL_SPI_DeInit() + or HAL_SPI_Init() function. + + [..] + When the compilation define USE_HAL_PPP_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registering feature is not available + and weak (surcharged) callbacks are used. + + [..] + Using the HAL it is not possible to reach all supported SPI frequency with the different SPI Modes, + the following table resume the max SPI frequency reached with data size 8bits/16bits, + according to frequency of the APBx Peripheral Clock (fPCLK) used by the SPI instance. + + @endverbatim + + Additional table : + + DataSize = SPI_DATASIZE_8BIT: + +----------------------------------------------------------------------------------------------+ + | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line | + | Process | Transfer mode |---------------------|----------------------|----------------------| + | | | Master | Slave | Master | Slave | Master | Slave | + |==============================================================================================| + | T | Polling | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA | + | X |----------------|----------|----------|-----------|----------|-----------|----------| + | / | Interrupt | Fpclk/4 | Fpclk/16 | NA | NA | NA | NA | + | R |----------------|----------|----------|-----------|----------|-----------|----------| + | X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | + |=========|================|==========|==========|===========|==========|===========|==========| + | | Polling | Fpclk/4 | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | + | |----------------|----------|----------|-----------|----------|-----------|----------| + | R | Interrupt | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | Fpclk/4 | + | X |----------------|----------|----------|-----------|----------|-----------|----------| + | | DMA | Fpclk/4 | Fpclk/2 | Fpclk/2 | Fpclk/16 | Fpclk/2 | Fpclk/16 | + |=========|================|==========|==========|===========|==========|===========|==========| + | | Polling | Fpclk/8 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/8 | + | |----------------|----------|----------|-----------|----------|-----------|----------| + | T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/16 | Fpclk/8 | + | X |----------------|----------|----------|-----------|----------|-----------|----------| + | | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/16 | + +----------------------------------------------------------------------------------------------+ + + DataSize = SPI_DATASIZE_16BIT: + +----------------------------------------------------------------------------------------------+ + | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line | + | Process | Transfer mode |---------------------|----------------------|----------------------| + | | | Master | Slave | Master | Slave | Master | Slave | + |==============================================================================================| + | T | Polling | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA | + | X |----------------|----------|----------|-----------|----------|-----------|----------| + | / | Interrupt | Fpclk/4 | Fpclk/16 | NA | NA | NA | NA | + | R |----------------|----------|----------|-----------|----------|-----------|----------| + | X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | + |=========|================|==========|==========|===========|==========|===========|==========| + | | Polling | Fpclk/4 | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | + | |----------------|----------|----------|-----------|----------|-----------|----------| + | R | Interrupt | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | Fpclk/4 | + | X |----------------|----------|----------|-----------|----------|-----------|----------| + | | DMA | Fpclk/4 | Fpclk/2 | Fpclk/2 | Fpclk/16 | Fpclk/2 | Fpclk/16 | + |=========|================|==========|==========|===========|==========|===========|==========| + | | Polling | Fpclk/8 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/8 | + | |----------------|----------|----------|-----------|----------|-----------|----------| + | T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/16 | Fpclk/8 | + | X |----------------|----------|----------|-----------|----------|-----------|----------| + | | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/16 | + +----------------------------------------------------------------------------------------------+ + @note The max SPI frequency depend on SPI data size (4bits, 5bits,..., 8bits,...15bits, 16bits), + SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA). + @note + (#) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA() + (#) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA() + (#) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA() + + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup SPI SPI + * @brief SPI HAL module driver + * @{ + */ +#ifdef HAL_SPI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @defgroup SPI_Private_Constants SPI Private Constants + * @{ + */ +#define SPI_DEFAULT_TIMEOUT 100U +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup SPI_Private_Functions SPI Private Functions + * @{ + */ +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAError(DMA_HandleTypeDef *hdma); +static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma); +static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State, + uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, + uint32_t Timeout, uint32_t Tickstart); +static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi); +#if (USE_SPI_CRC != 0U) +static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); +static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); +static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); +#endif /* USE_SPI_CRC */ +static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi); +static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi); +static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi); +static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi); +static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi); +static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SPI_Exported_Functions SPI Exported Functions + * @{ + */ + +/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SPIx peripheral: + + (+) User must implement HAL_SPI_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SPI_Init() to configure the selected device with + the selected configuration: + (++) Mode + (++) Direction + (++) Data Size + (++) Clock Polarity and Phase + (++) NSS Management + (++) BaudRate Prescaler + (++) FirstBit + (++) TIMode + (++) CRC Calculation + (++) CRC Polynomial if CRC enabled + (++) CRC Length, used only with Data8 and Data16 + (++) FIFO reception threshold + + (+) Call the function HAL_SPI_DeInit() to restore the default configuration + of the selected SPIx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the SPI according to the specified parameters + * in the SPI_InitTypeDef and initialize the associated handle. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi) +{ + uint32_t frxth; + + /* Check the SPI handle allocation */ + if (hspi == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); + assert_param(IS_SPI_MODE(hspi->Init.Mode)); + assert_param(IS_SPI_DIRECTION(hspi->Init.Direction)); + assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize)); + assert_param(IS_SPI_NSS(hspi->Init.NSS)); + assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode)); + assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); + assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit)); + assert_param(IS_SPI_TIMODE(hspi->Init.TIMode)); + if (hspi->Init.TIMode == SPI_TIMODE_DISABLE) + { + assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity)); + assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase)); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); + } + else + { + /* Baudrate prescaler not use in Motoraola Slave mode. force to default value */ + hspi->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; + } + } + else + { + assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); + + /* Force polarity and phase to TI protocaol requirements */ + hspi->Init.CLKPolarity = SPI_POLARITY_LOW; + hspi->Init.CLKPhase = SPI_PHASE_1EDGE; + } +#if (USE_SPI_CRC != 0U) + assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation)); + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial)); + assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength)); + } +#else + hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; +#endif /* USE_SPI_CRC */ + + if (hspi->State == HAL_SPI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hspi->Lock = HAL_UNLOCKED; + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + /* Init the SPI Callback settings */ + hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ + hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ + hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ + hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ + hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ + hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + + if (hspi->MspInitCallback == NULL) + { + hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + hspi->MspInitCallback(hspi); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_SPI_MspInit(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + + hspi->State = HAL_SPI_STATE_BUSY; + + /* Disable the selected SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Align by default the rs fifo threshold on the data size */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + frxth = SPI_RXFIFO_THRESHOLD_HF; + } + else + { + frxth = SPI_RXFIFO_THRESHOLD_QF; + } + + /* CRC calculation is valid only for 16Bit and 8 Bit */ + if ((hspi->Init.DataSize != SPI_DATASIZE_16BIT) && (hspi->Init.DataSize != SPI_DATASIZE_8BIT)) + { + /* CRC must be disabled */ + hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; + } + + /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/ + /* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management, + Communication speed, First bit and CRC calculation state */ + WRITE_REG(hspi->Instance->CR1, ((hspi->Init.Mode & (SPI_CR1_MSTR | SPI_CR1_SSI)) | + (hspi->Init.Direction & (SPI_CR1_RXONLY | SPI_CR1_BIDIMODE)) | + (hspi->Init.CLKPolarity & SPI_CR1_CPOL) | + (hspi->Init.CLKPhase & SPI_CR1_CPHA) | + (hspi->Init.NSS & SPI_CR1_SSM) | + (hspi->Init.BaudRatePrescaler & SPI_CR1_BR_Msk) | + (hspi->Init.FirstBit & SPI_CR1_LSBFIRST) | + (hspi->Init.CRCCalculation & SPI_CR1_CRCEN))); +#if (USE_SPI_CRC != 0U) + /*---------------------------- SPIx CRCL Configuration -------------------*/ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Align the CRC Length on the data size */ + if (hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE) + { + /* CRC Length aligned on the data size : value set by default */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + hspi->Init.CRCLength = SPI_CRC_LENGTH_16BIT; + } + else + { + hspi->Init.CRCLength = SPI_CRC_LENGTH_8BIT; + } + } + + /* Configure : CRC Length */ + if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCL); + } + } +#endif /* USE_SPI_CRC */ + + /* Configure : NSS management, TI Mode, NSS Pulse, Data size and Rx Fifo threshold */ + WRITE_REG(hspi->Instance->CR2, (((hspi->Init.NSS >> 16U) & SPI_CR2_SSOE) | + (hspi->Init.TIMode & SPI_CR2_FRF) | + (hspi->Init.NSSPMode & SPI_CR2_NSSP) | + (hspi->Init.DataSize & SPI_CR2_DS_Msk) | + (frxth & SPI_CR2_FRXTH))); + +#if (USE_SPI_CRC != 0U) + /*---------------------------- SPIx CRCPOLY Configuration ------------------*/ + /* Configure : CRC Polynomial */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + WRITE_REG(hspi->Instance->CRCPR, (hspi->Init.CRCPolynomial & SPI_CRCPR_CRCPOLY_Msk)); + } +#endif /* USE_SPI_CRC */ + +#if defined(SPI_I2SCFGR_I2SMOD) + /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */ + CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD); +#endif /* SPI_I2SCFGR_I2SMOD */ + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State = HAL_SPI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief De-Initialize the SPI peripheral. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi) +{ + /* Check the SPI handle allocation */ + if (hspi == NULL) + { + return HAL_ERROR; + } + + /* Check SPI Instance parameter */ + assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); + + hspi->State = HAL_SPI_STATE_BUSY; + + /* Disable the SPI Peripheral Clock */ + __HAL_SPI_DISABLE(hspi); + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + if (hspi->MspDeInitCallback == NULL) + { + hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + hspi->MspDeInitCallback(hspi); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_SPI_MspDeInit(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State = HAL_SPI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Initialize the SPI MSP. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_MspInit should be implemented in the user file + */ +} + +/** + * @brief De-Initialize the SPI MSP. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_MspDeInit should be implemented in the user file + */ +} + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) +/** + * @brief Register a User SPI Callback + * To be used instead of the weak predefined callback + * @param hspi Pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI. + * @param CallbackID ID of the callback to be registered + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID, + pSPI_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hspi->ErrorCode |= HAL_SPI_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hspi); + + if (HAL_SPI_STATE_READY == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_TX_COMPLETE_CB_ID : + hspi->TxCpltCallback = pCallback; + break; + + case HAL_SPI_RX_COMPLETE_CB_ID : + hspi->RxCpltCallback = pCallback; + break; + + case HAL_SPI_TX_RX_COMPLETE_CB_ID : + hspi->TxRxCpltCallback = pCallback; + break; + + case HAL_SPI_TX_HALF_COMPLETE_CB_ID : + hspi->TxHalfCpltCallback = pCallback; + break; + + case HAL_SPI_RX_HALF_COMPLETE_CB_ID : + hspi->RxHalfCpltCallback = pCallback; + break; + + case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : + hspi->TxRxHalfCpltCallback = pCallback; + break; + + case HAL_SPI_ERROR_CB_ID : + hspi->ErrorCallback = pCallback; + break; + + case HAL_SPI_ABORT_CB_ID : + hspi->AbortCpltCallback = pCallback; + break; + + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = pCallback; + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_SPI_STATE_RESET == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = pCallback; + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hspi); + return status; +} + +/** + * @brief Unregister an SPI Callback + * SPI callback is redirected to the weak predefined callback + * @param hspi Pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI. + * @param CallbackID ID of the callback to be unregistered + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hspi); + + if (HAL_SPI_STATE_READY == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_TX_COMPLETE_CB_ID : + hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ + break; + + case HAL_SPI_RX_COMPLETE_CB_ID : + hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ + break; + + case HAL_SPI_TX_RX_COMPLETE_CB_ID : + hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ + break; + + case HAL_SPI_TX_HALF_COMPLETE_CB_ID : + hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + break; + + case HAL_SPI_RX_HALF_COMPLETE_CB_ID : + hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + break; + + case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : + hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ + break; + + case HAL_SPI_ERROR_CB_ID : + hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_SPI_ABORT_CB_ID : + hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_SPI_STATE_RESET == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hspi); + return status; +} +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SPI + data transfers. + + [..] The SPI supports master and slave mode : + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: The communication is performed using Interrupts + or DMA, These APIs return the HAL status. + The end of the data processing will be indicated through the + dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected + + (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA) + exist for 1Line (simplex) and 2Lines (full duplex) modes. + +@endverbatim + * @{ + */ + +/** + * @brief Transmit an amount of data in blocking mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData pointer to data buffer + * @param Size amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + HAL_StatusTypeDef errorcode = HAL_OK; + uint16_t initial_TxXferCount; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + initial_TxXferCount = Size; + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((pData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->pRxBuffPtr = (uint8_t *)NULL; + hspi->RxXferSize = 0U; + hspi->RxXferCount = 0U; + hspi->TxISR = NULL; + hspi->RxISR = NULL; + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ + __HAL_SPI_DISABLE(hspi); + SPI_1LINE_TX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif /* USE_SPI_CRC */ + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Transmit data in 16 Bit mode */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + } + /* Transmit data in 16 Bit mode */ + while (hspi->TxXferCount > 0U) + { + /* Wait until TXE flag is set to send data */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + errorcode = HAL_TIMEOUT; + hspi->State = HAL_SPI_STATE_READY; + goto error; + } + } + } + } + /* Transmit data in 8 Bit mode */ + else + { + if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) + { + *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint8_t); + hspi->TxXferCount--; + } + while (hspi->TxXferCount > 0U) + { + /* Wait until TXE flag is set to send data */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) + { + *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint8_t); + hspi->TxXferCount--; + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + errorcode = HAL_TIMEOUT; + hspi->State = HAL_SPI_STATE_READY; + goto error; + } + } + } + } +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + + /* Check the end of the transaction */ + if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + + /* Clear overrun flag in 2 Lines communication mode because received is not read */ + if (hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + errorcode = HAL_ERROR; + } + else + { + hspi->State = HAL_SPI_STATE_READY; + } + +error: + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Receive an amount of data in blocking mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData pointer to data buffer + * @param Size amount of data to be received + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ +#if (USE_SPI_CRC != 0U) + __IO uint32_t tmpreg = 0U; + __IO uint8_t *ptmpreg8; + __IO uint8_t tmpreg8 = 0; +#endif /* USE_SPI_CRC */ + uint32_t tickstart; + HAL_StatusTypeDef errorcode = HAL_OK; + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) + { + hspi->State = HAL_SPI_STATE_BUSY_RX; + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout); + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if ((pData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->pTxBuffPtr = (uint8_t *)NULL; + hspi->TxXferSize = 0U; + hspi->TxXferCount = 0U; + hspi->RxISR = NULL; + hspi->TxISR = NULL; + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + /* this is done to handle the CRCNEXT before the latest data */ + hspi->RxXferCount--; + } +#endif /* USE_SPI_CRC */ + + /* Set the Rx Fifo threshold */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Set RX Fifo threshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* Set RX Fifo threshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + + /* Configure communication direction: 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ + __HAL_SPI_DISABLE(hspi); + SPI_1LINE_RX(hspi); + } + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Receive data in 8 Bit mode */ + if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT) + { + /* Transfer loop */ + while (hspi->RxXferCount > 0U) + { + /* Check the RXNE flag */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) + { + /* read the received data */ + (* (uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint8_t); + hspi->RxXferCount--; + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + errorcode = HAL_TIMEOUT; + hspi->State = HAL_SPI_STATE_READY; + goto error; + } + } + } + } + else + { + /* Transfer loop */ + while (hspi->RxXferCount > 0U) + { + /* Check the RXNE flag */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) + { + *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + errorcode = HAL_TIMEOUT; + hspi->State = HAL_SPI_STATE_READY; + goto error; + } + } + } + } + +#if (USE_SPI_CRC != 0U) + /* Handle the CRC Transmission */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* freeze the CRC before the latest data */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + + /* Read the latest data */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) + { + /* the latest data has not been received */ + errorcode = HAL_TIMEOUT; + goto error; + } + + /* Receive last data in 16 Bit mode */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; + } + /* Receive last data in 8 Bit mode */ + else + { + (*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; + } + + /* Wait the CRC data */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + errorcode = HAL_TIMEOUT; + goto error; + } + + /* Read CRC to Flush DR and RXNE flag */ + if (hspi->Init.DataSize == SPI_DATASIZE_16BIT) + { + /* Read 16bit CRC */ + tmpreg = READ_REG(hspi->Instance->DR); + /* To avoid GCC warning */ + UNUSED(tmpreg); + } + else + { + /* Initialize the 8bit temporary pointer */ + ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; + /* Read 8bit CRC */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + + if ((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) + { + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) + { + /* Error on the CRC reception */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + errorcode = HAL_TIMEOUT; + goto error; + } + /* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + } + } + } +#endif /* USE_SPI_CRC */ + + /* Check the end of the transaction */ + if (SPI_EndRxTransaction(hspi, Timeout, tickstart) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } +#endif /* USE_SPI_CRC */ + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + errorcode = HAL_ERROR; + } + else + { + hspi->State = HAL_SPI_STATE_READY; + } + +error : + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in blocking mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData pointer to transmission data buffer + * @param pRxData pointer to reception data buffer + * @param Size amount of data to be sent and received + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, + uint32_t Timeout) +{ + uint16_t initial_TxXferCount; + uint32_t tmp_mode; + HAL_SPI_StateTypeDef tmp_state; + uint32_t tickstart; +#if (USE_SPI_CRC != 0U) + __IO uint32_t tmpreg = 0U; + uint32_t spi_cr1; + uint32_t spi_cr2; + __IO uint8_t *ptmpreg8; + __IO uint8_t tmpreg8 = 0; +#endif /* USE_SPI_CRC */ + + /* Variable used to alternate Rx and Tx during transfer */ + uint32_t txallowed = 1U; + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + /* Init temporary variables */ + tmp_state = hspi->State; + tmp_mode = hspi->Init.Mode; + initial_TxXferCount = Size; +#if (USE_SPI_CRC != 0U) + spi_cr1 = READ_REG(hspi->Instance->CR1); + spi_cr2 = READ_REG(hspi->Instance->CR2); +#endif /* USE_SPI_CRC */ + + if (!((tmp_state == HAL_SPI_STATE_READY) || \ + ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if (hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Set the transaction information */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pRxData; + hspi->RxXferCount = Size; + hspi->RxXferSize = Size; + hspi->pTxBuffPtr = (uint8_t *)pTxData; + hspi->TxXferCount = Size; + hspi->TxXferSize = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = NULL; + hspi->TxISR = NULL; + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif /* USE_SPI_CRC */ + + /* Set the Rx Fifo threshold */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Set fiforxthreshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* Set fiforxthreshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Transmit and Receive data in 16 Bit mode */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ + if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); + } + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + + } + while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U)) + { + /* Check TXE flag */ + if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U)) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + /* Next Data is a reception (Rx). Tx not allowed */ + txallowed = 0U; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ + if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); + } + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + } + + /* Check RXNE flag */ + if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U)) + { + *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + /* Next Data is a Transmission (Tx). Tx is allowed */ + txallowed = 1U; + } + if (((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) + { + errorcode = HAL_TIMEOUT; + hspi->State = HAL_SPI_STATE_READY; + goto error; + } + } + } + /* Transmit and Receive data in 8 Bit mode */ + else + { + if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) + { + *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint8_t); + hspi->TxXferCount--; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ + if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); + } + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + } + while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U)) + { + /* Check TXE flag */ + if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U)) + { + *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); + hspi->pTxBuffPtr++; + hspi->TxXferCount--; + /* Next Data is a reception (Rx). Tx not allowed */ + txallowed = 0U; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ + if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); + } + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + } + + /* Wait until RXNE flag is reset */ + if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U)) + { + (*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; + hspi->pRxBuffPtr++; + hspi->RxXferCount--; + /* Next Data is a Transmission (Tx). Tx is allowed */ + txallowed = 1U; + } + if ((((HAL_GetTick() - tickstart) >= Timeout) && ((Timeout != HAL_MAX_DELAY))) || (Timeout == 0U)) + { + errorcode = HAL_TIMEOUT; + hspi->State = HAL_SPI_STATE_READY; + goto error; + } + } + } + +#if (USE_SPI_CRC != 0U) + /* Read CRC from DR to close CRC calculation process */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait until TXE flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) + { + /* Error on the CRC reception */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + errorcode = HAL_TIMEOUT; + goto error; + } + /* Read CRC */ + if (hspi->Init.DataSize == SPI_DATASIZE_16BIT) + { + /* Read 16bit CRC */ + tmpreg = READ_REG(hspi->Instance->DR); + /* To avoid GCC warning */ + UNUSED(tmpreg); + } + else + { + /* Initialize the 8bit temporary pointer */ + ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; + /* Read 8bit CRC */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + + if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) + { + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) + { + /* Error on the CRC reception */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + errorcode = HAL_TIMEOUT; + goto error; + } + /* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + } + } + } + + /* Check if CRC error occurred */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + /* Clear CRC Flag */ + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + + errorcode = HAL_ERROR; + } +#endif /* USE_SPI_CRC */ + + /* Check the end of the transaction */ + if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK) + { + errorcode = HAL_ERROR; + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + errorcode = HAL_ERROR; + } + else + { + hspi->State = HAL_SPI_STATE_READY; + } + +error : + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData pointer to data buffer + * @param Size amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + + if ((pData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->pRxBuffPtr = (uint8_t *)NULL; + hspi->RxXferSize = 0U; + hspi->RxXferCount = 0U; + hspi->RxISR = NULL; + + /* Set the function for IT treatment */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + hspi->TxISR = SPI_TxISR_16BIT; + } + else + { + hspi->TxISR = SPI_TxISR_8BIT; + } + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ + __HAL_SPI_DISABLE(hspi); + SPI_1LINE_TX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif /* USE_SPI_CRC */ + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + /* Enable TXE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); + +error : + return errorcode; +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData pointer to data buffer + * @param Size amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) + { + hspi->State = HAL_SPI_STATE_BUSY_RX; + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size); + } + + + if ((pData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->pTxBuffPtr = (uint8_t *)NULL; + hspi->TxXferSize = 0U; + hspi->TxXferCount = 0U; + hspi->TxISR = NULL; + + /* Check the data size to adapt Rx threshold and the set the function for IT treatment */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Set RX Fifo threshold according the reception data length: 16 bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + hspi->RxISR = SPI_RxISR_16BIT; + } + else + { + /* Set RX Fifo threshold according the reception data length: 8 bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + hspi->RxISR = SPI_RxISR_8BIT; + } + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ + __HAL_SPI_DISABLE(hspi); + SPI_1LINE_RX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->CRCSize = 1U; + if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) + { + hspi->CRCSize = 2U; + } + SPI_RESET_CRC(hspi); + } + else + { + hspi->CRCSize = 0U; + } +#endif /* USE_SPI_CRC */ + + /* Note : The SPI must be enabled after unlocking current process + to avoid the risk of SPI interrupt handle execution before current + process unlock */ + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + /* Enable RXNE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + +error : + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData pointer to transmission data buffer + * @param pRxData pointer to reception data buffer + * @param Size amount of data to be sent and received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + uint32_t tmp_mode; + HAL_SPI_StateTypeDef tmp_state; + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Init temporary variables */ + tmp_state = hspi->State; + tmp_mode = hspi->Init.Mode; + + if (!((tmp_state == HAL_SPI_STATE_READY) || \ + ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Process locked */ + __HAL_LOCK(hspi); + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if (hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Set the transaction information */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Set the function for IT treatment */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + hspi->RxISR = SPI_2linesRxISR_16BIT; + hspi->TxISR = SPI_2linesTxISR_16BIT; + } + else + { + hspi->RxISR = SPI_2linesRxISR_8BIT; + hspi->TxISR = SPI_2linesTxISR_8BIT; + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->CRCSize = 1U; + if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) + { + hspi->CRCSize = 2U; + } + SPI_RESET_CRC(hspi); + } + else + { + hspi->CRCSize = 0U; + } +#endif /* USE_SPI_CRC */ + + /* Check if packing mode is enabled and if there is more than 2 data to receive */ + if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (Size >= 2U)) + { + /* Set RX Fifo threshold according the reception data length: 16 bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* Set RX Fifo threshold according the reception data length: 8 bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + /* Enable TXE, RXNE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + +error : + return errorcode; +} + +/** + * @brief Transmit an amount of data in non-blocking mode with DMA. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData pointer to data buffer + * @param Size amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check tx dma handle */ + assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((pData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->pRxBuffPtr = (uint8_t *)NULL; + hspi->TxISR = NULL; + hspi->RxISR = NULL; + hspi->RxXferSize = 0U; + hspi->RxXferCount = 0U; + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ + __HAL_SPI_DISABLE(hspi); + SPI_1LINE_TX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif /* USE_SPI_CRC */ + + /* Set the SPI TxDMA Half transfer complete callback */ + hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt; + + /* Set the SPI TxDMA transfer complete callback */ + hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt; + + /* Set the DMA error callback */ + hspi->hdmatx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA AbortCpltCallback */ + hspi->hdmatx->XferAbortCallback = NULL; + + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + /* Packing mode is enabled only if the DMA setting is HALWORD */ + if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)) + { + /* Check the even/odd of the data size + crc if enabled */ + if ((hspi->TxXferCount & 0x1U) == 0U) + { + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = (hspi->TxXferCount >> 1U); + } + else + { + SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = (hspi->TxXferCount >> 1U) + 1U; + } + } + + /* Enable the Tx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, + hspi->TxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + + goto error; + } + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Enable the SPI Error Interrupt Bit */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); + + /* Enable Tx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); + +error : + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Receive an amount of data in non-blocking mode with DMA. + * @note In case of MASTER mode and SPI_DIRECTION_2LINES direction, hdmatx shall be defined. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData pointer to data buffer + * @note When the CRC feature is enabled the pData Length must be Size + 1. + * @param Size amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check rx dma handle */ + assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) + { + hspi->State = HAL_SPI_STATE_BUSY_RX; + + /* Check tx dma handle */ + assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); + + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size); + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + if ((pData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = NULL; + hspi->TxISR = NULL; + hspi->TxXferSize = 0U; + hspi->TxXferCount = 0U; + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + /* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */ + __HAL_SPI_DISABLE(hspi); + SPI_1LINE_RX(hspi); + } + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif /* USE_SPI_CRC */ + + + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Set RX Fifo threshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* Set RX Fifo threshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + /* Set RX Fifo threshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + + if ((hspi->RxXferCount & 0x1U) == 0x0U) + { + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + hspi->RxXferCount = hspi->RxXferCount >> 1U; + } + else + { + SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + hspi->RxXferCount = (hspi->RxXferCount >> 1U) + 1U; + } + } + } + + /* Set the SPI RxDMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + + /* Set the SPI Rx DMA transfer complete callback */ + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA AbortCpltCallback */ + hspi->hdmarx->XferAbortCallback = NULL; + + /* Enable the Rx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, + hspi->RxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + + goto error; + } + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Enable the SPI Error Interrupt Bit */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); + + /* Enable Rx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); + +error: + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in non-blocking mode with DMA. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData pointer to transmission data buffer + * @param pRxData pointer to reception data buffer + * @note When the CRC feature is enabled the pRxData Length must be Size + 1 + * @param Size amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, + uint16_t Size) +{ + uint32_t tmp_mode; + HAL_SPI_StateTypeDef tmp_state; + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check rx & tx dma handles */ + assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); + assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process locked */ + __HAL_LOCK(hspi); + + /* Init temporary variables */ + tmp_state = hspi->State; + tmp_mode = hspi->Init.Mode; + + if (!((tmp_state == HAL_SPI_STATE_READY) || + ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) + { + errorcode = HAL_BUSY; + goto error; + } + + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + errorcode = HAL_ERROR; + goto error; + } + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if (hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Set the transaction information */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->RxISR = NULL; + hspi->TxISR = NULL; + +#if (USE_SPI_CRC != 0U) + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } +#endif /* USE_SPI_CRC */ + + /* Reset the threshold bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX); + + /* The packing mode management is enabled by the DMA settings according the spi data size */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Set fiforxthreshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + else + { + /* Set RX Fifo threshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + + if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + if ((hspi->TxXferSize & 0x1U) == 0x0U) + { + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = hspi->TxXferCount >> 1U; + } + else + { + SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); + hspi->TxXferCount = (hspi->TxXferCount >> 1U) + 1U; + } + } + + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + /* Set RX Fifo threshold according the reception data length: 16bit */ + CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + + if ((hspi->RxXferCount & 0x1U) == 0x0U) + { + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + hspi->RxXferCount = hspi->RxXferCount >> 1U; + } + else + { + SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); + hspi->RxXferCount = (hspi->RxXferCount >> 1U) + 1U; + } + } + } + + /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */ + if (hspi->State == HAL_SPI_STATE_BUSY_RX) + { + /* Set the SPI Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + } + else + { + /* Set the SPI Tx/Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; + hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; + } + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA AbortCpltCallback */ + hspi->hdmarx->XferAbortCallback = NULL; + + /* Enable the Rx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, + hspi->RxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + + goto error; + } + + /* Enable Rx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); + + /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing + is performed in DMA reception complete callback */ + hspi->hdmatx->XferHalfCpltCallback = NULL; + hspi->hdmatx->XferCpltCallback = NULL; + hspi->hdmatx->XferErrorCallback = NULL; + hspi->hdmatx->XferAbortCallback = NULL; + + /* Enable the Tx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, + hspi->TxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + + goto error; + } + + /* Check if the SPI is already enabled */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + /* Enable the SPI Error Interrupt Bit */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); + + /* Enable Tx DMA Request */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); + +error : + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Abort ongoing transfer (blocking mode). + * @param hspi SPI handle. + * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), + * started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SPI Interrupts (depending of transfer direction) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi) +{ + HAL_StatusTypeDef errorcode; + __IO uint32_t count; + __IO uint32_t resetcount; + + /* Initialized local variable */ + errorcode = HAL_OK; + resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); + count = resetcount; + + /* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE); + + /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)) + { + hspi->TxISR = SPI_AbortTx_ISR; + /* Wait HAL_SPI_STATE_ABORT state */ + do + { + if (count == 0U) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + count--; + } while (hspi->State != HAL_SPI_STATE_ABORT); + /* Reset Timeout Counter */ + count = resetcount; + } + + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) + { + hspi->RxISR = SPI_AbortRx_ISR; + /* Wait HAL_SPI_STATE_ABORT state */ + do + { + if (count == 0U) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + count--; + } while (hspi->State != HAL_SPI_STATE_ABORT); + /* Reset Timeout Counter */ + count = resetcount; + } + + /* Disable the SPI DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) + { + /* Abort the SPI DMA Tx Stream/Channel : use blocking DMA Abort API (no callback) */ + if (hspi->hdmatx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */ + hspi->hdmatx->XferAbortCallback = NULL; + + /* Abort DMA Tx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort(hspi->hdmatx) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Disable Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN)); + + if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Disable SPI Peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + } + } + + /* Disable the SPI DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) + { + /* Abort the SPI DMA Rx Stream/Channel : use blocking DMA Abort API (no callback) */ + if (hspi->hdmarx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */ + hspi->hdmarx->XferAbortCallback = NULL; + + /* Abort DMA Rx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort(hspi->hdmarx) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Disable peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Control the BSY flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Disable Rx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXDMAEN)); + } + } + /* Reset Tx and Rx transfer counters */ + hspi->RxXferCount = 0U; + hspi->TxXferCount = 0U; + + /* Check error during Abort procedure */ + if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) + { + /* return HAL_Error in case of error during Abort procedure */ + errorcode = HAL_ERROR; + } + else + { + /* Reset errorCode */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + } + + /* Clear the Error flags in the SR register */ + __HAL_SPI_CLEAR_OVRFLAG(hspi); + __HAL_SPI_CLEAR_FREFLAG(hspi); + + /* Restore hspi->state to ready */ + hspi->State = HAL_SPI_STATE_READY; + + return errorcode; +} + +/** + * @brief Abort ongoing transfer (Interrupt mode). + * @param hspi SPI handle. + * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), + * started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable SPI Interrupts (depending of transfer direction) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi) +{ + HAL_StatusTypeDef errorcode; + uint32_t abortcplt ; + __IO uint32_t count; + __IO uint32_t resetcount; + + /* Initialized local variable */ + errorcode = HAL_OK; + abortcplt = 1U; + resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); + count = resetcount; + + /* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE); + + /* Change Rx and Tx Irq Handler to Disable TXEIE, RXNEIE and ERRIE interrupts */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)) + { + hspi->TxISR = SPI_AbortTx_ISR; + /* Wait HAL_SPI_STATE_ABORT state */ + do + { + if (count == 0U) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + count--; + } while (hspi->State != HAL_SPI_STATE_ABORT); + /* Reset Timeout Counter */ + count = resetcount; + } + + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) + { + hspi->RxISR = SPI_AbortRx_ISR; + /* Wait HAL_SPI_STATE_ABORT state */ + do + { + if (count == 0U) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + count--; + } while (hspi->State != HAL_SPI_STATE_ABORT); + /* Reset Timeout Counter */ + count = resetcount; + } + + /* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialised + before any call to DMA Abort functions */ + /* DMA Tx Handle is valid */ + if (hspi->hdmatx != NULL) + { + /* Set DMA Abort Complete callback if UART DMA Tx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) + { + hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback; + } + else + { + hspi->hdmatx->XferAbortCallback = NULL; + } + } + /* DMA Rx Handle is valid */ + if (hspi->hdmarx != NULL) + { + /* Set DMA Abort Complete callback if UART DMA Rx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) + { + hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback; + } + else + { + hspi->hdmarx->XferAbortCallback = NULL; + } + } + + /* Disable the SPI DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) + { + /* Abort the SPI DMA Tx Stream/Channel */ + if (hspi->hdmatx != NULL) + { + /* Abort DMA Tx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK) + { + hspi->hdmatx->XferAbortCallback = NULL; + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + else + { + abortcplt = 0U; + } + } + } + /* Disable the SPI DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) + { + /* Abort the SPI DMA Rx Stream/Channel */ + if (hspi->hdmarx != NULL) + { + /* Abort DMA Rx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK) + { + hspi->hdmarx->XferAbortCallback = NULL; + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + else + { + abortcplt = 0U; + } + } + } + + if (abortcplt == 1U) + { + /* Reset Tx and Rx transfer counters */ + hspi->RxXferCount = 0U; + hspi->TxXferCount = 0U; + + /* Check error during Abort procedure */ + if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) + { + /* return HAL_Error in case of error during Abort procedure */ + errorcode = HAL_ERROR; + } + else + { + /* Reset errorCode */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + } + + /* Clear the Error flags in the SR register */ + __HAL_SPI_CLEAR_OVRFLAG(hspi); + __HAL_SPI_CLEAR_FREFLAG(hspi); + + /* Restore hspi->State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->AbortCpltCallback(hspi); +#else + HAL_SPI_AbortCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + + return errorcode; +} + +/** + * @brief Pause the DMA Transfer. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi) +{ + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Disable the SPI DMA Tx & Rx requests */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Resume the DMA Transfer. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi) +{ + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Enable the SPI DMA Tx & Rx requests */ + SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Stop the DMA Transfer. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + /* The Lock is not implemented on this API to allow the user application + to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback(): + when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated + and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback() + */ + + /* Abort the SPI DMA tx Stream/Channel */ + if (hspi->hdmatx != NULL) + { + if (HAL_OK != HAL_DMA_Abort(hspi->hdmatx)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + } + } + /* Abort the SPI DMA rx Stream/Channel */ + if (hspi->hdmarx != NULL) + { + if (HAL_OK != HAL_DMA_Abort(hspi->hdmarx)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + } + } + + /* Disable the SPI DMA Tx & Rx requests */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + hspi->State = HAL_SPI_STATE_READY; + return errorcode; +} + +/** + * @brief Handle SPI interrupt request. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval None + */ +void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi) +{ + uint32_t itsource = hspi->Instance->CR2; + uint32_t itflag = hspi->Instance->SR; + + /* SPI in mode Receiver ----------------------------------------------------*/ + if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) == RESET) && + (SPI_CHECK_FLAG(itflag, SPI_FLAG_RXNE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_RXNE) != RESET)) + { + hspi->RxISR(hspi); + return; + } + + /* SPI in mode Transmitter -------------------------------------------------*/ + if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_TXE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_TXE) != RESET)) + { + hspi->TxISR(hspi); + return; + } + + /* SPI in Error Treatment --------------------------------------------------*/ + if (((SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) || (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET) + || (SPI_CHECK_FLAG(itflag, SPI_FLAG_FRE) != RESET)) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_ERR) != RESET)) + { + /* SPI Overrun error interrupt occurred ----------------------------------*/ + if (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET) + { + if (hspi->State != HAL_SPI_STATE_BUSY_TX) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR); + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + else + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + return; + } + } + + /* SPI Mode Fault error interrupt occurred -------------------------------*/ + if (SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF); + __HAL_SPI_CLEAR_MODFFLAG(hspi); + } + + /* SPI Frame error interrupt occurred ------------------------------------*/ + if (SPI_CHECK_FLAG(itflag, SPI_FLAG_FRE) != RESET) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FRE); + __HAL_SPI_CLEAR_FREFLAG(hspi); + } + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + /* Disable all interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR); + + hspi->State = HAL_SPI_STATE_READY; + /* Disable the SPI DMA requests if enabled */ + if ((HAL_IS_BIT_SET(itsource, SPI_CR2_TXDMAEN)) || (HAL_IS_BIT_SET(itsource, SPI_CR2_RXDMAEN))) + { + CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN)); + + /* Abort the SPI DMA Rx channel */ + if (hspi->hdmarx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ + hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError; + if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmarx)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + } + } + /* Abort the SPI DMA Tx channel */ + if (hspi->hdmatx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ + hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; + if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmatx)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + } + } + } + else + { + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + } + return; + } +} + +/** + * @brief Tx Transfer completed callback. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_RxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Transfer completed callback. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxRxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callback. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxHalfCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callback. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Half Transfer callback. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file + */ +} + +/** + * @brief SPI error callback. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_ErrorCallback should be implemented in the user file + */ + /* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes + and user can use HAL_SPI_GetError() API to check the latest error occurred + */ +} + +/** + * @brief SPI Abort Complete callback. + * @param hspi SPI handle. + * @retval None + */ +__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_AbortCpltCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief SPI control functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SPI. + (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral + (+) HAL_SPI_GetError() check in run-time Errors occurring during communication +@endverbatim + * @{ + */ + +/** + * @brief Return the SPI handle state. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval SPI state + */ +HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi) +{ + /* Return SPI handle state */ + return hspi->State; +} + +/** + * @brief Return the SPI error code. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval SPI error code in bitmap format + */ +uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi) +{ + /* Return SPI ErrorCode */ + return hspi->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup SPI_Private_Functions + * @brief Private functions + * @{ + */ + +/** + * @brief DMA SPI transmit process complete callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + uint32_t tickstart; + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + /* DMA Normal Mode */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) + { + /* Disable ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); + + /* Disable Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); + + /* Check the end of the transaction */ + if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + + /* Clear overrun flag in 2 Lines communication mode because received data is not read */ + if (hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + hspi->TxXferCount = 0U; + hspi->State = HAL_SPI_STATE_READY; + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + return; + } + } + /* Call user Tx complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->TxCpltCallback(hspi); +#else + HAL_SPI_TxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI receive process complete callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + uint32_t tickstart; +#if (USE_SPI_CRC != 0U) + __IO uint32_t tmpreg = 0U; + __IO uint8_t *ptmpreg8; + __IO uint8_t tmpreg8 = 0; +#endif /* USE_SPI_CRC */ + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + /* DMA Normal Mode */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) + { + /* Disable ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); + +#if (USE_SPI_CRC != 0U) + /* CRC handling */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait until RXNE flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + /* Error on the CRC reception */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + } + /* Read CRC */ + if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Read 16bit CRC */ + tmpreg = READ_REG(hspi->Instance->DR); + /* To avoid GCC warning */ + UNUSED(tmpreg); + } + else + { + /* Initialize the 8bit temporary pointer */ + ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; + /* Read 8bit CRC */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + + if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) + { + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + /* Error on the CRC reception */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + } + /* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + } + } + } +#endif /* USE_SPI_CRC */ + + /* Check if we are in Master RX 2 line mode */ + if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) + { + /* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + } + else + { + /* Normal case */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); + } + + /* Check the end of the transaction */ + if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_FLAG; + } + + hspi->RxXferCount = 0U; + hspi->State = HAL_SPI_STATE_READY; + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } +#endif /* USE_SPI_CRC */ + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + return; + } + } + /* Call user Rx complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->RxCpltCallback(hspi); +#else + HAL_SPI_RxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI transmit receive process complete callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + uint32_t tickstart; +#if (USE_SPI_CRC != 0U) + __IO uint32_t tmpreg = 0U; + __IO uint8_t *ptmpreg8; + __IO uint8_t tmpreg8 = 0; +#endif /* USE_SPI_CRC */ + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + /* DMA Normal Mode */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) + { + /* Disable ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); + +#if (USE_SPI_CRC != 0U) + /* CRC handling */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + if ((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_8BIT)) + { + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_QUARTER_FULL, SPI_DEFAULT_TIMEOUT, + tickstart) != HAL_OK) + { + /* Error on the CRC reception */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + } + /* Initialize the 8bit temporary pointer */ + ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; + /* Read 8bit CRC */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + } + else + { + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_HALF_FULL, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + /* Error on the CRC reception */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + } + /* Read CRC to Flush DR and RXNE flag */ + tmpreg = READ_REG(hspi->Instance->DR); + /* To avoid GCC warning */ + UNUSED(tmpreg); + } + } +#endif /* USE_SPI_CRC */ + + /* Check the end of the transaction */ + if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + + /* Disable Rx/Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + hspi->TxXferCount = 0U; + hspi->RxXferCount = 0U; + hspi->State = HAL_SPI_STATE_READY; + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } +#endif /* USE_SPI_CRC */ + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + return; + } + } + /* Call user TxRx complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->TxRxCpltCallback(hspi); +#else + HAL_SPI_TxRxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI half transmit process complete callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Call user Tx half complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->TxHalfCpltCallback(hspi); +#else + HAL_SPI_TxHalfCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI half receive process complete callback + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Call user Rx half complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->RxHalfCpltCallback(hspi); +#else + HAL_SPI_RxHalfCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI half transmit receive process complete callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Call user TxRx half complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->TxRxHalfCpltCallback(hspi); +#else + HAL_SPI_TxRxHalfCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI communication error callback. + * @param hdma pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAError(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Stop the disable DMA transfer on SPI side */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + hspi->State = HAL_SPI_STATE_READY; + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI communication abort callback, when initiated by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma DMA handle. + * @retval None + */ +static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + hspi->RxXferCount = 0U; + hspi->TxXferCount = 0U; + + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI Tx communication abort callback, when initiated by user + * (To be called at end of DMA Tx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Rx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + hspi->hdmatx->XferAbortCallback = NULL; + + /* Disable Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); + + if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Disable SPI Peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Check if an Abort process is still ongoing */ + if (hspi->hdmarx != NULL) + { + if (hspi->hdmarx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */ + hspi->RxXferCount = 0U; + hspi->TxXferCount = 0U; + + /* Check no error during Abort procedure */ + if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT) + { + /* Reset errorCode */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + } + + /* Clear the Error flags in the SR register */ + __HAL_SPI_CLEAR_OVRFLAG(hspi); + __HAL_SPI_CLEAR_FREFLAG(hspi); + + /* Restore hspi->State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->AbortCpltCallback(hspi); +#else + HAL_SPI_AbortCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI Rx communication abort callback, when initiated by user + * (To be called at end of DMA Rx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Tx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Disable SPI Peripheral */ + __HAL_SPI_DISABLE(hspi); + + hspi->hdmarx->XferAbortCallback = NULL; + + /* Disable Rx DMA Request */ + CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); + + /* Control the BSY flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Check if an Abort process is still ongoing */ + if (hspi->hdmatx != NULL) + { + if (hspi->hdmatx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */ + hspi->RxXferCount = 0U; + hspi->TxXferCount = 0U; + + /* Check no error during Abort procedure */ + if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT) + { + /* Reset errorCode */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + } + + /* Clear the Error flags in the SR register */ + __HAL_SPI_CLEAR_OVRFLAG(hspi); + __HAL_SPI_CLEAR_FREFLAG(hspi); + + /* Restore hspi->State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->AbortCpltCallback(hspi); +#else + HAL_SPI_AbortCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Receive data in packing mode */ + if (hspi->RxXferCount > 1U) + { + *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount -= 2U; + if (hspi->RxXferCount == 1U) + { + /* Set RX Fifo threshold according the reception data length: 8bit */ + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + } + } + /* Receive data in 8 Bit mode */ + else + { + *hspi->pRxBuffPtr = *((__IO uint8_t *)&hspi->Instance->DR); + hspi->pRxBuffPtr++; + hspi->RxXferCount--; + } + + /* Check end of the reception */ + if (hspi->RxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); + hspi->RxISR = SPI_2linesRxISR_8BITCRC; + return; + } +#endif /* USE_SPI_CRC */ + + /* Disable RXNE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + if (hspi->TxXferCount == 0U) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + __IO uint8_t *ptmpreg8; + __IO uint8_t tmpreg8 = 0; + + /* Initialize the 8bit temporary pointer */ + ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; + /* Read 8bit CRC to flush Data Register */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + + hspi->CRCSize--; + + /* Check end of the reception */ + if (hspi->CRCSize == 0U) + { + /* Disable RXNE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + if (hspi->TxXferCount == 0U) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} +#endif /* USE_SPI_CRC */ + +/** + * @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Transmit data in packing Bit mode */ + if (hspi->TxXferCount >= 2U) + { + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount -= 2U; + } + /* Transmit data in 8 Bit mode */ + else + { + *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); + hspi->pTxBuffPtr++; + hspi->TxXferCount--; + } + + /* Check the end of the transmission */ + if (hspi->TxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Set CRC Next Bit to send CRC */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + /* Disable TXE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); + return; + } +#endif /* USE_SPI_CRC */ + + /* Disable TXE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); + + if (hspi->RxXferCount == 0U) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +/** + * @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Receive data in 16 Bit mode */ + *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + + if (hspi->RxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->RxISR = SPI_2linesRxISR_16BITCRC; + return; + } +#endif /* USE_SPI_CRC */ + + /* Disable RXNE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); + + if (hspi->TxXferCount == 0U) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + __IO uint32_t tmpreg = 0U; + + /* Read 16bit CRC to flush Data Register */ + tmpreg = READ_REG(hspi->Instance->DR); + /* To avoid GCC warning */ + UNUSED(tmpreg); + + /* Disable RXNE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); + + SPI_CloseRxTx_ISR(hspi); +} +#endif /* USE_SPI_CRC */ + +/** + * @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 16 Bit mode */ + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + + /* Enable CRC Transmission */ + if (hspi->TxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Set CRC Next Bit to send CRC */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + /* Disable TXE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); + return; + } +#endif /* USE_SPI_CRC */ + + /* Disable TXE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); + + if (hspi->RxXferCount == 0U) + { + SPI_CloseRxTx_ISR(hspi); + } + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Manage the CRC 8-bit receive in Interrupt context. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + __IO uint8_t *ptmpreg8; + __IO uint8_t tmpreg8 = 0; + + /* Initialize the 8bit temporary pointer */ + ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; + /* Read 8bit CRC to flush Data Register */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + + hspi->CRCSize--; + + if (hspi->CRCSize == 0U) + { + SPI_CloseRx_ISR(hspi); + } +} +#endif /* USE_SPI_CRC */ + +/** + * @brief Manage the receive 8-bit in Interrupt context. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + *hspi->pRxBuffPtr = (*(__IO uint8_t *)&hspi->Instance->DR); + hspi->pRxBuffPtr++; + hspi->RxXferCount--; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + + if (hspi->RxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->RxISR = SPI_RxISR_8BITCRC; + return; + } +#endif /* USE_SPI_CRC */ + SPI_CloseRx_ISR(hspi); + } +} + +#if (USE_SPI_CRC != 0U) +/** + * @brief Manage the CRC 16-bit receive in Interrupt context. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) +{ + __IO uint32_t tmpreg = 0U; + + /* Read 16bit CRC to flush Data Register */ + tmpreg = READ_REG(hspi->Instance->DR); + /* To avoid GCC warning */ + UNUSED(tmpreg); + + /* Disable RXNE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + SPI_CloseRx_ISR(hspi); +} +#endif /* USE_SPI_CRC */ + +/** + * @brief Manage the 16-bit receive in Interrupt context. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + +#if (USE_SPI_CRC != 0U) + /* Enable CRC Transmission */ + if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + + if (hspi->RxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->RxISR = SPI_RxISR_16BITCRC; + return; + } +#endif /* USE_SPI_CRC */ + SPI_CloseRx_ISR(hspi); + } +} + +/** + * @brief Handle the data 8-bit transmit in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi) +{ + *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); + hspi->pTxBuffPtr++; + hspi->TxXferCount--; + + if (hspi->TxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Enable CRC Transmission */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + SPI_CloseTx_ISR(hspi); + } +} + +/** + * @brief Handle the data 16-bit transmit in Interrupt mode. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 16 Bit mode */ + hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + + if (hspi->TxXferCount == 0U) + { +#if (USE_SPI_CRC != 0U) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Enable CRC Transmission */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); + } +#endif /* USE_SPI_CRC */ + SPI_CloseTx_ISR(hspi); + } +} + +/** + * @brief Handle SPI Communication Timeout. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Flag SPI flag to check + * @param State flag state to check + * @param Timeout Timeout duration + * @param Tickstart tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State, + uint32_t Timeout, uint32_t Tickstart) +{ + __IO uint32_t count; + uint32_t tmp_timeout; + uint32_t tmp_tickstart; + + /* Adjust Timeout value in case of end of transfer */ + tmp_timeout = Timeout - (HAL_GetTick() - Tickstart); + tmp_tickstart = HAL_GetTick(); + + /* Calculate Timeout based on a software loop to avoid blocking issue if Systick is disabled */ + count = tmp_timeout * ((SystemCoreClock * 32U) >> 20U); + + while ((__HAL_SPI_GET_FLAG(hspi, Flag) ? SET : RESET) != State) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tmp_tickstart) >= tmp_timeout) || (tmp_timeout == 0U)) + { + /* Disable the SPI and reset the CRC: the CRC value should be cleared + on both master and slave sides in order to resynchronize the master + and slave for their respective CRC calculation */ + + /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) + || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_TIMEOUT; + } + /* If Systick is disabled or not incremented, deactivate timeout to go in disable loop procedure */ + if (count == 0U) + { + tmp_timeout = 0U; + } + count--; + } + } + + return HAL_OK; +} + +/** + * @brief Handle SPI FIFO Communication Timeout. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Fifo Fifo to check + * @param State Fifo state to check + * @param Timeout Timeout duration + * @param Tickstart tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, + uint32_t Timeout, uint32_t Tickstart) +{ + __IO uint32_t count; + uint32_t tmp_timeout; + uint32_t tmp_tickstart; + __IO uint8_t *ptmpreg8; + __IO uint8_t tmpreg8 = 0; + + /* Adjust Timeout value in case of end of transfer */ + tmp_timeout = Timeout - (HAL_GetTick() - Tickstart); + tmp_tickstart = HAL_GetTick(); + + /* Initialize the 8bit temporary pointer */ + ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR; + + /* Calculate Timeout based on a software loop to avoid blocking issue if Systick is disabled */ + count = tmp_timeout * ((SystemCoreClock * 35U) >> 20U); + + while ((hspi->Instance->SR & Fifo) != State) + { + if ((Fifo == SPI_SR_FRLVL) && (State == SPI_FRLVL_EMPTY)) + { + /* Flush Data Register by a blank read */ + tmpreg8 = *ptmpreg8; + /* To avoid GCC warning */ + UNUSED(tmpreg8); + } + + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tmp_tickstart) >= tmp_timeout) || (tmp_timeout == 0U)) + { + /* Disable the SPI and reset the CRC: the CRC value should be cleared + on both master and slave sides in order to resynchronize the master + and slave for their respective CRC calculation */ + + /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) + || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Reset CRC Calculation */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_TIMEOUT; + } + /* If Systick is disabled or not incremented, deactivate timeout to go in disable loop procedure */ + if (count == 0U) + { + tmp_timeout = 0U; + } + count--; + } + } + + return HAL_OK; +} + +/** + * @brief Handle the check of the RX transaction complete. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Timeout Timeout duration + * @param Tickstart tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart) +{ + if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) + || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Control the BSY flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + return HAL_TIMEOUT; + } + + if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) + || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout, Tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Handle the check of the RXTX or TX transaction complete. + * @param hspi SPI handle + * @param Timeout Timeout duration + * @param Tickstart tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart) +{ + /* Control if the TX fifo is empty */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FTLVL, SPI_FTLVL_EMPTY, Timeout, Tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + return HAL_TIMEOUT; + } + + /* Control the BSY flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + return HAL_TIMEOUT; + } + + /* Control if the RX fifo is empty */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout, Tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + return HAL_TIMEOUT; + } + + return HAL_OK; +} + +/** + * @brief Handle the end of the RXTX transaction. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi) +{ + uint32_t tickstart; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + /* Disable ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); + + /* Check the end of the transaction */ + if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->State = HAL_SPI_STATE_READY; + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { +#endif /* USE_SPI_CRC */ + if (hspi->ErrorCode == HAL_SPI_ERROR_NONE) + { + if (hspi->State == HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_READY; + /* Call user Rx complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->RxCpltCallback(hspi); +#else + HAL_SPI_RxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { + hspi->State = HAL_SPI_STATE_READY; + /* Call user TxRx complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->TxRxCpltCallback(hspi); +#else + HAL_SPI_TxRxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + } + else + { + hspi->State = HAL_SPI_STATE_READY; + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } +#if (USE_SPI_CRC != 0U) + } +#endif /* USE_SPI_CRC */ +} + +/** + * @brief Handle the end of the RX transaction. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi) +{ + /* Disable RXNE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + /* Check the end of the transaction */ + if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + hspi->State = HAL_SPI_STATE_READY; + +#if (USE_SPI_CRC != 0U) + /* Check if CRC error occurred */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { +#endif /* USE_SPI_CRC */ + if (hspi->ErrorCode == HAL_SPI_ERROR_NONE) + { + /* Call user Rx complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->RxCpltCallback(hspi); +#else + HAL_SPI_RxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } +#if (USE_SPI_CRC != 0U) + } +#endif /* USE_SPI_CRC */ +} + +/** + * @brief Handle the end of the TX transaction. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi) +{ + uint32_t tickstart; + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + /* Disable TXE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); + + /* Check the end of the transaction */ + if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + + /* Clear overrun flag in 2 Lines communication mode because received is not read */ + if (hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { + /* Call user Rx complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) + hspi->TxCpltCallback(hspi); +#else + HAL_SPI_TxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } +} + +/** + * @brief Handle abort a Rx transaction. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi) +{ + __IO uint32_t count; + + /* Disable SPI Peripheral */ + __HAL_SPI_DISABLE(hspi); + + count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); + + /* Disable RXNEIE interrupt */ + CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXNEIE)); + + /* Check RXNEIE is disabled */ + do + { + if (count == 0U) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + count--; + } while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)); + + /* Control the BSY flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + hspi->State = HAL_SPI_STATE_ABORT; +} + +/** + * @brief Handle abort a Tx or Rx/Tx transaction. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi) +{ + __IO uint32_t count; + + count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); + + /* Disable TXEIE interrupt */ + CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE)); + + /* Check TXEIE is disabled */ + do + { + if (count == 0U) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + count--; + } while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)); + + if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Disable SPI Peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Check case of Full-Duplex Mode and disable directly RXNEIE interrupt */ + if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) + { + /* Disable RXNEIE interrupt */ + CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXNEIE)); + + /* Check RXNEIE is disabled */ + do + { + if (count == 0U) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + count--; + } while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)); + + /* Control the BSY flag */ + if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + + /* Empty the FRLVL fifo */ + if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + } + hspi->State = HAL_SPI_STATE_ABORT; +} + +/** + * @} + */ + +#endif /* HAL_SPI_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi_ex.c new file mode 100644 index 0000000..f39f5a9 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_spi_ex.c @@ -0,0 +1,112 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_spi_ex.c + * @author MCD Application Team + * @brief Extended SPI HAL module driver. + * This file provides firmware functions to manage the following + * SPI peripheral extended functionalities : + * + IO operation functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup SPIEx SPIEx + * @brief SPI Extended HAL module driver + * @{ + */ +#ifdef HAL_SPI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @defgroup SPIEx_Private_Constants SPIEx Private Constants + * @{ + */ +#define SPI_FIFO_SIZE 4UL +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup SPIEx_Exported_Functions SPIEx Exported Functions + * @{ + */ + +/** @defgroup SPIEx_Exported_Functions_Group1 IO operation functions + * @brief Data transfers functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of extended functions to manage the SPI + data transfers. + + (#) Rx data flush function: + (++) HAL_SPIEx_FlushRxFifo() + +@endverbatim + * @{ + */ + +/** + * @brief Flush the RX fifo. + * @param hspi pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(const SPI_HandleTypeDef *hspi) +{ + __IO uint32_t tmpreg; + uint8_t count = 0U; + while ((hspi->Instance->SR & SPI_FLAG_FRLVL) != SPI_FRLVL_EMPTY) + { + count++; + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); /* To avoid GCC warning */ + if (count == SPI_FIFO_SIZE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_SPI_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim.c new file mode 100644 index 0000000..901d3ff --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim.c @@ -0,0 +1,7925 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_tim.c + * @author MCD Application Team + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer (TIM) peripheral: + * + TIM Time Base Initialization + * + TIM Time Base Start + * + TIM Time Base Start Interruption + * + TIM Time Base Start DMA + * + TIM Output Compare/PWM Initialization + * + TIM Output Compare/PWM Channel Configuration + * + TIM Output Compare/PWM Start + * + TIM Output Compare/PWM Start Interruption + * + TIM Output Compare/PWM Start DMA + * + TIM Input Capture Initialization + * + TIM Input Capture Channel Configuration + * + TIM Input Capture Start + * + TIM Input Capture Start Interruption + * + TIM Input Capture Start DMA + * + TIM One Pulse Initialization + * + TIM One Pulse Channel Configuration + * + TIM One Pulse Start + * + TIM Encoder Interface Initialization + * + TIM Encoder Interface Start + * + TIM Encoder Interface Start Interruption + * + TIM Encoder Interface Start DMA + * + Commutation Event configuration with Interruption and DMA + * + TIM OCRef clear configuration + * + TIM External Clock configuration + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### TIMER Generic features ##### + ============================================================================== + [..] The Timer features include: + (#) 16-bit up, down, up/down auto-reload counter. + (#) 16-bit programmable prescaler allowing dividing (also on the fly) the + counter clock frequency either by any factor between 1 and 65536. + (#) Up to 4 independent channels for: + (++) Input Capture + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to interconnect + several timers together. + (#) Supports incremental encoder for positioning purposes + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending on the selected feature: + (++) Time Base : HAL_TIM_Base_MspInit() + (++) Input Capture : HAL_TIM_IC_MspInit() + (++) Output Compare : HAL_TIM_OC_MspInit() + (++) PWM generation : HAL_TIM_PWM_MspInit() + (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() + (++) Encoder mode output : HAL_TIM_Encoder_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + Initialization function of this driver: + (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base + (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an + Output Compare signal. + (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a + PWM signal. + (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an + external signal. + (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer + in One Pulse Mode. + (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. + + (#) Activate the TIM peripheral using one of the start functions depending from the feature used: + (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() + (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() + (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() + (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() + (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() + (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). + + (#) The DMA Burst is managed with the two following functions: + HAL_TIM_DMABurst_WriteStart() + HAL_TIM_DMABurst_ReadStart() + + *** Callback registration *** + ============================================= + + [..] + The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function HAL_TIM_RegisterCallback() to register a callback. + HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, + the Callback ID and a pointer to the user callback function. + + [..] + Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + + [..] + These functions allow to register/unregister following callbacks: + (+) Base_MspInitCallback : TIM Base Msp Init Callback. + (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. + (+) IC_MspInitCallback : TIM IC Msp Init Callback. + (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. + (+) OC_MspInitCallback : TIM OC Msp Init Callback. + (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. + (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. + (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. + (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. + (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. + (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. + (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. + (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. + (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. + (+) PeriodElapsedCallback : TIM Period Elapsed Callback. + (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. + (+) TriggerCallback : TIM Trigger Callback. + (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. + (+) IC_CaptureCallback : TIM Input Capture Callback. + (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. + (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. + (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. + (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. + (+) ErrorCallback : TIM Error Callback. + (+) CommutationCallback : TIM Commutation Callback. + (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. + (+) BreakCallback : TIM Break Callback. + (+) Break2Callback : TIM Break2 Callback. + + [..] +By default, after the Init and when the state is HAL_TIM_STATE_RESET +all interrupt callbacks are set to the corresponding weak functions: + examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback(). + + [..] + Exception done for MspInit and MspDeInit functions that are reset to the legacy weak + functionalities in the Init / DeInit only when these callbacks are null + (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit + keep and use the user MspInit / MspDeInit callbacks(registered beforehand) + + [..] + Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. + Exception done MspInit / MspDeInit that can be registered / unregistered + in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, + thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_TIM_RegisterCallback() before calling DeInit or Init function. + + [..] + When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup TIM TIM + * @brief TIM HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup TIM_Private_Constants + * @{ + */ +#define TIMx_OR1_OCREF_CLR 0x00000001U +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup TIM_Private_Functions + * @{ + */ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + const TIM_SlaveConfigTypeDef *sSlaveConfig); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup TIM_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions + * @brief Time Base functions + * +@verbatim + ============================================================================== + ##### Time Base functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM base. + (+) De-initialize the TIM base. + (+) Start the Time Base. + (+) Stop the Time Base. + (+) Start the Time Base and enable interrupt. + (+) Stop the Time Base and disable interrupt. + (+) Start the Time Base and enable DMA transfer. + (+) Stop the Time Base and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Time base Unit according to the specified + * parameters in the TIM_HandleTypeDef and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Base_MspInitCallback == NULL) + { + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Base_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the Time Base configuration */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Base peripheral + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Base_MspDeInitCallback == NULL) + { + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Base_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Base MSP. + * @param htim TIM Base handle + * @retval None + */ +__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Base_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Base MSP. + * @param htim TIM Base handle + * @retval None + */ +__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Base_MspDeInit could be implemented in the user file + */ +} + + +/** + * @brief Starts the TIM Base generation. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Check the TIM state */ + if (htim->State != HAL_TIM_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in interrupt mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Check the TIM state */ + if (htim->State != HAL_TIM_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Enable the TIM Update interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in interrupt mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Disable the TIM Update interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in DMA mode. + * @param htim TIM Base handle + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + return HAL_ERROR; + } + + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Update DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in DMA mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); + + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions + * @brief TIM Output Compare functions + * +@verbatim + ============================================================================== + ##### TIM Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Output Compare. + (+) De-initialize the TIM Output Compare. + (+) Start the TIM Output Compare. + (+) Stop the TIM Output Compare. + (+) Start the TIM Output Compare and enable interrupt. + (+) Stop the TIM Output Compare and disable interrupt. + (+) Start the TIM Output Compare and enable DMA transfer. + (+) Stop the TIM Output Compare and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Output Compare according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() + * @param htim TIM Output Compare handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OC_MspInitCallback == NULL) + { + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OC_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the Output Compare */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM Output Compare handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OC_MspDeInitCallback == NULL) + { + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OC_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Output Compare MSP. + * @param htim TIM Output Compare handle + * @retval None + */ +__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Output Compare MSP. + * @param htim TIM Output Compare handle + * @retval None + */ +__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Output Compare signal generation. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + /* Set the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions + * @brief TIM PWM functions + * +@verbatim + ============================================================================== + ##### TIM PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM PWM. + (+) De-initialize the TIM PWM. + (+) Start the TIM PWM. + (+) Stop the TIM PWM. + (+) Start the TIM PWM and enable interrupt. + (+) Stop the TIM PWM and disable interrupt. + (+) Start the TIM PWM and enable DMA transfer. + (+) Stop the TIM PWM and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM PWM Time Base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() + * @param htim TIM PWM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->PWM_MspInitCallback == NULL) + { + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->PWM_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the PWM */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM PWM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->PWM_MspDeInitCallback == NULL) + { + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + } + /* DeInit the low level hardware */ + htim->PWM_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM MSP. + * @param htim TIM PWM handle + * @retval None + */ +__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM PWM MSP. + * @param htim TIM PWM handle + * @retval None + */ +__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the PWM signal generation. + * @param htim TIM handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode. + * @param htim TIM PWM handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + /* Set the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Capture/Compare 3 request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions + * @brief TIM Input Capture functions + * +@verbatim + ============================================================================== + ##### TIM Input Capture functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Input Capture. + (+) De-initialize the TIM Input Capture. + (+) Start the TIM Input Capture. + (+) Stop the TIM Input Capture. + (+) Start the TIM Input Capture and enable interrupt. + (+) Stop the TIM Input Capture and disable interrupt. + (+) Start the TIM Input Capture and enable DMA transfer. + (+) Stop the TIM Input Capture and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Input Capture Time base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() + * @param htim TIM Input Capture handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->IC_MspInitCallback == NULL) + { + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->IC_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the input capture */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM Input Capture handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->IC_MspDeInitCallback == NULL) + { + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->IC_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Input Capture MSP. + * @param htim TIM Input Capture handle + * @retval None + */ +__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Input Capture MSP. + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Input Capture measurement. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement in interrupt mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Input Capture measurement in interrupt mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM Input Capture measurement in DMA mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The destination Buffer address. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + /* Set the TIM channel state */ + if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Input Capture measurement in DMA mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions + * @brief TIM One Pulse functions + * +@verbatim + ============================================================================== + ##### TIM One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM One Pulse. + (+) De-initialize the TIM One Pulse. + (+) Start the TIM One Pulse. + (+) Stop the TIM One Pulse. + (+) Start the TIM One Pulse and enable interrupt. + (+) Stop the TIM One Pulse and disable interrupt. + (+) Start the TIM One Pulse and enable DMA transfer. + (+) Stop the TIM One Pulse and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM One Pulse Time Base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() + * @note When the timer instance is initialized in One Pulse mode, timer + * channels 1 and channel 2 are reserved and cannot be used for other + * purpose. + * @param htim TIM One Pulse handle + * @param OnePulseMode Select the One pulse mode. + * This parameter can be one of the following values: + * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. + * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_OPM_MODE(OnePulseMode)); + assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OnePulse_MspInitCallback == NULL) + { + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OnePulse_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OnePulse_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Configure the Time base in the One Pulse Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Reset the OPM Bit */ + htim->Instance->CR1 &= ~TIM_CR1_OPM; + + /* Configure the OPM Mode */ + htim->Instance->CR1 |= OnePulseMode; + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM One Pulse + * @param htim TIM One Pulse handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OnePulse_MspDeInitCallback == NULL) + { + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OnePulse_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_OnePulse_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse MSP. + * @param htim TIM One Pulse handle + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM One Pulse MSP. + * @param htim TIM One Pulse handle + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM One Pulse signal generation. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions + * @brief TIM Encoder functions + * +@verbatim + ============================================================================== + ##### TIM Encoder functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Encoder. + (+) De-initialize the TIM Encoder. + (+) Start the TIM Encoder. + (+) Stop the TIM Encoder. + (+) Start the TIM Encoder and enable interrupt. + (+) Stop the TIM Encoder and disable interrupt. + (+) Start the TIM Encoder and enable DMA transfer. + (+) Stop the TIM Encoder and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Encoder Interface and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() + * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together + * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource + * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa + * @note When the timer instance is initialized in Encoder mode, timer + * channels 1 and channel 2 are reserved and cannot be used for other + * purpose. + * @param htim TIM Encoder Interface handle + * @param sConfig TIM Encoder Interface configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig) +{ + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); + assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Encoder_MspInitCallback == NULL) + { + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Encoder_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_Encoder_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Reset the SMS and ECE bits */ + htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = htim->Instance->CCMR1; + + /* Get the TIMx CCER register value */ + tmpccer = htim->Instance->CCER; + + /* Set the encoder Mode */ + tmpsmcr |= sConfig->EncoderMode; + + /* Select the Capture Compare 1 and the Capture Compare 2 as input */ + tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); + tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); + + /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ + tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); + tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); + tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); + tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); + + /* Set the TI1 and the TI2 Polarities */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); + tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); + tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Write to TIMx CCMR1 */ + htim->Instance->CCMR1 = tmpccmr1; + + /* Write to TIMx CCER */ + htim->Instance->CCER = tmpccer; + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + + +/** + * @brief DeInitializes the TIM Encoder interface + * @param htim TIM Encoder Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Encoder_MspDeInitCallback == NULL) + { + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Encoder_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Encoder_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Encoder Interface MSP. + * @param htim TIM Encoder Interface handle + * @retval None + */ +__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Encoder Interface MSP. + * @param htim TIM Encoder Interface handle + * @retval None + */ +__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Encoder Interface. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else if (Channel == TIM_CHANNEL_2) + { + if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + + /* Enable the encoder interface channels */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + } + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in interrupt mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else if (Channel == TIM_CHANNEL_2) + { + if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + + /* Enable the encoder interface channels */ + /* Enable the capture compare Interrupts 1 and/or 2 */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in interrupt mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if (Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + else if (Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 and 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in DMA mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @param pData1 The destination Buffer address for IC1. + * @param pData2 The destination Buffer address for IC2. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, + uint32_t *pData2, uint16_t Length) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) + { + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData1 == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + } + else if (Channel == TIM_CHANNEL_2) + { + if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData2 == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + } + else + { + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + break; + } + + default: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + break; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in DMA mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if (Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + } + else if (Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 and 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ +/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management + * @brief TIM IRQ handler management + * +@verbatim + ============================================================================== + ##### IRQ handler management ##### + ============================================================================== + [..] + This section provides Timer IRQ handler function. + +@endverbatim + * @{ + */ +/** + * @brief This function handles TIM interrupts requests. + * @param htim TIM handle + * @retval None + */ +void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) +{ + uint32_t itsource = htim->Instance->DIER; + uint32_t itflag = htim->Instance->SR; + + /* Capture compare 1 event */ + if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1)) + { + if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1)) + { + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC1); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + /* Input capture event */ + if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + } + /* Capture compare 2 event */ + if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2)) + { + if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC2); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + /* Input capture event */ + if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 3 event */ + if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3)) + { + if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC3); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + /* Input capture event */ + if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 4 event */ + if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4)) + { + if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC4); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + /* Input capture event */ + if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* TIM Update event */ + if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE)) + { + if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_UPDATE); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else + HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Break input event */ + if (((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK)) || \ + ((itflag & (TIM_FLAG_SYSTEM_BREAK)) == (TIM_FLAG_SYSTEM_BREAK))) + { + if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK | TIM_FLAG_SYSTEM_BREAK); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->BreakCallback(htim); +#else + HAL_TIMEx_BreakCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Break2 input event */ + if ((itflag & (TIM_FLAG_BREAK2)) == (TIM_FLAG_BREAK2)) + { + if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->Break2Callback(htim); +#else + HAL_TIMEx_Break2Callback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Trigger detection event */ + if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER)) + { + if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_TRIGGER); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else + HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM commutation event */ + if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM)) + { + if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_COM); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationCallback(htim); +#else + HAL_TIMEx_CommutCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions + * @brief TIM Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. + (+) Configure External Clock source. + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master and the Slave synchronization. + (+) Configure the DMA Burst Mode. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the TIM Output Compare Channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim TIM Output Compare handle + * @param sConfig TIM Output Compare configuration structure + * @param Channel TIM Channels to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, + const TIM_OC_InitTypeDef *sConfig, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + + /* Process Locked */ + __HAL_LOCK(htim); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 1 in Output Compare */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 2 in Output Compare */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 3 in Output Compare */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 4 in Output Compare */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_5: + { + /* Check the parameters */ + assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 5 in Output Compare */ + TIM_OC5_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_6: + { + /* Check the parameters */ + assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 6 in Output Compare */ + TIM_OC6_SetConfig(htim->Instance, sConfig); + break; + } + + default: + status = HAL_ERROR; + break; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Initializes the TIM Input Capture Channels according to the specified + * parameters in the TIM_IC_InitTypeDef. + * @param htim TIM IC handle + * @param sConfig TIM Input Capture configuration structure + * @param Channel TIM Channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); + assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); + + /* Process Locked */ + __HAL_LOCK(htim); + + if (Channel == TIM_CHANNEL_1) + { + /* TI1 Configuration */ + TIM_TI1_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->ICPrescaler; + } + else if (Channel == TIM_CHANNEL_2) + { + /* TI2 Configuration */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Set the IC2PSC value */ + htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); + } + else if (Channel == TIM_CHANNEL_3) + { + /* TI3 Configuration */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + TIM_TI3_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC3PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; + + /* Set the IC3PSC value */ + htim->Instance->CCMR2 |= sConfig->ICPrescaler; + } + else if (Channel == TIM_CHANNEL_4) + { + /* TI4 Configuration */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + TIM_TI4_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC4PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; + + /* Set the IC4PSC value */ + htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); + } + else + { + status = HAL_ERROR; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Initializes the TIM PWM channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim TIM PWM handle + * @param sConfig TIM PWM configuration structure + * @param Channel TIM Channels to be configured + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, + const TIM_OC_InitTypeDef *sConfig, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); + + /* Process Locked */ + __HAL_LOCK(htim); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the Channel 1 in PWM mode */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the Channel 2 in PWM mode */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the Channel 3 in PWM mode */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the Channel 4 in PWM mode */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; + break; + } + + case TIM_CHANNEL_5: + { + /* Check the parameters */ + assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); + + /* Configure the Channel 5 in PWM mode */ + TIM_OC5_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel5*/ + htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE; + htim->Instance->CCMR3 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_6: + { + /* Check the parameters */ + assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); + + /* Configure the Channel 6 in PWM mode */ + TIM_OC6_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel6 */ + htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE; + htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U; + break; + } + + default: + status = HAL_ERROR; + break; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Initializes the TIM One Pulse Channels according to the specified + * parameters in the TIM_OnePulse_InitTypeDef. + * @param htim TIM One Pulse handle + * @param sConfig TIM One Pulse configuration structure + * @param OutputChannel TIM output channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @param InputChannel TIM input Channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @note To output a waveform with a minimum delay user can enable the fast + * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx + * output is forced in response to the edge detection on TIx input, + * without taking in account the comparison. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, + uint32_t OutputChannel, uint32_t InputChannel) +{ + HAL_StatusTypeDef status = HAL_OK; + TIM_OC_InitTypeDef temp1; + + /* Check the parameters */ + assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); + assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); + + if (OutputChannel != InputChannel) + { + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Extract the Output compare configuration from sConfig structure */ + temp1.OCMode = sConfig->OCMode; + temp1.Pulse = sConfig->Pulse; + temp1.OCPolarity = sConfig->OCPolarity; + temp1.OCNPolarity = sConfig->OCNPolarity; + temp1.OCIdleState = sConfig->OCIdleState; + temp1.OCNIdleState = sConfig->OCNIdleState; + + switch (OutputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_OC1_SetConfig(htim->Instance, &temp1); + break; + } + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_OC2_SetConfig(htim->Instance, &temp1); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + switch (InputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1FP1; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + break; + } + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI2FP2; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + break; + } + + default: + status = HAL_ERROR; + break; + } + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return status; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_OR1 + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, + uint32_t BurstLength) +{ + HAL_StatusTypeDef status; + + status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, + ((BurstLength) >> 8U) + 1U); + + + return status; +} + +/** + * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_OR1 + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); + + if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) + { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) + { + return HAL_ERROR; + } + else + { + htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_COM: + { + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_TRIGGER: + { + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM DMA Burst mode + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } + case TIM_DMA_CC1: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + case TIM_DMA_CC2: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + case TIM_DMA_CC3: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + case TIM_DMA_CC4: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + case TIM_DMA_COM: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } + case TIM_DMA_TRIGGER: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + } + + /* Return function status */ + return status; +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_OR1 + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) +{ + HAL_StatusTypeDef status; + + status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, + ((BurstLength) >> 8U) + 1U); + + + return status; +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_OR1 + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); + + if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) + { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) + { + return HAL_ERROR; + } + else + { + htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC3: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC4: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_COM: + { + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_TRIGGER: + { + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); + + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + } + + /* Return function status */ + return status; +} + +/** + * @brief Stop the DMA burst reading + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } + case TIM_DMA_CC1: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + case TIM_DMA_CC2: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + case TIM_DMA_CC3: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + case TIM_DMA_CC4: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + case TIM_DMA_COM: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } + case TIM_DMA_TRIGGER: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + } + + /* Return function status */ + return status; +} + +/** + * @brief Generate a software event + * @param htim TIM handle + * @param EventSource specifies the event source. + * This parameter can be one of the following values: + * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source + * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source + * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source + * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source + * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source + * @arg TIM_EVENTSOURCE_COM: Timer COM event source + * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source + * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source + * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source + * @note Basic timers can only generate an update event. + * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. + * @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant + * only for timer instances supporting break input(s). + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_EVENT_SOURCE(EventSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the event sources */ + htim->Instance->EGR = EventSource; + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the OCRef clear feature + * @param htim TIM handle + * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that + * contains the OCREF clear feature and parameters for the TIM peripheral. + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @arg TIM_CHANNEL_5: TIM Channel 5 + * @arg TIM_CHANNEL_6: TIM Channel 6 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, + const TIM_ClearInputConfigTypeDef *sClearInputConfig, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (sClearInputConfig->ClearInputSource) + { + case TIM_CLEARINPUTSOURCE_NONE: + { + /* Clear the OCREF clear selection bit and the the ETR Bits */ + CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); + + /* Clear TIMx_OR1_OCREF_CLR (reset value) */ + CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR); + break; + } + case TIM_CLEARINPUTSOURCE_COMP1: +#if defined(COMP2) + case TIM_CLEARINPUTSOURCE_COMP2: +#endif /* COMP2 */ + { + /* Clear the OCREF clear selection bit */ + CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); + + /* OCREF_CLR_INT is connected to COMPx output */ + MODIFY_REG(htim->Instance->OR1, TIMx_OR1_OCREF_CLR, sClearInputConfig->ClearInputSource); + break; + } + + case TIM_CLEARINPUTSOURCE_ETR: + { + /* Check the parameters */ + assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); + assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); + assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); + + /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ + if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + TIM_ETR_SetConfig(htim->Instance, + sClearInputConfig->ClearInputPrescaler, + sClearInputConfig->ClearInputPolarity, + sClearInputConfig->ClearInputFilter); + + /* Set the OCREF clear selection bit */ + SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); + + /* Clear TIMx_OR1_OCREF_CLR (reset value) */ + CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + switch (Channel) + { + case TIM_CHANNEL_1: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 1 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); + } + else + { + /* Disable the OCREF clear feature for Channel 1 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); + } + break; + } + case TIM_CHANNEL_2: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 2 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); + } + else + { + /* Disable the OCREF clear feature for Channel 2 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); + } + break; + } + case TIM_CHANNEL_3: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 3 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); + } + else + { + /* Disable the OCREF clear feature for Channel 3 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); + } + break; + } + case TIM_CHANNEL_4: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 4 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); + } + else + { + /* Disable the OCREF clear feature for Channel 4 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); + } + break; + } + case TIM_CHANNEL_5: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 5 */ + SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); + } + else + { + /* Disable the OCREF clear feature for Channel 5 */ + CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); + } + break; + } + case TIM_CHANNEL_6: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 6 */ + SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); + } + else + { + /* Disable the OCREF clear feature for Channel 6 */ + CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); + } + break; + } + default: + break; + } + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Configures the clock source to be used + * @param htim TIM handle + * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that + * contains the clock source information for the TIM peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); + + /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + htim->Instance->SMCR = tmpsmcr; + + switch (sClockSourceConfig->ClockSource) + { + case TIM_CLOCKSOURCE_INTERNAL: + { + assert_param(IS_TIM_INSTANCE(htim->Instance)); + break; + } + + case TIM_CLOCKSOURCE_ETRMODE1: + { + /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + + /* Select the External clock mode1 and the ETRF trigger */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + break; + } + + case TIM_CLOCKSOURCE_ETRMODE2: + { + /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + /* Enable the External clock mode2 */ + htim->Instance->SMCR |= TIM_SMCR_ECE; + break; + } + + case TIM_CLOCKSOURCE_TI1: + { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); + break; + } + + case TIM_CLOCKSOURCE_TI2: + { + /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI2 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI2_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); + break; + } + + case TIM_CLOCKSOURCE_TI1ED: + { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); + break; + } + + case TIM_CLOCKSOURCE_ITR0: + case TIM_CLOCKSOURCE_ITR1: + case TIM_CLOCKSOURCE_ITR2: + case TIM_CLOCKSOURCE_ITR7: + { + /* Check whether or not the timer instance supports internal trigger input */ + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + + TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); + break; + } + + default: + status = HAL_ERROR; + break; + } + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Selects the signal connected to the TI1 input: direct from CH1_input + * or a XOR combination between CH1_input, CH2_input & CH3_input + * @param htim TIM handle. + * @param TI1_Selection Indicate whether or not channel 1 is connected to the + * output of a XOR gate. + * This parameter can be one of the following values: + * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input + * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 + * pins are connected to the TI1 input (XOR combination) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) +{ + uint32_t tmpcr2; + + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Reset the TI1 selection */ + tmpcr2 &= ~TIM_CR2_TI1S; + + /* Set the TI1 selection */ + tmpcr2 |= TI1_Selection; + + /* Write to TIMxCR2 */ + htim->Instance->CR2 = tmpcr2; + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + /* Disable Trigger Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode in interrupt mode + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, + const TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + /* Enable Trigger Interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Read the captured value from Capture Compare unit + * @param htim TIM handle. + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval Captured value + */ +uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpreg = 0U; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Return the capture 1 value */ + tmpreg = htim->Instance->CCR1; + + break; + } + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Return the capture 2 value */ + tmpreg = htim->Instance->CCR2; + + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Return the capture 3 value */ + tmpreg = htim->Instance->CCR3; + + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Return the capture 4 value */ + tmpreg = htim->Instance->CCR4; + + break; + } + + default: + break; + } + + return tmpreg; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions + * @brief TIM Callbacks functions + * +@verbatim + ============================================================================== + ##### TIM Callbacks functions ##### + ============================================================================== + [..] + This section provides TIM callback functions: + (+) TIM Period elapsed callback + (+) TIM Output Compare callback + (+) TIM Input capture callback + (+) TIM Trigger callback + (+) TIM Error callback + +@endverbatim + * @{ + */ + +/** + * @brief Period elapsed callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedCallback could be implemented in the user file + */ +} + +/** + * @brief Period elapsed half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Output Compare callback in non-blocking mode + * @param htim TIM OC handle + * @retval None + */ +__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture callback in non-blocking mode + * @param htim TIM IC handle + * @retval None + */ +__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture half complete callback in non-blocking mode + * @param htim TIM IC handle + * @retval None + */ +__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_TriggerCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Timer error callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_ErrorCallback could be implemented in the user file + */ +} + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User TIM callback to be used instead of the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID + * @param pCallback pointer to the callback function + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, + pTIM_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + + if (htim->State == HAL_TIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID : + htim->PeriodElapsedCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : + htim->PeriodElapsedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_CB_ID : + htim->TriggerCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID : + htim->TriggerHalfCpltCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_CB_ID : + htim->IC_CaptureCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID : + htim->IC_CaptureHalfCpltCallback = pCallback; + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : + htim->OC_DelayElapsedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : + htim->PWM_PulseFinishedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : + htim->PWM_PulseFinishedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_ERROR_CB_ID : + htim->ErrorCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_CB_ID : + htim->CommutationCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID : + htim->CommutationHalfCpltCallback = pCallback; + break; + + case HAL_TIM_BREAK_CB_ID : + htim->BreakCallback = pCallback; + break; + + case HAL_TIM_BREAK2_CB_ID : + htim->Break2Callback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (htim->State == HAL_TIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister a TIM callback + * TIM callback is redirected to the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (htim->State == HAL_TIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + /* Legacy weak Base MspInit Callback */ + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + /* Legacy weak Base Msp DeInit Callback */ + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + /* Legacy weak IC Msp Init Callback */ + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + /* Legacy weak IC Msp DeInit Callback */ + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + /* Legacy weak OC Msp Init Callback */ + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + /* Legacy weak OC Msp DeInit Callback */ + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + /* Legacy weak PWM Msp Init Callback */ + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + /* Legacy weak PWM Msp DeInit Callback */ + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + /* Legacy weak One Pulse Msp Init Callback */ + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + /* Legacy weak One Pulse Msp DeInit Callback */ + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + /* Legacy weak Encoder Msp Init Callback */ + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + /* Legacy weak Encoder Msp DeInit Callback */ + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + /* Legacy weak Hall Sensor Msp Init Callback */ + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + /* Legacy weak Hall Sensor Msp DeInit Callback */ + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID : + /* Legacy weak Period Elapsed Callback */ + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : + /* Legacy weak Period Elapsed half complete Callback */ + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; + break; + + case HAL_TIM_TRIGGER_CB_ID : + /* Legacy weak Trigger Callback */ + htim->TriggerCallback = HAL_TIM_TriggerCallback; + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID : + /* Legacy weak Trigger half complete Callback */ + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; + break; + + case HAL_TIM_IC_CAPTURE_CB_ID : + /* Legacy weak IC Capture Callback */ + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID : + /* Legacy weak IC Capture half complete Callback */ + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : + /* Legacy weak OC Delay Elapsed Callback */ + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : + /* Legacy weak PWM Pulse Finished Callback */ + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : + /* Legacy weak PWM Pulse Finished half complete Callback */ + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; + break; + + case HAL_TIM_ERROR_CB_ID : + /* Legacy weak Error Callback */ + htim->ErrorCallback = HAL_TIM_ErrorCallback; + break; + + case HAL_TIM_COMMUTATION_CB_ID : + /* Legacy weak Commutation Callback */ + htim->CommutationCallback = HAL_TIMEx_CommutCallback; + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID : + /* Legacy weak Commutation half complete Callback */ + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; + break; + + case HAL_TIM_BREAK_CB_ID : + /* Legacy weak Break Callback */ + htim->BreakCallback = HAL_TIMEx_BreakCallback; + break; + + case HAL_TIM_BREAK2_CB_ID : + /* Legacy weak Break2 Callback */ + htim->Break2Callback = HAL_TIMEx_Break2Callback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (htim->State == HAL_TIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + /* Legacy weak Base MspInit Callback */ + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + /* Legacy weak Base Msp DeInit Callback */ + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + /* Legacy weak IC Msp Init Callback */ + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + /* Legacy weak IC Msp DeInit Callback */ + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + /* Legacy weak OC Msp Init Callback */ + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + /* Legacy weak OC Msp DeInit Callback */ + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + /* Legacy weak PWM Msp Init Callback */ + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + /* Legacy weak PWM Msp DeInit Callback */ + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + /* Legacy weak One Pulse Msp Init Callback */ + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + /* Legacy weak One Pulse Msp DeInit Callback */ + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + /* Legacy weak Encoder Msp Init Callback */ + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + /* Legacy weak Encoder Msp DeInit Callback */ + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + /* Legacy weak Hall Sensor Msp Init Callback */ + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + /* Legacy weak Hall Sensor Msp DeInit Callback */ + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions + * @brief TIM Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Base handle state. + * @param htim TIM Base handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM OC handle state. + * @param htim TIM Output Compare handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM PWM handle state. + * @param htim TIM handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Input Capture handle state. + * @param htim TIM IC handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM One Pulse Mode handle state. + * @param htim TIM OPM handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Encoder Mode handle state. + * @param htim TIM Encoder Interface handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Encoder Mode handle state. + * @param htim TIM handle + * @retval Active channel + */ +HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim) +{ + return htim->Channel; +} + +/** + * @brief Return actual state of the TIM channel. + * @param htim TIM handle + * @param Channel TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @arg TIM_CHANNEL_5: TIM Channel 5 + * @arg TIM_CHANNEL_6: TIM Channel 6 + * @retval TIM Channel state + */ +HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_TIM_ChannelStateTypeDef channel_state; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + + return channel_state; +} + +/** + * @brief Return actual state of a DMA burst operation. + * @param htim TIM handle + * @retval DMA burst state + */ +HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + + return htim->DMABurstState; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup TIM_Private_Functions TIM Private Functions + * @{ + */ + +/** + * @brief TIM DMA error callback + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMAError(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + htim->State = HAL_TIM_STATE_READY; + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->ErrorCallback(htim); +#else + HAL_TIM_ErrorCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Delay Pulse complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Delay Pulse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedHalfCpltCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Capture complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Capture half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureHalfCpltCallback(htim); +#else + HAL_TIM_IC_CaptureHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Period Elapse complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) + { + htim->State = HAL_TIM_STATE_READY; + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else + HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Period Elapse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedHalfCpltCallback(htim); +#else + HAL_TIM_PeriodElapsedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Trigger callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) + { + htim->State = HAL_TIM_STATE_READY; + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else + HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Trigger half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerHalfCpltCallback(htim); +#else + HAL_TIM_TriggerHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief Time Base configuration + * @param TIMx TIM peripheral + * @param Structure TIM Base configuration structure + * @retval None + */ +void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure) +{ + uint32_t tmpcr1; + tmpcr1 = TIMx->CR1; + + /* Set TIM Time Base Unit parameters ---------------------------------------*/ + if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) + { + /* Select the Counter Mode */ + tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); + tmpcr1 |= Structure->CounterMode; + } + + if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) + { + /* Set the clock division */ + tmpcr1 &= ~TIM_CR1_CKD; + tmpcr1 |= (uint32_t)Structure->ClockDivision; + } + + /* Set the auto-reload preload */ + MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); + + TIMx->CR1 = tmpcr1; + + /* Set the Autoreload value */ + TIMx->ARR = (uint32_t)Structure->Period ; + + /* Set the Prescaler value */ + TIMx->PSC = Structure->Prescaler; + + if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) + { + /* Set the Repetition Counter value */ + TIMx->RCR = Structure->RepetitionCounter; + } + + /* Generate an update event to reload the Prescaler + and the repetition counter (only for advanced timer) value immediately */ + TIMx->EGR = TIM_EGR_UG; + + /* Check if the update flag is set after the Update Generation, if so clear the UIF flag */ + if (HAL_IS_BIT_SET(TIMx->SR, TIM_FLAG_UPDATE)) + { + /* Clear the update flag */ + CLEAR_BIT(TIMx->SR, TIM_FLAG_UPDATE); + } +} + +/** + * @brief Timer Output Compare 1 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~TIM_CCMR1_OC1M; + tmpccmrx &= ~TIM_CCMR1_CC1S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC1P; + /* Set the Output Compare Polarity */ + tmpccer |= OC_Config->OCPolarity; + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) + { + /* Check parameters */ + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC1NP; + /* Set the Output N Polarity */ + tmpccer |= OC_Config->OCNPolarity; + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC1NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS1; + tmpcr2 &= ~TIM_CR2_OIS1N; + /* Set the Output Idle state */ + tmpcr2 |= OC_Config->OCIdleState; + /* Set the Output N Idle state */ + tmpcr2 |= OC_Config->OCNIdleState; + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR1 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 2 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR1_OC2M; + tmpccmrx &= ~TIM_CCMR1_CC2S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC2P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 4U); + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC2NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 4U); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC2NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS2; + tmpcr2 &= ~TIM_CR2_OIS2N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 2U); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 2U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR2 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 3 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 3: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC3M; + tmpccmrx &= ~TIM_CCMR2_CC3S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC3P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 8U); + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC3NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 8U); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC3NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS3; + tmpcr2 &= ~TIM_CR2_OIS3N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 4U); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 4U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR3 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 4 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC4M; + tmpccmrx &= ~TIM_CCMR2_CC4S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC4P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 12U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS4; + + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 6U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR4 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 5 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, + const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the output: Reset the CCxE Bit */ + TIMx->CCER &= ~TIM_CCER_CC5E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR3; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~(TIM_CCMR3_OC5M); + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC5P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 16U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS5; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 8U); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR3 */ + TIMx->CCMR3 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR5 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 6 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, + const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the output: Reset the CCxE Bit */ + TIMx->CCER &= ~TIM_CCER_CC6E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR3; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~(TIM_CCMR3_OC6M); + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= (uint32_t)~TIM_CCER_CC6P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 20U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS6; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 10U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR3 */ + TIMx->CCMR3 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR6 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Slave Timer configuration function + * @param htim TIM handle + * @param sSlaveConfig Slave timer configuration + * @retval None + */ +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + const TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the Trigger Selection Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source */ + tmpsmcr |= sSlaveConfig->InputTrigger; + + /* Reset the slave mode Bits */ + tmpsmcr &= ~TIM_SMCR_SMS; + /* Set the slave mode */ + tmpsmcr |= sSlaveConfig->SlaveMode; + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Configure the trigger prescaler, filter, and polarity */ + switch (sSlaveConfig->InputTrigger) + { + case TIM_TS_ETRF: + { + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + /* Configure the ETR Trigger source */ + TIM_ETR_SetConfig(htim->Instance, + sSlaveConfig->TriggerPrescaler, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_TI1F_ED: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) + { + return HAL_ERROR; + } + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = htim->Instance->CCER; + htim->Instance->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = htim->Instance->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); + + /* Write to TIMx CCMR1 and CCER registers */ + htim->Instance->CCMR1 = tmpccmr1; + htim->Instance->CCER = tmpccer; + break; + } + + case TIM_TS_TI1FP1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI1 Filter and Polarity */ + TIM_TI1_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_TI2FP2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI2 Filter and Polarity */ + TIM_TI2_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_ITR0: + case TIM_TS_ITR1: + case TIM_TS_ITR2: + case TIM_TS_ITR7: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + break; + } + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Configure the TI1 as Input. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 + * (on channel2 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + + /* Select the Input */ + if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) + { + tmpccmr1 &= ~TIM_CCMR1_CC1S; + tmpccmr1 |= TIM_ICSelection; + } + else + { + tmpccmr1 |= TIM_CCMR1_CC1S_0; + } + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI1. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= (TIM_ICFilter << 4U); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= TIM_ICPolarity; + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI2 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. + * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 + * (on channel1 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 2: Reset the CC2E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + + /* Select the Input */ + tmpccmr1 &= ~TIM_CCMR1_CC2S; + tmpccmr1 |= (TIM_ICSelection << 8U); + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI2. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 2: Reset the CC2E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= (TIM_ICFilter << 12U); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= (TIM_ICPolarity << 4U); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI3 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. + * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + + /* Disable the Channel 3: Reset the CC3E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC3E; + tmpccmr2 = TIMx->CCMR2; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC3S; + tmpccmr2 |= TIM_ICSelection; + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC3F; + tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); + + /* Select the Polarity and set the CC3E Bit */ + tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); + tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI4 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. + * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + * @retval None + */ +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + + /* Disable the Channel 4: Reset the CC4E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC4E; + tmpccmr2 = TIMx->CCMR2; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC4S; + tmpccmr2 |= (TIM_ICSelection << 8U); + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC4F; + tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); + + /* Select the Polarity and set the CC4E Bit */ + tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); + tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer ; +} + +/** + * @brief Selects the Input Trigger source + * @param TIMx to select the TIM peripheral + * @param InputTriggerSource The Input Trigger source. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal Trigger 0 + * @arg TIM_TS_ITR1: Internal Trigger 1 + * @arg TIM_TS_ITR2: Internal Trigger 2 + * @arg TIM_TS_ITR7: Internal Trigger 7 + * @arg TIM_TS_TI1F_ED: TI1 Edge Detector + * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 + * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 + * @arg TIM_TS_ETRF: External Trigger input + * @retval None + */ +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) +{ + uint32_t tmpsmcr; + + /* Get the TIMx SMCR register value */ + tmpsmcr = TIMx->SMCR; + /* Reset the TS Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source and the slave mode*/ + tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} +/** + * @brief Configures the TIMx External Trigger (ETR). + * @param TIMx to select the TIM peripheral + * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. + * This parameter can be one of the following values: + * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. + * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. + * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. + * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. + * @param TIM_ExtTRGPolarity The external Trigger Polarity. + * This parameter can be one of the following values: + * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. + * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. + * @param ExtTRGFilter External Trigger Filter. + * This parameter must be a value between 0x00 and 0x0F + * @retval None + */ +void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, + uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) +{ + uint32_t tmpsmcr; + + tmpsmcr = TIMx->SMCR; + + /* Reset the ETR Bits */ + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + + /* Set the Prescaler, the Filter value and the Polarity */ + tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); + + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel x. + * @param TIMx to select the TIM peripheral + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @param ChannelState specifies the TIM Channel CCxE bit new state. + * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. + * @retval None + */ +void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) +{ + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(TIMx)); + assert_param(IS_TIM_CHANNELS(Channel)); + + tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ + + /* Reset the CCxE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxE Bit */ + TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ +} + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Reset interrupt callbacks to the legacy weak callbacks. + * @param htim pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +void TIM_ResetCallback(TIM_HandleTypeDef *htim) +{ + /* Reset the TIM callback to the legacy weak callbacks */ + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; + htim->TriggerCallback = HAL_TIM_TriggerCallback; + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; + htim->ErrorCallback = HAL_TIM_ErrorCallback; + htim->CommutationCallback = HAL_TIMEx_CommutCallback; + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; + htim->BreakCallback = HAL_TIMEx_BreakCallback; + htim->Break2Callback = HAL_TIMEx_Break2Callback; +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim_ex.c new file mode 100644 index 0000000..27f4b7a --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tim_ex.c @@ -0,0 +1,2804 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_tim_ex.c + * @author MCD Application Team + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer Extended peripheral: + * + Time Hall Sensor Interface Initialization + * + Time Hall Sensor Interface Start + * + Time Complementary signal break and dead time configuration + * + Time Master and Slave synchronization configuration + * + Time Output Compare/PWM Channel Configuration (for channels 5 and 6) + * + Time OCRef clear configuration + * + Timer remapping capabilities configuration + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### TIMER Extended features ##### + ============================================================================== + [..] + The Timer Extended features include: + (#) Complementary outputs with programmable dead-time for : + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to + interconnect several timers together. + (#) Break input to put the timer output signals in reset state or in a known state. + (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for + positioning purposes + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending on the selected feature: + (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + initialization function of this driver: + (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the + Timer Hall Sensor Interface and the commutation event with the corresponding + Interrupt and DMA request if needed (Note that One Timer is used to interface + with the Hall sensor Interface and another Timer should be used to use + the commutation event). + + (#) Activate the TIM peripheral using one of the start functions: + (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), + HAL_TIMEx_OCN_Start_IT() + (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), + HAL_TIMEx_PWMN_Start_IT() + (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() + (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), + HAL_TIMEx_HallSensor_Start_IT(). + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup TIMEx TIMEx + * @brief TIM Extended HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @defgroup TIMEx_Private_Constants TIM Extended Private Constants + * @{ + */ +/* Timeout for break input rearm */ +#define TIM_BREAKINPUT_REARM_TIMEOUT 5UL /* 5 milliseconds */ +/** + * @} + */ +/* End of private constants --------------------------------------------------*/ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma); +static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState); + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions + * @{ + */ + +/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions + * @brief Timer Hall Sensor functions + * +@verbatim + ============================================================================== + ##### Timer Hall Sensor functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure TIM HAL Sensor. + (+) De-initialize TIM HAL Sensor. + (+) Start the Hall Sensor Interface. + (+) Stop the Hall Sensor Interface. + (+) Start the Hall Sensor Interface and enable interrupts. + (+) Stop the Hall Sensor Interface and disable interrupts. + (+) Start the Hall Sensor Interface and enable DMA transfers. + (+) Stop the Hall Sensor Interface and disable DMA transfers. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle. + * @note When the timer instance is initialized in Hall Sensor Interface mode, + * timer channels 1 and channel 2 are reserved and cannot be used for + * other purpose. + * @param htim TIM Hall Sensor Interface handle + * @param sConfig TIM Hall Sensor configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, const TIM_HallSensor_InitTypeDef *sConfig) +{ + TIM_OC_InitTypeDef OC_Config; + + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy week callbacks */ + TIM_ResetCallback(htim); + + if (htim->HallSensor_MspInitCallback == NULL) + { + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->HallSensor_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIMEx_HallSensor_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ + TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->IC1Prescaler; + + /* Enable the Hall sensor interface (XOR function of the three inputs) */ + htim->Instance->CR2 |= TIM_CR2_TI1S; + + /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1F_ED; + + /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; + + /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ + OC_Config.OCFastMode = TIM_OCFAST_DISABLE; + OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; + OC_Config.OCMode = TIM_OCMODE_PWM2; + OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; + OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; + OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; + OC_Config.Pulse = sConfig->Commutation_Delay; + + TIM_OC2_SetConfig(htim->Instance, &OC_Config); + + /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 + register to 101 */ + htim->Instance->CR2 &= ~TIM_CR2_MMS; + htim->Instance->CR2 |= TIM_TRGO_OC2REF; + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Hall Sensor interface + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->HallSensor_MspDeInitCallback == NULL) + { + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; + } + /* DeInit the low level hardware */ + htim->HallSensor_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIMEx_HallSensor_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Hall Sensor MSP. + * @param htim TIM Hall Sensor Interface handle + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Hall Sensor MSP. + * @param htim TIM Hall Sensor Interface handle + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Hall Sensor Interface. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall sensor Interface. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1, 2 and 3 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in interrupt mode. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the capture compare Interrupts 1 event */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in interrupt mode. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts event */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in DMA mode. + * @param htim TIM Hall Sensor Interface handle + * @param pData The destination Buffer address. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel state */ + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + /* Enable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Set the DMA Input Capture 1 Callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel for Capture 1*/ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the capture compare 1 Interrupt */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in DMA mode. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + + /* Disable the capture compare Interrupts 1 event */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions + * @brief Timer Complementary Output Compare functions + * +@verbatim + ============================================================================== + ##### Timer Complementary Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary Output Compare/PWM. + (+) Stop the Complementary Output Compare/PWM. + (+) Start the Complementary Output Compare/PWM and enable interrupts. + (+) Stop the Complementary Output Compare/PWM and disable interrupts. + (+) Start the Complementary Output Compare/PWM and enable DMA transfers. + (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM Output Compare signal generation on the complementary + * output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation on the complementary + * output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim TIM OC handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpccer; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + tmpccer = htim->Instance->CCER; + if ((tmpccer & TIM_CCER_CCxNE_MASK) == (uint32_t)RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Set the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions + * @brief Timer Complementary PWM functions + * +@verbatim + ============================================================================== + ##### Timer Complementary PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary PWM. + (+) Stop the Complementary PWM. + (+) Start the Complementary PWM and enable interrupts. + (+) Stop the Complementary PWM and disable interrupts. + (+) Start the Complementary PWM and enable DMA transfers. + (+) Stop the Complementary PWM and disable DMA transfers. +@endverbatim + * @{ + */ + +/** + * @brief Starts the PWM signal generation on the complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation on the complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpccer; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + tmpccer = htim->Instance->CCER; + if ((tmpccer & TIM_CCER_CCxNE_MASK) == (uint32_t)RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode on the + * complementary output + * @param htim TIM handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Set the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode on the complementary + * output + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions + * @brief Timer Complementary One Pulse functions + * +@verbatim + ============================================================================== + ##### Timer Complementary One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary One Pulse generation. + (+) Stop the Complementary One Pulse. + (+) Start the Complementary One Pulse and enable interrupts. + (+) Stop the Complementary One Pulse and disable interrupts. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM One Pulse signal generation on the complementary + * output. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to enable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation on the complementary + * output. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to disable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to enable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + /* Enable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to disable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure the commutation event in case of use of the Hall sensor interface. + (+) Configure Output channels for OC and PWM mode. + + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master synchronization. + (+) Configure timer remapping capabilities. + (+) Select timer input source. + (+) Enable or disable channel grouping. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the TIM commutation event sequence. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR7: Internal trigger 7 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource the Commutation Event source + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR7)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Disable Commutation Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); + + /* Disable Commutation DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with interrupt. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR7: Internal trigger 7 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource the Commutation Event source + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR7)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Disable Commutation DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); + + /* Enable the Commutation Interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with DMA. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR7: Internal trigger 7 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource the Commutation Event source + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR7)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Enable the Commutation DMA Request */ + /* Set the DMA Commutation Callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; + + /* Disable Commutation Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); + + /* Enable the Commutation DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in master mode. + * @param htim TIM handle. + * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that + * contains the selected trigger output (TRGO) and the Master/Slave + * mode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, + const TIM_MasterConfigTypeDef *sMasterConfig) +{ + uint32_t tmpcr2; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); + assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); + + /* Check input state */ + __HAL_LOCK(htim); + + /* Change the handler state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* If the timer supports ADC synchronization through TRGO2, set the master mode selection 2 */ + if (IS_TIM_TRGO2_INSTANCE(htim->Instance)) + { + /* Check the parameters */ + assert_param(IS_TIM_TRGO2_SOURCE(sMasterConfig->MasterOutputTrigger2)); + + /* Clear the MMS2 bits */ + tmpcr2 &= ~TIM_CR2_MMS2; + /* Select the TRGO2 source*/ + tmpcr2 |= sMasterConfig->MasterOutputTrigger2; + } + + /* Reset the MMS Bits */ + tmpcr2 &= ~TIM_CR2_MMS; + /* Select the TRGO source */ + tmpcr2 |= sMasterConfig->MasterOutputTrigger; + + /* Update TIMx CR2 */ + htim->Instance->CR2 = tmpcr2; + + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + /* Reset the MSM Bit */ + tmpsmcr &= ~TIM_SMCR_MSM; + /* Set master mode */ + tmpsmcr |= sMasterConfig->MasterSlaveMode; + + /* Update TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + } + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State + * and the AOE(automatic output enable). + * @param htim TIM handle + * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that + * contains the BDTR Register configuration information for the TIM peripheral. + * @note Interrupts can be generated when an active level is detected on the + * break input, the break 2 input or the system break input. Break + * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, + const TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) +{ + /* Keep this variable initialized to 0 as it is used to configure BDTR register */ + uint32_t tmpbdtr = 0U; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); + assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); + assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); + assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); + assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); + assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); + assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); + assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->BreakFilter)); + assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); + assert_param(IS_TIM_BREAK_AFMODE(sBreakDeadTimeConfig->BreakAFMode)); + + /* Check input state */ + __HAL_LOCK(htim); + + /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, + the OSSI State, the dead time value and the Automatic Output Enable Bit */ + + /* Set the BDTR bits */ + MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime); + MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel); + MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode); + MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity); + MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, (sBreakDeadTimeConfig->BreakFilter << TIM_BDTR_BKF_Pos)); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, sBreakDeadTimeConfig->BreakAFMode); + + if (IS_TIM_BKIN2_INSTANCE(htim->Instance)) + { + /* Check the parameters */ + assert_param(IS_TIM_BREAK2_STATE(sBreakDeadTimeConfig->Break2State)); + assert_param(IS_TIM_BREAK2_POLARITY(sBreakDeadTimeConfig->Break2Polarity)); + assert_param(IS_TIM_BREAK_FILTER(sBreakDeadTimeConfig->Break2Filter)); + assert_param(IS_TIM_BREAK2_AFMODE(sBreakDeadTimeConfig->Break2AFMode)); + + /* Set the BREAK2 input related BDTR bits */ + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (sBreakDeadTimeConfig->Break2Filter << TIM_BDTR_BK2F_Pos)); + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, sBreakDeadTimeConfig->Break2State); + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, sBreakDeadTimeConfig->Break2Polarity); + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, sBreakDeadTimeConfig->Break2AFMode); + } + + /* Set TIMx_BDTR */ + htim->Instance->BDTR = tmpbdtr; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the break input source. + * @param htim TIM handle. + * @param BreakInput Break input to configure + * This parameter can be one of the following values: + * @arg TIM_BREAKINPUT_BRK: Timer break input + * @arg TIM_BREAKINPUT_BRK2: Timer break 2 input + * @param sBreakInputConfig Break input source configuration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef *htim, + uint32_t BreakInput, + const TIMEx_BreakInputConfigTypeDef *sBreakInputConfig) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmporx; + uint32_t bkin_enable_mask; + uint32_t bkin_polarity_mask; + uint32_t bkin_enable_bitpos; + uint32_t bkin_polarity_bitpos; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); + assert_param(IS_TIM_BREAKINPUT(BreakInput)); + assert_param(IS_TIM_BREAKINPUTSOURCE(sBreakInputConfig->Source)); + assert_param(IS_TIM_BREAKINPUTSOURCE_STATE(sBreakInputConfig->Enable)); + assert_param(IS_TIM_BREAKINPUTSOURCE_POLARITY(sBreakInputConfig->Polarity)); + + /* Check input state */ + __HAL_LOCK(htim); + + switch (sBreakInputConfig->Source) + { + case TIM_BREAKINPUTSOURCE_BKIN: + { + bkin_enable_mask = TIM_AF1_BKINE; + bkin_enable_bitpos = TIM_AF1_BKINE_Pos; + bkin_polarity_mask = TIM_AF1_BKINP; + bkin_polarity_bitpos = TIM_AF1_BKINP_Pos; + break; + } + case TIM_BREAKINPUTSOURCE_COMP1: + { + bkin_enable_mask = TIM_AF1_BKCMP1E; + bkin_enable_bitpos = TIM_AF1_BKCMP1E_Pos; + bkin_polarity_mask = TIM_AF1_BKCMP1P; + bkin_polarity_bitpos = TIM_AF1_BKCMP1P_Pos; + break; + } +#if defined(COMP2) + case TIM_BREAKINPUTSOURCE_COMP2: + { + bkin_enable_mask = TIM_AF1_BKCMP2E; + bkin_enable_bitpos = TIM_AF1_BKCMP2E_Pos; + bkin_polarity_mask = TIM_AF1_BKCMP2P; + bkin_polarity_bitpos = TIM_AF1_BKCMP2P_Pos; + break; + } +#endif /* COMP2 */ + + default: + { + bkin_enable_mask = 0U; + bkin_polarity_mask = 0U; + bkin_enable_bitpos = 0U; + bkin_polarity_bitpos = 0U; + break; + } + } + + switch (BreakInput) + { + case TIM_BREAKINPUT_BRK: + { + /* Get the TIMx_AF1 register value */ + tmporx = htim->Instance->AF1; + + /* Enable the break input */ + tmporx &= ~bkin_enable_mask; + tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask; + + /* Set the break input polarity */ + tmporx &= ~bkin_polarity_mask; + tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask; + + /* Set TIMx_AF1 */ + htim->Instance->AF1 = tmporx; + break; + } + case TIM_BREAKINPUT_BRK2: + { + /* Get the TIMx_AF2 register value */ + tmporx = htim->Instance->AF2; + + /* Enable the break input */ + tmporx &= ~bkin_enable_mask; + tmporx |= (sBreakInputConfig->Enable << bkin_enable_bitpos) & bkin_enable_mask; + + /* Set the break input polarity */ + tmporx &= ~bkin_polarity_mask; + tmporx |= (sBreakInputConfig->Polarity << bkin_polarity_bitpos) & bkin_polarity_mask; + + /* Set TIMx_AF2 */ + htim->Instance->AF2 = tmporx; + break; + } + default: + status = HAL_ERROR; + break; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Configures the TIMx Remapping input capabilities. + * @param htim TIM handle. + * @param Remap specifies the TIM remapping source. + * For TIM1, the parameter can take one of the following values: + * @arg TIM_TIM1_ETR_GPIO: TIM1 ETR is is connected to GPIO + * @arg TIM_TIM1_ETR_COMP1: TIM1 ETR is connected to COMP1 output + * @arg TIM_TIM1_ETR_COMP2: TIM1 ETR is connected to COMP2 output (*) + * @arg TIM_TIM1_ETR_ADC1_AWD1: TIM1 ETR is connected to ADC1 AWD1 + * @arg TIM_TIM1_ETR_ADC1_AWD2: TIM1 ETR is connected to ADC1 AWD2 + * @arg TIM_TIM1_ETR_ADC1_AWD3: TIM1 ETR is connected to ADC1 AWD3 + * + * For TIM2, the parameter can take one of the following values: + * @arg TIM_TIM2_ETR_GPIO: TIM2_ETR is connected to GPIO + * @arg TIM_TIM2_ETR_COMP1: TIM2_ETR is connected to COMP1 output + * @arg TIM_TIM2_ETR_COMP2: TIM2_ETR is connected to COMP2 output (*) + * @arg TIM_TIM2_ETR_LSE: TIM2_ETR is connected to LSE + * @arg TIM_TIM2_ETR_MCO: TIM2_ETR is connected to MCO + * @arg TIM_TIM2_ETR_MCO2: TIM2_ETR is connected to MCO2 + * + * For TIM3, the parameter can take one of the following values: + * @arg TIM_TIM3_ETR_GPIO TIM3_ETR is connected to GPIO + * @arg TIM_TIM3_ETR_COMP1 TIM3_ETR is connected to COMP1 output + * @arg TIM_TIM3_ETR_COMP2 TIM3_ETR is connected to COMP2 output (*) + * + * (*) Value not defined in all devices. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) +{ + /* Check parameters */ + assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance)); + assert_param(IS_TIM_REMAP(Remap)); + + __HAL_LOCK(htim); + + MODIFY_REG(htim->Instance->AF1, TIM_AF1_ETRSEL_Msk, Remap); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Select the timer input source + * @param htim TIM handle. + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TI1 input channel + * @arg TIM_CHANNEL_2: TI2 input channel + * @param TISelection specifies the timer input source + * + * For TIM1 this parameter can be one of the following values: + * @arg TIM_TIM1_TI1_GPIO: TIM1 TI1 is connected to GPIO + * @arg TIM_TIM1_TI1_COMP1: TIM1 TI1 is connected to COMP1 output + * @arg TIM_TIM1_TI2_GPIO: TIM1 TI2 is connected to GPIO + * @arg TIM_TIM1_TI2_COMP2: TIM1 TI2 is connected to COMP2 output (*) + * + * For TIM2, the parameter is one of the following values: + * @arg TIM_TIM2_TI1_GPIO: TIM2 TI1 is connected to GPIO + * @arg TIM_TIM2_TI1_COMP1: TIM2 TI1 is connected to COMP1 output + * @arg TIM_TIM2_TI2_GPIO: TIM2 TI2 is connected to GPIO + * @arg TIM_TIM2_TI2_COMP2: TIM2 TI2 is connected to COMP2 output (*) + * + * For TIM3, the parameter is one of the following values: + * @arg TIM_TIM3_TI1_GPIO: TIM3 TI1 is connected to GPIO + * @arg TIM_TIM3_TI1_COMP1: TIM3 TI1 is connected to COMP1 output + * @arg TIM_TIM3_TI2_GPIO: TIM3 TI2 is connected to GPIO + * @arg TIM_TIM3_TI2_COMP2: TIM3 TI2 is connected to COMP2 output (*) + * + * For TIM15, the parameter is one of the following values: + * @arg TIM_TIM15_TI1_GPIO: TIM15 TI1 is connected to GPIO + * @arg TIM_TIM15_TI1_TIM2_CH1: TIM15 TI1 is connected to TIM2 CH1 + * @arg TIM_TIM15_TI1_TIM3_CH1: TIM15 TI1 is connected to TIM3 CH1 + * @arg TIM_TIM15_TI2_GPIO: TIM15 TI2 is connected to GPIO + * @arg TIM_TIM15_TI2_TIM2_CH2: TIM15 TI2 is connected to TIM2 CH2 + * @arg TIM_TIM15_TI2_TIM3_CH2: TIM15 TI2 is connected to TIM3 CH2 + * + * For TIM16, the parameter can have the following values: + * @arg TIM_TIM16_TI1_GPIO: TIM16 TI1 is connected to GPIO + * @arg TIM_TIM16_TI1_LSI: TIM16 TI1 is connected to LSI + * @arg TIM_TIM16_TI1_LSE: TIM16 TI1 is connected to LSE + * @arg TIM_TIM16_TI1_RTC_WAKEUP: TIM16 TI1 is connected to TRC wakeup interrupt + * @arg TIM_TIM16_TI1_MCO2: TIM16 TI1 is connected to MCO2 + * + * (*) Value not defined in all devices. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_TISelection(TIM_HandleTypeDef *htim, uint32_t TISelection, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check parameters */ + assert_param(IS_TIM_TISEL_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TISEL(TISelection)); + + __HAL_LOCK(htim); + + switch (Channel) + { + case TIM_CHANNEL_1: + MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI1SEL, TISelection); + break; + case TIM_CHANNEL_2: + MODIFY_REG(htim->Instance->TISEL, TIM_TISEL_TI2SEL, TISelection); + break; + default: + status = HAL_ERROR; + break; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Group channel 5 and channel 1, 2 or 3 + * @param htim TIM handle. + * @param Channels specifies the reference signal(s) the OC5REF is combined with. + * This parameter can be any combination of the following values: + * TIM_GROUPCH5_NONE: No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC + * TIM_GROUPCH5_OC1REFC: OC1REFC is the logical AND of OC1REFC and OC5REF + * TIM_GROUPCH5_OC2REFC: OC2REFC is the logical AND of OC2REFC and OC5REF + * TIM_GROUPCH5_OC3REFC: OC3REFC is the logical AND of OC3REFC and OC5REF + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t Channels) +{ + /* Check parameters */ + assert_param(IS_TIM_COMBINED3PHASEPWM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_GROUPCH5(Channels)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Clear GC5Cx bit fields */ + htim->Instance->CCR5 &= ~(TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1); + + /* Set GC5Cx bit fields */ + htim->Instance->CCR5 |= Channels; + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Disarm the designated break input (when it operates in bidirectional mode). + * @param htim TIM handle. + * @param BreakInput Break input to disarm + * This parameter can be one of the following values: + * @arg TIM_BREAKINPUT_BRK: Timer break input + * @arg TIM_BREAKINPUT_BRK2: Timer break 2 input + * @note The break input can be disarmed only when it is configured in + * bidirectional mode and when when MOE is reset. + * @note Purpose is to be able to have the input voltage back to high-state, + * whatever the time constant on the output . + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_DisarmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpbdtr; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); + assert_param(IS_TIM_BREAKINPUT(BreakInput)); + + switch (BreakInput) + { + case TIM_BREAKINPUT_BRK: + { + /* Check initial conditions */ + tmpbdtr = READ_REG(htim->Instance->BDTR); + if ((READ_BIT(tmpbdtr, TIM_BDTR_BKBID) == TIM_BDTR_BKBID) && + (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U)) + { + /* Break input BRK is disarmed */ + SET_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM); + } + break; + } + case TIM_BREAKINPUT_BRK2: + { + /* Check initial conditions */ + tmpbdtr = READ_REG(htim->Instance->BDTR); + if ((READ_BIT(tmpbdtr, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID) && + (READ_BIT(tmpbdtr, TIM_BDTR_MOE) == 0U)) + { + /* Break input BRK is disarmed */ + SET_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM); + } + break; + } + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Arm the designated break input (when it operates in bidirectional mode). + * @param htim TIM handle. + * @param BreakInput Break input to arm + * This parameter can be one of the following values: + * @arg TIM_BREAKINPUT_BRK: Timer break input + * @arg TIM_BREAKINPUT_BRK2: Timer break 2 input + * @note Arming is possible at anytime, even if fault is present. + * @note Break input is automatically armed as soon as MOE bit is set. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ReArmBreakInput(const TIM_HandleTypeDef *htim, uint32_t BreakInput) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); + assert_param(IS_TIM_BREAKINPUT(BreakInput)); + + switch (BreakInput) + { + case TIM_BREAKINPUT_BRK: + { + /* Check initial conditions */ + if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKBID) == TIM_BDTR_BKBID) + { + /* Break input BRK is re-armed automatically by hardware. Poll to check whether fault condition disappeared */ + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL) + { + if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT) + { + /* New check to avoid false timeout detection in case of preemption */ + if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BKDSRM) != 0UL) + { + return HAL_TIMEOUT; + } + } + } + } + break; + } + + case TIM_BREAKINPUT_BRK2: + { + /* Check initial conditions */ + if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2BID) == TIM_BDTR_BK2BID) + { + /* Break input BRK2 is re-armed automatically by hardware. Poll to check whether fault condition disappeared */ + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + while (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL) + { + if ((HAL_GetTick() - tickstart) > TIM_BREAKINPUT_REARM_TIMEOUT) + { + /* New check to avoid false timeout detection in case of preemption */ + if (READ_BIT(htim->Instance->BDTR, TIM_BDTR_BK2DSRM) != 0UL) + { + return HAL_TIMEOUT; + } + } + } + } + break; + } + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions + * @brief Extended Callbacks functions + * +@verbatim + ============================================================================== + ##### Extended Callbacks functions ##### + ============================================================================== + [..] + This section provides Extended TIM callback functions: + (+) Timer Commutation callback + (+) Timer Break callback + +@endverbatim + * @{ + */ + +/** + * @brief Commutation callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_CommutCallback could be implemented in the user file + */ +} +/** + * @brief Commutation half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Break detection callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_BreakCallback could be implemented in the user file + */ +} + +/** + * @brief Break2 detection callback in non blocking mode + * @param htim: TIM handle + * @retval None + */ +__weak void HAL_TIMEx_Break2Callback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_Break2Callback could be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions + * @brief Extended Peripheral State functions + * +@verbatim + ============================================================================== + ##### Extended Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Hall Sensor interface handle state. + * @param htim TIM Hall Sensor handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return actual state of the TIM complementary channel. + * @param htim TIM handle + * @param ChannelN TIM Complementary channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @retval TIM Complementary channel state + */ +HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef *htim, uint32_t ChannelN) +{ + HAL_TIM_ChannelStateTypeDef channel_state; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN)); + + channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN); + + return channel_state; +} +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup TIMEx_Private_Functions TIM Extended Private Functions + * @{ + */ + +/** + * @brief TIM DMA Commutation callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationCallback(htim); +#else + HAL_TIMEx_CommutCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Commutation half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationHalfCpltCallback(htim); +#else + HAL_TIMEx_CommutHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + + +/** + * @brief TIM DMA Delay Pulse complete callback (complementary channel). + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA error callback (complementary channel) + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->ErrorCallback(htim); +#else + HAL_TIM_ErrorCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel xN. + * @param TIMx to select the TIM peripheral + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @param ChannelNState specifies the TIM Channel CCxNE bit new state. + * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. + * @retval None + */ +static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) +{ + uint32_t tmp; + + tmp = TIM_CCER_CC1NE << (Channel & 0xFU); /* 0xFU = 15 bits max shift */ + + /* Reset the CCxNE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxNE Bit */ + TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0xFU)); /* 0xFU = 15 bits max shift */ +} +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_alarm_template.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_alarm_template.c new file mode 100644 index 0000000..b13cdb2 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_alarm_template.c @@ -0,0 +1,298 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_timebase_rtc_alarm_template.c + * @author MCD Application Team + * @brief HAL time base based on the hardware RTC_ALARM Template. + * + * This file override the native HAL time base functions (defined as weak) + * to use the RTC ALARM for time base generation: + * + Initializes the RTC peripheral to increment the seconds registers each 1ms + * + The alarm is configured to assert an interrupt when the RTC reaches 1ms + * + HAL_IncTick is called at each Alarm event and the time is reset to 00:00:00 + * + HSE (default), LSE or LSI can be selected as RTC clock source + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This file must be copied to the application folder and modified as follows: + (#) Rename it to 'stm32u0xx_hal_timebase_rtc_alarm.c' + (#) Add this file and the RTC HAL drivers to your project and uncomment + HAL_RTC_MODULE_ENABLED define in stm32u0xx_hal_conf.h + + [..] + (@) HAL RTC alarm and HAL RTC wakeup drivers cannot be used with low power modes: + The wake up capability of the RTC may be intrusive in case of prior low power mode + configuration requiring different wake up sources. + Application/Example behavior is no more guaranteed + (@) The stm32u0xx_hal_timebase_tim use is recommended for the Applications/Examples + requiring low power modes + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup HAL_TimeBase_RTC_Alarm_Template HAL TimeBase RTC Alarm Template + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/* Uncomment the line below to select the appropriate RTC Clock source for your application: + + RTC_CLOCK_SOURCE_HSE: can be selected for applications requiring timing precision. + + RTC_CLOCK_SOURCE_LSE: can be selected for applications with low constraint on timing + precision. + + RTC_CLOCK_SOURCE_LSI: can be selected for applications with low constraint on timing + precision. + */ +#define RTC_CLOCK_SOURCE_HSE +/* #define RTC_CLOCK_SOURCE_LSE */ +/* #define RTC_CLOCK_SOURCE_LSI */ + +#ifdef RTC_CLOCK_SOURCE_HSE +#define RTC_ASYNCH_PREDIV 49U +#define RTC_SYNCH_PREDIV 4U +#else /* RTC_CLOCK_SOURCE_LSE || RTC_CLOCK_SOURCE_LSI */ +#define RTC_ASYNCH_PREDIV 0U +#define RTC_SYNCH_PREDIV 31U +#endif /* RTC_CLOCK_SOURCE_HSE */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +extern RTC_HandleTypeDef hRTC_Handle; +RTC_HandleTypeDef hRTC_Handle; + +/* Private function prototypes -----------------------------------------------*/ +void RTC_TAMP_IRQHandler(void); +/* Private functions ---------------------------------------------------------*/ + +/** + * @brief This function configures the RTC_ALARMA as a time base source. + * The time source is configured to have 1ms time base with a dedicated + * Tick interrupt priority. + * @note This function is called automatically at the beginning of program after + * reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). + * @param TickPriority: Tick interrupt priority. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) +{ + __IO uint32_t counter = 0U; + + RCC_OscInitTypeDef RCC_OscInitStruct; + RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; + +#ifdef RTC_CLOCK_SOURCE_LSE + /* Configure LSE as RTC clock source */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + RCC_OscInitStruct.LSEState = RCC_LSE_ON; + PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; +#elif defined (RTC_CLOCK_SOURCE_LSI) + /* Configure LSI as RTC clock source */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + RCC_OscInitStruct.LSIState = RCC_LSI_ON; + PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; +#elif defined (RTC_CLOCK_SOURCE_HSE) + /* Configure HSE as RTC clock source */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + RCC_OscInitStruct.HSEState = RCC_HSE_ON; + PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_HSE_DIV32; +#else +#error Please select the RTC Clock source +#endif /* RTC_CLOCK_SOURCE_LSE */ + + if (HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK) + { + PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; + if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) == HAL_OK) + { + /* Enable RTC Clock */ + __HAL_RCC_RTC_ENABLE(); + __HAL_RCC_RTCAPB_CLK_ENABLE(); + + /* The time base should be 1ms + Time base = ((RTC_ASYNCH_PREDIV + 1) * (RTC_SYNCH_PREDIV + 1)) / RTC_CLOCK + HSE as RTC clock + Time base = ((49 + 1) * (4 + 1)) / 250kHz + = 1ms + LSE as RTC clock + Time base = ((31 + 1) * (0 + 1)) / 32.768KHz + = ~1ms + LSI as RTC clock + Time base = ((31 + 1) * (0 + 1)) / 32KHz + = 1ms + */ + hRTC_Handle.Instance = RTC; + hRTC_Handle.Init.HourFormat = RTC_HOURFORMAT_24; + hRTC_Handle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV; + hRTC_Handle.Init.SynchPrediv = RTC_SYNCH_PREDIV; + hRTC_Handle.Init.OutPut = RTC_OUTPUT_DISABLE; + hRTC_Handle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; + hRTC_Handle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; + if (HAL_RTC_Init(&hRTC_Handle) != HAL_OK) + { + return HAL_ERROR; + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); + + /* Disable the Alarm A interrupt */ + __HAL_RTC_ALARMA_DISABLE(&hRTC_Handle); + + /* Clear flag alarm A */ + __HAL_RTC_ALARM_CLEAR_FLAG(&hRTC_Handle, RTC_FLAG_ALRAF); + + counter = 0U; + /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ + while (__HAL_RTC_ALARM_GET_FLAG(&hRTC_Handle, RTC_FLAG_ALRAF) == 0U) + { + if (counter++ == (SystemCoreClock / 56U)) /* Timeout = ~ 1s */ + { + return HAL_ERROR; + } + } + + hRTC_Handle.Instance->ALRMAR = (uint32_t)0x01U; + + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMA_ENABLE(&hRTC_Handle); + /* Configure the Alarm interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(&hRTC_Handle, RTC_IT_ALRA); + + /* RTC Alarm Interrupt Configuration: EXTI configuration */ + __HAL_RTC_ALARM_EXTI_ENABLE_IT(); + + /* Check if the Initialization mode is set */ + if ((hRTC_Handle.Instance->ICSR & RTC_ICSR_INITF) == (uint32_t)RESET) + { + /* Set the Initialization mode */ + hRTC_Handle.Instance->ICSR = (uint32_t)RTC_INIT_MASK; + counter = 0U; + while ((hRTC_Handle.Instance->ICSR & RTC_ICSR_INITF) == (uint32_t)RESET) + { + if (counter++ == (SystemCoreClock / 56U)) /* Timeout = ~ 1s */ + { + return HAL_ERROR; + } + } + } + hRTC_Handle.Instance->DR = 0U; + hRTC_Handle.Instance->TR = 0U; + + hRTC_Handle.Instance->ICSR &= (uint32_t)~RTC_ICSR_INIT; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); + + HAL_NVIC_SetPriority(RTC_TAMP_IRQn, TickPriority, 0U); + HAL_NVIC_EnableIRQ(RTC_TAMP_IRQn); + return HAL_OK; + } + } + return HAL_ERROR; +} + +/** + * @brief Suspend Tick increment. + * @note Disable the tick increment by disabling RTC ALARM interrupt. + * @retval None + */ +void HAL_SuspendTick(void) +{ + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); + /* Disable RTC ALARM update Interrupt */ + __HAL_RTC_ALARM_DISABLE_IT(&hRTC_Handle, RTC_IT_ALRA); + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); +} + +/** + * @brief Resume Tick increment. + * @note Enable the tick increment by Enabling RTC ALARM interrupt. + * @retval None + */ +void HAL_ResumeTick(void) +{ + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); + /* Enable RTC ALARM Update interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(&hRTC_Handle, RTC_IT_ALRA); + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); +} + +/** + * @brief ALARM A Event Callback in non blocking mode + * @note This function is called when RTC_ALARM interrupt took place, inside + * RTC_ALARM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment + * a global variable "uwTick" used as application time base. + * @param hrtc : RTC handle + * @retval None + */ +void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) +{ + __IO uint32_t counter = 0U; + + HAL_IncTick(); + + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set the Initialization mode */ + hrtc->Instance->ICSR = (uint32_t)RTC_INIT_MASK; + + while ((hrtc->Instance->ICSR & RTC_ICSR_INITF) == (uint32_t)RESET) + { + if (counter++ == (SystemCoreClock / 56U)) /* Timeout = ~ 1s */ + { + break; + } + } + + hrtc->Instance->DR = 0U; + hrtc->Instance->TR = 0U; + + hrtc->Instance->ICSR &= (uint32_t)~RTC_ICSR_INIT; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); +} + +/** + * @brief This function handles RTC ALARM interrupt request. + * @retval None + */ +void RTC_TAMP_IRQHandler(void) +{ + HAL_RTC_AlarmIRQHandler(&hRTC_Handle); +} + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_wakeup_template.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_wakeup_template.c new file mode 100644 index 0000000..f2ed28d --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_rtc_wakeup_template.c @@ -0,0 +1,275 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_timebase_rtc_wakeup_template.c + * @author MCD Application Team + * @brief HAL time base based on the hardware RTC_WAKEUP Template. + * + * This file overrides the native HAL time base functions (defined as weak) + * to use the RTC WAKEUP for the time base generation: + * + Initializes the RTC peripheral and configures the wakeup timer to be + * incremented each 1ms + * + The wakeup feature is configured to assert an interrupt each 1ms + * + HAL_IncTick is called inside the HAL_RTCEx_WakeUpTimerEventCallback + * + HSE (default), LSE or LSI can be selected as RTC clock source + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This file must be copied to the application folder and modified as follows: + (#) Rename it to 'stm32u0xx_hal_timebase_rtc_wakeup.c' + (#) Add this file and the RTC HAL drivers to your project and uncomment + HAL_RTC_MODULE_ENABLED define in stm32u0xx_hal_conf.h + + [..] + (@) HAL RTC alarm and HAL RTC wakeup drivers cannot be used with low power modes: + The wake up capability of the RTC may be intrusive in case of prior low power mode + configuration requiring different wake up sources. + Application/Example behavior is no more guaranteed + (@) The stm32u0xx_hal_timebase_tim use is recommended for the Applications/Examples + requiring low power modes + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup HAL_TimeBase_RTC_WakeUp_Template HAL TimeBase RTC WakeUp Template + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/* Uncomment the line below to select the appropriate RTC Clock source for your application: + + RTC_CLOCK_SOURCE_HSE: can be selected for applications requiring timing precision. + + RTC_CLOCK_SOURCE_LSE: can be selected for applications with low constraint on timing + precision. + + RTC_CLOCK_SOURCE_LSI: can be selected for applications with low constraint on timing + precision. + */ +#define RTC_CLOCK_SOURCE_HSE +/* #define RTC_CLOCK_SOURCE_LSE */ +/* #define RTC_CLOCK_SOURCE_LSI */ + +#ifdef RTC_CLOCK_SOURCE_HSE +#define RTC_ASYNCH_PREDIV 49U +#define RTC_SYNCH_PREDIV 4U +#else /* RTC_CLOCK_SOURCE_LSE || RTC_CLOCK_SOURCE_LSI */ +#define RTC_ASYNCH_PREDIV 0U +#define RTC_SYNCH_PREDIV 31U +#endif /* RTC_CLOCK_SOURCE_HSE */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +extern RTC_HandleTypeDef hRTC_Handle; +RTC_HandleTypeDef hRTC_Handle; + +/* Private function prototypes -----------------------------------------------*/ +void RTC_TAMP_IRQHandler(void); + +/* Private functions ---------------------------------------------------------*/ + +/** + * @brief This function configures the RTC_TAMP as a time base source. + * The time source is configured to have 1ms time base with a dedicated + * Tick interrupt priority. + * Wakeup Time base = ((RTC_ASYNCH_PREDIV + 1) * (RTC_SYNCH_PREDIV + 1)) / RTC_CLOCK + = 1ms + * Wakeup Time = WakeupTimebase * WakeUpCounter (0 + 1) + = 1 ms + * @note This function is called automatically at the beginning of program after + * reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). + * @param TickPriority: Tick interrupt priority. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) +{ + __IO uint32_t counter = 0U; + + RCC_OscInitTypeDef RCC_OscInitStruct; + RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; + +#ifdef RTC_CLOCK_SOURCE_LSE + /* Configure LSE as RTC clock source */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + RCC_OscInitStruct.LSEState = RCC_LSE_ON; + PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; +#elif defined (RTC_CLOCK_SOURCE_LSI) + /* Configure LSI as RTC clock source */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + RCC_OscInitStruct.LSIState = RCC_LSI_ON; + PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; +#elif defined (RTC_CLOCK_SOURCE_HSE) + /* Configure HSE as RTC clock source */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + RCC_OscInitStruct.HSEState = RCC_HSE_ON; + PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_HSE_DIV32; +#else +#error Please select the RTC Clock source +#endif /* RTC_CLOCK_SOURCE_LSE */ + + if (HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK) + { + PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; + if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) == HAL_OK) + { + /* Enable RTC Clock */ + __HAL_RCC_RTC_ENABLE(); + __HAL_RCC_RTCAPB_CLK_ENABLE(); + + /* The time base should be 1ms + Time base = ((RTC_ASYNCH_PREDIV + 1) * (RTC_SYNCH_PREDIV + 1)) / RTC_CLOCK + HSE as RTC clock + Time base = ((49 + 1) * (4 + 1)) / 250khz + = 1ms + LSE as RTC clock + Time base = ((31 + 1) * (0 + 1)) / 32.768Khz + = ~1ms + LSI as RTC clock + Time base = ((31 + 1) * (0 + 1)) / 32Khz + = 1ms + */ + hRTC_Handle.Instance = RTC; + hRTC_Handle.Init.HourFormat = RTC_HOURFORMAT_24; + hRTC_Handle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV; + hRTC_Handle.Init.SynchPrediv = RTC_SYNCH_PREDIV; + hRTC_Handle.Init.OutPut = RTC_OUTPUT_DISABLE; + hRTC_Handle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; + hRTC_Handle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; + if (HAL_RTC_Init(&hRTC_Handle) != HAL_OK) + { + return HAL_ERROR; + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); + + /* Disable the Wake-up Timer */ + __HAL_RTC_WAKEUPTIMER_DISABLE(&hRTC_Handle); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_WAKEUPTIMER_DISABLE_IT(&hRTC_Handle, RTC_IT_WUT); + + /* Wait till RTC WUTWF flag is set */ + while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(&hRTC_Handle, RTC_FLAG_WUTWF) == 0U) + { + if (counter++ == (SystemCoreClock / 56U)) + { + return HAL_ERROR; + } + } + + /* Clear PWR wake up Flag */ + __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU); + + /* Clear RTC Wake Up timer Flag */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hRTC_Handle, RTC_FLAG_WUTF); + + /* Configure the Wake-up Timer counter */ + hRTC_Handle.Instance->WUTR = 0U; + + /* Clear the Wake-up Timer clock source bits in CR register */ + hRTC_Handle.Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; + + /* Configure the clock source */ + hRTC_Handle.Instance->CR |= (uint32_t)RTC_WAKEUPCLOCK_CK_SPRE_16BITS; + + /* RTC WakeUpTimer Interrupt Configuration: EXTI configuration */ + __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT(); + + /* Configure the Interrupt in the RTC_CR register */ + __HAL_RTC_WAKEUPTIMER_ENABLE_IT(&hRTC_Handle, RTC_IT_WUT); + + /* Enable the Wake-up Timer */ + __HAL_RTC_WAKEUPTIMER_ENABLE(&hRTC_Handle); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); + + HAL_NVIC_SetPriority(RTC_TAMP_IRQn, TickPriority, 0U); + HAL_NVIC_EnableIRQ(RTC_TAMP_IRQn); + return HAL_OK; + } + } + return HAL_ERROR; +} + +/** + * @brief Suspend Tick increment. + * @note Disable the tick increment by disabling RTC_TAMP interrupt. + * @retval None + */ +void HAL_SuspendTick(void) +{ + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); + /* Disable WAKE UP TIMER Interrupt */ + __HAL_RTC_WAKEUPTIMER_DISABLE_IT(&hRTC_Handle, RTC_IT_WUT); + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); +} + +/** + * @brief Resume Tick increment. + * @note Enable the tick increment by Enabling RTC_TAMP interrupt. + * @retval None + */ +void HAL_ResumeTick(void) +{ + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); + /* Enable WAKE UP TIMER interrupt */ + __HAL_RTC_WAKEUPTIMER_ENABLE_IT(&hRTC_Handle, RTC_IT_WUT); + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); +} + +/** + * @brief Wake Up Timer Event Callback in non blocking mode + * @note This function is called when RTC_TAMP interrupt took place, inside + * RTC_TAMP_IRQHandler(). It makes a direct call to HAL_IncTick() to increment + * a global variable "uwTick" used as application time base. + * @param hrtc : RTC handle + * @retval None + */ +void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) +{ + HAL_IncTick(); +} + +/** + * @brief This function handles RTC WAKE UP TIMER interrupt request. + * @retval None + */ +void RTC_TAMP_IRQHandler(void) +{ + HAL_RTCEx_WakeUpTimerIRQHandler(&hRTC_Handle); +} + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_tim_template.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_tim_template.c new file mode 100644 index 0000000..fe6e04c --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_timebase_tim_template.c @@ -0,0 +1,194 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_timebase_tim_template.c + * @author GPM Application Team + * @brief HAL time base based on the hardware TIM Template. + * + * This file overrides the native HAL time base functions (defined as weak) + * the TIM time base: + * + Initializes the TIM peripheral to generate a Period elapsed Event each 1ms + * + HAL_IncTick is called inside HAL_TIM_PeriodElapsedCallback ie each 1ms + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This file must be copied to the application folder and modified as follows: + (#) Rename it to 'stm32u0xx_hal_timebase_tim.c' + (#) Add this file and the TIM HAL driver files to your project and make sure + HAL_TIM_MODULE_ENABLED is defined in stm32u0xx_hal_conf.h + + [..] + (@) The application needs to ensure that the time base is always set to 1 millisecond + to have correct HAL operation. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @addtogroup HAL_TimeBase_TIM + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +static TIM_HandleTypeDef TimHandle; + +/* Private function prototypes -----------------------------------------------*/ +void TIM16_IRQHandler(void); +/* Private functions ---------------------------------------------------------*/ + +/** + * @brief This function configures the TIM16 as a time base source. + * The time source is configured to have 1ms time base with a dedicated + * Tick interrupt priority. + * @note This function is called automatically at the beginning of program after + * reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). + * @param TickPriority Tick interrupt priority. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) +{ + RCC_ClkInitTypeDef clkconfig; + uint32_t uwTimclock; + uint32_t uwAPB1Prescaler; + uint32_t uwPrescalerValue; + uint32_t pFLatency; + HAL_StatusTypeDef status; + + /* Enable TIM16 clock */ + __HAL_RCC_TIM16_CLK_ENABLE(); + + /* Get clock configuration */ + HAL_RCC_GetClockConfig(&clkconfig, &pFLatency); + + /* Get APB1 prescaler */ + uwAPB1Prescaler = clkconfig.APB1CLKDivider; + + /* Compute TIM16 clock */ + if (uwAPB1Prescaler == RCC_HCLK_DIV1) + { + uwTimclock = HAL_RCC_GetPCLK1Freq(); + } + else + { + uwTimclock = 2U * HAL_RCC_GetPCLK1Freq(); + } + + /* Compute the prescaler value to have TIM16 counter clock equal to 1MHz */ + uwPrescalerValue = (uint32_t)((uwTimclock / 1000000U) - 1U); + + /* Initialize TIM16 */ + TimHandle.Instance = TIM16; + + /* Initialize TIMx peripheral as follow: + + Period = [(TIM16CLK/1000) - 1]. to have a (1/1000) s time base. + + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock. + + ClockDivision = 0 + + Counter direction = Up + */ + TimHandle.Init.Period = (1000000U / 1000U) - 1U; + TimHandle.Init.Prescaler = uwPrescalerValue; + TimHandle.Init.ClockDivision = 0U; + TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; + + status = HAL_TIM_Base_Init(&TimHandle); + if (status == HAL_OK) + { + /* Start the TIM time Base generation in interrupt mode */ + status = HAL_TIM_Base_Start_IT(&TimHandle); + if (status == HAL_OK) + { + if (TickPriority < (1UL << __NVIC_PRIO_BITS)) + { + /* Enable the TIM16 global Interrupt */ + HAL_NVIC_SetPriority(TIM16_IRQn, TickPriority, 0U); + uwTickPrio = TickPriority; + } + else + { + status = HAL_ERROR; + } + } + } + + /* Enable the TIM16 global Interrupt */ + HAL_NVIC_EnableIRQ(TIM16_IRQn); + + /* Return function status */ + return status; +} + +/** + * @brief Suspend Tick increment. + * @note Disable the tick increment by disabling TIM16 update interrupt. + * @retval None + */ +void HAL_SuspendTick(void) +{ + /* Disable TIM16 update interrupt */ + __HAL_TIM_DISABLE_IT(&TimHandle, TIM_IT_UPDATE); +} + +/** + * @brief Resume Tick increment. + * @note Enable the tick increment by enabling TIM16 update interrupt. + * @retval None + */ +void HAL_ResumeTick(void) +{ + /* Enable TIM16 update interrupt */ + __HAL_TIM_ENABLE_IT(&TimHandle, TIM_IT_UPDATE); +} + +/** + * @brief Period elapsed callback in non blocking mode + * @note This function is called when TIM16 interrupt took place, inside + * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment + * a global variable "uwTick" used as application time base. + * @param htim TIM handle + * @retval None + */ +void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) +{ + HAL_IncTick(); +} + +/** + * @brief This function handles TIM interrupt request. + * @param None + * @retval None + */ +void TIM16_IRQHandler(void) +{ + HAL_TIM_IRQHandler(&TimHandle); +} + +/** + * @} + */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tsc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tsc.c new file mode 100644 index 0000000..7c5e625 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_tsc.c @@ -0,0 +1,1121 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_tsc.c + * @author MCD Application Team + * @brief This file provides firmware functions to manage the following + * functionalities of the Touch Sensing Controller (TSC) peripheral: + * + Initialization and De-initialization + * + Channel IOs, Shield IOs and Sampling IOs configuration + * + Start and Stop an acquisition + * + Read acquisition result + * + Interrupts and flags management + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim +================================================================================ + ##### TSC specific features ##### +================================================================================ + [..] + (#) Proven and robust surface charge transfer acquisition principle + + (#) Supports up to 3 capacitive sensing channels per group + + (#) Capacitive sensing channels can be acquired in parallel offering a very good + response time + + (#) Spread spectrum feature to improve system robustness in noisy environments + + (#) Full hardware management of the charge transfer acquisition sequence + + (#) Programmable charge transfer frequency + + (#) Programmable sampling capacitor I/O pin + + (#) Programmable channel I/O pin + + (#) Programmable max count value to avoid long acquisition when a channel is faulty + + (#) Dedicated end of acquisition and max count error flags with interrupt capability + + (#) One sampling capacitor for up to 3 capacitive sensing channels to reduce the system + components + + (#) Compatible with proximity, touchkey, linear and rotary touch sensor implementation + + ##### How to use this driver ##### +================================================================================ + [..] + (#) Enable the TSC interface clock using __HAL_RCC_TSC_CLK_ENABLE() macro. + + (#) GPIO pins configuration + (++) Enable the clock for the TSC GPIOs using __HAL_RCC_GPIOx_CLK_ENABLE() macro. + (++) Configure the TSC pins used as sampling IOs in alternate function output Open-Drain mode, + and TSC pins used as channel/shield IOs in alternate function output Push-Pull mode + using HAL_GPIO_Init() function. + + (#) Interrupts configuration + (++) Configure the NVIC (if the interrupt model is used) using HAL_NVIC_SetPriority() + and HAL_NVIC_EnableIRQ() and function. + + (#) TSC configuration + (++) Configure all TSC parameters and used TSC IOs using HAL_TSC_Init() function. + + [..] TSC peripheral alternate functions are mapped on AF9. + + *** Acquisition sequence *** + =================================== + [..] + (+) Discharge all IOs using HAL_TSC_IODischarge() function. + (+) Wait a certain time allowing a good discharge of all capacitors. This delay depends + of the sampling capacitor and electrodes design. + (+) Select the channel IOs to be acquired using HAL_TSC_IOConfig() function. + (+) Launch the acquisition using either HAL_TSC_Start() or HAL_TSC_Start_IT() function. + If the synchronized mode is selected, the acquisition will start as soon as the signal + is received on the synchro pin. + (+) Wait the end of acquisition using either HAL_TSC_PollForAcquisition() or + HAL_TSC_GetState() function or using WFI instruction for example. + (+) Check the group acquisition status using HAL_TSC_GroupGetStatus() function. + (+) Read the acquisition value using HAL_TSC_GroupGetValue() function. + + *** Callback registration *** + ============================================= + + [..] + The compilation flag USE_HAL_TSC_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_TSC_RegisterCallback() to register an interrupt callback. + + [..] + Function HAL_TSC_RegisterCallback() allows to register following callbacks: + (+) ConvCpltCallback : callback for conversion complete process. + (+) ErrorCallback : callback for error detection. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + [..] + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function HAL_TSC_UnRegisterCallback to reset a callback to the default + weak function. + HAL_TSC_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + [..] + This function allows to reset following callbacks: + (+) ConvCpltCallback : callback for conversion complete process. + (+) ErrorCallback : callback for error detection. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + + [..] + By default, after the HAL_TSC_Init() and when the state is HAL_TSC_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_TSC_ConvCpltCallback(), HAL_TSC_ErrorCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the HAL_TSC_Init()/ HAL_TSC_DeInit() only when + these callbacks are null (not registered beforehand). + If MspInit or MspDeInit are not null, the HAL_TSC_Init()/ HAL_TSC_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + + [..] + Callbacks can be registered/unregistered in HAL_TSC_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in HAL_TSC_STATE_READY or HAL_TSC_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + Then, the user first registers the MspInit/MspDeInit user callbacks + using HAL_TSC_RegisterCallback() before calling HAL_TSC_DeInit() + or HAL_TSC_Init() function. + + [..] + When the compilation flag USE_HAL_TSC_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + + Table 1. IOs for the STM32U0xx devices + +--------------------------------+ + | IOs | TSC functions | + |--------------|-----------------| + | PB12 (AF) | TSC_G1_IO1 | + | PB13 (AF) | TSC_G1_IO2 | + | PB14 (AF) | TSC_G1_IO3 | + | PB15 (AF) | TSC_G1_IO4 | + |--------------|-----------------| + | PB4 (AF) | TSC_G2_IO1 | + | PB5 (AF) | TSC_G2_IO2 | + | PB6 (AF) | TSC_G2_IO3 | + | PB7 (AF) | TSC_G2_IO4 | + |--------------|-----------------| + | PA15 (AF) | TSC_G3_IO1 | + | PC10 (AF) | TSC_G3_IO2 | + | PC11 (AF) | TSC_G3_IO3 | + | PA14 (AF) | TSC_G3_IO4 | + |--------------|-----------------| + | PC6 (AF) | TSC_G4_IO1 | + | PC7 (AF) | TSC_G4_IO2 | + | PC8 (AF) | TSC_G4_IO3 | + | PC9 (AF) | TSC_G4_IO4 | + |--------------|-----------------| + | PA6 (AF) | TSC_G5_IO1 | + | PB0 (AF) | TSC_G5_IO2 | + | PB10 (AF) | TSC_G5_IO3 | + | PB11 (AF) | TSC_G5_IO4 | + |--------------|-----------------| + | PD10 (AF) | TSC_G6_IO1 | + | PD11 (AF) | TSC_G6_IO2 | + | PD12 (AF) | TSC_G6_IO3 | + | PD13 (AF) | TSC_G6_IO4 | + |--------------|-----------------| + | PA8 (AF) | TSC_G7_IO1 | + | PA9 (AF) | TSC_G7_IO2 | + | PA10 (AF) | TSC_G7_IO3 | + | PA13 (AF) | TSC_G7_IO4 | + |--------------|-----------------| + | PB1 (AF) | TSC_SYNC | + | PD2 (AF) | | + +--------------------------------+ + + + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup TSC TSC + * @brief HAL TSC module driver + * @{ + */ + +#ifdef HAL_TSC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static uint32_t TSC_extract_groups(uint32_t iomask); + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup TSC_Exported_Functions TSC Exported Functions + * @{ + */ + +/** @defgroup TSC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the TSC. + (+) De-initialize the TSC. +@endverbatim + * @{ + */ + +/** + * @brief Initialize the TSC peripheral according to the specified parameters + * in the TSC_InitTypeDef structure and initialize the associated handle. + * @param htsc TSC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_Init(TSC_HandleTypeDef *htsc) +{ + /* Check TSC handle allocation */ + if (htsc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + assert_param(IS_TSC_CTPH(htsc->Init.CTPulseHighLength)); + assert_param(IS_TSC_CTPL(htsc->Init.CTPulseLowLength)); + assert_param(IS_TSC_SS(htsc->Init.SpreadSpectrum)); + assert_param(IS_TSC_SSD(htsc->Init.SpreadSpectrumDeviation)); + assert_param(IS_TSC_SS_PRESC(htsc->Init.SpreadSpectrumPrescaler)); + assert_param(IS_TSC_PG_PRESC(htsc->Init.PulseGeneratorPrescaler)); + assert_param(IS_TSC_PG_PRESC_VS_CTPL(htsc->Init.PulseGeneratorPrescaler, htsc->Init.CTPulseLowLength)); + assert_param(IS_TSC_MCV(htsc->Init.MaxCountValue)); + assert_param(IS_TSC_IODEF(htsc->Init.IODefaultMode)); + assert_param(IS_TSC_SYNC_POL(htsc->Init.SynchroPinPolarity)); + assert_param(IS_TSC_ACQ_MODE(htsc->Init.AcquisitionMode)); + assert_param(IS_TSC_MCE_IT(htsc->Init.MaxCountInterrupt)); + assert_param(IS_TSC_GROUP(htsc->Init.ChannelIOs)); + assert_param(IS_TSC_GROUP(htsc->Init.ShieldIOs)); + assert_param(IS_TSC_GROUP(htsc->Init.SamplingIOs)); + + if (htsc->State == HAL_TSC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htsc->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) + /* Init the TSC Callback settings */ + htsc->ConvCpltCallback = HAL_TSC_ConvCpltCallback; /* Legacy weak ConvCpltCallback */ + htsc->ErrorCallback = HAL_TSC_ErrorCallback; /* Legacy weak ErrorCallback */ + + if (htsc->MspInitCallback == NULL) + { + htsc->MspInitCallback = HAL_TSC_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + htsc->MspInitCallback(htsc); +#else + /* Init the low level hardware : GPIO, CLOCK, CORTEX */ + HAL_TSC_MspInit(htsc); +#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ + } + + /* Initialize the TSC state */ + htsc->State = HAL_TSC_STATE_BUSY; + + /*--------------------------------------------------------------------------*/ + /* Set TSC parameters */ + + /* Enable TSC */ + htsc->Instance->CR = TSC_CR_TSCE; + + /* Set all functions */ + htsc->Instance->CR |= (htsc->Init.CTPulseHighLength | + htsc->Init.CTPulseLowLength | + (htsc->Init.SpreadSpectrumDeviation << TSC_CR_SSD_Pos) | + htsc->Init.SpreadSpectrumPrescaler | + htsc->Init.PulseGeneratorPrescaler | + htsc->Init.MaxCountValue | + htsc->Init.SynchroPinPolarity | + htsc->Init.AcquisitionMode); + + /* Spread spectrum */ + if (htsc->Init.SpreadSpectrum == ENABLE) + { + htsc->Instance->CR |= TSC_CR_SSE; + } + + /* Disable Schmitt trigger hysteresis on all used TSC IOs */ + htsc->Instance->IOHCR = (~(htsc->Init.ChannelIOs | htsc->Init.ShieldIOs | htsc->Init.SamplingIOs)); + + /* Set channel and shield IOs */ + htsc->Instance->IOCCR = (htsc->Init.ChannelIOs | htsc->Init.ShieldIOs); + + /* Set sampling IOs */ + htsc->Instance->IOSCR = htsc->Init.SamplingIOs; + + /* Set the groups to be acquired */ + htsc->Instance->IOGCSR = TSC_extract_groups(htsc->Init.ChannelIOs); + + /* Disable interrupts */ + htsc->Instance->IER &= (~(TSC_IT_EOA | TSC_IT_MCE)); + + /* Clear flags */ + htsc->Instance->ICR = (TSC_FLAG_EOA | TSC_FLAG_MCE); + + /*--------------------------------------------------------------------------*/ + + /* Initialize the TSC state */ + htsc->State = HAL_TSC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Deinitialize the TSC peripheral registers to their default reset values. + * @param htsc TSC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_DeInit(TSC_HandleTypeDef *htsc) +{ + /* Check TSC handle allocation */ + if (htsc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_BUSY; + +#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) + if (htsc->MspDeInitCallback == NULL) + { + htsc->MspDeInitCallback = HAL_TSC_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + htsc->MspDeInitCallback(htsc); +#else + /* DeInit the low level hardware */ + HAL_TSC_MspDeInit(htsc); +#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ + + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_RESET; + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initialize the TSC MSP. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval None + */ +__weak void HAL_TSC_MspInit(TSC_HandleTypeDef *htsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htsc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TSC_MspInit could be implemented in the user file. + */ +} + +/** + * @brief DeInitialize the TSC MSP. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval None + */ +__weak void HAL_TSC_MspDeInit(TSC_HandleTypeDef *htsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htsc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TSC_MspDeInit could be implemented in the user file. + */ +} + +#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User TSC Callback + * To be used instead of the weak predefined callback + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_TSC_CONV_COMPLETE_CB_ID Conversion completed callback ID + * @arg @ref HAL_TSC_ERROR_CB_ID Error callback ID + * @arg @ref HAL_TSC_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_TSC_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_RegisterCallback(TSC_HandleTypeDef *htsc, HAL_TSC_CallbackIDTypeDef CallbackID, + pTSC_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(htsc); + + if (HAL_TSC_STATE_READY == htsc->State) + { + switch (CallbackID) + { + case HAL_TSC_CONV_COMPLETE_CB_ID : + htsc->ConvCpltCallback = pCallback; + break; + + case HAL_TSC_ERROR_CB_ID : + htsc->ErrorCallback = pCallback; + break; + + case HAL_TSC_MSPINIT_CB_ID : + htsc->MspInitCallback = pCallback; + break; + + case HAL_TSC_MSPDEINIT_CB_ID : + htsc->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_TSC_STATE_RESET == htsc->State) + { + switch (CallbackID) + { + case HAL_TSC_MSPINIT_CB_ID : + htsc->MspInitCallback = pCallback; + break; + + case HAL_TSC_MSPDEINIT_CB_ID : + htsc->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(htsc); + return status; +} + +/** + * @brief Unregister an TSC Callback + * TSC callback is redirected to the weak predefined callback + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * This parameter can be one of the following values: + * @arg @ref HAL_TSC_CONV_COMPLETE_CB_ID Conversion completed callback ID + * @arg @ref HAL_TSC_ERROR_CB_ID Error callback ID + * @arg @ref HAL_TSC_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_TSC_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_UnRegisterCallback(TSC_HandleTypeDef *htsc, HAL_TSC_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(htsc); + + if (HAL_TSC_STATE_READY == htsc->State) + { + switch (CallbackID) + { + case HAL_TSC_CONV_COMPLETE_CB_ID : + htsc->ConvCpltCallback = HAL_TSC_ConvCpltCallback; /* Legacy weak ConvCpltCallback */ + break; + + case HAL_TSC_ERROR_CB_ID : + htsc->ErrorCallback = HAL_TSC_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_TSC_MSPINIT_CB_ID : + htsc->MspInitCallback = HAL_TSC_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_TSC_MSPDEINIT_CB_ID : + htsc->MspDeInitCallback = HAL_TSC_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_TSC_STATE_RESET == htsc->State) + { + switch (CallbackID) + { + case HAL_TSC_MSPINIT_CB_ID : + htsc->MspInitCallback = HAL_TSC_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_TSC_MSPDEINIT_CB_ID : + htsc->MspDeInitCallback = HAL_TSC_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(htsc); + return status; +} + +#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup TSC_Exported_Functions_Group2 Input and Output operation functions + * @brief Input and Output operation functions + * +@verbatim + =============================================================================== + ##### IO Operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start acquisition in polling mode. + (+) Start acquisition in interrupt mode. + (+) Stop conversion in polling mode. + (+) Stop conversion in interrupt mode. + (+) Poll for acquisition completed. + (+) Get group acquisition status. + (+) Get group acquisition value. +@endverbatim + * @{ + */ + +/** + * @brief Start the acquisition. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_Start(TSC_HandleTypeDef *htsc) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + /* Process locked */ + __HAL_LOCK(htsc); + + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_BUSY; + + /* Clear interrupts */ + __HAL_TSC_DISABLE_IT(htsc, (TSC_IT_EOA | TSC_IT_MCE)); + + /* Clear flags */ + __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); + + /* Set touch sensing IOs not acquired to the specified IODefaultMode */ + if (htsc->Init.IODefaultMode == TSC_IODEF_OUT_PP_LOW) + { + __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); + } + else + { + __HAL_TSC_SET_IODEF_INFLOAT(htsc); + } + + /* Launch the acquisition */ + __HAL_TSC_START_ACQ(htsc); + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start the acquisition in interrupt mode. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_TSC_Start_IT(TSC_HandleTypeDef *htsc) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + assert_param(IS_TSC_MCE_IT(htsc->Init.MaxCountInterrupt)); + + /* Process locked */ + __HAL_LOCK(htsc); + + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_BUSY; + + /* Enable end of acquisition interrupt */ + __HAL_TSC_ENABLE_IT(htsc, TSC_IT_EOA); + + /* Enable max count error interrupt (optional) */ + if (htsc->Init.MaxCountInterrupt == ENABLE) + { + __HAL_TSC_ENABLE_IT(htsc, TSC_IT_MCE); + } + else + { + __HAL_TSC_DISABLE_IT(htsc, TSC_IT_MCE); + } + + /* Clear flags */ + __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); + + /* Set touch sensing IOs not acquired to the specified IODefaultMode */ + if (htsc->Init.IODefaultMode == TSC_IODEF_OUT_PP_LOW) + { + __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); + } + else + { + __HAL_TSC_SET_IODEF_INFLOAT(htsc); + } + + /* Launch the acquisition */ + __HAL_TSC_START_ACQ(htsc); + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the acquisition previously launched in polling mode. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_Stop(TSC_HandleTypeDef *htsc) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + /* Process locked */ + __HAL_LOCK(htsc); + + /* Stop the acquisition */ + __HAL_TSC_STOP_ACQ(htsc); + + /* Set touch sensing IOs in low power mode (output push-pull) */ + __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); + + /* Clear flags */ + __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); + + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the acquisition previously launched in interrupt mode. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_Stop_IT(TSC_HandleTypeDef *htsc) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + /* Process locked */ + __HAL_LOCK(htsc); + + /* Stop the acquisition */ + __HAL_TSC_STOP_ACQ(htsc); + + /* Set touch sensing IOs in low power mode (output push-pull) */ + __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); + + /* Disable interrupts */ + __HAL_TSC_DISABLE_IT(htsc, (TSC_IT_EOA | TSC_IT_MCE)); + + /* Clear flags */ + __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); + + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Start acquisition and wait until completion. + * @note There is no need of a timeout parameter as the max count error is already + * managed by the TSC peripheral. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval HAL state + */ +HAL_StatusTypeDef HAL_TSC_PollForAcquisition(TSC_HandleTypeDef *htsc) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + /* Process locked */ + __HAL_LOCK(htsc); + + /* Check end of acquisition */ + while (HAL_TSC_GetState(htsc) == HAL_TSC_STATE_BUSY) + { + /* The timeout (max count error) is managed by the TSC peripheral itself. */ + } + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + return HAL_OK; +} + +/** + * @brief Get the acquisition status for a group. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @param gx_index Index of the group + * @retval Group status + */ +TSC_GroupStatusTypeDef HAL_TSC_GroupGetStatus(const TSC_HandleTypeDef *htsc, uint32_t gx_index) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + assert_param(IS_TSC_GROUP_INDEX(gx_index)); + + /* Return the group status */ + return (__HAL_TSC_GET_GROUP_STATUS(htsc, gx_index)); +} + +/** + * @brief Get the acquisition measure for a group. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @param gx_index Index of the group + * @retval Acquisition measure + */ +uint32_t HAL_TSC_GroupGetValue(const TSC_HandleTypeDef *htsc, uint32_t gx_index) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + assert_param(IS_TSC_GROUP_INDEX(gx_index)); + + /* Return the group acquisition counter */ + return htsc->Instance->IOGXCR[gx_index]; +} + +/** + * @} + */ + +/** @defgroup TSC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure TSC IOs + (+) Discharge TSC IOs +@endverbatim + * @{ + */ + +/** + * @brief Configure TSC IOs. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @param config Pointer to the configuration structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_IOConfig(TSC_HandleTypeDef *htsc, const TSC_IOConfigTypeDef *config) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + assert_param(IS_TSC_GROUP(config->ChannelIOs)); + assert_param(IS_TSC_GROUP(config->ShieldIOs)); + assert_param(IS_TSC_GROUP(config->SamplingIOs)); + + /* Process locked */ + __HAL_LOCK(htsc); + + /* Stop acquisition */ + __HAL_TSC_STOP_ACQ(htsc); + + /* Disable Schmitt trigger hysteresis on all used TSC IOs */ + htsc->Instance->IOHCR = (~(config->ChannelIOs | config->ShieldIOs | config->SamplingIOs)); + + /* Set channel and shield IOs */ + htsc->Instance->IOCCR = (config->ChannelIOs | config->ShieldIOs); + + /* Set sampling IOs */ + htsc->Instance->IOSCR = config->SamplingIOs; + + /* Set groups to be acquired */ + htsc->Instance->IOGCSR = TSC_extract_groups(config->ChannelIOs); + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Discharge TSC IOs. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @param choice This parameter can be set to ENABLE or DISABLE. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TSC_IODischarge(TSC_HandleTypeDef *htsc, FunctionalState choice) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + /* Process locked */ + __HAL_LOCK(htsc); + + if (choice == ENABLE) + { + __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); + } + else + { + __HAL_TSC_SET_IODEF_INFLOAT(htsc); + } + + /* Process unlocked */ + __HAL_UNLOCK(htsc); + + /* Return the group acquisition counter */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TSC_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Get TSC state. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TSC handle state. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval HAL state + */ +HAL_TSC_StateTypeDef HAL_TSC_GetState(TSC_HandleTypeDef *htsc) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + if (htsc->State == HAL_TSC_STATE_BUSY) + { + /* Check end of acquisition flag */ + if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_EOA) != RESET) + { + /* Check max count error flag */ + if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_MCE) != RESET) + { + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_ERROR; + } + else + { + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_READY; + } + } + } + + /* Return TSC state */ + return htsc->State; +} + +/** + * @} + */ + +/** @defgroup TSC_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks + * @{ + */ + +/** + * @brief Handle TSC interrupt request. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval None + */ +void HAL_TSC_IRQHandler(TSC_HandleTypeDef *htsc) +{ + /* Check the parameters */ + assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); + + /* Check if the end of acquisition occurred */ + if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_EOA) != RESET) + { + /* Clear EOA flag */ + __HAL_TSC_CLEAR_FLAG(htsc, TSC_FLAG_EOA); + } + + /* Check if max count error occurred */ + if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_MCE) != RESET) + { + /* Clear MCE flag */ + __HAL_TSC_CLEAR_FLAG(htsc, TSC_FLAG_MCE); + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_ERROR; +#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) + htsc->ErrorCallback(htsc); +#else + /* Conversion completed callback */ + HAL_TSC_ErrorCallback(htsc); +#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ + } + else + { + /* Change TSC state */ + htsc->State = HAL_TSC_STATE_READY; +#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) + htsc->ConvCpltCallback(htsc); +#else + /* Conversion completed callback */ + HAL_TSC_ConvCpltCallback(htsc); +#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ + } +} + +/** + * @brief Acquisition completed callback in non-blocking mode. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval None + */ +__weak void HAL_TSC_ConvCpltCallback(TSC_HandleTypeDef *htsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htsc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TSC_ConvCpltCallback could be implemented in the user file. + */ +} + +/** + * @brief Error callback in non-blocking mode. + * @param htsc Pointer to a TSC_HandleTypeDef structure that contains + * the configuration information for the specified TSC. + * @retval None + */ +__weak void HAL_TSC_ErrorCallback(TSC_HandleTypeDef *htsc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htsc); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TSC_ErrorCallback could be implemented in the user file. + */ +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup TSC_Private_Functions TSC Private Functions + * @{ + */ + +/** + * @brief Utility function used to set the acquired groups mask. + * @param iomask Channels IOs mask + * @retval Acquired groups mask + */ +static uint32_t TSC_extract_groups(uint32_t iomask) +{ + uint32_t groups = 0UL; + uint32_t idx; + + for (idx = 0UL; idx < (uint32_t)TSC_NB_OF_GROUPS; idx++) + { + if ((iomask & (0x0FUL << (idx * 4UL))) != 0UL) + { + groups |= (1UL << idx); + } + } + + return groups; +} + +/** + * @} + */ + +#endif /* HAL_TSC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart.c new file mode 100644 index 0000000..8ee4466 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart.c @@ -0,0 +1,4762 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_uart.c + * @author MCD Application Team + * @brief UART HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The UART HAL driver can be used as follows: + + (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart). + (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: + (++) Enable the USARTx interface clock. + (++) UART pins configuration: + (+++) Enable the clock for the UART GPIOs. + (+++) Configure these UART pins as alternate function pull-up. + (++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() + and HAL_UART_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (++) UART interrupts handling: + -@@- The specific UART interrupts (Transmission complete interrupt, + RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts) + are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() + inside the transmit and receive processes. + (++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() + and HAL_UART_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx channel. + (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Tx/Rx channel. + + (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Prescaler value , Hardware + flow control and Mode (Receiver/Transmitter) in the huart handle Init structure. + + (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...) + in the huart handle AdvancedInit structure. + + (#) For the UART asynchronous mode, initialize the UART registers by calling + the HAL_UART_Init() API. + + (#) For the UART Half duplex mode, initialize the UART registers by calling + the HAL_HalfDuplex_Init() API. + + (#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers + by calling the HAL_LIN_Init() API. + + (#) For the UART Multiprocessor mode, initialize the UART registers + by calling the HAL_MultiProcessor_Init() API. + + (#) For the UART RS485 Driver Enabled mode, initialize the UART registers + by calling the HAL_RS485Ex_Init() API. + + [..] + (@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(), + also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by + calling the customized HAL_UART_MspInit() API. + + ##### Callback registration ##### + ================================== + + [..] + The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function HAL_UART_RegisterCallback() to register a user callback. + Function HAL_UART_RegisterCallback() allows to register following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) WakeupCallback : Wakeup Callback. + (+) RxFifoFullCallback : Rx Fifo Full Callback. + (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. + (+) MspInitCallback : UART MspInit. + (+) MspDeInitCallback : UART MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function HAL_UART_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) WakeupCallback : Wakeup Callback. + (+) RxFifoFullCallback : Rx Fifo Full Callback. + (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. + (+) MspInitCallback : UART MspInit. + (+) MspDeInitCallback : UART MspDeInit. + + [..] + For specific callback RxEventCallback, use dedicated registration/reset functions: + respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback(). + + [..] + By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback(). + Exception done for MspInit and MspDeInit functions that are respectively + reset to the legacy weak functions in the HAL_UART_Init() + and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand). + + [..] + Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user) + MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit() + or HAL_UART_Init() function. + + [..] + When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available + and weak callbacks are used. + + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup UART UART + * @brief HAL UART module driver + * @{ + */ + +#ifdef HAL_UART_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup UART_Private_Constants UART Private Constants + * @{ + */ +#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \ + USART_CR1_OVER8 | USART_CR1_FIFOEN)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */ + +#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT | USART_CR3_TXFTCFG | \ + USART_CR3_RXFTCFG)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */ + +#define LPUART_BRR_MIN 0x00000300U /* LPUART BRR minimum authorized value */ +#define LPUART_BRR_MAX 0x000FFFFFU /* LPUART BRR maximum authorized value */ + +#define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */ +#define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup UART_Private_Functions + * @{ + */ +static void UART_EndRxTransfer(UART_HandleTypeDef *huart); +#if defined(HAL_DMA_MODULE_ENABLED) +static void UART_EndTxTransfer(UART_HandleTypeDef *huart); +static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void UART_DMAError(DMA_HandleTypeDef *hdma); +static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma); +static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma); +static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +#endif /* HAL_DMA_MODULE_ENABLED */ +static void UART_TxISR_8BIT(UART_HandleTypeDef *huart); +static void UART_TxISR_16BIT(UART_HandleTypeDef *huart); +static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart); +static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart); +static void UART_EndTransmit_IT(UART_HandleTypeDef *huart); +static void UART_RxISR_8BIT(UART_HandleTypeDef *huart); +static void UART_RxISR_16BIT(UART_HandleTypeDef *huart); +static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart); +static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart); +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup UART_Private_variables + * @{ + */ +const uint16_t UARTPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U}; +/** + * @} + */ + +/* Exported Constants --------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup UART_Exported_Functions UART Exported Functions + * @{ + */ + +/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx or the UARTy + in asynchronous mode. + (+) For the asynchronous mode the parameters below can be configured: + (++) Baud Rate + (++) Word Length + (++) Stop Bit + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + (++) Hardware flow control + (++) Receiver/transmitter modes + (++) Over Sampling Method + (++) One-Bit Sampling Method + (+) For the asynchronous mode, the following advanced features can be configured as well: + (++) TX and/or RX pin level inversion + (++) data logical level inversion + (++) RX and TX pins swap + (++) RX overrun detection disabling + (++) DMA disabling on RX error + (++) MSB first on communication line + (++) auto Baud rate detection + [..] + The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API + follow respectively the UART asynchronous, UART Half duplex, UART LIN mode + and UART multiprocessor mode configuration procedures (details for the procedures + are available in reference manual). + +@endverbatim + + Depending on the frame length defined by the M1 and M0 bits (7-bit, + 8-bit or 9-bit), the possible UART formats are listed in the + following table. + + Table 1. UART frame format. + +-----------------------------------------------------------------------+ + | M1 bit | M0 bit | PCE bit | UART frame | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 0 | | SB | 8 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 0 | | SB | 9 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 0 | | SB | 7 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | + +-----------------------------------------------------------------------+ + + * @{ + */ + +/** + * @brief Initialize the UART mode according to the specified + * parameters in the UART_InitTypeDef and initialize the associated handle. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if (huart == NULL) + { + return HAL_ERROR; + } + + if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) + { + /* Check the parameters */ + assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); + } + else + { + /* Check the parameters */ + assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance))); + } + + if (huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + UART_InitCallbacksToDefault(huart); + + if (huart->MspInitCallback == NULL) + { + huart->MspInitCallback = HAL_UART_MspInit; + } + + /* Init the low level hardware */ + huart->MspInitCallback(huart); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + + huart->gState = HAL_UART_STATE_BUSY; + + __HAL_UART_DISABLE(huart); + + /* Perform advanced settings configuration */ + /* For some items, configuration requires to be done prior TE and RE bits are set */ + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* In asynchronous mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); + + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + +/** + * @brief Initialize the half-duplex mode according to the specified + * parameters in the UART_InitTypeDef and creates the associated handle. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if (huart == NULL) + { + return HAL_ERROR; + } + + /* Check UART instance */ + assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance)); + + if (huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + UART_InitCallbacksToDefault(huart); + + if (huart->MspInitCallback == NULL) + { + huart->MspInitCallback = HAL_UART_MspInit; + } + + /* Init the low level hardware */ + huart->MspInitCallback(huart); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + + huart->gState = HAL_UART_STATE_BUSY; + + __HAL_UART_DISABLE(huart); + + /* Perform advanced settings configuration */ + /* For some items, configuration requires to be done prior TE and RE bits are set */ + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* In half-duplex mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN)); + + /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ + SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL); + + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + + +/** + * @brief Initialize the LIN mode according to the specified + * parameters in the UART_InitTypeDef and creates the associated handle. + * @param huart UART handle. + * @param BreakDetectLength Specifies the LIN break detection length. + * This parameter can be one of the following values: + * @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection + * @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) +{ + /* Check the UART handle allocation */ + if (huart == NULL) + { + return HAL_ERROR; + } + + /* Check the LIN UART instance */ + assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); + /* Check the Break detection length parameter */ + assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); + + /* LIN mode limited to 16-bit oversampling only */ + if (huart->Init.OverSampling == UART_OVERSAMPLING_8) + { + return HAL_ERROR; + } + /* LIN mode limited to 8-bit data length */ + if (huart->Init.WordLength != UART_WORDLENGTH_8B) + { + return HAL_ERROR; + } + + if (huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + UART_InitCallbacksToDefault(huart); + + if (huart->MspInitCallback == NULL) + { + huart->MspInitCallback = HAL_UART_MspInit; + } + + /* Init the low level hardware */ + huart->MspInitCallback(huart); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + + huart->gState = HAL_UART_STATE_BUSY; + + __HAL_UART_DISABLE(huart); + + /* Perform advanced settings configuration */ + /* For some items, configuration requires to be done prior TE and RE bits are set */ + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* In LIN mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN)); + + /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ + SET_BIT(huart->Instance->CR2, USART_CR2_LINEN); + + /* Set the USART LIN Break detection length. */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength); + + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + + +/** + * @brief Initialize the multiprocessor mode according to the specified + * parameters in the UART_InitTypeDef and initialize the associated handle. + * @param huart UART handle. + * @param Address UART node address (4-, 6-, 7- or 8-bit long). + * @param WakeUpMethod Specifies the UART wakeup method. + * This parameter can be one of the following values: + * @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection + * @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark + * @note If the user resorts to idle line detection wake up, the Address parameter + * is useless and ignored by the initialization function. + * @note If the user resorts to address mark wake up, the address length detection + * is configured by default to 4 bits only. For the UART to be able to + * manage 6-, 7- or 8-bit long addresses detection, the API + * HAL_MultiProcessorEx_AddressLength_Set() must be called after + * HAL_MultiProcessor_Init(). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) +{ + /* Check the UART handle allocation */ + if (huart == NULL) + { + return HAL_ERROR; + } + + /* Check the wake up method parameter */ + assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); + + if (huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + UART_InitCallbacksToDefault(huart); + + if (huart->MspInitCallback == NULL) + { + huart->MspInitCallback = HAL_UART_MspInit; + } + + /* Init the low level hardware */ + huart->MspInitCallback(huart); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_UART_MspInit(huart); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + + huart->gState = HAL_UART_STATE_BUSY; + + __HAL_UART_DISABLE(huart); + + /* Perform advanced settings configuration */ + /* For some items, configuration requires to be done prior TE and RE bits are set */ + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* In multiprocessor mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN, HDSEL and IREN bits in the USART_CR3 register. */ + CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); + + if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK) + { + /* If address mark wake up method is chosen, set the USART address node */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS)); + } + + /* Set the wake up method by setting the WAKE bit in the CR1 register */ + MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod); + + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + + +/** + * @brief DeInitialize the UART peripheral. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if (huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance))); + + huart->gState = HAL_UART_STATE_BUSY; + + __HAL_UART_DISABLE(huart); + + huart->Instance->CR1 = 0x0U; + huart->Instance->CR2 = 0x0U; + huart->Instance->CR3 = 0x0U; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + if (huart->MspDeInitCallback == NULL) + { + huart->MspDeInitCallback = HAL_UART_MspDeInit; + } + /* DeInit the low level hardware */ + huart->MspDeInitCallback(huart); +#else + /* DeInit the low level hardware */ + HAL_UART_MspDeInit(huart); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_RESET; + huart->RxState = HAL_UART_STATE_RESET; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + huart->RxEventType = HAL_UART_RXEVENT_TC; + + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Initialize the UART MSP. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_MspInit can be implemented in the user file + */ +} + +/** + * @brief DeInitialize the UART MSP. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_MspDeInit can be implemented in the user file + */ +} + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User UART Callback + * To be used to override the weak predefined callback + * @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), + * HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to register + * callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID + * @param huart uart handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID + * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID + * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID + * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID, + pUART_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (huart->gState == HAL_UART_STATE_READY) + { + switch (CallbackID) + { + case HAL_UART_TX_HALFCOMPLETE_CB_ID : + huart->TxHalfCpltCallback = pCallback; + break; + + case HAL_UART_TX_COMPLETE_CB_ID : + huart->TxCpltCallback = pCallback; + break; + + case HAL_UART_RX_HALFCOMPLETE_CB_ID : + huart->RxHalfCpltCallback = pCallback; + break; + + case HAL_UART_RX_COMPLETE_CB_ID : + huart->RxCpltCallback = pCallback; + break; + + case HAL_UART_ERROR_CB_ID : + huart->ErrorCallback = pCallback; + break; + + case HAL_UART_ABORT_COMPLETE_CB_ID : + huart->AbortCpltCallback = pCallback; + break; + + case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : + huart->AbortTransmitCpltCallback = pCallback; + break; + + case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : + huart->AbortReceiveCpltCallback = pCallback; + break; + + case HAL_UART_WAKEUP_CB_ID : + huart->WakeupCallback = pCallback; + break; + + case HAL_UART_RX_FIFO_FULL_CB_ID : + huart->RxFifoFullCallback = pCallback; + break; + + case HAL_UART_TX_FIFO_EMPTY_CB_ID : + huart->TxFifoEmptyCallback = pCallback; + break; + + case HAL_UART_MSPINIT_CB_ID : + huart->MspInitCallback = pCallback; + break; + + case HAL_UART_MSPDEINIT_CB_ID : + huart->MspDeInitCallback = pCallback; + break; + + default : + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + break; + } + } + else if (huart->gState == HAL_UART_STATE_RESET) + { + switch (CallbackID) + { + case HAL_UART_MSPINIT_CB_ID : + huart->MspInitCallback = pCallback; + break; + + case HAL_UART_MSPDEINIT_CB_ID : + huart->MspDeInitCallback = pCallback; + break; + + default : + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + break; + } + } + else + { + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister an UART Callback + * UART callaback is redirected to the weak predefined callback + * @note The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), + * HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to un-register + * callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID + * @param huart uart handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID + * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID + * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID + * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_UART_STATE_READY == huart->gState) + { + switch (CallbackID) + { + case HAL_UART_TX_HALFCOMPLETE_CB_ID : + huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + break; + + case HAL_UART_TX_COMPLETE_CB_ID : + huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ + break; + + case HAL_UART_RX_HALFCOMPLETE_CB_ID : + huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + break; + + case HAL_UART_RX_COMPLETE_CB_ID : + huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ + break; + + case HAL_UART_ERROR_CB_ID : + huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_UART_ABORT_COMPLETE_CB_ID : + huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : + huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak + AbortTransmitCpltCallback */ + break; + + case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : + huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak + AbortReceiveCpltCallback */ + break; + + case HAL_UART_WAKEUP_CB_ID : + huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */ + break; + + case HAL_UART_RX_FIFO_FULL_CB_ID : + huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */ + break; + + case HAL_UART_TX_FIFO_EMPTY_CB_ID : + huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ + break; + + case HAL_UART_MSPINIT_CB_ID : + huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */ + break; + + case HAL_UART_MSPDEINIT_CB_ID : + huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */ + break; + + default : + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + break; + } + } + else if (HAL_UART_STATE_RESET == huart->gState) + { + switch (CallbackID) + { + case HAL_UART_MSPINIT_CB_ID : + huart->MspInitCallback = HAL_UART_MspInit; + break; + + case HAL_UART_MSPDEINIT_CB_ID : + huart->MspDeInitCallback = HAL_UART_MspDeInit; + break; + + default : + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + break; + } + } + else + { + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Register a User UART Rx Event Callback + * To be used instead of the weak predefined callback + * @param huart Uart handle + * @param pCallback Pointer to the Rx Event Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (huart->RxState == HAL_UART_STATE_READY) + { + huart->RxEventCallback = pCallback; + } + else + { + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief UnRegister the UART Rx Event Callback + * UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback + * @param huart Uart handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (huart->RxState == HAL_UART_STATE_READY) + { + huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */ + } + else + { + huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; + + status = HAL_ERROR; + } + + return status; +} + +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group2 IO operation functions + * @brief UART Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the UART asynchronous + and Half duplex data transfers. + + (#) There are two mode of transfer: + (+) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (+) Non-Blocking mode: The communication is performed using Interrupts + or DMA, These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated UART IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected + + (#) Blocking mode API's are : + (+) HAL_UART_Transmit() + (+) HAL_UART_Receive() + + (#) Non-Blocking mode API's with Interrupt are : + (+) HAL_UART_Transmit_IT() + (+) HAL_UART_Receive_IT() + (+) HAL_UART_IRQHandler() + + (#) Non-Blocking mode API's with DMA are : + (+) HAL_UART_Transmit_DMA() + (+) HAL_UART_Receive_DMA() + (+) HAL_UART_DMAPause() + (+) HAL_UART_DMAResume() + (+) HAL_UART_DMAStop() + + (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: + (+) HAL_UART_TxHalfCpltCallback() + (+) HAL_UART_TxCpltCallback() + (+) HAL_UART_RxHalfCpltCallback() + (+) HAL_UART_RxCpltCallback() + (+) HAL_UART_ErrorCallback() + + (#) Non-Blocking mode transfers could be aborted using Abort API's : + (+) HAL_UART_Abort() + (+) HAL_UART_AbortTransmit() + (+) HAL_UART_AbortReceive() + (+) HAL_UART_Abort_IT() + (+) HAL_UART_AbortTransmit_IT() + (+) HAL_UART_AbortReceive_IT() + + (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided: + (+) HAL_UART_AbortCpltCallback() + (+) HAL_UART_AbortTransmitCpltCallback() + (+) HAL_UART_AbortReceiveCpltCallback() + + (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced + reception services: + (+) HAL_UARTEx_RxEventCallback() + + (#) Wakeup from Stop mode Callback: + (+) HAL_UARTEx_WakeupCallback() + + (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. + Errors are handled as follows : + (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is + to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error + in Interrupt mode reception . + Received character is then retrieved and stored in Rx buffer, Error code is set to allow user + to identify error type, and HAL_UART_ErrorCallback() user callback is executed. + Transfer is kept ongoing on UART side. + If user wants to abort it, Abort services should be called by user. + (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted. + This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. + Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() + user callback is executed. + + -@- In the Half duplex communication, it is forbidden to run the transmit + and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful. + +@endverbatim + * @{ + */ + +/** + * @brief Send an amount of data in blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must indicate the number + * of u16 provided through pData. + * @note When FIFO mode is enabled, writing a data in the TDR register adds one + * data to the TXFIFO. Write operations to the TDR register are performed + * when TXFNF flag is set. From hardware perspective, TXFNF flag and + * TXE are mapped on the same bit-field. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + const uint8_t *pdata8bits; + const uint16_t *pdata16bits; + uint32_t tickstart; + + /* Check that a Tx process is not already ongoing */ + if (huart->gState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR will be + handled through a u16 cast. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_BUSY_TX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + huart->TxXferSize = Size; + huart->TxXferCount = Size; + + /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + pdata8bits = NULL; + pdata16bits = (const uint16_t *) pData; + } + else + { + pdata8bits = pData; + pdata16bits = NULL; + } + + while (huart->TxXferCount > 0U) + { + if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + + huart->gState = HAL_UART_STATE_READY; + + return HAL_TIMEOUT; + } + if (pdata8bits == NULL) + { + huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU); + pdata16bits++; + } + else + { + huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU); + pdata8bits++; + } + huart->TxXferCount--; + } + + if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + huart->gState = HAL_UART_STATE_READY; + + return HAL_TIMEOUT; + } + + /* At end of Tx process, restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must indicate the number + * of u16 available through pData. + * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO + * is not empty. Read operations from the RDR register are performed when + * RXFNE flag is set. From hardware perspective, RXFNE flag and + * RXNE are mapped on the same bit-field. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint8_t *pdata8bits; + uint16_t *pdata16bits; + uint16_t uhMask; + uint32_t tickstart; + + /* Check that a Rx process is not already ongoing */ + if (huart->RxState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be received from RDR will be + handled through a u16 cast. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->RxState = HAL_UART_STATE_BUSY_RX; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + huart->RxXferSize = Size; + huart->RxXferCount = Size; + + /* Computation of UART mask to apply to RDR register */ + UART_MASK_COMPUTATION(huart); + uhMask = huart->Mask; + + /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + pdata8bits = NULL; + pdata16bits = (uint16_t *) pData; + } + else + { + pdata8bits = pData; + pdata16bits = NULL; + } + + /* as long as data have to be received */ + while (huart->RxXferCount > 0U) + { + if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + huart->RxState = HAL_UART_STATE_READY; + + return HAL_TIMEOUT; + } + if (pdata8bits == NULL) + { + *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask); + pdata16bits++; + } + else + { + *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); + pdata8bits++; + } + huart->RxXferCount--; + } + + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in interrupt mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must indicate the number + * of u16 provided through pData. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if (huart->gState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR will be + handled through a u16 cast. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + huart->pTxBuffPtr = pData; + huart->TxXferSize = Size; + huart->TxXferCount = Size; + huart->TxISR = NULL; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_BUSY_TX; + + /* Configure Tx interrupt processing */ + if (huart->FifoMode == UART_FIFOMODE_ENABLE) + { + /* Set the Tx ISR function pointer according to the data word length */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + huart->TxISR = UART_TxISR_16BIT_FIFOEN; + } + else + { + huart->TxISR = UART_TxISR_8BIT_FIFOEN; + } + + /* Enable the TX FIFO threshold interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); + } + else + { + /* Set the Tx ISR function pointer according to the data word length */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + huart->TxISR = UART_TxISR_16BIT; + } + else + { + huart->TxISR = UART_TxISR_8BIT; + } + + /* Enable the Transmit Data Register Empty interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in interrupt mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must indicate the number + * of u16 available through pData. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if (huart->RxState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be received from RDR will be + handled through a u16 cast. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Set Reception type to Standard reception */ + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + /* Check that USART RTOEN bit is set */ + if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) + { + /* Enable the UART Receiver Timeout Interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE); + } + } + + return (UART_Start_Receive_IT(huart, pData, Size)); + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Send an amount of data in DMA mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must indicate the number + * of u16 provided through pData. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if (huart->gState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data copy into TDR will be + handled by DMA from a u16 frontier. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + huart->pTxBuffPtr = pData; + huart->TxXferSize = Size; + huart->TxXferCount = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->gState = HAL_UART_STATE_BUSY_TX; + + if (huart->hdmatx != NULL) + { + /* Set the UART DMA transfer complete callback */ + huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; + + /* Set the UART DMA Half transfer complete callback */ + huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; + + /* Set the DMA error callback */ + huart->hdmatx->XferErrorCallback = UART_DMAError; + + /* Set the DMA abort callback */ + huart->hdmatx->XferAbortCallback = NULL; + + /* Enable the UART transmit DMA channel */ + if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + /* Restore huart->gState to ready */ + huart->gState = HAL_UART_STATE_READY; + + return HAL_ERROR; + } + } + /* Clear the TC flag in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the UART CR3 register */ + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in DMA mode. + * @note When the UART parity is enabled (PCE = 1), the received data contain + * the parity bit (MSB position). + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must indicate the number + * of u16 available through pData. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if (huart->RxState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a u16 frontier, as data copy from RDR will be + handled by DMA from a u16 frontier. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Set Reception type to Standard reception */ + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + /* Check that USART RTOEN bit is set */ + if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) + { + /* Enable the UART Receiver Timeout Interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE); + } + } + + return (UART_Start_Receive_DMA(huart, pData, Size)); + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pause the DMA Transfer. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) +{ + const HAL_UART_StateTypeDef gstate = huart->gState; + const HAL_UART_StateTypeDef rxstate = huart->RxState; + + if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && + (gstate == HAL_UART_STATE_BUSY_TX)) + { + /* Disable the UART DMA Tx request */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + } + if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && + (rxstate == HAL_UART_STATE_BUSY_RX)) + { + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Disable the UART DMA Rx request */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + } + + return HAL_OK; +} + +/** + * @brief Resume the DMA Transfer. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) +{ + if (huart->gState == HAL_UART_STATE_BUSY_TX) + { + /* Enable the UART DMA Tx request */ + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); + } + if (huart->RxState == HAL_UART_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); + + /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */ + if (huart->Init.Parity != UART_PARITY_NONE) + { + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); + } + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Enable the UART DMA Rx request */ + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); + } + + return HAL_OK; +} + +/** + * @brief Stop the DMA Transfer. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() / + HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback: + indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete + interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of + the stream and the corresponding call back is executed. */ + + const HAL_UART_StateTypeDef gstate = huart->gState; + const HAL_UART_StateTypeDef rxstate = huart->RxState; + + /* Stop UART DMA Tx request if ongoing */ + if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && + (gstate == HAL_UART_STATE_BUSY_TX)) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the UART DMA Tx channel */ + if (huart->hdmatx != NULL) + { + if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + + UART_EndTxTransfer(huart); + } + + /* Stop UART DMA Rx request if ongoing */ + if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && + (rxstate == HAL_UART_STATE_BUSY_RX)) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel */ + if (huart->hdmarx != NULL) + { + if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + + UART_EndRxTransfer(huart); + } + + return HAL_OK; +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Abort ongoing transfers (blocking mode). + * @param huart UART handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable UART Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart) +{ + /* Disable TXE, TC, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | + USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE); + + /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the UART DMA Tx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable the UART DMA Tx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (huart->hdmatx != NULL) + { + /* Set the UART DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + huart->hdmatx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } + + /* Abort the UART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the UART DMA Rx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (huart->hdmarx != NULL) + { + /* Set the UART DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + huart->hdmarx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Tx and Rx transfer counters */ + huart->TxXferCount = 0U; + huart->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Flush the whole TX FIFO (if needed) */ + if (huart->FifoMode == UART_FIFOMODE_ENABLE) + { + __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); + } + + /* Discard the received data */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + + /* Restore huart->gState and huart->RxState to Ready */ + huart->gState = HAL_UART_STATE_READY; + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (blocking mode). + * @param huart UART handle. + * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable UART Interrupts (Tx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart) +{ + /* Disable TCIE, TXEIE and TXFTIE interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the UART DMA Tx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable the UART DMA Tx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (huart->hdmatx != NULL) + { + /* Set the UART DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + huart->hdmatx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Tx transfer counter */ + huart->TxXferCount = 0U; + + /* Flush the whole TX FIFO (if needed) */ + if (huart->FifoMode == UART_FIFOMODE_ENABLE) + { + __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); + } + + /* Restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (blocking mode). + * @param huart UART handle. + * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable UART Interrupts (Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart) +{ + /* Disable PEIE, EIE, RXNEIE and RXFTIE interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE); + + /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the UART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the UART DMA Rx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (huart->hdmarx != NULL) + { + /* Set the UART DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + huart->hdmarx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Rx transfer counter */ + huart->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Discard the received data */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + + /* Restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + return HAL_OK; +} + +/** + * @brief Abort ongoing transfers (Interrupt mode). + * @param huart UART handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable UART Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart) +{ + uint32_t abortcplt = 1U; + + /* Disable interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE | + USART_CR1_TXEIE_TXFNFIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE)); + + /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised + before any call to DMA Abort functions */ + /* DMA Tx Handle is valid */ + if (huart->hdmatx != NULL) + { + /* Set DMA Abort Complete callback if UART DMA Tx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) + { + huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback; + } + else + { + huart->hdmatx->XferAbortCallback = NULL; + } + } + /* DMA Rx Handle is valid */ + if (huart->hdmarx != NULL) + { + /* Set DMA Abort Complete callback if UART DMA Rx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback; + } + else + { + huart->hdmarx->XferAbortCallback = NULL; + } + } + + /* Abort the UART DMA Tx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable DMA Tx at UART level */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (huart->hdmatx != NULL) + { + /* UART Tx DMA Abort callback has already been initialised : + will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) + { + huart->hdmatx->XferAbortCallback = NULL; + } + else + { + abortcplt = 0U; + } + } + } + + /* Abort the UART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the UART DMA Rx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (huart->hdmarx != NULL) + { + /* UART Rx DMA Abort callback has already been initialised : + will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) + { + huart->hdmarx->XferAbortCallback = NULL; + abortcplt = 1U; + } + else + { + abortcplt = 0U; + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ + if (abortcplt == 1U) + { + /* Reset Tx and Rx transfer counters */ + huart->TxXferCount = 0U; + huart->RxXferCount = 0U; + + /* Clear ISR function pointers */ + huart->RxISR = NULL; + huart->TxISR = NULL; + + /* Reset errorCode */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Flush the whole TX FIFO (if needed) */ + if (huart->FifoMode == UART_FIFOMODE_ENABLE) + { + __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); + } + + /* Discard the received data */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + + /* Restore huart->gState and huart->RxState to Ready */ + huart->gState = HAL_UART_STATE_READY; + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + huart->AbortCpltCallback(huart); +#else + /* Call legacy weak Abort complete callback */ + HAL_UART_AbortCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (Interrupt mode). + * @param huart UART handle. + * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable UART Interrupts (Tx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart) +{ + /* Disable interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the UART DMA Tx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable the UART DMA Tx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (huart->hdmatx != NULL) + { + /* Set the UART DMA Abort callback : + will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ + huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) + { + /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */ + huart->hdmatx->XferAbortCallback(huart->hdmatx); + } + } + else + { + /* Reset Tx transfer counter */ + huart->TxXferCount = 0U; + + /* Clear TxISR function pointers */ + huart->TxISR = NULL; + + /* Restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + huart->AbortTransmitCpltCallback(huart); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_UART_AbortTransmitCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Reset Tx transfer counter */ + huart->TxXferCount = 0U; + + /* Clear TxISR function pointers */ + huart->TxISR = NULL; + + /* Flush the whole TX FIFO (if needed) */ + if (huart->FifoMode == UART_FIFOMODE_ENABLE) + { + __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); + } + + /* Restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + huart->AbortTransmitCpltCallback(huart); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_UART_AbortTransmitCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (Interrupt mode). + * @param huart UART handle. + * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable UART Interrupts (Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the UART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the UART DMA Rx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (huart->hdmarx != NULL) + { + /* Set the UART DMA Abort callback : + will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ + huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) + { + /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ + huart->hdmarx->XferAbortCallback(huart->hdmarx); + } + } + else + { + /* Reset Rx transfer counter */ + huart->RxXferCount = 0U; + + /* Clear RxISR function pointer */ + huart->pRxBuffPtr = NULL; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Discard the received data */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + + /* Restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + huart->AbortReceiveCpltCallback(huart); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_UART_AbortReceiveCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Reset Rx transfer counter */ + huart->RxXferCount = 0U; + + /* Clear RxISR function pointer */ + huart->pRxBuffPtr = NULL; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + huart->AbortReceiveCpltCallback(huart); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_UART_AbortReceiveCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + + return HAL_OK; +} + +/** + * @brief Handle UART interrupt request. + * @param huart UART handle. + * @retval None + */ +void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) +{ + uint32_t isrflags = READ_REG(huart->Instance->ISR); + uint32_t cr1its = READ_REG(huart->Instance->CR1); + uint32_t cr3its = READ_REG(huart->Instance->CR3); + + uint32_t errorflags; + uint32_t errorcode; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF)); + if (errorflags == 0U) + { + /* UART in mode Receiver ---------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) + || ((cr3its & USART_CR3_RXFTIE) != 0U))) + { + if (huart->RxISR != NULL) + { + huart->RxISR(huart); + } + return; + } + } + + /* If some errors occur */ + if ((errorflags != 0U) + && ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U) + || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U)))) + { + /* UART parity error interrupt occurred -------------------------------------*/ + if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF); + + huart->ErrorCode |= HAL_UART_ERROR_PE; + } + + /* UART frame error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF); + + huart->ErrorCode |= HAL_UART_ERROR_FE; + } + + /* UART noise error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF); + + huart->ErrorCode |= HAL_UART_ERROR_NE; + } + + /* UART Over-Run interrupt occurred -----------------------------------------*/ + if (((isrflags & USART_ISR_ORE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) || + ((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U))) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); + + huart->ErrorCode |= HAL_UART_ERROR_ORE; + } + + /* UART Receiver Timeout interrupt occurred ---------------------------------*/ + if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF); + + huart->ErrorCode |= HAL_UART_ERROR_RTO; + } + + /* Call UART Error Call back function if need be ----------------------------*/ + if (huart->ErrorCode != HAL_UART_ERROR_NONE) + { + /* UART in mode Receiver --------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) + || ((cr3its & USART_CR3_RXFTIE) != 0U))) + { + if (huart->RxISR != NULL) + { + huart->RxISR(huart); + } + } + + /* If Error is to be considered as blocking : + - Receiver Timeout error in Reception + - Overrun error in Reception + - any error occurs in DMA mode reception + */ + errorcode = huart->ErrorCode; + if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) || + ((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U)) + { + /* Blocking error : transfer is aborted + Set the UART state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + UART_EndRxTransfer(huart); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the UART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the UART DMA Rx request if enabled */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the UART DMA Rx channel */ + if (huart->hdmarx != NULL) + { + /* Set the UART DMA Abort callback : + will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */ + huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) + { + /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ + huart->hdmarx->XferAbortCallback(huart->hdmarx); + } + } + else + { + /* Call user error callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered error callback*/ + huart->ErrorCallback(huart); +#else + /*Call legacy weak error callback*/ + HAL_UART_ErrorCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Call user error callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered error callback*/ + huart->ErrorCallback(huart); +#else + /*Call legacy weak error callback*/ + HAL_UART_ErrorCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered error callback*/ + huart->ErrorCallback(huart); +#else + /*Call legacy weak error callback*/ + HAL_UART_ErrorCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + } + } + return; + + } /* End if some error occurs */ + + /* Check current reception Mode : + If Reception till IDLE event has been selected : */ + if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + && ((isrflags & USART_ISR_IDLE) != 0U) + && ((cr1its & USART_ISR_IDLE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Check if DMA mode is enabled in UART */ + if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) + { + /* DMA mode enabled */ + /* Check received length : If all expected data are received, do nothing, + (DMA cplt callback will be called). + Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ + uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx); + if ((nb_remaining_rx_data > 0U) + && (nb_remaining_rx_data < huart->RxXferSize)) + { + /* Reception is not complete */ + huart->RxXferCount = nb_remaining_rx_data; + + /* In Normal mode, end DMA xfer and HAL UART Rx process*/ + if (HAL_IS_BIT_CLR(huart->hdmarx->Instance->CCR, DMA_CCR_CIRC)) + { + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by resetting the DMAR bit + in the UART CR3 register */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + + /* Last bytes received, so no need as the abort is immediate */ + (void)HAL_DMA_Abort(huart->hdmarx); + } + + /* Initialize type of RxEvent that correspond to RxEvent callback execution; + In this case, Rx Event type is Idle Event */ + huart->RxEventType = HAL_UART_RXEVENT_IDLE; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + else + { + /* If DMA is in Circular mode, Idle event is to be reported to user + even if occurring after a Transfer Complete event from DMA */ + if (nb_remaining_rx_data == huart->RxXferSize) + { + if (HAL_IS_BIT_SET(huart->hdmarx->Instance->CCR, DMA_CCR_CIRC)) + { + /* Initialize type of RxEvent that correspond to RxEvent callback execution; + In this case, Rx Event type is Idle Event */ + huart->RxEventType = HAL_UART_RXEVENT_IDLE; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, huart->RxXferSize); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + } + } + return; + } + else + { +#endif /* HAL_DMA_MODULE_ENABLED */ + /* DMA mode not enabled */ + /* Check received length : If all expected data are received, do nothing. + Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ + uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount; + if ((huart->RxXferCount > 0U) + && (nb_rx_data > 0U)) + { + /* Disable the UART Parity Error Interrupt and RXNE interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + + /* Disable the UART Error Interrupt:(Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* Rx process is completed, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Clear RxISR function pointer */ + huart->RxISR = NULL; + + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + + /* Initialize type of RxEvent that correspond to RxEvent callback execution; + In this case, Rx Event type is Idle Event */ + huart->RxEventType = HAL_UART_RXEVENT_IDLE; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx complete callback*/ + huart->RxEventCallback(huart, nb_rx_data); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, nb_rx_data); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + return; +#if defined(HAL_DMA_MODULE_ENABLED) + } +#endif /* HAL_DMA_MODULE_ENABLED */ + } + + /* UART wakeup from Stop mode interrupt occurred ---------------------------*/ + if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF); + + /* UART Rx state is not reset as a reception process might be ongoing. + If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */ + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Wakeup Callback */ + huart->WakeupCallback(huart); +#else + /* Call legacy weak Wakeup Callback */ + HAL_UARTEx_WakeupCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + return; + } + + /* UART in mode Transmitter ------------------------------------------------*/ + if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) + && (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U) + || ((cr3its & USART_CR3_TXFTIE) != 0U))) + { + if (huart->TxISR != NULL) + { + huart->TxISR(huart); + } + return; + } + + /* UART in mode Transmitter (transmission end) -----------------------------*/ + if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U)) + { + UART_EndTransmit_IT(huart); + return; + } + + /* UART TX Fifo Empty occurred ----------------------------------------------*/ + if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U)) + { +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Fifo Empty Callback */ + huart->TxFifoEmptyCallback(huart); +#else + /* Call legacy weak Tx Fifo Empty Callback */ + HAL_UARTEx_TxFifoEmptyCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + return; + } + + /* UART RX Fifo Full occurred ----------------------------------------------*/ + if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U)) + { +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Fifo Full Callback */ + huart->RxFifoFullCallback(huart); +#else + /* Call legacy weak Rx Fifo Full Callback */ + HAL_UARTEx_RxFifoFullCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + return; + } +} + +/** + * @brief Tx Transfer completed callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_TxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Tx Half Transfer completed callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_UART_TxHalfCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_RxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Half Transfer completed callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_UART_RxHalfCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief UART error callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_ErrorCallback can be implemented in the user file. + */ +} + +/** + * @brief UART Abort Complete callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_AbortCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief UART Abort Complete callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief UART Abort Receive Complete callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Reception Event Callback (Rx event notification called after use of advanced reception service). + * @param huart UART handle + * @param Size Number of data available in application reception buffer (indicates a position in + * reception buffer until which, data are available) + * @retval None + */ +__weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + UNUSED(Size); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UARTEx_RxEventCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions + * @brief UART control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the UART. + (+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly + (+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature + (+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature + (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode + (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode + (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode + (+) UART_SetConfig() API configures the UART peripheral + (+) UART_AdvFeatureConfig() API optionally configures the UART advanced features + (+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization + (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter + (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver + (+) HAL_LIN_SendBreak() API transmits the break characters +@endverbatim + * @{ + */ + +/** + * @brief Update on the fly the receiver timeout value in RTOR register. + * @param huart Pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param TimeoutValue receiver timeout value in number of baud blocks. The timeout + * value must be less or equal to 0x0FFFFFFFF. + * @retval None + */ +void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue) +{ + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue)); + MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue); + } +} + +/** + * @brief Enable the UART receiver timeout feature. + * @param huart Pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart) +{ + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + if (huart->gState == HAL_UART_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Set the USART RTOEN bit */ + SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN); + + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Disable the UART receiver timeout feature. + * @param huart Pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart) +{ + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + if (huart->gState == HAL_UART_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Clear the USART RTOEN bit */ + CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN); + + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Enable UART in mute mode (does not mean UART enters mute mode; + * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called). + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart) +{ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Enable USART mute mode by setting the MME bit in the CR1 register */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_MME); + + huart->gState = HAL_UART_STATE_READY; + + return (UART_CheckIdleState(huart)); +} + +/** + * @brief Disable UART mute mode (does not mean the UART actually exits mute mode + * as it may not have been in mute mode at this very moment). + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart) +{ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable USART mute mode by clearing the MME bit in the CR1 register */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME); + + huart->gState = HAL_UART_STATE_READY; + + return (UART_CheckIdleState(huart)); +} + +/** + * @brief Enter UART mute mode (means UART actually enters mute mode). + * @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called. + * @param huart UART handle. + * @retval None + */ +void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) +{ + __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST); +} + +/** + * @brief Enable the UART transmitter and disable the UART receiver. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) +{ + __HAL_LOCK(huart); + huart->gState = HAL_UART_STATE_BUSY; + + /* Clear TE and RE bits */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); + + /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TE); + + huart->gState = HAL_UART_STATE_READY; + + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Enable the UART receiver and disable the UART transmitter. + * @param huart UART handle. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) +{ + __HAL_LOCK(huart); + huart->gState = HAL_UART_STATE_BUSY; + + /* Clear TE and RE bits */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); + + /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RE); + + huart->gState = HAL_UART_STATE_READY; + + __HAL_UNLOCK(huart); + + return HAL_OK; +} + + +/** + * @brief Transmit break characters. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) +{ + /* Check the parameters */ + assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); + + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Send break characters */ + __HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST); + + huart->gState = HAL_UART_STATE_READY; + + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions + * @brief UART Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Error functions ##### + ============================================================================== + [..] + This subsection provides functions allowing to : + (+) Return the UART handle state. + (+) Return the UART handle error code + +@endverbatim + * @{ + */ + +/** + * @brief Return the UART handle state. + * @param huart Pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART. + * @retval HAL state + */ +HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart) +{ + uint32_t temp1; + uint32_t temp2; + temp1 = huart->gState; + temp2 = huart->RxState; + + return (HAL_UART_StateTypeDef)(temp1 | temp2); +} + +/** + * @brief Return the UART handle error code. + * @param huart Pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART. + * @retval UART Error Code + */ +uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart) +{ + return huart->ErrorCode; +} +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup UART_Private_Functions UART Private Functions + * @{ + */ + +/** + * @brief Initialize the callbacks to their default values. + * @param huart UART handle. + * @retval none + */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) +void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart) +{ + /* Init the UART Callback settings */ + huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ + huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ + huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ + huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ + huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ + huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */ + huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */ + huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ + huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */ + +} +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + +/** + * @brief Configure the UART peripheral. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart) +{ + uint32_t tmpreg; + uint16_t brrtemp; + uint32_t clocksource; + uint32_t usartdiv; + HAL_StatusTypeDef ret = HAL_OK; + uint32_t lpuart_ker_ck_pres; + uint32_t pclk; + + /* Check the parameters */ + assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); + assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); + if (UART_INSTANCE_LOWPOWER(huart)) + { + assert_param(IS_LPUART_STOPBITS(huart->Init.StopBits)); + } + else + { + assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); + assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling)); + } + + assert_param(IS_UART_PARITY(huart->Init.Parity)); + assert_param(IS_UART_MODE(huart->Init.Mode)); + assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); + assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); + assert_param(IS_UART_PRESCALER(huart->Init.ClockPrescaler)); + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure + * the UART Word Length, Parity, Mode and oversampling: + * set the M bits according to huart->Init.WordLength value + * set PCE and PS bits according to huart->Init.Parity value + * set TE and RE bits according to huart->Init.Mode value + * set OVER8 bit according to huart->Init.OverSampling value */ + tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ; + MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg); + + /*-------------------------- USART CR2 Configuration -----------------------*/ + /* Configure the UART Stop Bits: Set STOP[13:12] bits according + * to huart->Init.StopBits value */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Configure + * - UART HardWare Flow Control: set CTSE and RTSE bits according + * to huart->Init.HwFlowCtl value + * - one-bit sampling method versus three samples' majority rule according + * to huart->Init.OneBitSampling (not applicable to LPUART) */ + tmpreg = (uint32_t)huart->Init.HwFlowCtl; + + if (!(UART_INSTANCE_LOWPOWER(huart))) + { + tmpreg |= huart->Init.OneBitSampling; + } + MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg); + + /*-------------------------- USART PRESC Configuration -----------------------*/ + /* Configure + * - UART Clock Prescaler : set PRESCALER according to huart->Init.ClockPrescaler value */ + MODIFY_REG(huart->Instance->PRESC, USART_PRESC_PRESCALER, huart->Init.ClockPrescaler); + + /*-------------------------- USART BRR Configuration -----------------------*/ + UART_GETCLOCKSOURCE(huart, clocksource); + + /* Check LPUART instance */ + if (UART_INSTANCE_LOWPOWER(huart)) + { + /* Retrieve frequency clock */ + pclk = HAL_RCCEx_GetPeriphCLKFreq(clocksource); + + /* If proper clock source reported */ + if (pclk != 0U) + { + /* Compute clock after Prescaler */ + lpuart_ker_ck_pres = (pclk / UARTPrescTable[huart->Init.ClockPrescaler]); + + /* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */ + if ((lpuart_ker_ck_pres < (3U * huart->Init.BaudRate)) || + (lpuart_ker_ck_pres > (4096U * huart->Init.BaudRate))) + { + ret = HAL_ERROR; + } + else + { + /* Check computed UsartDiv value is in allocated range + (it is forbidden to write values lower than 0x300 in the LPUART_BRR register) */ + usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler)); + if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX)) + { + huart->Instance->BRR = usartdiv; + } + else + { + ret = HAL_ERROR; + } + } /* if ( (lpuart_ker_ck_pres < (3 * huart->Init.BaudRate) ) || + (lpuart_ker_ck_pres > (4096 * huart->Init.BaudRate) )) */ + } /* if (pclk != 0) */ + } + /* Check UART Over Sampling to set Baud Rate Register */ + else if (huart->Init.OverSampling == UART_OVERSAMPLING_8) + { + pclk = HAL_RCCEx_GetPeriphCLKFreq(clocksource); + + /* USARTDIV must be greater than or equal to 0d16 */ + if (pclk != 0U) + { + usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler)); + if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX)) + { + brrtemp = (uint16_t)(usartdiv & 0xFFF0U); + brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U); + huart->Instance->BRR = brrtemp; + } + else + { + ret = HAL_ERROR; + } + } + } + else + { + pclk = HAL_RCCEx_GetPeriphCLKFreq(clocksource); + + if (pclk != 0U) + { + /* USARTDIV must be greater than or equal to 0d16 */ + usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler)); + if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX)) + { + huart->Instance->BRR = (uint16_t)usartdiv; + } + else + { + ret = HAL_ERROR; + } + } + } + + /* Initialize the number of data to process during RX/TX ISR execution */ + huart->NbTxDataToProcess = 1; + huart->NbRxDataToProcess = 1; + + /* Clear ISR function pointers */ + huart->RxISR = NULL; + huart->TxISR = NULL; + + return ret; +} + +/** + * @brief Configure the UART peripheral advanced features. + * @param huart UART handle. + * @retval None + */ +void UART_AdvFeatureConfig(UART_HandleTypeDef *huart) +{ + /* Check whether the set of advanced features to configure is properly set */ + assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit)); + + /* if required, configure RX/TX pins swap */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT)) + { + assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap); + } + + /* if required, configure TX pin active level inversion */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT)) + { + assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert); + } + + /* if required, configure RX pin active level inversion */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT)) + { + assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert); + } + + /* if required, configure data inversion */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT)) + { + assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert); + } + + /* if required, configure RX overrun detection disabling */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT)) + { + assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable)); + MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable); + } + +#if defined(HAL_DMA_MODULE_ENABLED) + /* if required, configure DMA disabling on reception error */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT)) + { + assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError)); + MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError); + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* if required, configure auto Baud rate detection scheme */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT)) + { + assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance)); + assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable); + /* set auto Baudrate detection parameters if detection is enabled */ + if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE) + { + assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode); + } + } + + /* if required, configure MSB first on communication line */ + if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT)) + { + assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst)); + MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst); + } +} + +/** + * @brief Check the UART Idle State. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart) +{ + uint32_t tickstart; + + /* Initialize the UART ErrorCode */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) + { + /* Disable TXE interrupt for the interrupt process */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE)); + + huart->gState = HAL_UART_STATE_READY; + + __HAL_UNLOCK(huart); + + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + + /* Check if the Receiver is enabled */ + if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + /* Wait until REACK flag is set */ + if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) + { + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) + interrupts for the interrupt process */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + huart->RxState = HAL_UART_STATE_READY; + + __HAL_UNLOCK(huart); + + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + + /* Initialize the UART State */ + huart->gState = HAL_UART_STATE_READY; + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + huart->RxEventType = HAL_UART_RXEVENT_TC; + + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief This function handles UART Communication Timeout. It waits + * until a flag is no longer in the specified status. + * @param huart UART handle. + * @param Flag Specifies the UART flag to check + * @param Status The actual Flag status (SET or RESET) + * @param Tickstart Tick start value + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, + uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + + return HAL_TIMEOUT; + } + + if ((READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U) && (Flag != UART_FLAG_TXE) && (Flag != UART_FLAG_TC)) + { + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) == SET) + { + /* Clear Overrun Error flag*/ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); + + /* Blocking error : transfer is aborted + Set the UART state ready to be able to start again the process, + Disable Rx Interrupts if ongoing */ + UART_EndRxTransfer(huart); + + huart->ErrorCode = HAL_UART_ERROR_ORE; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_ERROR; + } + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET) + { + /* Clear Receiver Timeout flag*/ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF); + + /* Blocking error : transfer is aborted + Set the UART state ready to be able to start again the process, + Disable Rx Interrupts if ongoing */ + UART_EndRxTransfer(huart); + + huart->ErrorCode = HAL_UART_ERROR_RTO; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** + * @brief Start Receive operation in interrupt mode. + * @note This function could be called by all HAL UART API providing reception in Interrupt mode. + * @note When calling this function, parameters validity is considered as already checked, + * i.e. Rx State, buffer address, ... + * UART Handle is assumed as Locked. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + huart->pRxBuffPtr = pData; + huart->RxXferSize = Size; + huart->RxXferCount = Size; + huart->RxISR = NULL; + + /* Computation of UART mask to apply to RDR register */ + UART_MASK_COMPUTATION(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->RxState = HAL_UART_STATE_BUSY_RX; + + /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Configure Rx interrupt processing */ + if ((huart->FifoMode == UART_FIFOMODE_ENABLE) && (Size >= huart->NbRxDataToProcess)) + { + /* Set the Rx ISR function pointer according to the data word length */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + huart->RxISR = UART_RxISR_16BIT_FIFOEN; + } + else + { + huart->RxISR = UART_RxISR_8BIT_FIFOEN; + } + + /* Enable the UART Parity Error interrupt and RX FIFO Threshold interrupt */ + if (huart->Init.Parity != UART_PARITY_NONE) + { + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); + } + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_RXFTIE); + } + else + { + /* Set the Rx ISR function pointer according to the data word length */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + huart->RxISR = UART_RxISR_16BIT; + } + else + { + huart->RxISR = UART_RxISR_8BIT; + } + + /* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */ + if (huart->Init.Parity != UART_PARITY_NONE) + { + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE); + } + else + { + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + } + } + return HAL_OK; +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Start Receive operation in DMA mode. + * @note This function could be called by all HAL UART API providing reception in DMA mode. + * @note When calling this function, parameters validity is considered as already checked, + * i.e. Rx State, buffer address, ... + * UART Handle is assumed as Locked. + * @param huart UART handle. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + huart->pRxBuffPtr = pData; + huart->RxXferSize = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->RxState = HAL_UART_STATE_BUSY_RX; + + if (huart->hdmarx != NULL) + { + /* Set the UART DMA transfer complete callback */ + huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; + + /* Set the UART DMA Half transfer complete callback */ + huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; + + /* Set the DMA error callback */ + huart->hdmarx->XferErrorCallback = UART_DMAError; + + /* Set the DMA abort callback */ + huart->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK) + { + /* Set error code to DMA */ + huart->ErrorCode = HAL_UART_ERROR_DMA; + + /* Restore huart->RxState to ready */ + huart->RxState = HAL_UART_STATE_READY; + + return HAL_ERROR; + } + } + + /* Enable the UART Parity Error Interrupt */ + if (huart->Init.Parity != UART_PARITY_NONE) + { + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); + } + + /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the UART CR3 register */ + ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + return HAL_OK; +} + + +/** + * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion). + * @param huart UART handle. + * @retval None + */ +static void UART_EndTxTransfer(UART_HandleTypeDef *huart) +{ + /* Disable TXEIE, TCIE, TXFT interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_TXFTIE)); + + /* At end of Tx process, restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; +} +#endif /* HAL_DMA_MODULE_ENABLED */ + + +/** + * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). + * @param huart UART handle. + * @retval None + */ +static void UART_EndRxTransfer(UART_HandleTypeDef *huart) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + } + + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Reset RxIsr function pointer */ + huart->RxISR = NULL; +} + + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief DMA UART transmit process complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + + /* DMA Normal mode */ + if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) + { + huart->TxXferCount = 0U; + + /* Disable the DMA transfer for transmit request by resetting the DMAT bit + in the UART CR3 register */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); + + /* Enable the UART Transmit Complete Interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); + } + /* DMA Circular mode */ + else + { +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Tx complete callback*/ + huart->TxCpltCallback(huart); +#else + /*Call legacy weak Tx complete callback*/ + HAL_UART_TxCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } +} + +/** + * @brief DMA UART transmit process half complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Tx Half complete callback*/ + huart->TxHalfCpltCallback(huart); +#else + /*Call legacy weak Tx Half complete callback*/ + HAL_UART_TxHalfCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA UART receive process complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + + /* DMA Normal mode */ + if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) + { + huart->RxXferCount = 0U; + + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by resetting the DMAR bit + in the UART CR3 register */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + } + } + + /* Initialize type of RxEvent that correspond to RxEvent callback execution; + In this case, Rx Event type is Transfer Complete */ + huart->RxEventType = HAL_UART_RXEVENT_TC; + + /* Check current reception Mode : + If Reception till IDLE event has been selected : use Rx Event callback */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, huart->RxXferSize); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + else + { + /* In other cases : use Rx Complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx complete callback*/ + huart->RxCpltCallback(huart); +#else + /*Call legacy weak Rx complete callback*/ + HAL_UART_RxCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } +} + +/** + * @brief DMA UART receive process half complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + + /* Initialize type of RxEvent that correspond to RxEvent callback execution; + In this case, Rx Event type is Half Transfer */ + huart->RxEventType = HAL_UART_RXEVENT_HT; + + /* Check current reception Mode : + If Reception till IDLE event has been selected : use Rx Event callback */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, huart->RxXferSize / 2U); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + else + { + /* In other cases : use Rx Half Complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Half complete callback*/ + huart->RxHalfCpltCallback(huart); +#else + /*Call legacy weak Rx Half complete callback*/ + HAL_UART_RxHalfCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } +} + +/** + * @brief DMA UART communication error callback. + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMAError(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + + const HAL_UART_StateTypeDef gstate = huart->gState; + const HAL_UART_StateTypeDef rxstate = huart->RxState; + + /* Stop UART DMA Tx request if ongoing */ + if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && + (gstate == HAL_UART_STATE_BUSY_TX)) + { + huart->TxXferCount = 0U; + UART_EndTxTransfer(huart); + } + + /* Stop UART DMA Rx request if ongoing */ + if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && + (rxstate == HAL_UART_STATE_BUSY_RX)) + { + huart->RxXferCount = 0U; + UART_EndRxTransfer(huart); + } + + huart->ErrorCode |= HAL_UART_ERROR_DMA; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered error callback*/ + huart->ErrorCallback(huart); +#else + /*Call legacy weak error callback*/ + HAL_UART_ErrorCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA UART communication abort callback, when initiated by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + huart->RxXferCount = 0U; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered error callback*/ + huart->ErrorCallback(huart); +#else + /*Call legacy weak error callback*/ + HAL_UART_ErrorCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA UART Tx communication abort callback, when initiated by user + * (To be called at end of DMA Tx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Rx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + + huart->hdmatx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (huart->hdmarx != NULL) + { + if (huart->hdmarx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + huart->TxXferCount = 0U; + huart->RxXferCount = 0U; + + /* Reset errorCode */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Flush the whole TX FIFO (if needed) */ + if (huart->FifoMode == UART_FIFOMODE_ENABLE) + { + __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); + } + + /* Restore huart->gState and huart->RxState to Ready */ + huart->gState = HAL_UART_STATE_READY; + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Call user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + huart->AbortCpltCallback(huart); +#else + /* Call legacy weak Abort complete callback */ + HAL_UART_AbortCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} + + +/** + * @brief DMA UART Rx communication abort callback, when initiated by user + * (To be called at end of DMA Rx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Tx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + + huart->hdmarx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (huart->hdmatx != NULL) + { + if (huart->hdmatx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + huart->TxXferCount = 0U; + huart->RxXferCount = 0U; + + /* Reset errorCode */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Discard the received data */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + + /* Restore huart->gState and huart->RxState to Ready */ + huart->gState = HAL_UART_STATE_READY; + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Call user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + huart->AbortCpltCallback(huart); +#else + /* Call legacy weak Abort complete callback */ + HAL_UART_AbortCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} + + +/** + * @brief DMA UART Tx communication abort callback, when initiated by user by a call to + * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer) + * (This callback is executed at end of DMA Tx Abort procedure following user abort request, + * and leads to user Tx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); + + huart->TxXferCount = 0U; + + /* Flush the whole TX FIFO (if needed) */ + if (huart->FifoMode == UART_FIFOMODE_ENABLE) + { + __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); + } + + /* Restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + huart->AbortTransmitCpltCallback(huart); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_UART_AbortTransmitCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA UART Rx communication abort callback, when initiated by user by a call to + * HAL_UART_AbortReceive_IT API (Abort only Rx transfer) + * (This callback is executed at end of DMA Rx Abort procedure following user abort request, + * and leads to user Rx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + huart->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); + + /* Discard the received data */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + + /* Restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Call user Abort complete callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + huart->AbortReceiveCpltCallback(huart); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_UART_AbortReceiveCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief TX interrupt handler for 7 or 8 bits data word length . + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_UART_Transmit_IT(). + * @param huart UART handle. + * @retval None + */ +static void UART_TxISR_8BIT(UART_HandleTypeDef *huart) +{ + /* Check that a Tx process is ongoing */ + if (huart->gState == HAL_UART_STATE_BUSY_TX) + { + if (huart->TxXferCount == 0U) + { + /* Disable the UART Transmit Data Register Empty Interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + + /* Enable the UART Transmit Complete Interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); + } + else + { + huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF); + huart->pTxBuffPtr++; + huart->TxXferCount--; + } + } +} + +/** + * @brief TX interrupt handler for 9 bits data word length. + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_UART_Transmit_IT(). + * @param huart UART handle. + * @retval None + */ +static void UART_TxISR_16BIT(UART_HandleTypeDef *huart) +{ + const uint16_t *tmp; + + /* Check that a Tx process is ongoing */ + if (huart->gState == HAL_UART_STATE_BUSY_TX) + { + if (huart->TxXferCount == 0U) + { + /* Disable the UART Transmit Data Register Empty Interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + + /* Enable the UART Transmit Complete Interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); + } + else + { + tmp = (const uint16_t *) huart->pTxBuffPtr; + huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL); + huart->pTxBuffPtr += 2U; + huart->TxXferCount--; + } + } +} + +/** + * @brief TX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled. + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_UART_Transmit_IT(). + * @param huart UART handle. + * @retval None + */ +static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart) +{ + uint16_t nb_tx_data; + + /* Check that a Tx process is ongoing */ + if (huart->gState == HAL_UART_STATE_BUSY_TX) + { + for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--) + { + if (huart->TxXferCount == 0U) + { + /* Disable the TX FIFO threshold interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); + + /* Enable the UART Transmit Complete Interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); + + break; /* force exit loop */ + } + else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U) + { + huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF); + huart->pTxBuffPtr++; + huart->TxXferCount--; + } + else + { + /* Nothing to do */ + } + } + } +} + +/** + * @brief TX interrupt handler for 9 bits data word length and FIFO mode is enabled. + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_UART_Transmit_IT(). + * @param huart UART handle. + * @retval None + */ +static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart) +{ + const uint16_t *tmp; + uint16_t nb_tx_data; + + /* Check that a Tx process is ongoing */ + if (huart->gState == HAL_UART_STATE_BUSY_TX) + { + for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--) + { + if (huart->TxXferCount == 0U) + { + /* Disable the TX FIFO threshold interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); + + /* Enable the UART Transmit Complete Interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); + + break; /* force exit loop */ + } + else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U) + { + tmp = (const uint16_t *) huart->pTxBuffPtr; + huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL); + huart->pTxBuffPtr += 2U; + huart->TxXferCount--; + } + else + { + /* Nothing to do */ + } + } + } +} + +/** + * @brief Wrap up transmission in non-blocking mode. + * @param huart pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ +static void UART_EndTransmit_IT(UART_HandleTypeDef *huart) +{ + /* Disable the UART Transmit Complete Interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE); + + /* Tx process is ended, restore huart->gState to Ready */ + huart->gState = HAL_UART_STATE_READY; + + /* Cleat TxISR function pointer */ + huart->TxISR = NULL; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Tx complete callback*/ + huart->TxCpltCallback(huart); +#else + /*Call legacy weak Tx complete callback*/ + HAL_UART_TxCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ +} + +/** + * @brief RX interrupt handler for 7 or 8 bits data word length . + * @param huart UART handle. + * @retval None + */ +static void UART_RxISR_8BIT(UART_HandleTypeDef *huart) +{ + uint16_t uhMask = huart->Mask; + uint16_t uhdata; + + /* Check that a Rx process is ongoing */ + if (huart->RxState == HAL_UART_STATE_BUSY_RX) + { + uhdata = (uint16_t) READ_REG(huart->Instance->RDR); + *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask); + huart->pRxBuffPtr++; + huart->RxXferCount--; + + if (huart->RxXferCount == 0U) + { + /* Disable the UART Parity Error Interrupt and RXNE interrupts */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + + /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Rx process is completed, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + /* Clear RxISR function pointer */ + huart->RxISR = NULL; + + /* Initialize type of RxEvent to Transfer Complete */ + huart->RxEventType = HAL_UART_RXEVENT_TC; + + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + /* Check that USART RTOEN bit is set */ + if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) + { + /* Enable the UART Receiver Timeout Interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); + } + } + + /* Check current reception Mode : + If Reception till IDLE event has been selected : */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + /* Set reception type to Standard */ + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Disable IDLE interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) + { + /* Clear IDLE Flag */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + } + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, huart->RxXferSize); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + else + { + /* Standard reception API called */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx complete callback*/ + huart->RxCpltCallback(huart); +#else + /*Call legacy weak Rx complete callback*/ + HAL_UART_RxCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @brief RX interrupt handler for 9 bits data word length . + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_UART_Receive_IT() + * @param huart UART handle. + * @retval None + */ +static void UART_RxISR_16BIT(UART_HandleTypeDef *huart) +{ + uint16_t *tmp; + uint16_t uhMask = huart->Mask; + uint16_t uhdata; + + /* Check that a Rx process is ongoing */ + if (huart->RxState == HAL_UART_STATE_BUSY_RX) + { + uhdata = (uint16_t) READ_REG(huart->Instance->RDR); + tmp = (uint16_t *) huart->pRxBuffPtr ; + *tmp = (uint16_t)(uhdata & uhMask); + huart->pRxBuffPtr += 2U; + huart->RxXferCount--; + + if (huart->RxXferCount == 0U) + { + /* Disable the UART Parity Error Interrupt and RXNE interrupt*/ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + + /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); + + /* Rx process is completed, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + /* Clear RxISR function pointer */ + huart->RxISR = NULL; + + /* Initialize type of RxEvent to Transfer Complete */ + huart->RxEventType = HAL_UART_RXEVENT_TC; + + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + /* Check that USART RTOEN bit is set */ + if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) + { + /* Enable the UART Receiver Timeout Interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); + } + } + + /* Check current reception Mode : + If Reception till IDLE event has been selected : */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + /* Set reception type to Standard */ + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Disable IDLE interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) + { + /* Clear IDLE Flag */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + } + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, huart->RxXferSize); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + else + { + /* Standard reception API called */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx complete callback*/ + huart->RxCpltCallback(huart); +#else + /*Call legacy weak Rx complete callback*/ + HAL_UART_RxCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @brief RX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled. + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_UART_Receive_IT() + * @param huart UART handle. + * @retval None + */ +static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart) +{ + uint16_t uhMask = huart->Mask; + uint16_t uhdata; + uint16_t nb_rx_data; + uint16_t rxdatacount; + uint32_t isrflags = READ_REG(huart->Instance->ISR); + uint32_t cr1its = READ_REG(huart->Instance->CR1); + uint32_t cr3its = READ_REG(huart->Instance->CR3); + + /* Check that a Rx process is ongoing */ + if (huart->RxState == HAL_UART_STATE_BUSY_RX) + { + nb_rx_data = huart->NbRxDataToProcess; + while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U)) + { + uhdata = (uint16_t) READ_REG(huart->Instance->RDR); + *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask); + huart->pRxBuffPtr++; + huart->RxXferCount--; + isrflags = READ_REG(huart->Instance->ISR); + + /* If some non blocking errors occurred */ + if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U) + { + /* UART parity error interrupt occurred -------------------------------------*/ + if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF); + + huart->ErrorCode |= HAL_UART_ERROR_PE; + } + + /* UART frame error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF); + + huart->ErrorCode |= HAL_UART_ERROR_FE; + } + + /* UART noise error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF); + + huart->ErrorCode |= HAL_UART_ERROR_NE; + } + + /* Call UART Error Call back function if need be ----------------------------*/ + if (huart->ErrorCode != HAL_UART_ERROR_NONE) + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered error callback*/ + huart->ErrorCallback(huart); +#else + /*Call legacy weak error callback*/ + HAL_UART_ErrorCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + } + } + + if (huart->RxXferCount == 0U) + { + /* Disable the UART Parity Error Interrupt and RXFT interrupt*/ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); + + /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) + and RX FIFO Threshold interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* Rx process is completed, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + /* Clear RxISR function pointer */ + huart->RxISR = NULL; + + /* Initialize type of RxEvent to Transfer Complete */ + huart->RxEventType = HAL_UART_RXEVENT_TC; + + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + /* Check that USART RTOEN bit is set */ + if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) + { + /* Enable the UART Receiver Timeout Interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); + } + } + + /* Check current reception Mode : + If Reception till IDLE event has been selected : */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + /* Set reception type to Standard */ + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Disable IDLE interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) + { + /* Clear IDLE Flag */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + } + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, huart->RxXferSize); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + else + { + /* Standard reception API called */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx complete callback*/ + huart->RxCpltCallback(huart); +#else + /*Call legacy weak Rx complete callback*/ + HAL_UART_RxCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + break; + } + } + + /* When remaining number of bytes to receive is less than the RX FIFO + threshold, next incoming frames are processed as if FIFO mode was + disabled (i.e. one interrupt per received frame). + */ + rxdatacount = huart->RxXferCount; + if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess)) + { + /* Disable the UART RXFT interrupt*/ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE); + + /* Update the RxISR function pointer */ + huart->RxISR = UART_RxISR_8BIT; + + /* Enable the UART Data Register Not Empty interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @brief RX interrupt handler for 9 bits data word length and FIFO mode is enabled. + * @note Function is called under interruption only, once + * interruptions have been enabled by HAL_UART_Receive_IT() + * @param huart UART handle. + * @retval None + */ +static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart) +{ + uint16_t *tmp; + uint16_t uhMask = huart->Mask; + uint16_t uhdata; + uint16_t nb_rx_data; + uint16_t rxdatacount; + uint32_t isrflags = READ_REG(huart->Instance->ISR); + uint32_t cr1its = READ_REG(huart->Instance->CR1); + uint32_t cr3its = READ_REG(huart->Instance->CR3); + + /* Check that a Rx process is ongoing */ + if (huart->RxState == HAL_UART_STATE_BUSY_RX) + { + nb_rx_data = huart->NbRxDataToProcess; + while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U)) + { + uhdata = (uint16_t) READ_REG(huart->Instance->RDR); + tmp = (uint16_t *) huart->pRxBuffPtr ; + *tmp = (uint16_t)(uhdata & uhMask); + huart->pRxBuffPtr += 2U; + huart->RxXferCount--; + isrflags = READ_REG(huart->Instance->ISR); + + /* If some non blocking errors occurred */ + if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U) + { + /* UART parity error interrupt occurred -------------------------------------*/ + if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF); + + huart->ErrorCode |= HAL_UART_ERROR_PE; + } + + /* UART frame error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF); + + huart->ErrorCode |= HAL_UART_ERROR_FE; + } + + /* UART noise error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF); + + huart->ErrorCode |= HAL_UART_ERROR_NE; + } + + /* Call UART Error Call back function if need be ----------------------------*/ + if (huart->ErrorCode != HAL_UART_ERROR_NONE) + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered error callback*/ + huart->ErrorCallback(huart); +#else + /*Call legacy weak error callback*/ + HAL_UART_ErrorCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + } + } + + if (huart->RxXferCount == 0U) + { + /* Disable the UART Parity Error Interrupt and RXFT interrupt*/ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); + + /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) + and RX FIFO Threshold interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* Rx process is completed, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + /* Clear RxISR function pointer */ + huart->RxISR = NULL; + + /* Initialize type of RxEvent to Transfer Complete */ + huart->RxEventType = HAL_UART_RXEVENT_TC; + + if (!(IS_LPUART_INSTANCE(huart->Instance))) + { + /* Check that USART RTOEN bit is set */ + if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) + { + /* Enable the UART Receiver Timeout Interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); + } + } + + /* Check current reception Mode : + If Reception till IDLE event has been selected : */ + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + /* Set reception type to Standard */ + huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; + + /* Disable IDLE interrupt */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) + { + /* Clear IDLE Flag */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + } + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx Event callback*/ + huart->RxEventCallback(huart, huart->RxXferSize); +#else + /*Call legacy weak Rx Event callback*/ + HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + else + { + /* Standard reception API called */ +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + /*Call registered Rx complete callback*/ + huart->RxCpltCallback(huart); +#else + /*Call legacy weak Rx complete callback*/ + HAL_UART_RxCpltCallback(huart); +#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ + } + break; + } + } + + /* When remaining number of bytes to receive is less than the RX FIFO + threshold, next incoming frames are processed as if FIFO mode was + disabled (i.e. one interrupt per received frame). + */ + rxdatacount = huart->RxXferCount; + if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess)) + { + /* Disable the UART RXFT interrupt*/ + ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE); + + /* Update the RxISR function pointer */ + huart->RxISR = UART_RxISR_16BIT; + + /* Enable the UART Data Register Not Empty interrupt */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @} + */ + +#endif /* HAL_UART_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart_ex.c new file mode 100644 index 0000000..ccabb96 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_uart_ex.c @@ -0,0 +1,1092 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_uart_ex.c + * @author MCD Application Team + * @brief Extended UART HAL module driver. + * This file provides firmware functions to manage the following extended + * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### UART peripheral extended features ##### + ============================================================================== + + (#) Declare a UART_HandleTypeDef handle structure. + + (#) For the UART RS485 Driver Enable mode, initialize the UART registers + by calling the HAL_RS485Ex_Init() API. + + (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming. + + -@- When UART operates in FIFO mode, FIFO mode must be enabled prior + starting RX/TX transfers. Also RX/TX FIFO thresholds must be + configured prior starting RX/TX transfers. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup UARTEx UARTEx + * @brief UART Extended HAL module driver + * @{ + */ + +#ifdef HAL_UART_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup UARTEX_Private_Constants UARTEx Private Constants + * @{ + */ +/* UART RX FIFO depth */ +#define RX_FIFO_DEPTH 8U + +/* UART TX FIFO depth */ +#define TX_FIFO_DEPTH 8U +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup UARTEx_Private_Functions UARTEx Private Functions + * @{ + */ +static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection); +static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions + * @{ + */ + +/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Extended Initialization and Configuration Functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx or the UARTy + in asynchronous mode. + (+) For the asynchronous mode the parameters below can be configured: + (++) Baud Rate + (++) Word Length + (++) Stop Bit + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + (++) Hardware flow control + (++) Receiver/transmitter modes + (++) Over Sampling Method + (++) One-Bit Sampling Method + (+) For the asynchronous mode, the following advanced features can be configured as well: + (++) TX and/or RX pin level inversion + (++) data logical level inversion + (++) RX and TX pins swap + (++) RX overrun detection disabling + (++) DMA disabling on RX error + (++) MSB first on communication line + (++) auto Baud rate detection + [..] + The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration + procedures (details for the procedures are available in reference manual). + +@endverbatim + + Depending on the frame length defined by the M1 and M0 bits (7-bit, + 8-bit or 9-bit), the possible UART formats are listed in the + following table. + + Table 1. UART frame format. + +-----------------------------------------------------------------------+ + | M1 bit | M0 bit | PCE bit | UART frame | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 0 | | SB | 8 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 0 | | SB | 9 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 0 | | SB | 7 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | + +-----------------------------------------------------------------------+ + + * @{ + */ + +/** + * @brief Initialize the RS485 Driver enable feature according to the specified + * parameters in the UART_InitTypeDef and creates the associated handle. + * @param huart UART handle. + * @param Polarity Select the driver enable polarity. + * This parameter can be one of the following values: + * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high + * @arg @ref UART_DE_POLARITY_LOW DE signal is active low + * @param AssertionTime Driver Enable assertion time: + * 5-bit value defining the time between the activation of the DE (Driver Enable) + * signal and the beginning of the start bit. It is expressed in sample time + * units (1/8 or 1/16 bit time, depending on the oversampling rate) + * @param DeassertionTime Driver Enable deassertion time: + * 5-bit value defining the time between the end of the last stop bit, in a + * transmitted message, and the de-activation of the DE (Driver Enable) signal. + * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the + * oversampling rate). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime, + uint32_t DeassertionTime) +{ + uint32_t temp; + + /* Check the UART handle allocation */ + if (huart == NULL) + { + return HAL_ERROR; + } + /* Check the Driver Enable UART instance */ + assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance)); + + /* Check the Driver Enable polarity */ + assert_param(IS_UART_DE_POLARITY(Polarity)); + + /* Check the Driver Enable assertion time */ + assert_param(IS_UART_ASSERTIONTIME(AssertionTime)); + + /* Check the Driver Enable deassertion time */ + assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime)); + + if (huart->gState == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + +#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) + UART_InitCallbacksToDefault(huart); + + if (huart->MspInitCallback == NULL) + { + huart->MspInitCallback = HAL_UART_MspInit; + } + + /* Init the low level hardware */ + huart->MspInitCallback(huart); +#else + /* Init the low level hardware : GPIO, CLOCK, CORTEX */ + HAL_UART_MspInit(huart); +#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ + } + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Perform advanced settings configuration */ + /* For some items, configuration requires to be done prior TE and RE bits are set */ + if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) + { + UART_AdvFeatureConfig(huart); + } + + /* Set the UART Communication parameters */ + if (UART_SetConfig(huart) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */ + SET_BIT(huart->Instance->CR3, USART_CR3_DEM); + + /* Set the Driver Enable polarity */ + MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity); + + /* Set the Driver Enable assertion and deassertion times */ + temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS); + temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS); + MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ + return (UART_CheckIdleState(huart)); +} + +/** + * @} + */ + +/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions + * @brief Extended functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of Wakeup and FIFO mode related callback functions. + + (#) Wakeup from Stop mode Callback: + (+) HAL_UARTEx_WakeupCallback() + + (#) TX/RX Fifos Callbacks: + (+) HAL_UARTEx_RxFifoFullCallback() + (+) HAL_UARTEx_TxFifoEmptyCallback() + +@endverbatim + * @{ + */ + +/** + * @brief UART wakeup from Stop mode callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UARTEx_WakeupCallback can be implemented in the user file. + */ +} + +/** + * @brief UART RX Fifo full callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UARTEx_RxFifoFullCallback can be implemented in the user file. + */ +} + +/** + * @brief UART TX Fifo empty callback. + * @param huart UART handle. + * @retval None + */ +__weak void HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef *huart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(huart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_UARTEx_TxFifoEmptyCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides the following functions: + (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address + detection length to more than 4 bits for multiprocessor address mark wake up. + (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode + trigger: address match, Start Bit detection or RXNE bit status. + (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode + (+) HAL_UARTEx_DisableStopMode() API disables the above functionality + (+) HAL_UARTEx_EnableFifoMode() API enables the FIFO mode + (+) HAL_UARTEx_DisableFifoMode() API disables the FIFO mode + (+) HAL_UARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold + (+) HAL_UARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold + + [..] This subsection also provides a set of additional functions providing enhanced reception + services to user. (For example, these functions allow application to handle use cases + where number of data to be received is unknown). + + (#) Compared to standard reception services which only consider number of received + data elements as reception completion criteria, these functions also consider additional events + as triggers for updating reception status to caller : + (+) Detection of inactivity period (RX line has not been active for a given period). + (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state) + for 1 frame time, after last received byte. + (++) RX inactivity detected by RTO, i.e. line has been in idle state + for a programmable time, after last received byte. + (+) Detection that a specific character has been received. + + (#) There are two mode of transfer: + (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received, + or till IDLE event occurs. Reception is handled only during function execution. + When function exits, no data reception could occur. HAL status and number of actually received data elements, + are returned by function after finishing transfer. + (+) Non-Blocking mode: The reception is performed using Interrupts or DMA. + These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. + The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process + The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected. + + (#) Blocking mode API: + (+) HAL_UARTEx_ReceiveToIdle() + + (#) Non-Blocking mode API with Interrupt: + (+) HAL_UARTEx_ReceiveToIdle_IT() + + (#) Non-Blocking mode API with DMA: + (+) HAL_UARTEx_ReceiveToIdle_DMA() + +@endverbatim + * @{ + */ + +/** + * @brief By default in multiprocessor mode, when the wake up method is set + * to address mark, the UART handles only 4-bit long addresses detection; + * this API allows to enable longer addresses detection (6-, 7- or 8-bit + * long). + * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode, + * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode. + * @param huart UART handle. + * @param AddressLength This parameter can be one of the following values: + * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address + * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength) +{ + /* Check the UART handle allocation */ + if (huart == NULL) + { + return HAL_ERROR; + } + + /* Check the address length parameter */ + assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength)); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the address length */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength); + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* TEACK and/or REACK to check before moving huart->gState to Ready */ + return (UART_CheckIdleState(huart)); +} + +/** + * @brief Set Wakeup from Stop mode interrupt flag selection. + * @note It is the application responsibility to enable the interrupt used as + * usart_wkup interrupt source before entering low-power mode. + * @param huart UART handle. + * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status. + * This parameter can be one of the following values: + * @arg @ref UART_WAKEUP_ON_ADDRESS + * @arg @ref UART_WAKEUP_ON_STARTBIT + * @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tickstart; + + /* check the wake-up from stop mode UART instance */ + assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance)); + /* check the wake-up selection parameter */ + assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the wake-up selection scheme */ + MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent); + + if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS) + { + UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection); + } + + /* Enable the Peripheral */ + __HAL_UART_ENABLE(huart); + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + /* Wait until REACK flag is set */ + if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) + { + status = HAL_TIMEOUT; + } + else + { + /* Initialize the UART State */ + huart->gState = HAL_UART_STATE_READY; + } + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return status; +} + +/** + * @brief Enable UART Stop Mode. + * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + /* Set UESM bit */ + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM); + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Disable UART Stop Mode. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + /* Clear UESM bit */ + ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM); + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Enable the FIFO mode. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef *huart) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Save actual UART configuration */ + tmpcr1 = READ_REG(huart->Instance->CR1); + + /* Disable UART */ + __HAL_UART_DISABLE(huart); + + /* Enable FIFO mode */ + SET_BIT(tmpcr1, USART_CR1_FIFOEN); + huart->FifoMode = UART_FIFOMODE_ENABLE; + + /* Restore UART configuration */ + WRITE_REG(huart->Instance->CR1, tmpcr1); + + /* Determine the number of data to process during RX/TX ISR execution */ + UARTEx_SetNbDataToProcess(huart); + + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Disable the FIFO mode. + * @param huart UART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef *huart) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Save actual UART configuration */ + tmpcr1 = READ_REG(huart->Instance->CR1); + + /* Disable UART */ + __HAL_UART_DISABLE(huart); + + /* Disable FIFO mode */ + CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN); + huart->FifoMode = UART_FIFOMODE_DISABLE; + + /* Restore UART configuration */ + WRITE_REG(huart->Instance->CR1, tmpcr1); + + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Set the TXFIFO threshold. + * @param huart UART handle. + * @param Threshold TX FIFO threshold value + * This parameter can be one of the following values: + * @arg @ref UART_TXFIFO_THRESHOLD_1_8 + * @arg @ref UART_TXFIFO_THRESHOLD_1_4 + * @arg @ref UART_TXFIFO_THRESHOLD_1_2 + * @arg @ref UART_TXFIFO_THRESHOLD_3_4 + * @arg @ref UART_TXFIFO_THRESHOLD_7_8 + * @arg @ref UART_TXFIFO_THRESHOLD_8_8 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); + assert_param(IS_UART_TXFIFO_THRESHOLD(Threshold)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Save actual UART configuration */ + tmpcr1 = READ_REG(huart->Instance->CR1); + + /* Disable UART */ + __HAL_UART_DISABLE(huart); + + /* Update TX threshold configuration */ + MODIFY_REG(huart->Instance->CR3, USART_CR3_TXFTCFG, Threshold); + + /* Determine the number of data to process during RX/TX ISR execution */ + UARTEx_SetNbDataToProcess(huart); + + /* Restore UART configuration */ + WRITE_REG(huart->Instance->CR1, tmpcr1); + + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Set the RXFIFO threshold. + * @param huart UART handle. + * @param Threshold RX FIFO threshold value + * This parameter can be one of the following values: + * @arg @ref UART_RXFIFO_THRESHOLD_1_8 + * @arg @ref UART_RXFIFO_THRESHOLD_1_4 + * @arg @ref UART_RXFIFO_THRESHOLD_1_2 + * @arg @ref UART_RXFIFO_THRESHOLD_3_4 + * @arg @ref UART_RXFIFO_THRESHOLD_7_8 + * @arg @ref UART_RXFIFO_THRESHOLD_8_8 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold) +{ + uint32_t tmpcr1; + + /* Check the parameters */ + assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); + assert_param(IS_UART_RXFIFO_THRESHOLD(Threshold)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->gState = HAL_UART_STATE_BUSY; + + /* Save actual UART configuration */ + tmpcr1 = READ_REG(huart->Instance->CR1); + + /* Disable UART */ + __HAL_UART_DISABLE(huart); + + /* Update RX threshold configuration */ + MODIFY_REG(huart->Instance->CR3, USART_CR3_RXFTCFG, Threshold); + + /* Determine the number of data to process during RX/TX ISR execution */ + UARTEx_SetNbDataToProcess(huart); + + /* Restore UART configuration */ + WRITE_REG(huart->Instance->CR1, tmpcr1); + + huart->gState = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Receive an amount of data in blocking mode till either the expected number of data + * is received or an IDLE event occurs. + * @note HAL_OK is returned if reception is completed (expected number of data has been received) + * or if reception is stopped after IDLE event (less than the expected number of data has been received) + * In this case, RxLen output parameter indicates number of data available in reception buffer. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of uint16_t. In this case, Size must indicate the number + * of uint16_t available through pData. + * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO + * is not empty. Read operations from the RDR register are performed when + * RXFNE flag is set. From hardware perspective, RXFNE flag and + * RXNE are mapped on the same bit-field. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required to ensure proper + * alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). + * @param Size Amount of data elements (uint8_t or uint16_t) to be received. + * @param RxLen Number of data elements finally received + * (could be lower than Size, in case reception ends on IDLE event) + * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen, + uint32_t Timeout) +{ + uint8_t *pdata8bits; + uint16_t *pdata16bits; + uint16_t uhMask; + uint32_t tickstart; + + /* Check that a Rx process is not already ongoing */ + if (huart->RxState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a uint16_t frontier, as data to be received from RDR will be + handled through a uint16_t cast. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->RxState = HAL_UART_STATE_BUSY_RX; + huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; + huart->RxEventType = HAL_UART_RXEVENT_TC; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + huart->RxXferSize = Size; + huart->RxXferCount = Size; + + /* Computation of UART mask to apply to RDR register */ + UART_MASK_COMPUTATION(huart); + uhMask = huart->Mask; + + /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + pdata8bits = NULL; + pdata16bits = (uint16_t *) pData; + } + else + { + pdata8bits = pData; + pdata16bits = NULL; + } + + /* Initialize output number of received elements */ + *RxLen = 0U; + + /* as long as data have to be received */ + while (huart->RxXferCount > 0U) + { + /* Check if IDLE flag is set */ + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE)) + { + /* Clear IDLE flag in ISR */ + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + + /* If Set, but no data ever received, clear flag without exiting loop */ + /* If Set, and data has already been received, this means Idle Event is valid : End reception */ + if (*RxLen > 0U) + { + huart->RxEventType = HAL_UART_RXEVENT_IDLE; + huart->RxState = HAL_UART_STATE_READY; + + return HAL_OK; + } + } + + /* Check if RXNE flag is set */ + if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE)) + { + if (pdata8bits == NULL) + { + *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask); + pdata16bits++; + } + else + { + *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); + pdata8bits++; + } + /* Increment number of received elements */ + *RxLen += 1U; + huart->RxXferCount--; + } + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + huart->RxState = HAL_UART_STATE_READY; + + return HAL_TIMEOUT; + } + } + } + + /* Set number of received elements in output parameter : RxLen */ + *RxLen = huart->RxXferSize - huart->RxXferCount; + /* At end of Rx process, restore huart->RxState to Ready */ + huart->RxState = HAL_UART_STATE_READY; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in interrupt mode till either the expected number of data + * is received or an IDLE event occurs. + * @note Reception is initiated by this function call. Further progress of reception is achieved thanks + * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating + * number of received data elements. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of uint16_t. In this case, Size must indicate the number + * of uint16_t available through pData. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). + * @param Size Amount of data elements (uint8_t or uint16_t) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check that a Rx process is not already ongoing */ + if (huart->RxState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a uint16_t frontier, as data to be received from RDR will be + handled through a uint16_t cast. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Set Reception type to reception till IDLE Event*/ + huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; + huart->RxEventType = HAL_UART_RXEVENT_TC; + + (void)UART_Start_Receive_IT(huart, pData, Size); + + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + } + else + { + /* In case of errors already pending when reception is started, + Interrupts may have already been raised and lead to reception abortion. + (Overrun error for instance). + In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ + status = HAL_ERROR; + } + + return status; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Receive an amount of data in DMA mode till either the expected number + * of data is received or an IDLE event occurs. + * @note Reception is initiated by this function call. Further progress of reception is achieved thanks + * to DMA services, transferring automatically received data elements in user reception buffer and + * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider + * reception phase as ended. In all cases, callback execution will indicate number of received data elements. + * @note When the UART parity is enabled (PCE = 1), the received data contain + * the parity bit (MSB position). + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of uint16_t. In this case, Size must indicate the number + * of uint16_t available through pData. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pData. + * @param huart UART handle. + * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). + * @param Size Amount of data elements (uint8_t or uint16_t) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef status; + + /* Check that a Rx process is not already ongoing */ + if (huart->RxState == HAL_UART_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter + should be aligned on a uint16_t frontier, as data copy from RDR will be + handled by DMA from a uint16_t frontier. */ + if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) + { + if ((((uint32_t)pData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Set Reception type to reception till IDLE Event*/ + huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; + huart->RxEventType = HAL_UART_RXEVENT_TC; + + status = UART_Start_Receive_DMA(huart, pData, Size); + + /* Check Rx process has been successfully started */ + if (status == HAL_OK) + { + if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) + { + __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); + ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); + } + else + { + /* In case of errors already pending when reception is started, + Interrupts may have already been raised and lead to reception abortion. + (Overrun error for instance). + In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ + status = HAL_ERROR; + } + } + + return status; + } + else + { + return HAL_BUSY; + } +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Provide Rx Event type that has lead to RxEvent callback execution. + * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress + * of reception process is provided to application through calls of Rx Event callback (either default one + * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event, + * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead + * to Rx Event callback execution. + * @note This function is expected to be called within the user implementation of Rx Event Callback, + * in order to provide the accurate value : + * In Interrupt Mode : + * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received) + * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of + * received data is lower than expected one) + * In DMA Mode : + * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received) + * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received + * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of + * received data is lower than expected one). + * In DMA mode, RxEvent callback could be called several times; + * When DMA is configured in Normal Mode, HT event does not stop Reception process; + * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process; + * @param huart UART handle. + * @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values) + */ +HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef *huart) +{ + /* Return Rx Event type value, as stored in UART handle */ + return (huart->RxEventType); +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup UARTEx_Private_Functions + * @{ + */ + +/** + * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection. + * @param huart UART handle. + * @param WakeUpSelection UART wake up from stop mode parameters. + * @retval None + */ +static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection) +{ + assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength)); + + /* Set the USART address length */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength); + + /* Set the USART address node */ + MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS)); +} + +/** + * @brief Calculate the number of data to process in RX/TX ISR. + * @note The RX FIFO depth and the TX FIFO depth is extracted from + * the UART configuration registers. + * @param huart UART handle. + * @retval None + */ +static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart) +{ + uint8_t rx_fifo_depth; + uint8_t tx_fifo_depth; + uint8_t rx_fifo_threshold; + uint8_t tx_fifo_threshold; + static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U}; + static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U}; + + if (huart->FifoMode == UART_FIFOMODE_DISABLE) + { + huart->NbTxDataToProcess = 1U; + huart->NbRxDataToProcess = 1U; + } + else + { + rx_fifo_depth = RX_FIFO_DEPTH; + tx_fifo_depth = TX_FIFO_DEPTH; + rx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos); + tx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos); + huart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) / + (uint16_t)denominator[tx_fifo_threshold]; + huart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) / + (uint16_t)denominator[rx_fifo_threshold]; + } +} +/** + * @} + */ + +#endif /* HAL_UART_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart.c new file mode 100644 index 0000000..5f33a99 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart.c @@ -0,0 +1,3836 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_usart.c + * @author MCD Application Team + * @brief USART HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Universal Synchronous/Asynchronous Receiver Transmitter + * Peripheral (USART). + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Error functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The USART HAL driver can be used as follows: + + (#) Declare a USART_HandleTypeDef handle structure (eg. USART_HandleTypeDef husart). + (#) Initialize the USART low level resources by implementing the HAL_USART_MspInit() API: + (++) Enable the USARTx interface clock. + (++) USART pins configuration: + (+++) Enable the clock for the USART GPIOs. + (+++) Configure these USART pins as alternate function pull-up. + (++) NVIC configuration if you need to use interrupt process (HAL_USART_Transmit_IT(), + HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (++) USART interrupts handling: + -@@- The specific USART interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_USART_ENABLE_IT() and __HAL_USART_DISABLE_IT() inside the transmit and receive process. + (++) DMA Configuration if you need to use DMA process (HAL_USART_Transmit_DMA() + HAL_USART_Receive_DMA() and HAL_USART_TransmitReceive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx channel. + (+++) Associate the initialized DMA handle to the USART DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer + complete interrupt on the DMA Tx/Rx channel. + + (#) Program the Baud Rate, Word Length, Stop Bit, Parity, and Mode + (Receiver/Transmitter) in the husart handle Init structure. + + (#) Initialize the USART registers by calling the HAL_USART_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_USART_MspInit(&husart) API. + + [..] + (@) To configure and enable/disable the USART to wake up the MCU from stop mode, resort to UART API's + HAL_UARTEx_StopModeWakeUpSourceConfig(), HAL_UARTEx_EnableStopMode() and + HAL_UARTEx_DisableStopMode() in casting the USART handle to UART type UART_HandleTypeDef. + + ##### Callback registration ##### + ================================== + + [..] + The compilation define USE_HAL_USART_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function HAL_USART_RegisterCallback() to register a user callback. + Function HAL_USART_RegisterCallback() allows to register following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) TxRxCpltCallback : Tx Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) RxFifoFullCallback : Rx Fifo Full Callback. + (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. + (+) MspInitCallback : USART MspInit. + (+) MspDeInitCallback : USART MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function HAL_USART_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_USART_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) TxRxCpltCallback : Tx Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) RxFifoFullCallback : Rx Fifo Full Callback. + (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. + (+) MspInitCallback : USART MspInit. + (+) MspDeInitCallback : USART MspDeInit. + + [..] + By default, after the HAL_USART_Init() and when the state is HAL_USART_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_USART_TxCpltCallback(), HAL_USART_RxHalfCpltCallback(). + Exception done for MspInit and MspDeInit functions that are respectively + reset to the legacy weak functions in the HAL_USART_Init() + and HAL_USART_DeInit() only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the HAL_USART_Init() and HAL_USART_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand). + + [..] + Callbacks can be registered/unregistered in HAL_USART_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_USART_STATE_READY or HAL_USART_STATE_RESET state, thus registered (user) + MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_USART_RegisterCallback() before calling HAL_USART_DeInit() + or HAL_USART_Init() function. + + [..] + When The compilation define USE_HAL_USART_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available + and weak callbacks are used. + + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup USART USART + * @brief HAL USART Synchronous SPI module driver + * @{ + */ + +#ifdef HAL_USART_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup USART_Private_Constants USART Private Constants + * @{ + */ +#define USART_DUMMY_DATA ((uint16_t) 0xFFFF) /*!< USART transmitted dummy data */ +#define USART_TEACK_REACK_TIMEOUT 1000U /*!< USART TX or RX enable acknowledge time-out value */ +#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ + USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8 | \ + USART_CR1_FIFOEN )) /*!< USART CR1 fields of parameters set by USART_SetConfig API */ + +#define USART_CR2_FIELDS ((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | \ + USART_CR2_LBCL | USART_CR2_STOP | USART_CR2_SLVEN | \ + USART_CR2_DIS_NSS)) /*!< USART CR2 fields of parameters set by USART_SetConfig API */ + +#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_TXFTCFG | USART_CR3_RXFTCFG )) /*!< USART or USART CR3 fields of parameters set by USART_SetConfig API */ + +#define USART_BRR_MIN 0x10U /* USART BRR minimum authorized value */ +#define USART_BRR_MAX 0xFFFFU /* USART BRR maximum authorized value */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup USART_Private_Functions + * @{ + */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) +void USART_InitCallbacksToDefault(USART_HandleTypeDef *husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ +static void USART_EndTransfer(USART_HandleTypeDef *husart); +#if defined(HAL_DMA_MODULE_ENABLED) +static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void USART_DMAError(DMA_HandleTypeDef *hdma); +static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void USART_DMATxAbortCallback(DMA_HandleTypeDef *hdma); +static void USART_DMARxAbortCallback(DMA_HandleTypeDef *hdma); +#endif /* HAL_DMA_MODULE_ENABLED */ +static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, + uint32_t Tickstart, uint32_t Timeout); +static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart); +static void USART_TxISR_8BIT(USART_HandleTypeDef *husart); +static void USART_TxISR_16BIT(USART_HandleTypeDef *husart); +static void USART_TxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart); +static void USART_TxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart); +static void USART_EndTransmit_IT(USART_HandleTypeDef *husart); +static void USART_RxISR_8BIT(USART_HandleTypeDef *husart); +static void USART_RxISR_16BIT(USART_HandleTypeDef *husart); +static void USART_RxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart); +static void USART_RxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart); + + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup USART_Exported_Functions USART Exported Functions + * @{ + */ + +/** @defgroup USART_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USART + in synchronous SPI master/slave mode. + (+) For the synchronous SPI mode only these parameters can be configured: + (++) Baud Rate + (++) Word Length + (++) Stop Bit + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + (++) USART polarity + (++) USART phase + (++) USART LastBit + (++) Receiver/transmitter modes + + [..] + The HAL_USART_Init() function follows the USART synchronous SPI configuration + procedure (details for the procedure are available in reference manual). + +@endverbatim + + Depending on the frame length defined by the M1 and M0 bits (7-bit, + 8-bit or 9-bit), the possible USART formats are listed in the + following table. + + Table 1. USART frame format. + +-----------------------------------------------------------------------+ + | M1 bit | M0 bit | PCE bit | USART frame | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 0 | | SB | 8 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 0 | | SB | 9 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 0 | | SB | 7 bit data | STB | | + |---------|---------|-----------|---------------------------------------| + | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | + +-----------------------------------------------------------------------+ + + * @{ + */ + +/** + * @brief Initialize the USART mode according to the specified + * parameters in the USART_InitTypeDef and initialize the associated handle. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart) +{ + /* Check the USART handle allocation */ + if (husart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_USART_INSTANCE(husart->Instance)); + + if (husart->State == HAL_USART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + husart->Lock = HAL_UNLOCKED; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + USART_InitCallbacksToDefault(husart); + + if (husart->MspInitCallback == NULL) + { + husart->MspInitCallback = HAL_USART_MspInit; + } + + /* Init the low level hardware */ + husart->MspInitCallback(husart); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_USART_MspInit(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + + husart->State = HAL_USART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_USART_DISABLE(husart); + + /* Set the Usart Communication parameters */ + if (USART_SetConfig(husart) == HAL_ERROR) + { + return HAL_ERROR; + } + + /* In Synchronous SPI mode, the following bits must be kept cleared: + - LINEN bit in the USART_CR2 register + - HDSEL, SCEN and IREN bits in the USART_CR3 register. + */ + husart->Instance->CR2 &= ~USART_CR2_LINEN; + husart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN); + + /* Enable the Peripheral */ + __HAL_USART_ENABLE(husart); + + /* TEACK and/or REACK to check before moving husart->State to Ready */ + return (USART_CheckIdleState(husart)); +} + +/** + * @brief DeInitialize the USART peripheral. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart) +{ + /* Check the USART handle allocation */ + if (husart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_USART_INSTANCE(husart->Instance)); + + husart->State = HAL_USART_STATE_BUSY; + + husart->Instance->CR1 = 0x0U; + husart->Instance->CR2 = 0x0U; + husart->Instance->CR3 = 0x0U; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + if (husart->MspDeInitCallback == NULL) + { + husart->MspDeInitCallback = HAL_USART_MspDeInit; + } + /* DeInit the low level hardware */ + husart->MspDeInitCallback(husart); +#else + /* DeInit the low level hardware */ + HAL_USART_MspDeInit(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_RESET; + + /* Process Unlock */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Initialize the USART MSP. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_MspInit(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_MspInit can be implemented in the user file + */ +} + +/** + * @brief DeInitialize the USART MSP. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_MspDeInit can be implemented in the user file + */ +} + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User USART Callback + * To be used to override the weak predefined callback + * @note The HAL_USART_RegisterCallback() may be called before HAL_USART_Init() in HAL_USART_STATE_RESET + * to register callbacks for HAL_USART_MSPINIT_CB_ID and HAL_USART_MSPDEINIT_CB_ID + * @param husart usart handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_USART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_USART_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_USART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_USART_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_USART_TX_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_USART_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_USART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_USART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID + * @arg @ref HAL_USART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID + * @arg @ref HAL_USART_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_USART_MSPDEINIT_CB_ID MspDeInit Callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status ++ */ +HAL_StatusTypeDef HAL_USART_RegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID, + pUSART_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if (husart->State == HAL_USART_STATE_READY) + { + switch (CallbackID) + { + case HAL_USART_TX_HALFCOMPLETE_CB_ID : + husart->TxHalfCpltCallback = pCallback; + break; + + case HAL_USART_TX_COMPLETE_CB_ID : + husart->TxCpltCallback = pCallback; + break; + + case HAL_USART_RX_HALFCOMPLETE_CB_ID : + husart->RxHalfCpltCallback = pCallback; + break; + + case HAL_USART_RX_COMPLETE_CB_ID : + husart->RxCpltCallback = pCallback; + break; + + case HAL_USART_TX_RX_COMPLETE_CB_ID : + husart->TxRxCpltCallback = pCallback; + break; + + case HAL_USART_ERROR_CB_ID : + husart->ErrorCallback = pCallback; + break; + + case HAL_USART_ABORT_COMPLETE_CB_ID : + husart->AbortCpltCallback = pCallback; + break; + + case HAL_USART_RX_FIFO_FULL_CB_ID : + husart->RxFifoFullCallback = pCallback; + break; + + case HAL_USART_TX_FIFO_EMPTY_CB_ID : + husart->TxFifoEmptyCallback = pCallback; + break; + + case HAL_USART_MSPINIT_CB_ID : + husart->MspInitCallback = pCallback; + break; + + case HAL_USART_MSPDEINIT_CB_ID : + husart->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (husart->State == HAL_USART_STATE_RESET) + { + switch (CallbackID) + { + case HAL_USART_MSPINIT_CB_ID : + husart->MspInitCallback = pCallback; + break; + + case HAL_USART_MSPDEINIT_CB_ID : + husart->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister an USART Callback + * USART callaback is redirected to the weak predefined callback + * @note The HAL_USART_UnRegisterCallback() may be called before HAL_USART_Init() in HAL_USART_STATE_RESET + * to un-register callbacks for HAL_USART_MSPINIT_CB_ID and HAL_USART_MSPDEINIT_CB_ID + * @param husart usart handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_USART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_USART_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_USART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_USART_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_USART_TX_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_USART_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_USART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_USART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID + * @arg @ref HAL_USART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID + * @arg @ref HAL_USART_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_USART_MSPDEINIT_CB_ID MspDeInit Callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_UnRegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (HAL_USART_STATE_READY == husart->State) + { + switch (CallbackID) + { + case HAL_USART_TX_HALFCOMPLETE_CB_ID : + husart->TxHalfCpltCallback = HAL_USART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + break; + + case HAL_USART_TX_COMPLETE_CB_ID : + husart->TxCpltCallback = HAL_USART_TxCpltCallback; /* Legacy weak TxCpltCallback */ + break; + + case HAL_USART_RX_HALFCOMPLETE_CB_ID : + husart->RxHalfCpltCallback = HAL_USART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + break; + + case HAL_USART_RX_COMPLETE_CB_ID : + husart->RxCpltCallback = HAL_USART_RxCpltCallback; /* Legacy weak RxCpltCallback */ + break; + + case HAL_USART_TX_RX_COMPLETE_CB_ID : + husart->TxRxCpltCallback = HAL_USART_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ + break; + + case HAL_USART_ERROR_CB_ID : + husart->ErrorCallback = HAL_USART_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_USART_ABORT_COMPLETE_CB_ID : + husart->AbortCpltCallback = HAL_USART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_USART_RX_FIFO_FULL_CB_ID : + husart->RxFifoFullCallback = HAL_USARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */ + break; + + case HAL_USART_TX_FIFO_EMPTY_CB_ID : + husart->TxFifoEmptyCallback = HAL_USARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ + break; + + case HAL_USART_MSPINIT_CB_ID : + husart->MspInitCallback = HAL_USART_MspInit; /* Legacy weak MspInitCallback */ + break; + + case HAL_USART_MSPDEINIT_CB_ID : + husart->MspDeInitCallback = HAL_USART_MspDeInit; /* Legacy weak MspDeInitCallback */ + break; + + default : + /* Update the error code */ + husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_USART_STATE_RESET == husart->State) + { + switch (CallbackID) + { + case HAL_USART_MSPINIT_CB_ID : + husart->MspInitCallback = HAL_USART_MspInit; + break; + + case HAL_USART_MSPDEINIT_CB_ID : + husart->MspDeInitCallback = HAL_USART_MspDeInit; + break; + + default : + /* Update the error code */ + husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + + +/** + * @} + */ + +/** @defgroup USART_Exported_Functions_Group2 IO operation functions + * @brief USART Transmit and Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to manage the USART synchronous SPI + data transfers. + + [..] The USART Synchronous SPI supports master and slave modes (SCLK as output or input). + + [..] + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: The communication is performed using Interrupts + or DMA, These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated USART IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_USART_TxCpltCallback(), HAL_USART_RxCpltCallback() and HAL_USART_TxRxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_USART_ErrorCallback()user callback will be executed when a communication error is detected + + (#) Blocking mode API's are : + (++) HAL_USART_Transmit() in simplex mode + (++) HAL_USART_Receive() in full duplex receive only + (++) HAL_USART_TransmitReceive() in full duplex mode + + (#) Non-Blocking mode API's with Interrupt are : + (++) HAL_USART_Transmit_IT() in simplex mode + (++) HAL_USART_Receive_IT() in full duplex receive only + (++) HAL_USART_TransmitReceive_IT() in full duplex mode + (++) HAL_USART_IRQHandler() + + (#) No-Blocking mode API's with DMA are : + (++) HAL_USART_Transmit_DMA() in simplex mode + (++) HAL_USART_Receive_DMA() in full duplex receive only + (++) HAL_USART_TransmitReceive_DMA() in full duplex mode + (++) HAL_USART_DMAPause() + (++) HAL_USART_DMAResume() + (++) HAL_USART_DMAStop() + + (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: + (++) HAL_USART_TxCpltCallback() + (++) HAL_USART_RxCpltCallback() + (++) HAL_USART_TxHalfCpltCallback() + (++) HAL_USART_RxHalfCpltCallback() + (++) HAL_USART_ErrorCallback() + (++) HAL_USART_TxRxCpltCallback() + + (#) Non-Blocking mode transfers could be aborted using Abort API's : + (++) HAL_USART_Abort() + (++) HAL_USART_Abort_IT() + + (#) For Abort services based on interrupts (HAL_USART_Abort_IT), a Abort Complete Callbacks is provided: + (++) HAL_USART_AbortCpltCallback() + + (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. + Errors are handled as follows : + (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is + to be evaluated by user : this concerns Frame Error, + Parity Error or Noise Error in Interrupt mode reception . + Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify + error type, and HAL_USART_ErrorCallback() user callback is executed. + Transfer is kept ongoing on USART side. + If user wants to abort it, Abort services should be called by user. + (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted. + This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. + Error code is set to allow user to identify error type, + and HAL_USART_ErrorCallback() user callback is executed. + +@endverbatim + * @{ + */ + +/** + * @brief Simplex send an amount of data in blocking mode. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must indicate the number + * of u16 provided through pTxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pTxData. + * @param husart USART handle. + * @param pTxData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size, + uint32_t Timeout) +{ + const uint8_t *ptxdata8bits; + const uint16_t *ptxdata16bits; + uint32_t tickstart; + + if (husart->State == HAL_USART_STATE_READY) + { + if ((pTxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pTxData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR will be + handled through a u16 cast. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if ((((uint32_t)pTxData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + /* In case of 9bits/No Parity transfer, pTxData needs to be handled as a uint16_t pointer */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + ptxdata8bits = NULL; + ptxdata16bits = (const uint16_t *) pTxData; + } + else + { + ptxdata8bits = pTxData; + ptxdata16bits = NULL; + } + + /* Check the remaining data to be sent */ + while (husart->TxXferCount > 0U) + { + if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if (ptxdata8bits == NULL) + { + husart->Instance->TDR = (uint16_t)(*ptxdata16bits & 0x01FFU); + ptxdata16bits++; + } + else + { + husart->Instance->TDR = (uint8_t)(*ptxdata8bits & 0xFFU); + ptxdata8bits++; + } + + husart->TxXferCount--; + } + + if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear Transmission Complete Flag */ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF); + + /* Clear overrun flag and discard the received data */ + __HAL_USART_CLEAR_OREFLAG(husart); + __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + + /* At end of Tx process, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @note To receive synchronous data, dummy data are simultaneously transmitted. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must indicate the number + * of u16 available through pRxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required to ensure + * proper alignment for pRxData. + * @param husart USART handle. + * @param pRxData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) +{ + uint8_t *prxdata8bits; + uint16_t *prxdata16bits; + uint16_t uhMask; + uint32_t tickstart; + + if (husart->State == HAL_USART_STATE_READY) + { + if ((pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pRxData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be received from RDR will be + handled through a u16 cast. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if ((((uint32_t)pRxData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + husart->RxXferSize = Size; + husart->RxXferCount = Size; + + /* Computation of USART mask to apply to RDR register */ + USART_MASK_COMPUTATION(husart); + uhMask = husart->Mask; + + /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + prxdata8bits = NULL; + prxdata16bits = (uint16_t *) pRxData; + } + else + { + prxdata8bits = pRxData; + prxdata16bits = NULL; + } + + /* as long as data have to be received */ + while (husart->RxXferCount > 0U) + { + if (husart->SlaveMode == USART_SLAVEMODE_DISABLE) + { + /* Wait until TXE flag is set to send dummy byte in order to generate the + * clock for the slave to send data. + * Whatever the frame length (7, 8 or 9-bit long), the same dummy value + * can be written for all the cases. */ + if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x0FF); + } + + /* Wait for RXNE Flag */ + if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if (prxdata8bits == NULL) + { + *prxdata16bits = (uint16_t)(husart->Instance->RDR & uhMask); + prxdata16bits++; + } + else + { + *prxdata8bits = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU)); + prxdata8bits++; + } + + husart->RxXferCount--; + + } + + /* Clear SPI slave underrun flag and discard transmit data */ + if (husart->SlaveMode == USART_SLAVEMODE_ENABLE) + { + __HAL_USART_CLEAR_UDRFLAG(husart); + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + } + + /* At end of Rx process, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send and Receive an amount of data in blocking mode. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number + * of u16 available through pTxData and through pRxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffers containing data to be sent/received, should be aligned on a half word frontier + * (16 bits) (as sent/received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required to ensure + * proper alignment for pTxData and pRxData. + * @param husart USART handle. + * @param pTxData pointer to TX data buffer (u8 or u16 data elements). + * @param pRxData pointer to RX data buffer (u8 or u16 data elements). + * @param Size amount of data elements (u8 or u16) to be sent (same amount to be received). + * @param Timeout Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData, + uint16_t Size, uint32_t Timeout) +{ + uint8_t *prxdata8bits; + uint16_t *prxdata16bits; + const uint8_t *ptxdata8bits; + const uint16_t *ptxdata16bits; + uint16_t uhMask; + uint16_t rxdatacount; + uint32_t tickstart; + + if (husart->State == HAL_USART_STATE_READY) + { + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pTxData and pRxData buffers provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR/retrieved from RDR will be + handled through a u16 cast. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if (((((uint32_t)pTxData) & 1U) != 0U) || ((((uint32_t)pRxData) & 1U) != 0U)) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + husart->RxXferSize = Size; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + husart->RxXferCount = Size; + + /* Computation of USART mask to apply to RDR register */ + USART_MASK_COMPUTATION(husart); + uhMask = husart->Mask; + + /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + prxdata8bits = NULL; + ptxdata8bits = NULL; + ptxdata16bits = (const uint16_t *) pTxData; + prxdata16bits = (uint16_t *) pRxData; + } + else + { + prxdata8bits = pRxData; + ptxdata8bits = pTxData; + ptxdata16bits = NULL; + prxdata16bits = NULL; + } + + if ((husart->TxXferCount == 0x01U) || (husart->SlaveMode == USART_SLAVEMODE_ENABLE)) + { + /* Wait until TXE flag is set to send data */ + if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if (ptxdata8bits == NULL) + { + husart->Instance->TDR = (uint16_t)(*ptxdata16bits & uhMask); + ptxdata16bits++; + } + else + { + husart->Instance->TDR = (uint8_t)(*ptxdata8bits & (uint8_t)(uhMask & 0xFFU)); + ptxdata8bits++; + } + + husart->TxXferCount--; + } + + /* Check the remain data to be sent */ + /* rxdatacount is a temporary variable for MISRAC2012-Rule-13.5 */ + rxdatacount = husart->RxXferCount; + while ((husart->TxXferCount > 0U) || (rxdatacount > 0U)) + { + if (husart->TxXferCount > 0U) + { + /* Wait until TXE flag is set to send data */ + if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if (ptxdata8bits == NULL) + { + husart->Instance->TDR = (uint16_t)(*ptxdata16bits & uhMask); + ptxdata16bits++; + } + else + { + husart->Instance->TDR = (uint8_t)(*ptxdata8bits & (uint8_t)(uhMask & 0xFFU)); + ptxdata8bits++; + } + + husart->TxXferCount--; + } + + if (husart->RxXferCount > 0U) + { + /* Wait for RXNE Flag */ + if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if (prxdata8bits == NULL) + { + *prxdata16bits = (uint16_t)(husart->Instance->RDR & uhMask); + prxdata16bits++; + } + else + { + *prxdata8bits = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU)); + prxdata8bits++; + } + + husart->RxXferCount--; + } + rxdatacount = husart->RxXferCount; + } + + /* At end of TxRx process, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in interrupt mode. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must indicate the number + * of u16 provided through pTxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier + * (16 bits) (as sent data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required to ensure + * proper alignment for pTxData. + * @param husart USART handle. + * @param pTxData pointer to data buffer (u8 or u16 data elements). + * @param Size amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size) +{ + if (husart->State == HAL_USART_STATE_READY) + { + if ((pTxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pTxData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR will be + handled through a u16 cast. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if ((((uint32_t)pTxData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + husart->TxISR = NULL; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + /* The USART Error Interrupts: (Frame error, noise error, overrun error) + are not managed by the USART Transmit Process to avoid the overrun interrupt + when the usart mode is configured for transmit and receive "USART_MODE_TX_RX" + to benefit for the frame error and noise interrupts the usart mode should be + configured only for transmit "USART_MODE_TX" */ + + /* Configure Tx interrupt processing */ + if (husart->FifoMode == USART_FIFOMODE_ENABLE) + { + /* Set the Tx ISR function pointer according to the data word length */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + husart->TxISR = USART_TxISR_16BIT_FIFOEN; + } + else + { + husart->TxISR = USART_TxISR_8BIT_FIFOEN; + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the TX FIFO threshold interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TXFT); + } + else + { + /* Set the Tx ISR function pointer according to the data word length */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + husart->TxISR = USART_TxISR_16BIT; + } + else + { + husart->TxISR = USART_TxISR_8BIT; + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Transmit Data Register Empty Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TXE); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in interrupt mode. + * @note To receive synchronous data, dummy data are simultaneously transmitted. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must indicate the number + * of u16 available through pRxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on a half word frontier + * (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required to ensure + * proper alignment for pRxData. + * @param husart USART handle. + * @param pRxData pointer to data buffer (u8 or u16 data elements). + * @param Size amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) +{ + uint16_t nb_dummy_data; + + if (husart->State == HAL_USART_STATE_READY) + { + if ((pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pRxData buffer provided as input parameter + should be aligned on a u16 frontier, as data to be received from RDR will be + handled through a u16 cast. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if ((((uint32_t)pRxData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->RxXferCount = Size; + husart->RxISR = NULL; + + USART_MASK_COMPUTATION(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Configure Rx interrupt processing */ + if ((husart->FifoMode == USART_FIFOMODE_ENABLE) && (Size >= husart->NbRxDataToProcess)) + { + /* Set the Rx ISR function pointer according to the data word length */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + husart->RxISR = USART_RxISR_16BIT_FIFOEN; + } + else + { + husart->RxISR = USART_RxISR_8BIT_FIFOEN; + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Parity Error interrupt and RX FIFO Threshold interrupt */ + if (husart->Init.Parity != USART_PARITY_NONE) + { + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + } + SET_BIT(husart->Instance->CR3, USART_CR3_RXFTIE); + } + else + { + /* Set the Rx ISR function pointer according to the data word length */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + husart->RxISR = USART_RxISR_16BIT; + } + else + { + husart->RxISR = USART_RxISR_8BIT; + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Parity Error and Data Register not empty Interrupts */ + if (husart->Init.Parity != USART_PARITY_NONE) + { + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE); + } + else + { + SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + } + } + + if (husart->SlaveMode == USART_SLAVEMODE_DISABLE) + { + /* Send dummy data in order to generate the clock for the Slave to send the next data. + When FIFO mode is disabled only one data must be transferred. + When FIFO mode is enabled data must be transmitted until the RX FIFO reaches its threshold. + */ + if ((husart->FifoMode == USART_FIFOMODE_ENABLE) && (Size >= husart->NbRxDataToProcess)) + { + for (nb_dummy_data = husart->NbRxDataToProcess ; nb_dummy_data > 0U ; nb_dummy_data--) + { + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + } + else + { + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send and Receive an amount of data in interrupt mode. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number + * of u16 available through pTxData and through pRxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffers containing data to be sent/received, should be aligned on a half word frontier + * (16 bits) (as sent/received data will be handled using u16 pointer cast). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required to ensure + * proper alignment for pTxData and pRxData. + * @param husart USART handle. + * @param pTxData pointer to TX data buffer (u8 or u16 data elements). + * @param pRxData pointer to RX data buffer (u8 or u16 data elements). + * @param Size amount of data elements (u8 or u16) to be sent (same amount to be received). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData, + uint16_t Size) +{ + + if (husart->State == HAL_USART_STATE_READY) + { + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pTxData and pRxData buffers provided as input parameter + should be aligned on a u16 frontier, as data to be filled into TDR/retrieved from RDR will be + handled through a u16 cast. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if (((((uint32_t)pTxData) & 1U) != 0U) || ((((uint32_t)pRxData) & 1U) != 0U)) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->RxXferCount = Size; + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + /* Computation of USART mask to apply to RDR register */ + USART_MASK_COMPUTATION(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX_RX; + + /* Configure TxRx interrupt processing */ + if ((husart->FifoMode == USART_FIFOMODE_ENABLE) && (Size >= husart->NbRxDataToProcess)) + { + /* Set the Rx ISR function pointer according to the data word length */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + husart->TxISR = USART_TxISR_16BIT_FIFOEN; + husart->RxISR = USART_RxISR_16BIT_FIFOEN; + } + else + { + husart->TxISR = USART_TxISR_8BIT_FIFOEN; + husart->RxISR = USART_RxISR_8BIT_FIFOEN; + } + + /* Process Locked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + if (husart->Init.Parity != USART_PARITY_NONE) + { + /* Enable the USART Parity Error interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + } + + /* Enable the TX and RX FIFO Threshold interrupts */ + SET_BIT(husart->Instance->CR3, (USART_CR3_TXFTIE | USART_CR3_RXFTIE)); + } + else + { + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + husart->TxISR = USART_TxISR_16BIT; + husart->RxISR = USART_RxISR_16BIT; + } + else + { + husart->TxISR = USART_TxISR_8BIT; + husart->RxISR = USART_RxISR_8BIT; + } + + /* Process Locked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Enable the USART Parity Error and USART Data Register not empty Interrupts */ + if (husart->Init.Parity != USART_PARITY_NONE) + { + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE); + } + else + { + SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + } + + /* Enable the USART Transmit Data Register Empty Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief Send an amount of data in DMA mode. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must indicate the number + * of u16 provided through pTxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) + * (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain, + * use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pTxData. + * @param husart USART handle. + * @param pTxData pointer to data buffer (u8 or u16 data elements). + * @param Size amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size) +{ + HAL_StatusTypeDef status = HAL_OK; + const uint32_t *tmp; + + if (husart->State == HAL_USART_STATE_READY) + { + if ((pTxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pTxData buffer provided as input parameter + should be aligned on a u16 frontier, as data copy into TDR will be + handled by DMA from a u16 frontier. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if ((((uint32_t)pTxData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + if (husart->hdmatx != NULL) + { + /* Set the USART DMA transfer complete callback */ + husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; + + /* Set the DMA error callback */ + husart->hdmatx->XferErrorCallback = USART_DMAError; + + /* Enable the USART transmit DMA channel */ + tmp = (const uint32_t *)&pTxData; + status = HAL_DMA_Start_IT(husart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size); + } + + if (status == HAL_OK) + { + /* Clear the TC flag in the ICR register */ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + /* Set error code to DMA */ + husart->ErrorCode = HAL_USART_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Restore husart->State to ready */ + husart->State = HAL_USART_STATE_READY; + + return HAL_ERROR; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in DMA mode. + * @note When the USART parity is enabled (PCE = 1), the received data contain + * the parity bit (MSB position). + * @note The USART DMA transmit channel must be configured in order to generate the clock for the slave. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must indicate the number + * of u16 available through pRxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffer for storing data to be received, should be aligned on + * a half word frontier (16 bits) (as received data will be handled by DMA from halfword frontier). + * Depending on compilation chain, use of specific alignment compilation directives or pragmas + * might be required to ensure proper alignment for pRxData. + * @param husart USART handle. + * @param pRxData pointer to data buffer (u8 or u16 data elements). + * @param Size amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t *tmp = (uint32_t *)&pRxData; + + /* Check that a Rx process is not already ongoing */ + if (husart->State == HAL_USART_STATE_READY) + { + if ((pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pRxData buffer provided as input parameter + should be aligned on a u16 frontier, as data copy from RDR will be + handled by DMA from a u16 frontier. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if ((((uint32_t)pRxData) & 1U) != 0U) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->pTxBuffPtr = pRxData; + husart->TxXferSize = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + if (husart->hdmarx != NULL) + { + /* Set the USART DMA Rx transfer complete callback */ + husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; + + /* Set the USART DMA Rx transfer error callback */ + husart->hdmarx->XferErrorCallback = USART_DMAError; + + /* Enable the USART receive DMA channel */ + status = HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t *)tmp, Size); + } + + if ((status == HAL_OK) && + (husart->SlaveMode == USART_SLAVEMODE_DISABLE)) + { + /* Enable the USART transmit DMA channel: the transmit channel is used in order + to generate in the non-blocking mode the clock to the slave device, + this mode isn't a simplex receive mode but a full-duplex receive mode */ + + /* Set the USART DMA Tx Complete and Error callback to Null */ + if (husart->hdmatx != NULL) + { + husart->hdmatx->XferErrorCallback = NULL; + husart->hdmatx->XferHalfCpltCallback = NULL; + husart->hdmatx->XferCpltCallback = NULL; + status = HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size); + } + } + + if (status == HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + if (husart->Init.Parity != USART_PARITY_NONE) + { + /* Enable the USART Parity Error Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + } + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + if (husart->hdmarx != NULL) + { + status = HAL_DMA_Abort(husart->hdmarx); + } + + /* No need to check on error code */ + UNUSED(status); + + /* Set error code to DMA */ + husart->ErrorCode = HAL_USART_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Restore husart->State to ready */ + husart->State = HAL_USART_STATE_READY; + + return HAL_ERROR; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Transmit Receive an amount of data in non-blocking mode. + * @note When the USART parity is enabled (PCE = 1) the data received contain the parity bit. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number + * of u16 available through pTxData and through pRxData. + * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * address of user data buffers containing data to be sent/received, should be aligned on a half word frontier + * (16 bits) (as sent/received data will be handled by DMA from halfword frontier). Depending on compilation + * chain, use of specific alignment compilation directives or pragmas might be required + * to ensure proper alignment for pTxData and pRxData. + * @param husart USART handle. + * @param pTxData pointer to TX data buffer (u8 or u16 data elements). + * @param pRxData pointer to RX data buffer (u8 or u16 data elements). + * @param Size amount of data elements (u8 or u16) to be received/sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData, + uint16_t Size) +{ + HAL_StatusTypeDef status; + const uint32_t *tmp; + + if (husart->State == HAL_USART_STATE_READY) + { + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* In case of 9bits/No Parity transfer, pTxData and pRxData buffers provided as input parameter + should be aligned on a u16 frontier, as data copy to/from TDR/RDR will be + handled by DMA from a u16 frontier. */ + if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) + { + if (((((uint32_t)pTxData) & 1U) != 0U) || ((((uint32_t)pRxData) & 1U) != 0U)) + { + return HAL_ERROR; + } + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX_RX; + + if ((husart->hdmarx != NULL) && (husart->hdmatx != NULL)) + { + /* Set the USART DMA Rx transfer complete callback */ + husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; + + /* Set the USART DMA Tx transfer complete callback */ + husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; + + /* Set the USART DMA Tx transfer error callback */ + husart->hdmatx->XferErrorCallback = USART_DMAError; + + /* Set the USART DMA Rx transfer error callback */ + husart->hdmarx->XferErrorCallback = USART_DMAError; + + /* Enable the USART receive DMA channel */ + tmp = (uint32_t *)&pRxData; + status = HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(const uint32_t *)tmp, Size); + + /* Enable the USART transmit DMA channel */ + if (status == HAL_OK) + { + tmp = (const uint32_t *)&pTxData; + status = HAL_DMA_Start_IT(husart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size); + } + } + else + { + status = HAL_ERROR; + } + + if (status == HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + if (husart->Init.Parity != USART_PARITY_NONE) + { + /* Enable the USART Parity Error Interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + } + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Clear the TC flag in the ICR register */ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + if (husart->hdmarx != NULL) + { + status = HAL_DMA_Abort(husart->hdmarx); + } + + /* No need to check on error code */ + UNUSED(status); + + /* Set error code to DMA */ + husart->ErrorCode = HAL_USART_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Restore husart->State to ready */ + husart->State = HAL_USART_STATE_READY; + + return HAL_ERROR; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pause the DMA Transfer. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + + /* Process Locked */ + __HAL_LOCK(husart); + + if ((HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) && + (state == HAL_USART_STATE_BUSY_TX)) + { + /* Disable the USART DMA Tx request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + else if ((state == HAL_USART_STATE_BUSY_RX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable the USART DMA Tx request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Disable the USART DMA Rx request */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + } + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Resume the DMA Transfer. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + + /* Process Locked */ + __HAL_LOCK(husart); + + if (state == HAL_USART_STATE_BUSY_TX) + { + /* Enable the USART DMA Tx request */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + else if ((state == HAL_USART_STATE_BUSY_RX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF); + + /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */ + if (husart->Init.Parity != USART_PARITY_NONE) + { + SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); + } + SET_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Enable the USART DMA Rx request before the DMA Tx request */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Enable the USART DMA Tx request */ + SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Stop the DMA Transfer. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL USART API under callbacks HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback() / + HAL_USART_TxHalfCpltCallback / HAL_USART_RxHalfCpltCallback: + indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete + interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of + the stream and the corresponding call back is executed. */ + + /* Disable the USART Tx/Rx DMA requests */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the USART DMA tx channel */ + if (husart->hdmatx != NULL) + { + if (HAL_DMA_Abort(husart->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(husart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + husart->ErrorCode = HAL_USART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + /* Abort the USART DMA rx channel */ + if (husart->hdmarx != NULL) + { + if (HAL_DMA_Abort(husart->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(husart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + husart->ErrorCode = HAL_USART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + + USART_EndTransfer(husart); + husart->State = HAL_USART_STATE_READY; + + return HAL_OK; +} +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Abort ongoing transfers (blocking mode). + * @param husart USART handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable USART Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Abort(USART_HandleTypeDef *husart) +{ + /* Disable TXEIE, TCIE, RXNE, RXFT, TXFT, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | + USART_CR1_TCIE)); + CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE)); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the USART DMA Tx channel if enabled */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable the USART DMA Tx request if enabled */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the USART DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (husart->hdmatx != NULL) + { + /* Set the USART DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + husart->hdmatx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(husart->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(husart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + husart->ErrorCode = HAL_USART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } + + /* Abort the USART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the USART DMA Rx request if enabled */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the USART DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (husart->hdmarx != NULL) + { + /* Set the USART DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + husart->hdmarx->XferAbortCallback = NULL; + + if (HAL_DMA_Abort(husart->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(husart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + /* Set error code to DMA */ + husart->ErrorCode = HAL_USART_ERROR_DMA; + + return HAL_TIMEOUT; + } + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* Reset Tx and Rx transfer counters */ + husart->TxXferCount = 0U; + husart->RxXferCount = 0U; + + /* Clear the Error flags in the ICR register */ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); + + /* Flush the whole TX FIFO (if needed) */ + if (husart->FifoMode == USART_FIFOMODE_ENABLE) + { + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + } + + /* Discard the received data */ + __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); + + /* Restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Reset Handle ErrorCode to No Error */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + + return HAL_OK; +} + +/** + * @brief Abort ongoing transfers (Interrupt mode). + * @param husart USART handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable USART Interrupts (Tx and Rx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Abort_IT(USART_HandleTypeDef *husart) +{ + uint32_t abortcplt = 1U; + + /* Disable TXEIE, TCIE, RXNE, RXFT, TXFT, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | + USART_CR1_TCIE)); + CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE)); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* If DMA Tx and/or DMA Rx Handles are associated to USART Handle, DMA Abort complete callbacks should be initialised + before any call to DMA Abort functions */ + /* DMA Tx Handle is valid */ + if (husart->hdmatx != NULL) + { + /* Set DMA Abort Complete callback if USART DMA Tx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) + { + husart->hdmatx->XferAbortCallback = USART_DMATxAbortCallback; + } + else + { + husart->hdmatx->XferAbortCallback = NULL; + } + } + /* DMA Rx Handle is valid */ + if (husart->hdmarx != NULL) + { + /* Set DMA Abort Complete callback if USART DMA Rx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) + { + husart->hdmarx->XferAbortCallback = USART_DMARxAbortCallback; + } + else + { + husart->hdmarx->XferAbortCallback = NULL; + } + } + + /* Abort the USART DMA Tx channel if enabled */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable DMA Tx at USART level */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + /* Abort the USART DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (husart->hdmatx != NULL) + { + /* USART Tx DMA Abort callback has already been initialised : + will lead to call HAL_USART_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(husart->hdmatx) != HAL_OK) + { + husart->hdmatx->XferAbortCallback = NULL; + } + else + { + abortcplt = 0U; + } + } + } + + /* Abort the USART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the USART DMA Rx request if enabled */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + + /* Abort the USART DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (husart->hdmarx != NULL) + { + /* USART Rx DMA Abort callback has already been initialised : + will lead to call HAL_USART_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(husart->hdmarx) != HAL_OK) + { + husart->hdmarx->XferAbortCallback = NULL; + abortcplt = 1U; + } + else + { + abortcplt = 0U; + } + } + } +#endif /* HAL_DMA_MODULE_ENABLED */ + + /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ + if (abortcplt == 1U) + { + /* Reset Tx and Rx transfer counters */ + husart->TxXferCount = 0U; + husart->RxXferCount = 0U; + + /* Reset errorCode */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); + + /* Flush the whole TX FIFO (if needed) */ + if (husart->FifoMode == USART_FIFOMODE_ENABLE) + { + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + } + + /* Discard the received data */ + __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); + + /* Restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Complete Callback */ + husart->AbortCpltCallback(husart); +#else + /* Call legacy weak Abort Complete Callback */ + HAL_USART_AbortCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + + return HAL_OK; +} + +/** + * @brief Handle USART interrupt request. + * @param husart USART handle. + * @retval None + */ +void HAL_USART_IRQHandler(USART_HandleTypeDef *husart) +{ + uint32_t isrflags = READ_REG(husart->Instance->ISR); + uint32_t cr1its = READ_REG(husart->Instance->CR1); + uint32_t cr3its = READ_REG(husart->Instance->CR3); + + uint32_t errorflags; + uint32_t errorcode; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF | + USART_ISR_UDR)); + if (errorflags == 0U) + { + /* USART in mode Receiver ---------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) + || ((cr3its & USART_CR3_RXFTIE) != 0U))) + { + if (husart->RxISR != NULL) + { + husart->RxISR(husart); + } + return; + } + } + + /* If some errors occur */ + if ((errorflags != 0U) + && (((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U) + || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)) != 0U))) + { + /* USART parity error interrupt occurred -------------------------------------*/ + if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_PEF); + + husart->ErrorCode |= HAL_USART_ERROR_PE; + } + + /* USART frame error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_FEF); + + husart->ErrorCode |= HAL_USART_ERROR_FE; + } + + /* USART noise error interrupt occurred --------------------------------------*/ + if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_NEF); + + husart->ErrorCode |= HAL_USART_ERROR_NE; + } + + /* USART Over-Run interrupt occurred -----------------------------------------*/ + if (((isrflags & USART_ISR_ORE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) || + ((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U))) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF); + + husart->ErrorCode |= HAL_USART_ERROR_ORE; + } + + /* USART Receiver Timeout interrupt occurred ---------------------------------*/ + if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U)) + { + __HAL_USART_CLEAR_IT(husart, USART_CLEAR_RTOF); + + husart->ErrorCode |= HAL_USART_ERROR_RTO; + } + + /* USART SPI slave underrun error interrupt occurred -------------------------*/ + if (((isrflags & USART_ISR_UDR) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) + { + /* Ignore SPI slave underrun errors when reception is going on */ + if (husart->State == HAL_USART_STATE_BUSY_RX) + { + __HAL_USART_CLEAR_UDRFLAG(husart); + return; + } + else + { + __HAL_USART_CLEAR_UDRFLAG(husart); + husart->ErrorCode |= HAL_USART_ERROR_UDR; + } + } + + /* Call USART Error Call back function if need be --------------------------*/ + if (husart->ErrorCode != HAL_USART_ERROR_NONE) + { + /* USART in mode Receiver ---------------------------------------------------*/ + if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) + && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) + || ((cr3its & USART_CR3_RXFTIE) != 0U))) + { + if (husart->RxISR != NULL) + { + husart->RxISR(husart); + } + } + + /* If Overrun error occurs, or if any error occurs in DMA mode reception, + consider error as blocking */ + errorcode = husart->ErrorCode & HAL_USART_ERROR_ORE; + if ((HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) || + (errorcode != 0U)) + { + /* Blocking error : transfer is aborted + Set the USART state ready to be able to start again the process, + Disable Interrupts, and disable DMA requests, if ongoing */ + USART_EndTransfer(husart); + +#if defined(HAL_DMA_MODULE_ENABLED) + /* Abort the USART DMA Rx channel if enabled */ + if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) + { + /* Disable the USART DMA Rx request if enabled */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR | USART_CR3_DMAR); + + /* Abort the USART DMA Tx channel */ + if (husart->hdmatx != NULL) + { + /* Set the USART Tx DMA Abort callback to NULL : no callback + executed at end of DMA abort procedure */ + husart->hdmatx->XferAbortCallback = NULL; + + /* Abort DMA TX */ + (void)HAL_DMA_Abort_IT(husart->hdmatx); + } + + /* Abort the USART DMA Rx channel */ + if (husart->hdmarx != NULL) + { + /* Set the USART Rx DMA Abort callback : + will lead to call HAL_USART_ErrorCallback() at end of DMA abort procedure */ + husart->hdmarx->XferAbortCallback = USART_DMAAbortOnError; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(husart->hdmarx) != HAL_OK) + { + /* Call Directly husart->hdmarx->XferAbortCallback function in case of error */ + husart->hdmarx->XferAbortCallback(husart->hdmarx); + } + } + else + { + /* Call user error callback */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Error Callback */ + husart->ErrorCallback(husart); +#else + /* Call legacy weak Error Callback */ + HAL_USART_ErrorCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + } + else +#endif /* HAL_DMA_MODULE_ENABLED */ + { + /* Call user error callback */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Error Callback */ + husart->ErrorCallback(husart); +#else + /* Call legacy weak Error Callback */ + HAL_USART_ErrorCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Error Callback */ + husart->ErrorCallback(husart); +#else + /* Call legacy weak Error Callback */ + HAL_USART_ErrorCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + } + } + return; + + } /* End if some error occurs */ + + + /* USART in mode Transmitter ------------------------------------------------*/ + if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) + && (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U) + || ((cr3its & USART_CR3_TXFTIE) != 0U))) + { + if (husart->TxISR != NULL) + { + husart->TxISR(husart); + } + return; + } + + /* USART in mode Transmitter (transmission end) -----------------------------*/ + if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U)) + { + USART_EndTransmit_IT(husart); + return; + } + + /* USART TX Fifo Empty occurred ----------------------------------------------*/ + if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U)) + { +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Fifo Empty Callback */ + husart->TxFifoEmptyCallback(husart); +#else + /* Call legacy weak Tx Fifo Empty Callback */ + HAL_USARTEx_TxFifoEmptyCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + return; + } + + /* USART RX Fifo Full occurred ----------------------------------------------*/ + if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U)) + { +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Fifo Full Callback */ + husart->RxFifoFullCallback(husart); +#else + /* Call legacy weak Rx Fifo Full Callback */ + HAL_USARTEx_RxFifoFullCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + return; + } +} + +/** + * @brief Tx Transfer completed callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_TxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Tx Half Transfer completed callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_USART_TxHalfCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_USART_RxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Half Transfer completed callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_RxHalfCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Tx/Rx Transfers completed callback for the non-blocking process. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_TxRxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief USART error callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_ErrorCallback can be implemented in the user file. + */ +} + +/** + * @brief USART Abort Complete callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USART_AbortCpltCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USART_AbortCpltCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup USART_Exported_Functions_Group4 Peripheral State and Error functions + * @brief USART Peripheral State and Error functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Error functions ##### + ============================================================================== + [..] + This subsection provides functions allowing to : + (+) Return the USART handle state + (+) Return the USART handle error code + +@endverbatim + * @{ + */ + + +/** + * @brief Return the USART handle state. + * @param husart pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART. + * @retval USART handle state + */ +HAL_USART_StateTypeDef HAL_USART_GetState(const USART_HandleTypeDef *husart) +{ + return husart->State; +} + +/** + * @brief Return the USART error code. + * @param husart pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART. + * @retval USART handle Error Code + */ +uint32_t HAL_USART_GetError(const USART_HandleTypeDef *husart) +{ + return husart->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup USART_Private_Functions USART Private Functions + * @{ + */ + +/** + * @brief Initialize the callbacks to their default values. + * @param husart USART handle. + * @retval none + */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) +void USART_InitCallbacksToDefault(USART_HandleTypeDef *husart) +{ + /* Init the USART Callback settings */ + husart->TxHalfCpltCallback = HAL_USART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + husart->TxCpltCallback = HAL_USART_TxCpltCallback; /* Legacy weak TxCpltCallback */ + husart->RxHalfCpltCallback = HAL_USART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + husart->RxCpltCallback = HAL_USART_RxCpltCallback; /* Legacy weak RxCpltCallback */ + husart->TxRxCpltCallback = HAL_USART_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ + husart->ErrorCallback = HAL_USART_ErrorCallback; /* Legacy weak ErrorCallback */ + husart->AbortCpltCallback = HAL_USART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + husart->RxFifoFullCallback = HAL_USARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */ + husart->TxFifoEmptyCallback = HAL_USARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ +} +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + +/** + * @brief End ongoing transfer on USART peripheral (following error detection or Transfer completion). + * @param husart USART handle. + * @retval None + */ +static void USART_EndTransfer(USART_HandleTypeDef *husart) +{ + /* Disable TXEIE, TCIE, RXNE, RXFT, TXFT, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | + USART_CR1_TCIE)); + CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE)); + + /* At end of process, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; +} + +#if defined(HAL_DMA_MODULE_ENABLED) +/** + * @brief DMA USART transmit process complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + + /* DMA Normal mode */ + if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) + { + husart->TxXferCount = 0U; + + if (husart->State == HAL_USART_STATE_BUSY_TX) + { + /* Disable the DMA transfer for transmit request by resetting the DMAT bit + in the USART CR3 register */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + } + } + /* DMA Circular mode */ + else + { + if (husart->State == HAL_USART_STATE_BUSY_TX) + { +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Complete Callback */ + husart->TxCpltCallback(husart); +#else + /* Call legacy weak Tx Complete Callback */ + HAL_USART_TxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + } +} + +/** + * @brief DMA USART transmit process half complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Half Complete Callback */ + husart->TxHalfCpltCallback(husart); +#else + /* Call legacy weak Tx Half Complete Callback */ + HAL_USART_TxHalfCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA USART receive process complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + + /* DMA Normal mode */ + if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) + { + husart->RxXferCount = 0U; + + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA RX transfer for the receiver request by resetting the DMAR bit + in USART CR3 register */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); + /* similarly, disable the DMA TX transfer that was started to provide the + clock to the slave device */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + if (husart->State == HAL_USART_STATE_BUSY_RX) + { +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Complete Callback */ + husart->RxCpltCallback(husart); +#else + /* Call legacy weak Rx Complete Callback */ + HAL_USART_RxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ + else + { +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Rx Complete Callback */ + husart->TxRxCpltCallback(husart); +#else + /* Call legacy weak Tx Rx Complete Callback */ + HAL_USART_TxRxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + husart->State = HAL_USART_STATE_READY; + } + /* DMA circular mode */ + else + { + if (husart->State == HAL_USART_STATE_BUSY_RX) + { +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Complete Callback */ + husart->RxCpltCallback(husart); +#else + /* Call legacy weak Rx Complete Callback */ + HAL_USART_RxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ + else + { +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Rx Complete Callback */ + husart->TxRxCpltCallback(husart); +#else + /* Call legacy weak Tx Rx Complete Callback */ + HAL_USART_TxRxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + } +} + +/** + * @brief DMA USART receive process half complete callback. + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Half Complete Callback */ + husart->RxHalfCpltCallback(husart); +#else + /* Call legacy weak Rx Half Complete Callback */ + HAL_USART_RxHalfCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA USART communication error callback. + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMAError(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + + husart->RxXferCount = 0U; + husart->TxXferCount = 0U; + USART_EndTransfer(husart); + + husart->ErrorCode |= HAL_USART_ERROR_DMA; + husart->State = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Error Callback */ + husart->ErrorCallback(husart); +#else + /* Call legacy weak Error Callback */ + HAL_USART_ErrorCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA USART communication abort callback, when initiated by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + husart->RxXferCount = 0U; + husart->TxXferCount = 0U; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Error Callback */ + husart->ErrorCallback(husart); +#else + /* Call legacy weak Error Callback */ + HAL_USART_ErrorCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA USART Tx communication abort callback, when initiated by user + * (To be called at end of DMA Tx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Rx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMATxAbortCallback(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + + husart->hdmatx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (husart->hdmarx != NULL) + { + if (husart->hdmarx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + husart->TxXferCount = 0U; + husart->RxXferCount = 0U; + + /* Reset errorCode */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); + + /* Restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Complete Callback */ + husart->AbortCpltCallback(husart); +#else + /* Call legacy weak Abort Complete Callback */ + HAL_USART_AbortCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + +} + + +/** + * @brief DMA USART Rx communication abort callback, when initiated by user + * (To be called at end of DMA Rx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Tx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void USART_DMARxAbortCallback(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); + + husart->hdmarx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (husart->hdmatx != NULL) + { + if (husart->hdmatx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + husart->TxXferCount = 0U; + husart->RxXferCount = 0U; + + /* Reset errorCode */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + + /* Clear the Error flags in the ICR register */ + __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); + + /* Restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Abort Complete Callback */ + husart->AbortCpltCallback(husart); +#else + /* Call legacy weak Abort Complete Callback */ + HAL_USART_AbortCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ +} + +#endif /* HAL_DMA_MODULE_ENABLED */ + +/** + * @brief Handle USART Communication Timeout. It waits + * until a flag is no longer in the specified status. + * @param husart USART handle. + * @param Flag Specifies the USART flag to check. + * @param Status the actual Flag status (SET or RESET). + * @param Tickstart Tick start value + * @param Timeout timeout duration. + * @retval HAL status + */ +static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, + uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while ((__HAL_USART_GET_FLAG(husart, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief Configure the USART peripheral. + * @param husart USART handle. + * @retval HAL status + */ +static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart) +{ + uint32_t tmpreg; + uint32_t clocksource; + HAL_StatusTypeDef ret = HAL_OK; + uint16_t brrtemp; + uint32_t usartdiv; + uint32_t pclk; + + /* Check the parameters */ + assert_param(IS_USART_POLARITY(husart->Init.CLKPolarity)); + assert_param(IS_USART_PHASE(husart->Init.CLKPhase)); + assert_param(IS_USART_LASTBIT(husart->Init.CLKLastBit)); + assert_param(IS_USART_BAUDRATE(husart->Init.BaudRate)); + assert_param(IS_USART_WORD_LENGTH(husart->Init.WordLength)); + assert_param(IS_USART_STOPBITS(husart->Init.StopBits)); + assert_param(IS_USART_PARITY(husart->Init.Parity)); + assert_param(IS_USART_MODE(husart->Init.Mode)); + assert_param(IS_USART_PRESCALER(husart->Init.ClockPrescaler)); + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* Clear M, PCE, PS, TE and RE bits and configure + * the USART Word Length, Parity and Mode: + * set the M bits according to husart->Init.WordLength value + * set PCE and PS bits according to husart->Init.Parity value + * set TE and RE bits according to husart->Init.Mode value + * force OVER8 to 1 to allow to reach the maximum speed (Fclock/8) */ + tmpreg = (uint32_t)husart->Init.WordLength | husart->Init.Parity | husart->Init.Mode | USART_CR1_OVER8; + MODIFY_REG(husart->Instance->CR1, USART_CR1_FIELDS, tmpreg); + + /*---------------------------- USART CR2 Configuration ---------------------*/ + /* Clear and configure the USART Clock, CPOL, CPHA, LBCL STOP and SLVEN bits: + * set CPOL bit according to husart->Init.CLKPolarity value + * set CPHA bit according to husart->Init.CLKPhase value + * set LBCL bit according to husart->Init.CLKLastBit value (used in USART Synchronous SPI master mode only) + * set STOP[13:12] bits according to husart->Init.StopBits value */ + tmpreg = (uint32_t)(USART_CLOCK_ENABLE); + tmpreg |= (uint32_t)husart->Init.CLKLastBit; + tmpreg |= ((uint32_t)husart->Init.CLKPolarity | (uint32_t)husart->Init.CLKPhase); + tmpreg |= (uint32_t)husart->Init.StopBits; + MODIFY_REG(husart->Instance->CR2, USART_CR2_FIELDS, tmpreg); + + /*-------------------------- USART PRESC Configuration -----------------------*/ + /* Configure + * - USART Clock Prescaler : set PRESCALER according to husart->Init.ClockPrescaler value */ + MODIFY_REG(husart->Instance->PRESC, USART_PRESC_PRESCALER, husart->Init.ClockPrescaler); + + /*-------------------------- USART BRR Configuration -----------------------*/ + /* BRR is filled-up according to OVER8 bit setting which is forced to 1 */ + USART_GETCLOCKSOURCE(husart, clocksource); + + pclk = HAL_RCCEx_GetPeriphCLKFreq(clocksource); + + usartdiv = (uint32_t)(USART_DIV_SAMPLING8(pclk, husart->Init.BaudRate, husart->Init.ClockPrescaler)); + + /* USARTDIV must be greater than or equal to 0d16 and smaller than or equal to ffff */ + if ((usartdiv >= USART_BRR_MIN) && (usartdiv <= USART_BRR_MAX)) + { + brrtemp = (uint16_t)(usartdiv & 0xFFF0U); + brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U); + husart->Instance->BRR = brrtemp; + } + else + { + ret = HAL_ERROR; + } + + /* Initialize the number of data to process during RX/TX ISR execution */ + husart->NbTxDataToProcess = 1U; + husart->NbRxDataToProcess = 1U; + + /* Clear ISR function pointers */ + husart->RxISR = NULL; + husart->TxISR = NULL; + + return ret; +} + +/** + * @brief Check the USART Idle State. + * @param husart USART handle. + * @retval HAL status + */ +static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart) +{ + uint32_t tickstart; + + /* Initialize the USART ErrorCode */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + + /* Init tickstart for timeout management */ + tickstart = HAL_GetTick(); + + /* Check if the Transmitter is enabled */ + if ((husart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) + { + /* Wait until TEACK flag is set */ + if (USART_WaitOnFlagUntilTimeout(husart, USART_ISR_TEACK, RESET, tickstart, USART_TEACK_REACK_TIMEOUT) != HAL_OK) + { + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + /* Check if the Receiver is enabled */ + if ((husart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) + { + /* Wait until REACK flag is set */ + if (USART_WaitOnFlagUntilTimeout(husart, USART_ISR_REACK, RESET, tickstart, USART_TEACK_REACK_TIMEOUT) != HAL_OK) + { + /* Timeout occurred */ + return HAL_TIMEOUT; + } + } + + /* Initialize the USART state*/ + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Simplex send an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Transmit_IT(). + * @note The USART errors are not managed to avoid the overrun error. + * @note ISR function executed when FIFO mode is disabled and when the + * data word length is less than 9 bits long. + * @param husart USART handle. + * @retval None + */ +static void USART_TxISR_8BIT(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + + /* Check that a Tx process is ongoing */ + if ((state == HAL_USART_STATE_BUSY_TX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + if (husart->TxXferCount == 0U) + { + /* Disable the USART Transmit data register empty interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + } + else + { + husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr & (uint8_t)0xFF); + husart->pTxBuffPtr++; + husart->TxXferCount--; + } + } +} + +/** + * @brief Simplex send an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Transmit_IT(). + * @note The USART errors are not managed to avoid the overrun error. + * @note ISR function executed when FIFO mode is disabled and when the + * data word length is 9 bits long. + * @param husart USART handle. + * @retval None + */ +static void USART_TxISR_16BIT(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + const uint16_t *tmp; + + if ((state == HAL_USART_STATE_BUSY_TX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + if (husart->TxXferCount == 0U) + { + /* Disable the USART Transmit data register empty interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + } + else + { + tmp = (const uint16_t *) husart->pTxBuffPtr; + husart->Instance->TDR = (uint16_t)(*tmp & 0x01FFU); + husart->pTxBuffPtr += 2U; + husart->TxXferCount--; + } + } +} + +/** + * @brief Simplex send an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Transmit_IT(). + * @note The USART errors are not managed to avoid the overrun error. + * @note ISR function executed when FIFO mode is enabled and when the + * data word length is less than 9 bits long. + * @param husart USART handle. + * @retval None + */ +static void USART_TxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + uint16_t nb_tx_data; + + /* Check that a Tx process is ongoing */ + if ((state == HAL_USART_STATE_BUSY_TX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + for (nb_tx_data = husart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--) + { + if (husart->TxXferCount == 0U) + { + /* Disable the TX FIFO threshold interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXFT); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + + break; /* force exit loop */ + } + else if (__HAL_USART_GET_FLAG(husart, USART_FLAG_TXFNF) == SET) + { + husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr & (uint8_t)0xFF); + husart->pTxBuffPtr++; + husart->TxXferCount--; + } + else + { + /* Nothing to do */ + } + } + } +} + +/** + * @brief Simplex send an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Transmit_IT(). + * @note The USART errors are not managed to avoid the overrun error. + * @note ISR function executed when FIFO mode is enabled and when the + * data word length is 9 bits long. + * @param husart USART handle. + * @retval None + */ +static void USART_TxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + const uint16_t *tmp; + uint16_t nb_tx_data; + + /* Check that a Tx process is ongoing */ + if ((state == HAL_USART_STATE_BUSY_TX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + for (nb_tx_data = husart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--) + { + if (husart->TxXferCount == 0U) + { + /* Disable the TX FIFO threshold interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXFT); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + + break; /* force exit loop */ + } + else if (__HAL_USART_GET_FLAG(husart, USART_FLAG_TXFNF) == SET) + { + tmp = (const uint16_t *) husart->pTxBuffPtr; + husart->Instance->TDR = (uint16_t)(*tmp & 0x01FFU); + husart->pTxBuffPtr += 2U; + husart->TxXferCount--; + } + else + { + /* Nothing to do */ + } + } + } +} + +/** + * @brief Wraps up transmission in non-blocking mode. + * @param husart Pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +static void USART_EndTransmit_IT(USART_HandleTypeDef *husart) +{ + /* Disable the USART Transmit Complete Interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TC); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_USART_DISABLE_IT(husart, USART_IT_ERR); + + /* Clear TxISR function pointer */ + husart->TxISR = NULL; + + if (husart->State == HAL_USART_STATE_BUSY_TX) + { + /* Clear overrun flag and discard the received data */ + __HAL_USART_CLEAR_OREFLAG(husart); + __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); + + /* Tx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Complete Callback */ + husart->TxCpltCallback(husart); +#else + /* Call legacy weak Tx Complete Callback */ + HAL_USART_TxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else if (husart->RxXferCount == 0U) + { + /* TxRx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Rx Complete Callback */ + husart->TxRxCpltCallback(husart); +#else + /* Call legacy weak Tx Rx Complete Callback */ + HAL_USART_TxRxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } +} + + +/** + * @brief Simplex receive an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Receive_IT(). + * @note ISR function executed when FIFO mode is disabled and when the + * data word length is less than 9 bits long. + * @param husart USART handle + * @retval None + */ +static void USART_RxISR_8BIT(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + uint16_t txdatacount; + uint16_t uhMask = husart->Mask; + uint32_t txftie; + + if ((state == HAL_USART_STATE_BUSY_RX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + *husart->pRxBuffPtr = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask); + husart->pRxBuffPtr++; + husart->RxXferCount--; + + if (husart->RxXferCount == 0U) + { + /* Disable the USART Parity Error Interrupt and RXNE interrupt*/ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Clear RxISR function pointer */ + husart->RxISR = NULL; + + /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */ + txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE); + txdatacount = husart->TxXferCount; + + if (state == HAL_USART_STATE_BUSY_RX) + { + /* Clear SPI slave underrun flag and discard transmit data */ + if (husart->SlaveMode == USART_SLAVEMODE_ENABLE) + { + __HAL_USART_CLEAR_UDRFLAG(husart); + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + } + + /* Rx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Complete Callback */ + husart->RxCpltCallback(husart); +#else + /* Call legacy weak Rx Complete Callback */ + HAL_USART_RxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) && + (txftie != USART_CR3_TXFTIE) && + (txdatacount == 0U)) + { + /* TxRx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Rx Complete Callback */ + husart->TxRxCpltCallback(husart); +#else + /* Call legacy weak Tx Rx Complete Callback */ + HAL_USART_TxRxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } + } + else if ((state == HAL_USART_STATE_BUSY_RX) && + (husart->SlaveMode == USART_SLAVEMODE_DISABLE)) + { + /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + else + { + /* Nothing to do */ + } + } +} + +/** + * @brief Simplex receive an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Receive_IT(). + * @note ISR function executed when FIFO mode is disabled and when the + * data word length is 9 bits long. + * @param husart USART handle + * @retval None + */ +static void USART_RxISR_16BIT(USART_HandleTypeDef *husart) +{ + const HAL_USART_StateTypeDef state = husart->State; + uint16_t txdatacount; + uint16_t *tmp; + uint16_t uhMask = husart->Mask; + uint32_t txftie; + + if ((state == HAL_USART_STATE_BUSY_RX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + tmp = (uint16_t *) husart->pRxBuffPtr; + *tmp = (uint16_t)(husart->Instance->RDR & uhMask); + husart->pRxBuffPtr += 2U; + husart->RxXferCount--; + + if (husart->RxXferCount == 0U) + { + /* Disable the USART Parity Error Interrupt and RXNE interrupt*/ + CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); + + /* Clear RxISR function pointer */ + husart->RxISR = NULL; + + /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */ + txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE); + txdatacount = husart->TxXferCount; + + if (state == HAL_USART_STATE_BUSY_RX) + { + /* Clear SPI slave underrun flag and discard transmit data */ + if (husart->SlaveMode == USART_SLAVEMODE_ENABLE) + { + __HAL_USART_CLEAR_UDRFLAG(husart); + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + } + + /* Rx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Complete Callback */ + husart->RxCpltCallback(husart); +#else + /* Call legacy weak Rx Complete Callback */ + HAL_USART_RxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) && + (txftie != USART_CR3_TXFTIE) && + (txdatacount == 0U)) + { + /* TxRx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Rx Complete Callback */ + husart->TxRxCpltCallback(husart); +#else + /* Call legacy weak Tx Rx Complete Callback */ + HAL_USART_TxRxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } + } + else if ((state == HAL_USART_STATE_BUSY_RX) && + (husart->SlaveMode == USART_SLAVEMODE_DISABLE)) + { + /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + else + { + /* Nothing to do */ + } + } +} + +/** + * @brief Simplex receive an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Receive_IT(). + * @note ISR function executed when FIFO mode is enabled and when the + * data word length is less than 9 bits long. + * @param husart USART handle + * @retval None + */ +static void USART_RxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart) +{ + HAL_USART_StateTypeDef state = husart->State; + uint16_t txdatacount; + uint16_t rxdatacount; + uint16_t uhMask = husart->Mask; + uint16_t nb_rx_data; + uint32_t txftie; + + /* Check that a Rx process is ongoing */ + if ((state == HAL_USART_STATE_BUSY_RX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + for (nb_rx_data = husart->NbRxDataToProcess ; nb_rx_data > 0U ; nb_rx_data--) + { + if (__HAL_USART_GET_FLAG(husart, USART_FLAG_RXFNE) == SET) + { + *husart->pRxBuffPtr = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU)); + husart->pRxBuffPtr++; + husart->RxXferCount--; + + if (husart->RxXferCount == 0U) + { + /* Disable the USART Parity Error Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) + and RX FIFO Threshold interrupt */ + CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* Clear RxISR function pointer */ + husart->RxISR = NULL; + + /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */ + txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE); + txdatacount = husart->TxXferCount; + + if (state == HAL_USART_STATE_BUSY_RX) + { + /* Clear SPI slave underrun flag and discard transmit data */ + if (husart->SlaveMode == USART_SLAVEMODE_ENABLE) + { + __HAL_USART_CLEAR_UDRFLAG(husart); + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + } + + /* Rx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + state = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Complete Callback */ + husart->RxCpltCallback(husart); +#else + /* Call legacy weak Rx Complete Callback */ + HAL_USART_RxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) && + (txftie != USART_CR3_TXFTIE) && + (txdatacount == 0U)) + { + /* TxRx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + state = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Rx Complete Callback */ + husart->TxRxCpltCallback(husart); +#else + /* Call legacy weak Tx Rx Complete Callback */ + HAL_USART_TxRxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } + } + else if ((state == HAL_USART_STATE_BUSY_RX) && + (husart->SlaveMode == USART_SLAVEMODE_DISABLE)) + { + /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + else + { + /* Nothing to do */ + } + } + } + + /* When remaining number of bytes to receive is less than the RX FIFO + threshold, next incoming frames are processed as if FIFO mode was + disabled (i.e. one interrupt per received frame). + */ + rxdatacount = husart->RxXferCount; + if (((rxdatacount != 0U)) && (rxdatacount < husart->NbRxDataToProcess)) + { + /* Disable the USART RXFT interrupt*/ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_RXFTIE); + + /* Update the RxISR function pointer */ + husart->RxISR = USART_RxISR_8BIT; + + /* Enable the USART Data Register Not Empty interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + + if ((husart->TxXferCount == 0U) && + (state == HAL_USART_STATE_BUSY_TX_RX) && + (husart->SlaveMode == USART_SLAVEMODE_DISABLE)) + { + /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @brief Simplex receive an amount of data in non-blocking mode. + * @note Function called under interruption only, once + * interruptions have been enabled by HAL_USART_Receive_IT(). + * @note ISR function executed when FIFO mode is enabled and when the + * data word length is 9 bits long. + * @param husart USART handle + * @retval None + */ +static void USART_RxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart) +{ + HAL_USART_StateTypeDef state = husart->State; + uint16_t txdatacount; + uint16_t rxdatacount; + uint16_t *tmp; + uint16_t uhMask = husart->Mask; + uint16_t nb_rx_data; + uint32_t txftie; + + /* Check that a Tx process is ongoing */ + if ((state == HAL_USART_STATE_BUSY_RX) || + (state == HAL_USART_STATE_BUSY_TX_RX)) + { + for (nb_rx_data = husart->NbRxDataToProcess ; nb_rx_data > 0U ; nb_rx_data--) + { + if (__HAL_USART_GET_FLAG(husart, USART_FLAG_RXFNE) == SET) + { + tmp = (uint16_t *) husart->pRxBuffPtr; + *tmp = (uint16_t)(husart->Instance->RDR & uhMask); + husart->pRxBuffPtr += 2U; + husart->RxXferCount--; + + if (husart->RxXferCount == 0U) + { + /* Disable the USART Parity Error Interrupt */ + CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) + and RX FIFO Threshold interrupt */ + CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); + + /* Clear RxISR function pointer */ + husart->RxISR = NULL; + + /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */ + txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE); + txdatacount = husart->TxXferCount; + + if (state == HAL_USART_STATE_BUSY_RX) + { + /* Clear SPI slave underrun flag and discard transmit data */ + if (husart->SlaveMode == USART_SLAVEMODE_ENABLE) + { + __HAL_USART_CLEAR_UDRFLAG(husart); + __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); + } + + /* Rx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + state = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Rx Complete Callback */ + husart->RxCpltCallback(husart); +#else + /* Call legacy weak Rx Complete Callback */ + HAL_USART_RxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) && + (txftie != USART_CR3_TXFTIE) && + (txdatacount == 0U)) + { + /* TxRx process is completed, restore husart->State to Ready */ + husart->State = HAL_USART_STATE_READY; + state = HAL_USART_STATE_READY; + +#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) + /* Call registered Tx Rx Complete Callback */ + husart->TxRxCpltCallback(husart); +#else + /* Call legacy weak Tx Rx Complete Callback */ + HAL_USART_TxRxCpltCallback(husart); +#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } + } + else if ((state == HAL_USART_STATE_BUSY_RX) && + (husart->SlaveMode == USART_SLAVEMODE_DISABLE)) + { + /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + else + { + /* Nothing to do */ + } + } + } + + /* When remaining number of bytes to receive is less than the RX FIFO + threshold, next incoming frames are processed as if FIFO mode was + disabled (i.e. one interrupt per received frame). + */ + rxdatacount = husart->RxXferCount; + if (((rxdatacount != 0U)) && (rxdatacount < husart->NbRxDataToProcess)) + { + /* Disable the USART RXFT interrupt*/ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_RXFTIE); + + /* Update the RxISR function pointer */ + husart->RxISR = USART_RxISR_16BIT; + + /* Enable the USART Data Register Not Empty interrupt */ + SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); + + if ((husart->TxXferCount == 0U) && + (state == HAL_USART_STATE_BUSY_TX_RX) && + (husart->SlaveMode == USART_SLAVEMODE_DISABLE)) + { + /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ + husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); + } + } + } + else + { + /* Clear RXNE interrupt flag */ + __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); + } +} + +/** + * @} + */ + +#endif /* HAL_USART_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart_ex.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart_ex.c new file mode 100644 index 0000000..cf414f2 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_usart_ex.c @@ -0,0 +1,541 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_usart_ex.c + * @author MCD Application Team + * @brief Extended USART HAL module driver. + * This file provides firmware functions to manage the following extended + * functionalities of the Universal Synchronous Receiver Transmitter Peripheral (USART). + * + Peripheral Control functions + * + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### USART peripheral extended features ##### + ============================================================================== + + (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming. + + -@- When USART operates in FIFO mode, FIFO mode must be enabled prior + starting RX/TX transfers. Also RX/TX FIFO thresholds must be + configured prior starting RX/TX transfers. + + (#) Slave mode enabling/disabling and NSS pin configuration. + + -@- When USART operates in Slave mode, Slave mode must be enabled prior + starting RX/TX transfers. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +/** @defgroup USARTEx USARTEx + * @brief USART Extended HAL module driver + * @{ + */ + +#ifdef HAL_USART_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/** @defgroup USARTEx_Private_Constants USARTEx Private Constants + * @{ + */ +/* USART RX FIFO depth */ +#define RX_FIFO_DEPTH 8U + +/* USART TX FIFO depth */ +#define TX_FIFO_DEPTH 8U +/** + * @} + */ + +/* Private define ------------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup USARTEx_Private_Functions USARTEx Private Functions + * @{ + */ +static void USARTEx_SetNbDataToProcess(USART_HandleTypeDef *husart); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup USARTEx_Exported_Functions USARTEx Exported Functions + * @{ + */ + +/** @defgroup USARTEx_Exported_Functions_Group1 IO operation functions + * @brief Extended USART Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of FIFO mode related callback functions. + + (#) TX/RX Fifos Callbacks: + (+) HAL_USARTEx_RxFifoFullCallback() + (+) HAL_USARTEx_TxFifoEmptyCallback() + +@endverbatim + * @{ + */ + +/** + * @brief USART RX Fifo full callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USARTEx_RxFifoFullCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USARTEx_RxFifoFullCallback can be implemented in the user file. + */ +} + +/** + * @brief USART TX Fifo empty callback. + * @param husart USART handle. + * @retval None + */ +__weak void HAL_USARTEx_TxFifoEmptyCallback(USART_HandleTypeDef *husart) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(husart); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_USARTEx_TxFifoEmptyCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup USARTEx_Exported_Functions_Group2 Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides the following functions: + (+) HAL_USARTEx_EnableSPISlaveMode() API enables the SPI slave mode + (+) HAL_USARTEx_DisableSPISlaveMode() API disables the SPI slave mode + (+) HAL_USARTEx_ConfigNSS API configures the Slave Select input pin (NSS) + (+) HAL_USARTEx_EnableFifoMode() API enables the FIFO mode + (+) HAL_USARTEx_DisableFifoMode() API disables the FIFO mode + (+) HAL_USARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold + (+) HAL_USARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold + + +@endverbatim + * @{ + */ + +/** + * @brief Enable the SPI slave mode. + * @note When the USART operates in SPI slave mode, it handles data flow using + * the serial interface clock derived from the external SCLK signal + * provided by the external master SPI device. + * @note In SPI slave mode, the USART must be enabled before starting the master + * communications (or between frames while the clock is stable). Otherwise, + * if the USART slave is enabled while the master is in the middle of a + * frame, it will become desynchronized with the master. + * @note The data register of the slave needs to be ready before the first edge + * of the communication clock or before the end of the ongoing communication, + * otherwise the SPI slave will transmit zeros. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USARTEx_EnableSlaveMode(USART_HandleTypeDef *husart) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_SPI_SLAVE_INSTANCE(husart->Instance)); + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->State = HAL_USART_STATE_BUSY; + + /* Save actual USART configuration */ + tmpcr1 = READ_REG(husart->Instance->CR1); + + /* Disable USART */ + __HAL_USART_DISABLE(husart); + + /* In SPI slave mode mode, the following bits must be kept cleared: + - LINEN and CLKEN bit in the USART_CR2 register + - HDSEL, SCEN and IREN bits in the USART_CR3 register.*/ + CLEAR_BIT(husart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); + CLEAR_BIT(husart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); + + /* Enable SPI slave mode */ + SET_BIT(husart->Instance->CR2, USART_CR2_SLVEN); + + /* Restore USART configuration */ + WRITE_REG(husart->Instance->CR1, tmpcr1); + + husart->SlaveMode = USART_SLAVEMODE_ENABLE; + + husart->State = HAL_USART_STATE_READY; + + /* Enable USART */ + __HAL_USART_ENABLE(husart); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Disable the SPI slave mode. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USARTEx_DisableSlaveMode(USART_HandleTypeDef *husart) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_SPI_SLAVE_INSTANCE(husart->Instance)); + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->State = HAL_USART_STATE_BUSY; + + /* Save actual USART configuration */ + tmpcr1 = READ_REG(husart->Instance->CR1); + + /* Disable USART */ + __HAL_USART_DISABLE(husart); + + /* Disable SPI slave mode */ + CLEAR_BIT(husart->Instance->CR2, USART_CR2_SLVEN); + + /* Restore USART configuration */ + WRITE_REG(husart->Instance->CR1, tmpcr1); + + husart->SlaveMode = USART_SLAVEMODE_DISABLE; + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Configure the Slave Select input pin (NSS). + * @note Software NSS management: SPI slave will always be selected and NSS + * input pin will be ignored. + * @note Hardware NSS management: the SPI slave selection depends on NSS + * input pin. The slave is selected when NSS is low and deselected when + * NSS is high. + * @param husart USART handle. + * @param NSSConfig NSS configuration. + * This parameter can be one of the following values: + * @arg @ref USART_NSS_HARD + * @arg @ref USART_NSS_SOFT + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USARTEx_ConfigNSS(USART_HandleTypeDef *husart, uint32_t NSSConfig) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_SPI_SLAVE_INSTANCE(husart->Instance)); + assert_param(IS_USART_NSS(NSSConfig)); + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->State = HAL_USART_STATE_BUSY; + + /* Save actual USART configuration */ + tmpcr1 = READ_REG(husart->Instance->CR1); + + /* Disable USART */ + __HAL_USART_DISABLE(husart); + + /* Program DIS_NSS bit in the USART_CR2 register */ + MODIFY_REG(husart->Instance->CR2, USART_CR2_DIS_NSS, NSSConfig); + + /* Restore USART configuration */ + WRITE_REG(husart->Instance->CR1, tmpcr1); + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Enable the FIFO mode. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USARTEx_EnableFifoMode(USART_HandleTypeDef *husart) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(husart->Instance)); + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->State = HAL_USART_STATE_BUSY; + + /* Save actual USART configuration */ + tmpcr1 = READ_REG(husart->Instance->CR1); + + /* Disable USART */ + __HAL_USART_DISABLE(husart); + + /* Enable FIFO mode */ + SET_BIT(tmpcr1, USART_CR1_FIFOEN); + husart->FifoMode = USART_FIFOMODE_ENABLE; + + /* Restore USART configuration */ + WRITE_REG(husart->Instance->CR1, tmpcr1); + + /* Determine the number of data to process during RX/TX ISR execution */ + USARTEx_SetNbDataToProcess(husart); + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Disable the FIFO mode. + * @param husart USART handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USARTEx_DisableFifoMode(USART_HandleTypeDef *husart) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(husart->Instance)); + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->State = HAL_USART_STATE_BUSY; + + /* Save actual USART configuration */ + tmpcr1 = READ_REG(husart->Instance->CR1); + + /* Disable USART */ + __HAL_USART_DISABLE(husart); + + /* Disable FIFO mode */ + CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN); + husart->FifoMode = USART_FIFOMODE_DISABLE; + + /* Restore USART configuration */ + WRITE_REG(husart->Instance->CR1, tmpcr1); + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Set the TXFIFO threshold. + * @param husart USART handle. + * @param Threshold TX FIFO threshold value + * This parameter can be one of the following values: + * @arg @ref USART_TXFIFO_THRESHOLD_1_8 + * @arg @ref USART_TXFIFO_THRESHOLD_1_4 + * @arg @ref USART_TXFIFO_THRESHOLD_1_2 + * @arg @ref USART_TXFIFO_THRESHOLD_3_4 + * @arg @ref USART_TXFIFO_THRESHOLD_7_8 + * @arg @ref USART_TXFIFO_THRESHOLD_8_8 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USARTEx_SetTxFifoThreshold(USART_HandleTypeDef *husart, uint32_t Threshold) +{ + uint32_t tmpcr1; + + /* Check parameters */ + assert_param(IS_UART_FIFO_INSTANCE(husart->Instance)); + assert_param(IS_USART_TXFIFO_THRESHOLD(Threshold)); + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->State = HAL_USART_STATE_BUSY; + + /* Save actual USART configuration */ + tmpcr1 = READ_REG(husart->Instance->CR1); + + /* Disable USART */ + __HAL_USART_DISABLE(husart); + + /* Update TX threshold configuration */ + MODIFY_REG(husart->Instance->CR3, USART_CR3_TXFTCFG, Threshold); + + /* Determine the number of data to process during RX/TX ISR execution */ + USARTEx_SetNbDataToProcess(husart); + + /* Restore USART configuration */ + WRITE_REG(husart->Instance->CR1, tmpcr1); + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Set the RXFIFO threshold. + * @param husart USART handle. + * @param Threshold RX FIFO threshold value + * This parameter can be one of the following values: + * @arg @ref USART_RXFIFO_THRESHOLD_1_8 + * @arg @ref USART_RXFIFO_THRESHOLD_1_4 + * @arg @ref USART_RXFIFO_THRESHOLD_1_2 + * @arg @ref USART_RXFIFO_THRESHOLD_3_4 + * @arg @ref USART_RXFIFO_THRESHOLD_7_8 + * @arg @ref USART_RXFIFO_THRESHOLD_8_8 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USARTEx_SetRxFifoThreshold(USART_HandleTypeDef *husart, uint32_t Threshold) +{ + uint32_t tmpcr1; + + /* Check the parameters */ + assert_param(IS_UART_FIFO_INSTANCE(husart->Instance)); + assert_param(IS_USART_RXFIFO_THRESHOLD(Threshold)); + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->State = HAL_USART_STATE_BUSY; + + /* Save actual USART configuration */ + tmpcr1 = READ_REG(husart->Instance->CR1); + + /* Disable USART */ + __HAL_USART_DISABLE(husart); + + /* Update RX threshold configuration */ + MODIFY_REG(husart->Instance->CR3, USART_CR3_RXFTCFG, Threshold); + + /* Determine the number of data to process during RX/TX ISR execution */ + USARTEx_SetNbDataToProcess(husart); + + /* Restore USART configuration */ + WRITE_REG(husart->Instance->CR1, tmpcr1); + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup USARTEx_Private_Functions + * @{ + */ + +/** + * @brief Calculate the number of data to process in RX/TX ISR. + * @note The RX FIFO depth and the TX FIFO depth is extracted from + * the USART configuration registers. + * @param husart USART handle. + * @retval None + */ +static void USARTEx_SetNbDataToProcess(USART_HandleTypeDef *husart) +{ + uint8_t rx_fifo_depth; + uint8_t tx_fifo_depth; + uint8_t rx_fifo_threshold; + uint8_t tx_fifo_threshold; + /* 2 0U/1U added for MISRAC2012-Rule-18.1_b and MISRAC2012-Rule-18.1_d */ + static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U}; + static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U}; + + if (husart->FifoMode == USART_FIFOMODE_DISABLE) + { + husart->NbTxDataToProcess = 1U; + husart->NbRxDataToProcess = 1U; + } + else + { + rx_fifo_depth = RX_FIFO_DEPTH; + tx_fifo_depth = TX_FIFO_DEPTH; + rx_fifo_threshold = (uint8_t)((READ_BIT(husart->Instance->CR3, + USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos) & 0xFFU); + tx_fifo_threshold = (uint8_t)((READ_BIT(husart->Instance->CR3, + USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos) & 0xFFU); + husart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) / + (uint16_t)denominator[tx_fifo_threshold]; + husart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) / + (uint16_t)denominator[rx_fifo_threshold]; + } +} +/** + * @} + */ + +#endif /* HAL_USART_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_wwdg.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_wwdg.c new file mode 100644 index 0000000..6d1f328 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_wwdg.c @@ -0,0 +1,420 @@ +/** + ****************************************************************************** + * @file stm32u0xx_hal_wwdg.c + * @author MCD Application Team + * @brief WWDG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Window Watchdog (WWDG) peripheral: + * + Initialization and Configuration functions + * + IO operation functions + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### WWDG Specific features ##### + ============================================================================== + [..] + Once enabled the WWDG generates a system reset on expiry of a programmed + time period, unless the program refreshes the counter (T[6;0] downcounter) + before reaching 0x3F value (i.e. a reset is generated when the counter + value rolls down from 0x40 to 0x3F). + + (+) An MCU reset is also generated if the counter value is refreshed + before the counter has reached the refresh window value. This + implies that the counter must be refreshed in a limited window. + (+) Once enabled the WWDG cannot be disabled except by a system reset. + (+) If required by application, an Early Wakeup Interrupt can be triggered + in order to be warned before WWDG expiration. The Early Wakeup Interrupt + (EWI) can be used if specific safety operations or data logging must + be performed before the actual reset is generated. When the downcounter + reaches 0x40, interrupt occurs. This mechanism requires WWDG interrupt + line to be enabled in NVIC. Once enabled, EWI interrupt cannot be + disabled except by a system reset. + (+) WWDGRST flag in RCC CSR register can be used to inform when a WWDG + reset occurs. + (+) The WWDG counter input clock is derived from the APB clock divided + by a programmable prescaler. + (+) WWDG clock (Hz) = PCLK1 / (4096 * Prescaler) + (+) WWDG timeout (mS) = 1000 * (T[5;0] + 1) / WWDG clock (Hz) + where T[5;0] are the lowest 6 bits of Counter. + (+) WWDG Counter refresh is allowed between the following limits : + (++) min time (mS) = 1000 * (Counter - Window) / WWDG clock + (++) max time (mS) = 1000 * (Counter - 0x40) / WWDG clock + (+) Typical values: + (++) Counter min (T[5;0] = 0x00) at 56MHz (PCLK1) with zero prescaler: + max timeout before reset: approximately 73.14us + (++) Counter max (T[5;0] = 0x3F) at 56MHz (PCLK1) with prescaler + dividing by 128: + max timeout before reset: approximately 599.18ms + + ##### How to use this driver ##### + ============================================================================== + + *** Common driver usage *** + =========================== + + [..] + (+) Enable WWDG APB1 clock using __HAL_RCC_WWDG_CLK_ENABLE(). + (+) Configure the WWDG prescaler, refresh window value, counter value and early + interrupt status using HAL_WWDG_Init() function. This will automatically + enable WWDG and start its downcounter. Time reference can be taken from + function exit. Care must be taken to provide a counter value + greater than 0x40 to prevent generation of immediate reset. + (+) If the Early Wakeup Interrupt (EWI) feature is enabled, an interrupt is + generated when the counter reaches 0x40. When HAL_WWDG_IRQHandler is + triggered by the interrupt service routine, flag will be automatically + cleared and HAL_WWDG_WakeupCallback user callback will be executed. User + can add his own code by customization of callback HAL_WWDG_WakeupCallback. + (+) Then the application program must refresh the WWDG counter at regular + intervals during normal operation to prevent an MCU reset, using + HAL_WWDG_Refresh() function. This operation must occur only when + the counter is lower than the refresh window value already programmed. + + *** Callback registration *** + ============================= + + [..] + The compilation define USE_HAL_WWDG_REGISTER_CALLBACKS when set to 1 allows + the user to configure dynamically the driver callbacks. Use Functions + HAL_WWDG_RegisterCallback() to register a user callback. + + (+) Function HAL_WWDG_RegisterCallback() allows to register following + callbacks: + (++) EwiCallback : callback for Early WakeUp Interrupt. + (++) MspInitCallback : WWDG MspInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + (+) Use function HAL_WWDG_UnRegisterCallback() to reset a callback to + the default weak (surcharged) function. HAL_WWDG_UnRegisterCallback() + takes as parameters the HAL peripheral handle and the Callback ID. + This function allows to reset following callbacks: + (++) EwiCallback : callback for Early WakeUp Interrupt. + (++) MspInitCallback : WWDG MspInit. + + [..] + When calling HAL_WWDG_Init function, callbacks are reset to the + corresponding legacy weak (surcharged) functions: + HAL_WWDG_EarlyWakeupCallback() and HAL_WWDG_MspInit() only if they have + not been registered before. + + [..] + When compilation define USE_HAL_WWDG_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registering feature is not available + and weak (surcharged) callbacks are used. + + *** WWDG HAL driver macros list *** + =================================== + [..] + Below the list of available macros in WWDG HAL driver. + (+) __HAL_WWDG_ENABLE: Enable the WWDG peripheral + (+) __HAL_WWDG_GET_FLAG: Get the selected WWDG's flag status + (+) __HAL_WWDG_CLEAR_FLAG: Clear the WWDG's pending flags + (+) __HAL_WWDG_ENABLE_IT: Enable the WWDG early wakeup interrupt + + @endverbatim + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_HAL_Driver + * @{ + */ + +#ifdef HAL_WWDG_MODULE_ENABLED +/** @defgroup WWDG WWDG + * @brief WWDG HAL module driver. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup WWDG_Exported_Functions WWDG Exported Functions + * @{ + */ + +/** @defgroup WWDG_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions. + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and start the WWDG according to the specified parameters + in the WWDG_InitTypeDef of associated handle. + (+) Initialize the WWDG MSP. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the WWDG according to the specified. + * parameters in the WWDG_InitTypeDef of associated handle. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg) +{ + /* Check the WWDG handle allocation */ + if (hwwdg == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_WWDG_ALL_INSTANCE(hwwdg->Instance)); + assert_param(IS_WWDG_PRESCALER(hwwdg->Init.Prescaler)); + assert_param(IS_WWDG_WINDOW(hwwdg->Init.Window)); + assert_param(IS_WWDG_COUNTER(hwwdg->Init.Counter)); + assert_param(IS_WWDG_EWI_MODE(hwwdg->Init.EWIMode)); + +#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1) + /* Reset Callback pointers */ + if (hwwdg->EwiCallback == NULL) + { + hwwdg->EwiCallback = HAL_WWDG_EarlyWakeupCallback; + } + + if (hwwdg->MspInitCallback == NULL) + { + hwwdg->MspInitCallback = HAL_WWDG_MspInit; + } + + /* Init the low level hardware */ + hwwdg->MspInitCallback(hwwdg); +#else + /* Init the low level hardware */ + HAL_WWDG_MspInit(hwwdg); +#endif /* USE_HAL_WWDG_REGISTER_CALLBACKS */ + + /* Set WWDG Counter */ + WRITE_REG(hwwdg->Instance->CR, (WWDG_CR_WDGA | hwwdg->Init.Counter)); + + /* Set WWDG Prescaler and Window */ + WRITE_REG(hwwdg->Instance->CFR, (hwwdg->Init.EWIMode | hwwdg->Init.Prescaler | hwwdg->Init.Window)); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initialize the WWDG MSP. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @note When rewriting this function in user file, mechanism may be added + * to avoid multiple initialize when HAL_WWDG_Init function is called + * again to change parameters. + * @retval None + */ +__weak void HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hwwdg); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_WWDG_MspInit could be implemented in the user file + */ +} + + +#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User WWDG Callback + * To be used instead of the weak (surcharged) predefined callback + * @param hwwdg WWDG handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_WWDG_EWI_CB_ID Early WakeUp Interrupt Callback ID + * @arg @ref HAL_WWDG_MSPINIT_CB_ID MspInit callback ID + * @param pCallback pointer to the Callback function + * @retval status + */ +HAL_StatusTypeDef HAL_WWDG_RegisterCallback(WWDG_HandleTypeDef *hwwdg, HAL_WWDG_CallbackIDTypeDef CallbackID, + pWWDG_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + status = HAL_ERROR; + } + else + { + switch (CallbackID) + { + case HAL_WWDG_EWI_CB_ID: + hwwdg->EwiCallback = pCallback; + break; + + case HAL_WWDG_MSPINIT_CB_ID: + hwwdg->MspInitCallback = pCallback; + break; + + default: + status = HAL_ERROR; + break; + } + } + + return status; +} + + +/** + * @brief Unregister a WWDG Callback + * WWDG Callback is redirected to the weak (surcharged) predefined callback + * @param hwwdg WWDG handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_WWDG_EWI_CB_ID Early WakeUp Interrupt Callback ID + * @arg @ref HAL_WWDG_MSPINIT_CB_ID MspInit callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_WWDG_UnRegisterCallback(WWDG_HandleTypeDef *hwwdg, HAL_WWDG_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + switch (CallbackID) + { + case HAL_WWDG_EWI_CB_ID: + hwwdg->EwiCallback = HAL_WWDG_EarlyWakeupCallback; + break; + + case HAL_WWDG_MSPINIT_CB_ID: + hwwdg->MspInitCallback = HAL_WWDG_MspInit; + break; + + default: + status = HAL_ERROR; + break; + } + + return status; +} +#endif /* USE_HAL_WWDG_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup WWDG_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Refresh the WWDG. + (+) Handle WWDG interrupt request and associated function callback. + +@endverbatim + * @{ + */ + +/** + * @brief Refresh the WWDG. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg) +{ + /* Write to WWDG CR the WWDG Counter value to refresh with */ + WRITE_REG(hwwdg->Instance->CR, (hwwdg->Init.Counter)); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handle WWDG interrupt request. + * @note The Early Wakeup Interrupt (EWI) can be used if specific safety operations + * or data logging must be performed before the actual reset is generated. + * The EWI interrupt is enabled by calling HAL_WWDG_Init function with + * EWIMode set to WWDG_EWI_ENABLE. + * When the downcounter reaches the value 0x40, and EWI interrupt is + * generated and the corresponding Interrupt Service Routine (ISR) can + * be used to trigger specific actions (such as communications or data + * logging), before resetting the device. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +void HAL_WWDG_IRQHandler(WWDG_HandleTypeDef *hwwdg) +{ + /* Check if Early Wakeup Interrupt is enable */ + if (__HAL_WWDG_GET_IT_SOURCE(hwwdg, WWDG_IT_EWI) != RESET) + { + /* Check if WWDG Early Wakeup Interrupt occurred */ + if (__HAL_WWDG_GET_FLAG(hwwdg, WWDG_FLAG_EWIF) != RESET) + { + /* Clear the WWDG Early Wakeup flag */ + __HAL_WWDG_CLEAR_FLAG(hwwdg, WWDG_FLAG_EWIF); + +#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1) + /* Early Wakeup registered callback */ + hwwdg->EwiCallback(hwwdg); +#else + /* Early Wakeup callback */ + HAL_WWDG_EarlyWakeupCallback(hwwdg); +#endif /* USE_HAL_WWDG_REGISTER_CALLBACKS */ + } + } +} + + +/** + * @brief WWDG Early Wakeup callback. + * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +__weak void HAL_WWDG_EarlyWakeupCallback(WWDG_HandleTypeDef *hwwdg) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hwwdg); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_WWDG_EarlyWakeupCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_WWDG_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_adc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_adc.c new file mode 100644 index 0000000..c37d107 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_adc.c @@ -0,0 +1,749 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_adc.c + * @author MCD Application Team + * @brief ADC LL module driver + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_adc.h" +#include "stm32u0xx_ll_bus.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (ADC1) + +/** @addtogroup ADC_LL ADC + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup ADC_LL_Private_Constants + * @{ + */ + +/* Definitions of ADC hardware constraints delays */ +/* Note: Only ADC peripheral HW delays are defined in ADC LL driver driver, */ +/* not timeout values: */ +/* Timeout values for ADC operations are dependent to device clock */ +/* configuration (system clock versus ADC clock), */ +/* and therefore must be defined in user application. */ +/* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ +/* values definition. */ +/* Note: ADC timeout values are defined here in CPU cycles to be independent */ +/* of device clock setting. */ +/* In user application, ADC timeout values should be defined with */ +/* temporal values, in function of device clock settings. */ +/* Highest ratio CPU clock frequency vs ADC clock frequency: */ +/* - ADC clock from synchronous clock with AHB prescaler 512, */ +/* APB prescaler 16, ADC prescaler 4. */ +/* - ADC clock from asynchronous clock (HSI) with prescaler 1, */ +/* with highest ratio CPU clock frequency vs HSI clock frequency: */ +/* CPU clock frequency max 48MHz, HSI frequency 16MHz: ratio 4. */ +/* Unit: CPU cycles. */ +#define ADC_CLOCK_RATIO_VS_CPU_HIGHEST (512UL * 16UL * 4UL) +#define ADC_TIMEOUT_DISABLE_CPU_CYCLES (ADC_CLOCK_RATIO_VS_CPU_HIGHEST * 1UL) +#define ADC_TIMEOUT_STOP_CONVERSION_CPU_CYCLES (ADC_CLOCK_RATIO_VS_CPU_HIGHEST * 1UL) +/* Note: CCRDY handshake requires 1APB + 2 ADC + 3 APB cycles */ +/* after the channel configuration has been changed. */ +/* Driver timeout is approximated to 6 CPU cycles. */ +#define ADC_TIMEOUT_CCRDY_CPU_CYCLES (ADC_CLOCK_RATIO_VS_CPU_HIGHEST * 6UL) + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ + +/** @addtogroup ADC_LL_Private_Macros + * @{ + */ + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* common to several ADC instances. */ +#define IS_LL_ADC_COMMON_CLOCK(__CLOCK__) \ + (((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV1) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV2) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV4) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV6) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV8) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV10) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV12) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV16) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV32) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV64) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV128) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV256) \ + ) + +#define IS_LL_ADC_CLOCK_FREQ_MODE(__CLOCK_FREQ_MODE__) \ + (((__CLOCK_FREQ_MODE__) == LL_ADC_CLOCK_FREQ_MODE_HIGH) \ + || ((__CLOCK_FREQ_MODE__) == LL_ADC_CLOCK_FREQ_MODE_LOW) \ + ) + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* ADC instance. */ +#define IS_LL_ADC_CLOCK(__CLOCK__) \ + (((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV4) \ + || ((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV2) \ + || ((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV1) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC) \ + ) + +#define IS_LL_ADC_RESOLUTION(__RESOLUTION__) \ + (((__RESOLUTION__) == LL_ADC_RESOLUTION_12B) \ + || ((__RESOLUTION__) == LL_ADC_RESOLUTION_10B) \ + || ((__RESOLUTION__) == LL_ADC_RESOLUTION_8B) \ + || ((__RESOLUTION__) == LL_ADC_RESOLUTION_6B) \ + ) + +#define IS_LL_ADC_DATA_ALIGN(__DATA_ALIGN__) \ + (((__DATA_ALIGN__) == LL_ADC_DATA_ALIGN_RIGHT) \ + || ((__DATA_ALIGN__) == LL_ADC_DATA_ALIGN_LEFT) \ + ) + +#define IS_LL_ADC_LOW_POWER(__LOW_POWER__) \ + (((__LOW_POWER__) == LL_ADC_LP_MODE_NONE) \ + || ((__LOW_POWER__) == LL_ADC_LP_AUTOWAIT) \ + || ((__LOW_POWER__) == LL_ADC_LP_AUTOPOWEROFF) \ + || ((__LOW_POWER__) == LL_ADC_LP_AUTOWAIT_AUTOPOWEROFF) \ + ) + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* ADC group regular */ +#define IS_LL_ADC_REG_TRIG_SOURCE(__REG_TRIG_SOURCE__) \ + (((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_SOFTWARE) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_TRGO2) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_CH4 ) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM2_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM3_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM15_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM6_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_EXTI_LINE11) \ + ) + +#define IS_LL_ADC_REG_CONTINUOUS_MODE(__REG_CONTINUOUS_MODE__) \ + (((__REG_CONTINUOUS_MODE__) == LL_ADC_REG_CONV_SINGLE) \ + || ((__REG_CONTINUOUS_MODE__) == LL_ADC_REG_CONV_CONTINUOUS) \ + ) + +#define IS_LL_ADC_REG_DMA_TRANSFER(__REG_DMA_TRANSFER__) \ + (((__REG_DMA_TRANSFER__) == LL_ADC_REG_DMA_TRANSFER_NONE) \ + || ((__REG_DMA_TRANSFER__) == LL_ADC_REG_DMA_TRANSFER_LIMITED) \ + || ((__REG_DMA_TRANSFER__) == LL_ADC_REG_DMA_TRANSFER_UNLIMITED) \ + ) + +#define IS_LL_ADC_REG_OVR_DATA_BEHAVIOR(__REG_OVR_DATA_BEHAVIOR__) \ + (((__REG_OVR_DATA_BEHAVIOR__) == LL_ADC_REG_OVR_DATA_PRESERVED) \ + || ((__REG_OVR_DATA_BEHAVIOR__) == LL_ADC_REG_OVR_DATA_OVERWRITTEN) \ + ) + +#define IS_LL_ADC_REG_SEQ_MODE(__REG_SEQ_MODE__) \ + (((__REG_SEQ_MODE__) == LL_ADC_REG_SEQ_FIXED) \ + || ((__REG_SEQ_MODE__) == LL_ADC_REG_SEQ_CONFIGURABLE) \ + ) + +#define IS_LL_ADC_REG_SEQ_SCAN_LENGTH(__REG_SEQ_SCAN_LENGTH__) \ + (((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_DISABLE) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_2RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_4RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_5RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_6RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_7RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_8RANKS) \ + ) + +#define IS_LL_ADC_REG_SEQ_SCAN_DISCONT_MODE(__REG_SEQ_DISCONT_MODE__) \ + (((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_DISABLE) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_1RANK) \ + ) + +/** + * @} + */ + + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup ADC_LL_Exported_Functions + * @{ + */ + +/** @addtogroup ADC_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize registers of all ADC instances belonging to + * the same ADC common instance to their default reset values. + * @note This function is performing a hard reset, using high level + * clock source RCC ADC reset. + * @param ADCxy_COMMON ADC common instance + * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC common registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_ADC_CommonDeInit(ADC_Common_TypeDef *ADCxy_COMMON) +{ + /* Check the parameters */ + assert_param(IS_ADC_COMMON_INSTANCE(ADCxy_COMMON)); + + /* Prevent unused argument(s) compilation warning if no assert_param check */ + (void)(ADCxy_COMMON); + + /* Force reset of ADC clock (core clock) */ + LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_ADC); + + /* Release reset of ADC clock (core clock) */ + LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_ADC); + + return SUCCESS; +} + +/** + * @brief Initialize some features of ADC common parameters + * (all ADC instances belonging to the same ADC common instance) + * and multimode (for devices with several ADC instances available). + * @note The setting of ADC common parameters is conditioned to + * ADC instances state: + * All ADC instances belonging to the same ADC common instance + * must be disabled. + * @param ADCxy_COMMON ADC common instance + * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) + * @param pADC_CommonInitStruct Pointer to a @ref LL_ADC_CommonInitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC common registers are initialized + * - ERROR: ADC common registers are not initialized + */ +ErrorStatus LL_ADC_CommonInit(ADC_Common_TypeDef *ADCxy_COMMON, const LL_ADC_CommonInitTypeDef *pADC_CommonInitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_ADC_COMMON_INSTANCE(ADCxy_COMMON)); + assert_param(IS_LL_ADC_COMMON_CLOCK(pADC_CommonInitStruct->CommonClock)); + + /* Note: Hardware constraint (refer to description of functions */ + /* "LL_ADC_SetCommonXXX()": */ + /* On this STM32 series, setting of these features is conditioned to */ + /* ADC state: */ + /* All ADC instances of the ADC common group must be disabled. */ + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(ADCxy_COMMON) == 0UL) + { + /* Configuration of ADC hierarchical scope: */ + /* - common to several ADC */ + /* (all ADC instances belonging to the same ADC common instance) */ + /* - Set ADC clock (conversion clock) */ + LL_ADC_SetCommonClock(ADCxy_COMMON, pADC_CommonInitStruct->CommonClock); + } + else + { + /* Initialization error: One or several ADC instances belonging to */ + /* the same ADC common instance are not disabled. */ + status = ERROR; + } + + return status; +} + +/** + * @brief Set each @ref LL_ADC_CommonInitTypeDef field to default value. + * @param pADC_CommonInitStruct Pointer to a @ref LL_ADC_CommonInitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_ADC_CommonStructInit(LL_ADC_CommonInitTypeDef *pADC_CommonInitStruct) +{ + /* Set pADC_CommonInitStruct fields to default values */ + /* Set fields of ADC common */ + /* (all ADC instances belonging to the same ADC common instance) */ + pADC_CommonInitStruct->CommonClock = LL_ADC_CLOCK_ASYNC_DIV2; + +} + +/** + * @brief De-initialize registers of the selected ADC instance + * to their default reset values. + * @note To reset all ADC instances quickly (perform a hard reset), + * use function @ref LL_ADC_CommonDeInit(). + * @note If this functions returns error status, it means that ADC instance + * is in an unknown state. + * In this case, perform a hard reset using high level + * clock source RCC ADC reset. + * Refer to function @ref LL_ADC_CommonDeInit(). + * @param ADCx ADC instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC registers are de-initialized + * - ERROR: ADC registers are not de-initialized + */ +ErrorStatus LL_ADC_DeInit(ADC_TypeDef *ADCx) +{ + ErrorStatus status = SUCCESS; + + __IO uint32_t timeout_cpu_cycles = 0UL; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(ADCx)); + + /* Disable ADC instance if not already disabled. */ + if (LL_ADC_IsEnabled(ADCx) == 1UL) + { + /* Stop potential ADC conversion on going on ADC group regular. */ + LL_ADC_REG_StopConversion(ADCx); + + /* Wait for ADC conversions are effectively stopped */ + timeout_cpu_cycles = ADC_TIMEOUT_STOP_CONVERSION_CPU_CYCLES; + while (LL_ADC_REG_IsStopConversionOngoing(ADCx) == 1UL) + { + timeout_cpu_cycles--; + if (timeout_cpu_cycles == 0UL) + { + /* Time-out error */ + status = ERROR; + break; + } + } + + /* Disable the ADC instance */ + LL_ADC_Disable(ADCx); + + /* Wait for ADC instance is effectively disabled */ + timeout_cpu_cycles = ADC_TIMEOUT_DISABLE_CPU_CYCLES; + while (LL_ADC_IsDisableOngoing(ADCx) == 1UL) + { + timeout_cpu_cycles--; + if (timeout_cpu_cycles == 0UL) + { + /* Time-out error */ + status = ERROR; + break; + } + } + } + + /* Check whether ADC state is compliant with expected state */ + if (READ_BIT(ADCx->CR, + (ADC_CR_ADSTP | ADC_CR_ADSTART + | ADC_CR_ADDIS | ADC_CR_ADEN) + ) + == 0UL) + { + /* ========== Reset ADC registers ========== */ + /* Reset register IER */ + CLEAR_BIT(ADCx->IER, + (LL_ADC_IT_ADRDY + | LL_ADC_IT_EOC + | LL_ADC_IT_EOS + | LL_ADC_IT_OVR + | LL_ADC_IT_EOSMP + | LL_ADC_IT_AWD1 + | LL_ADC_IT_AWD2 + | LL_ADC_IT_AWD3 + | LL_ADC_IT_EOCAL + | LL_ADC_IT_CCRDY + ) + ); + + /* Reset register ISR */ + SET_BIT(ADCx->ISR, + (LL_ADC_FLAG_ADRDY + | LL_ADC_FLAG_EOC + | LL_ADC_FLAG_EOS + | LL_ADC_FLAG_OVR + | LL_ADC_FLAG_EOSMP + | LL_ADC_FLAG_AWD1 + | LL_ADC_FLAG_AWD2 + | LL_ADC_FLAG_AWD3 + | LL_ADC_FLAG_EOCAL + | LL_ADC_FLAG_CCRDY + ) + ); + + /* Reset register CR */ + /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */ + /* "read-set": no direct reset applicable. */ + CLEAR_BIT(ADCx->CR, ADC_CR_ADVREGEN); + + /* Reset register CFGR1 */ + CLEAR_BIT(ADCx->CFGR1, + (ADC_CFGR1_AWD1CH | ADC_CFGR1_AWD1EN | ADC_CFGR1_AWD1SGL | ADC_CFGR1_DISCEN + | ADC_CFGR1_CHSELRMOD | ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD + | ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES + | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN) + ); + + /* Reset register SMPR */ + CLEAR_BIT(ADCx->SMPR, ADC_SMPR_SMP1 | ADC_SMPR_SMP2 | ADC_SMPR_SMPSEL); + + /* Reset register CHSELR */ + CLEAR_BIT(ADCx->CHSELR, + (ADC_CHSELR_CHSEL19 | ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 + | ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 + | ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9 | ADC_CHSELR_CHSEL8 + | ADC_CHSELR_CHSEL7 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL4 + | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL0) + ); + + /* Reset register AWD1TR */ + MODIFY_REG(ADCx->AWD1TR, ADC_AWD1TR_HT1 | ADC_AWD1TR_LT1, ADC_AWD1TR_HT1); + + /* Reset register AWD2TR */ + MODIFY_REG(ADCx->AWD2TR, ADC_AWD2TR_HT2 | ADC_AWD2TR_LT2, ADC_AWD2TR_HT2); + + /* Reset register AWD3TR */ + MODIFY_REG(ADCx->AWD3TR, ADC_AWD3TR_HT3 | ADC_AWD3TR_LT3, ADC_AWD3TR_HT3); + + /* Wait for ADC channel configuration ready */ + timeout_cpu_cycles = ADC_TIMEOUT_CCRDY_CPU_CYCLES; + while (LL_ADC_IsActiveFlag_CCRDY(ADCx) == 0UL) + { + timeout_cpu_cycles--; + if (timeout_cpu_cycles == 0UL) + { + /* Time-out error */ + status = ERROR; + break; + } + } + + /* Clear flag ADC channel configuration ready */ + LL_ADC_ClearFlag_CCRDY(ADCx); + + /* Reset register DR */ + /* bits in access mode read only, no direct reset applicable */ + + /* Reset register CALFACT */ + CLEAR_BIT(ADCx->CALFACT, ADC_CALFACT_CALFACT); + + /* Reset register CFGR2 */ + /* Note: CFGR2 reset done at the end of de-initialization due to */ + /* clock source reset */ + /* Note: Update of ADC clock mode is conditioned to ADC state disabled: */ + /* already done above. */ + CLEAR_BIT(ADCx->CFGR2, + (ADC_CFGR2_CKMODE + | ADC_CFGR2_TOVS | ADC_CFGR2_OVSS | ADC_CFGR2_OVSR + | ADC_CFGR2_OVSE) + ); + + } + else + { + /* ADC instance is in an unknown state */ + /* Need to performing a hard reset of ADC instance, using high level */ + /* clock source RCC ADC reset. */ + /* Caution: On this STM32 series, if several ADC instances are available */ + /* on the selected device, RCC ADC reset will reset */ + /* all ADC instances belonging to the common ADC instance. */ + status = ERROR; + } + + return status; +} + +/** + * @brief Initialize some features of ADC instance. + * @note These parameters have an impact on ADC scope: ADC instance. + * Refer to corresponding unitary functions into + * @ref ADC_LL_EF_Configuration_ADC_Instance . + * @note The setting of these parameters by function @ref LL_ADC_Init() + * is conditioned to ADC state: + * ADC instance must be disabled. + * This condition is applied to all ADC features, for efficiency + * and compatibility over all STM32 series. However, the different + * features can be set under different ADC state conditions + * (setting possible with ADC enabled without conversion on going, + * ADC enabled with conversion on going, ...) + * Each feature can be updated afterwards with a unitary function + * and potentially with ADC in a different state than disabled, + * refer to description of each function for setting + * conditioned to ADC state. + * @note After using this function, some other features must be configured + * using LL unitary functions. + * The minimum configuration remaining to be done is: + * - Set ADC group regular sequencer: + * Depending on the sequencer mode (refer to + * function @ref LL_ADC_REG_SetSequencerConfigurable() ): + * - map channel on the selected sequencer rank. + * Refer to function @ref LL_ADC_REG_SetSequencerRanks(); + * - map channel on rank corresponding to channel number. + * Refer to function @ref LL_ADC_REG_SetSequencerChannels(); + * - Set ADC channel sampling time + * Refer to function LL_ADC_SetSamplingTimeCommonChannels(); + * Refer to function LL_ADC_SetChannelSamplingTime(); + * @param ADCx ADC instance + * @param pADC_InitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC registers are initialized + * - ERROR: ADC registers are not initialized + */ +ErrorStatus LL_ADC_Init(ADC_TypeDef *ADCx, const LL_ADC_InitTypeDef *pADC_InitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(ADCx)); + + assert_param(IS_LL_ADC_CLOCK(pADC_InitStruct->Clock)); + assert_param(IS_LL_ADC_RESOLUTION(pADC_InitStruct->Resolution)); + assert_param(IS_LL_ADC_DATA_ALIGN(pADC_InitStruct->DataAlignment)); + assert_param(IS_LL_ADC_LOW_POWER(pADC_InitStruct->LowPowerMode)); + + /* Note: Hardware constraint (refer to description of this function): */ + /* ADC instance must be disabled. */ + if (LL_ADC_IsEnabled(ADCx) == 0UL) + { + /* Configuration of ADC hierarchical scope: */ + /* - ADC instance */ + /* - Set ADC data resolution */ + /* - Set ADC conversion data alignment */ + /* - Set ADC low power mode */ + MODIFY_REG(ADCx->CFGR1, + ADC_CFGR1_RES + | ADC_CFGR1_ALIGN + | ADC_CFGR1_WAIT + | ADC_CFGR1_AUTOFF + , + pADC_InitStruct->Resolution + | pADC_InitStruct->DataAlignment + | pADC_InitStruct->LowPowerMode + ); + + MODIFY_REG(ADCx->CFGR2, + ADC_CFGR2_CKMODE + , + pADC_InitStruct->Clock + ); + } + else + { + /* Initialization error: ADC instance is not disabled. */ + status = ERROR; + } + + return status; +} + +/** + * @brief Set each @ref LL_ADC_InitTypeDef field to default value. + * @param pADC_InitStruct Pointer to a @ref LL_ADC_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_ADC_StructInit(LL_ADC_InitTypeDef *pADC_InitStruct) +{ + /* Set pADC_InitStruct fields to default values */ + /* Set fields of ADC instance */ + pADC_InitStruct->Clock = LL_ADC_CLOCK_SYNC_PCLK_DIV2; + pADC_InitStruct->Resolution = LL_ADC_RESOLUTION_12B; + pADC_InitStruct->DataAlignment = LL_ADC_DATA_ALIGN_RIGHT; + pADC_InitStruct->LowPowerMode = LL_ADC_LP_MODE_NONE; + +} + +/** + * @brief Initialize some features of ADC group regular. + * @note These parameters have an impact on ADC scope: ADC group regular. + * Refer to corresponding unitary functions into + * @ref ADC_LL_EF_Configuration_ADC_Group_Regular + * (functions with prefix "REG"). + * @note The setting of these parameters by function @ref LL_ADC_Init() + * is conditioned to ADC state: + * ADC instance must be disabled. + * This condition is applied to all ADC features, for efficiency + * and compatibility over all STM32 series. However, the different + * features can be set under different ADC state conditions + * (setting possible with ADC enabled without conversion on going, + * ADC enabled with conversion on going, ...) + * Each feature can be updated afterwards with a unitary function + * and potentially with ADC in a different state than disabled, + * refer to description of each function for setting + * conditioned to ADC state. + * @note Before using this function, ADC group regular sequencer + * must be configured: refer to function + * @ref LL_ADC_REG_SetSequencerConfigurable(). + * @note After using this function, other features must be configured + * using LL unitary functions. + * The minimum configuration remaining to be done is: + * - Set ADC group regular sequencer: + * Depending on the sequencer mode (refer to + * function @ref LL_ADC_REG_SetSequencerConfigurable() ): + * - map channel on the selected sequencer rank. + * Refer to function @ref LL_ADC_REG_SetSequencerRanks(); + * - map channel on rank corresponding to channel number. + * Refer to function @ref LL_ADC_REG_SetSequencerChannels(); + * - Set ADC channel sampling time + * Refer to function LL_ADC_SetSamplingTimeCommonChannels(); + * Refer to function LL_ADC_SetChannelSamplingTime(); + * @param ADCx ADC instance + * @param pADC_RegInitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC registers are initialized + * - ERROR: ADC registers are not initialized + */ +ErrorStatus LL_ADC_REG_Init(ADC_TypeDef *ADCx, const LL_ADC_REG_InitTypeDef *pADC_RegInitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(ADCx)); + assert_param(IS_LL_ADC_REG_TRIG_SOURCE(pADC_RegInitStruct->TriggerSource)); + assert_param(IS_LL_ADC_REG_CONTINUOUS_MODE(pADC_RegInitStruct->ContinuousMode)); + assert_param(IS_LL_ADC_REG_DMA_TRANSFER(pADC_RegInitStruct->DMATransfer)); + assert_param(IS_LL_ADC_REG_OVR_DATA_BEHAVIOR(pADC_RegInitStruct->Overrun)); + + if (LL_ADC_REG_GetSequencerConfigurable(ADCx) != LL_ADC_REG_SEQ_FIXED) + { + assert_param(IS_LL_ADC_REG_SEQ_SCAN_LENGTH(pADC_RegInitStruct->SequencerLength)); + } + + if ((LL_ADC_REG_GetSequencerConfigurable(ADCx) == LL_ADC_REG_SEQ_FIXED) + || (pADC_RegInitStruct->SequencerLength != LL_ADC_REG_SEQ_SCAN_DISABLE) + ) + { + assert_param(IS_LL_ADC_REG_SEQ_SCAN_DISCONT_MODE(pADC_RegInitStruct->SequencerDiscont)); + + /* ADC group regular continuous mode and discontinuous mode */ + /* can not be enabled simultenaeously */ + assert_param((pADC_RegInitStruct->ContinuousMode == LL_ADC_REG_CONV_SINGLE) + || (pADC_RegInitStruct->SequencerDiscont == LL_ADC_REG_SEQ_DISCONT_DISABLE)); + } + + /* Note: Hardware constraint (refer to description of this function): */ + /* ADC instance must be disabled. */ + if (LL_ADC_IsEnabled(ADCx) == 0UL) + { + /* Configuration of ADC hierarchical scope: */ + /* - ADC group regular */ + /* - Set ADC group regular trigger source */ + /* - Set ADC group regular sequencer length */ + /* - Set ADC group regular sequencer discontinuous mode */ + /* - Set ADC group regular continuous mode */ + /* - Set ADC group regular conversion data transfer: no transfer or */ + /* transfer by DMA, and DMA requests mode */ + /* - Set ADC group regular overrun behavior */ + /* Note: On this STM32 series, ADC trigger edge is set to value 0x0 by */ + /* setting of trigger source to SW start. */ + if ((LL_ADC_REG_GetSequencerConfigurable(ADCx) == LL_ADC_REG_SEQ_FIXED) + || (pADC_RegInitStruct->SequencerLength != LL_ADC_REG_SEQ_SCAN_DISABLE) + ) + { + /* Case of sequencer mode fixed + or sequencer length >= 2 ranks with sequencer mode fully configurable: + discontinuous mode configured */ + MODIFY_REG(ADCx->CFGR1, + ADC_CFGR1_EXTSEL + | ADC_CFGR1_EXTEN + | ADC_CFGR1_DISCEN + | ADC_CFGR1_CONT + | ADC_CFGR1_DMAEN + | ADC_CFGR1_DMACFG + | ADC_CFGR1_OVRMOD + , + pADC_RegInitStruct->TriggerSource + | pADC_RegInitStruct->SequencerDiscont + | pADC_RegInitStruct->ContinuousMode + | pADC_RegInitStruct->DMATransfer + | pADC_RegInitStruct->Overrun + ); + } + else + { + /* Case of sequencer mode fully configurable + and sequencer length 1 rank (sequencer disabled): + discontinuous mode discarded (fixed to disable) */ + MODIFY_REG(ADCx->CFGR1, + ADC_CFGR1_EXTSEL + | ADC_CFGR1_EXTEN + | ADC_CFGR1_DISCEN + | ADC_CFGR1_CONT + | ADC_CFGR1_DMAEN + | ADC_CFGR1_DMACFG + | ADC_CFGR1_OVRMOD + , + pADC_RegInitStruct->TriggerSource + | LL_ADC_REG_SEQ_DISCONT_DISABLE + | pADC_RegInitStruct->ContinuousMode + | pADC_RegInitStruct->DMATransfer + | pADC_RegInitStruct->Overrun + ); + } + + /* Set ADC group regular sequencer length */ + if (LL_ADC_REG_GetSequencerConfigurable(ADCx) != LL_ADC_REG_SEQ_FIXED) + { + LL_ADC_REG_SetSequencerLength(ADCx, pADC_RegInitStruct->SequencerLength); + } + } + else + { + /* Initialization error: ADC instance is not disabled. */ + status = ERROR; + } + return status; +} + +/** + * @brief Set each @ref LL_ADC_REG_InitTypeDef field to default value. + * @param pADC_RegInitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_ADC_REG_StructInit(LL_ADC_REG_InitTypeDef *pADC_RegInitStruct) +{ + /* Set pADC_RegInitStruct fields to default values */ + /* Set fields of ADC group regular */ + /* Note: On this STM32 series, ADC trigger edge is set to value 0x0 by */ + /* setting of trigger source to SW start. */ + pADC_RegInitStruct->TriggerSource = LL_ADC_REG_TRIG_SOFTWARE; + pADC_RegInitStruct->SequencerLength = LL_ADC_REG_SEQ_SCAN_DISABLE; + pADC_RegInitStruct->SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE; + pADC_RegInitStruct->ContinuousMode = LL_ADC_REG_CONV_SINGLE; + pADC_RegInitStruct->DMATransfer = LL_ADC_REG_DMA_TRANSFER_NONE; + pADC_RegInitStruct->Overrun = LL_ADC_REG_OVR_DATA_OVERWRITTEN; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* ADC1 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_comp.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_comp.c new file mode 100644 index 0000000..77c2f0b --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_comp.c @@ -0,0 +1,257 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_comp.c + * @author MCD Application Team + * @brief COMP LL module driver + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_comp.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (COMP1) || defined (COMP2) + +/** @addtogroup COMP_LL COMP + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ + +/** @addtogroup COMP_LL_Private_Macros + * @{ + */ + +/* Check of parameters for configuration of COMP hierarchical scope: */ +/* COMP instance. */ + +#define IS_LL_COMP_POWER_MODE(__POWER_MODE__) \ + (((__POWER_MODE__) == LL_COMP_POWERMODE_HIGHSPEED) \ + || ((__POWER_MODE__) == LL_COMP_POWERMODE_MEDIUMSPEED) \ + ) + +#define IS_LL_COMP_INPUT_PLUS(__COMP_INSTANCE__, __INPUT_PLUS__) \ + (((__COMP_INSTANCE__) == COMP1) \ + ? (((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO1) || \ + ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO2) || \ + ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO3) || \ + ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO4) || \ + ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO5) ) \ + : \ + (((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO1) || \ + ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO2) || \ + ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO3) || \ + ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO4) ) \ + ) + +/* Note: On this STM32 series, comparator input minus parameters are */ +/* the same on all COMP instances. */ +/* However, comparator instance kept as macro parameter for */ +/* compatibility with other STM32 series. */ +#define IS_LL_COMP_INPUT_MINUS(__COMP_INSTANCE__, __INPUT_MINUS__) \ + (((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_1_4VREFINT) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_1_2VREFINT) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_3_4VREFINT) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_VREFINT) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_DAC1_CH1) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_IO1) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_IO2) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_IO3) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_IO4) \ + || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_IO5) \ + ) + +#define IS_LL_COMP_INPUT_HYSTERESIS(__INPUT_HYSTERESIS__) \ + (((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_NONE) \ + || ((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_LOW) \ + || ((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_MEDIUM) \ + || ((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_HIGH) \ + ) + +#define IS_LL_COMP_OUTPUT_POLARITY(__POLARITY__) \ + (((__POLARITY__) == LL_COMP_OUTPUTPOL_NONINVERTED) \ + || ((__POLARITY__) == LL_COMP_OUTPUTPOL_INVERTED) \ + ) + +#define IS_LL_COMP_OUTPUT_BLANKING_SOURCE(__OUTPUT_BLANKING_SOURCE__) \ + (((__OUTPUT_BLANKING_SOURCE__) == LL_COMP_BLANKINGSRC_NONE) \ + || ((__OUTPUT_BLANKING_SOURCE__) == LL_COMP_BLANKINGSRC_TIM1_OC4) \ + || ((__OUTPUT_BLANKING_SOURCE__) == LL_COMP_BLANKINGSRC_TIM1_OC5) \ + || ((__OUTPUT_BLANKING_SOURCE__) == LL_COMP_BLANKINGSRC_TIM2_OC3) \ + || ((__OUTPUT_BLANKING_SOURCE__) == LL_COMP_BLANKINGSRC_TIM3_OC3) \ + || ((__OUTPUT_BLANKING_SOURCE__) == LL_COMP_BLANKINGSRC_TIM15_OC2) \ + ) +/** + * @} + */ + + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup COMP_LL_Exported_Functions + * @{ + */ + +/** @addtogroup COMP_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize registers of the selected COMP instance + * to their default reset values. + * @note If comparator is locked, de-initialization by software is + * not possible. + * The only way to unlock the comparator is a device hardware reset. + * @param COMPx COMP instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: COMP registers are de-initialized + * - ERROR: COMP registers are not de-initialized + */ +ErrorStatus LL_COMP_DeInit(COMP_TypeDef *COMPx) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_COMP_ALL_INSTANCE(COMPx)); + + /* Note: Hardware constraint (refer to description of this function): */ + /* COMP instance must not be locked. */ + if (LL_COMP_IsLocked(COMPx) == 0UL) + { + LL_COMP_WriteReg(COMPx, CSR, 0x00000000UL); + + } + else + { + /* Comparator instance is locked: de-initialization by software is */ + /* not possible. */ + /* The only way to unlock the comparator is a device hardware reset. */ + status = ERROR; + } + + return status; +} + +/** + * @brief Initialize some features of COMP instance. + * @note This function configures features of the selected COMP instance. + * Some features are also available at scope COMP common instance + * (common to several COMP instances). + * Refer to functions having argument "COMPxy_COMMON" as parameter. + * @param COMPx COMP instance + * @param COMP_InitStruct Pointer to a @ref LL_COMP_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: COMP registers are initialized + * - ERROR: COMP registers are not initialized + */ +ErrorStatus LL_COMP_Init(COMP_TypeDef *COMPx, const LL_COMP_InitTypeDef *COMP_InitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_COMP_ALL_INSTANCE(COMPx)); + assert_param(IS_LL_COMP_POWER_MODE(COMP_InitStruct->PowerMode)); + assert_param(IS_LL_COMP_INPUT_PLUS(COMPx, COMP_InitStruct->InputPlus)); + assert_param(IS_LL_COMP_INPUT_MINUS(COMPx, COMP_InitStruct->InputMinus)); + assert_param(IS_LL_COMP_INPUT_HYSTERESIS(COMP_InitStruct->InputHysteresis)); + assert_param(IS_LL_COMP_OUTPUT_POLARITY(COMP_InitStruct->OutputPolarity)); + assert_param(IS_LL_COMP_OUTPUT_BLANKING_SOURCE(COMP_InitStruct->OutputBlankingSource)); + + /* Note: Hardware constraint (refer to description of this function) */ + /* COMP instance must not be locked. */ + if (LL_COMP_IsLocked(COMPx) == 0UL) + { + /* Configuration of comparator instance : */ + /* - PowerMode */ + /* - InputPlus */ + /* - InputMinus */ + /* - InputHysteresis */ + /* - OutputPolarity */ + /* - OutputBlankingSource */ + MODIFY_REG(COMPx->CSR, + COMP_CSR_PWRMODE + | COMP_CSR_INPSEL + | COMP_CSR_INMSEL + | COMP_CSR_HYST + | COMP_CSR_POLARITY + | COMP_CSR_BLANKSEL + , + COMP_InitStruct->PowerMode + | COMP_InitStruct->InputPlus + | COMP_InitStruct->InputMinus + | COMP_InitStruct->InputHysteresis + | COMP_InitStruct->OutputPolarity + | COMP_InitStruct->OutputBlankingSource + ); + + } + else + { + /* Initialization error: COMP instance is locked. */ + status = ERROR; + } + + return status; +} + +/** + * @brief Set each @ref LL_COMP_InitTypeDef field to default value. + * @param COMP_InitStruct Pointer to a @ref LL_COMP_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_COMP_StructInit(LL_COMP_InitTypeDef *COMP_InitStruct) +{ + /* Set COMP_InitStruct fields to default values */ + COMP_InitStruct->PowerMode = LL_COMP_POWERMODE_MEDIUMSPEED; + COMP_InitStruct->InputPlus = LL_COMP_INPUT_PLUS_IO1; + COMP_InitStruct->InputMinus = LL_COMP_INPUT_MINUS_VREFINT; + COMP_InitStruct->InputHysteresis = LL_COMP_HYSTERESIS_NONE; + COMP_InitStruct->OutputPolarity = LL_COMP_OUTPUTPOL_NONINVERTED; + COMP_InitStruct->OutputBlankingSource = LL_COMP_BLANKINGSRC_NONE; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* COMP1 || COMP2 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crc.c new file mode 100644 index 0000000..a512318 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crc.c @@ -0,0 +1,103 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_crc.c + * @author MCD Application Team + * @brief CRC LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_crc.h" +#include "stm32u0xx_ll_bus.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (CRC) + +/** @addtogroup CRC_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup CRC_LL_Exported_Functions + * @{ + */ + +/** @addtogroup CRC_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize CRC registers (Registers restored to their default values). + * @param CRCx CRC Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: CRC registers are de-initialized + * - ERROR: CRC registers are not de-initialized + */ +ErrorStatus LL_CRC_DeInit(const CRC_TypeDef *CRCx) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_CRC_ALL_INSTANCE(CRCx)); + + if (CRCx == CRC) + { + /* Force CRC reset */ + LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_CRC); + + /* Release CRC reset */ + LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_CRC); + } + else + { + status = ERROR; + } + + return (status); +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* defined (CRC) */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crs.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crs.c new file mode 100644 index 0000000..8a57d40 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_crs.c @@ -0,0 +1,81 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_crs.h + * @author MCD Application Team + * @brief CRS LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_crs.h" +#include "stm32u0xx_ll_bus.h" + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined(CRS) + +/** @defgroup CRS_LL CRS + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup CRS_LL_Exported_Functions + * @{ + */ + +/** @addtogroup CRS_LL_EF_Init + * @{ + */ + +/** + * @brief De-Initializes CRS peripheral registers to their default reset values. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: CRS registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_CRS_DeInit(void) +{ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_CRS); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_CRS); + + return SUCCESS; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* defined(CRS) */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dac.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dac.c new file mode 100644 index 0000000..7392a4c --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dac.c @@ -0,0 +1,289 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_dac.c + * @author MCD Application Team + * @brief DAC LL module driver + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_dac.h" +#include "stm32u0xx_ll_bus.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined(DAC1) + +/** @addtogroup DAC_LL DAC + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ + +/** @addtogroup DAC_LL_Private_Macros + * @{ + */ +#define IS_LL_DAC_CHANNEL(__DACX__, __DAC_CHANNEL__) \ + (((__DAC_CHANNEL__) == LL_DAC_CHANNEL_1)) + +#define IS_LL_DAC_TRIGGER_SOURCE(__TRIGGER_SOURCE__) \ + (((__TRIGGER_SOURCE__) == LL_DAC_TRIG_SOFTWARE) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM1_TRGO) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM2_TRGO) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM3_TRGO) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM6_TRGO) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM7_TRGO) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM15_TRGO) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_LPTIM1_OUT) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_LPTIM2_OUT) \ + || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_EXTI_LINE9) \ + ) + +#define IS_LL_DAC_WAVE_AUTO_GENER_MODE(__WAVE_AUTO_GENERATION_MODE__) \ + (((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_NONE) \ + || ((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_NOISE) \ + || ((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_TRIANGLE) \ + ) + +#define IS_LL_DAC_WAVE_AUTO_GENER_CONFIG(__WAVE_AUTO_GENERATION_MODE__, __WAVE_AUTO_GENERATION_CONFIG__) \ + ( (((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_NOISE) \ + && (((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BIT0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS1_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS2_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS3_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS4_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS5_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS6_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS7_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS8_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS9_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS10_0) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS11_0)) \ + ) \ + ||(((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_TRIANGLE) \ + && (((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_1) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_3) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_7) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_15) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_31) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_63) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_127) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_255) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_511) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_1023) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_2047) \ + || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_4095)) \ + ) \ + ) + +#define IS_LL_DAC_OUTPUT_BUFFER(__OUTPUT_BUFFER__) \ + (((__OUTPUT_BUFFER__) == LL_DAC_OUTPUT_BUFFER_ENABLE) \ + || ((__OUTPUT_BUFFER__) == LL_DAC_OUTPUT_BUFFER_DISABLE) \ + ) + +#define IS_LL_DAC_OUTPUT_CONNECTION(__OUTPUT_CONNECTION__) \ + (((__OUTPUT_CONNECTION__) == LL_DAC_OUTPUT_CONNECT_GPIO) \ + || ((__OUTPUT_CONNECTION__) == LL_DAC_OUTPUT_CONNECT_INTERNAL) \ + ) + +#define IS_LL_DAC_OUTPUT_MODE(__OUTPUT_MODE__) \ + (((__OUTPUT_MODE__) == LL_DAC_OUTPUT_MODE_NORMAL) \ + || ((__OUTPUT_MODE__) == LL_DAC_OUTPUT_MODE_SAMPLE_AND_HOLD) \ + ) + +/** + * @} + */ + + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup DAC_LL_Exported_Functions + * @{ + */ + +/** @addtogroup DAC_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize registers of the selected DAC instance + * to their default reset values. + * @param DACx DAC instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: DAC registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_DAC_DeInit(const DAC_TypeDef *DACx) +{ + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(DACx)); + + /* Force reset of DAC clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_DAC1); + + /* Release reset of DAC clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_DAC1); + + return SUCCESS; +} + +/** + * @brief Initialize some features of DAC channel. + * @note @ref LL_DAC_Init() aims to ease basic configuration of a DAC channel. + * Leaving it ready to be enabled and output: + * a level by calling one of + * @ref LL_DAC_ConvertData12RightAligned + * @ref LL_DAC_ConvertData12LeftAligned + * @ref LL_DAC_ConvertData8RightAligned + * or one of the supported autogenerated wave. + * @note This function allows configuration of: + * - Output mode + * - Trigger + * - Wave generation + * @note The setting of these parameters by function @ref LL_DAC_Init() + * is conditioned to DAC state: + * DAC channel must be disabled. + * @param DACx DAC instance + * @param DAC_Channel This parameter can be one of the following values: + * @arg @ref LL_DAC_CHANNEL_1 + * @param DAC_InitStruct Pointer to a @ref LL_DAC_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: DAC registers are initialized + * - ERROR: DAC registers are not initialized + */ +ErrorStatus LL_DAC_Init(DAC_TypeDef *DACx, uint32_t DAC_Channel, const LL_DAC_InitTypeDef *DAC_InitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(DACx)); + assert_param(IS_LL_DAC_CHANNEL(DACx, DAC_Channel)); + assert_param(IS_LL_DAC_TRIGGER_SOURCE(DAC_InitStruct->TriggerSource)); + assert_param(IS_LL_DAC_OUTPUT_BUFFER(DAC_InitStruct->OutputBuffer)); + assert_param(IS_LL_DAC_OUTPUT_CONNECTION(DAC_InitStruct->OutputConnection)); + assert_param(IS_LL_DAC_OUTPUT_MODE(DAC_InitStruct->OutputMode)); + assert_param(IS_LL_DAC_WAVE_AUTO_GENER_MODE(DAC_InitStruct->WaveAutoGeneration)); + if (DAC_InitStruct->WaveAutoGeneration != LL_DAC_WAVE_AUTO_GENERATION_NONE) + { + assert_param(IS_LL_DAC_WAVE_AUTO_GENER_CONFIG(DAC_InitStruct->WaveAutoGeneration, + DAC_InitStruct->WaveAutoGenerationConfig)); + } + + /* Note: Hardware constraint (refer to description of this function) */ + /* DAC instance must be disabled. */ + if (LL_DAC_IsEnabled(DACx, DAC_Channel) == 0UL) + { + /* Configuration of DAC channel: */ + /* - TriggerSource */ + /* - WaveAutoGeneration */ + /* - OutputBuffer */ + /* - OutputConnection */ + /* - OutputMode */ + if (DAC_InitStruct->WaveAutoGeneration != LL_DAC_WAVE_AUTO_GENERATION_NONE) + { + MODIFY_REG(DACx->CR, + (DAC_CR_TSEL1 + | DAC_CR_WAVE1 + | DAC_CR_MAMP1 + ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) + , + (DAC_InitStruct->TriggerSource + | DAC_InitStruct->WaveAutoGeneration + | DAC_InitStruct->WaveAutoGenerationConfig + ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) + ); + } + else + { + MODIFY_REG(DACx->CR, + (DAC_CR_TSEL1 + | DAC_CR_WAVE1 + ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) + , + (DAC_InitStruct->TriggerSource + | LL_DAC_WAVE_AUTO_GENERATION_NONE + ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) + ); + } + MODIFY_REG(DACx->MCR, + (DAC_MCR_MODE1_1 + | DAC_MCR_MODE1_0 + | DAC_MCR_MODE1_2 + ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) + , + (DAC_InitStruct->OutputBuffer + | DAC_InitStruct->OutputConnection + | DAC_InitStruct->OutputMode + ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) + ); + } + else + { + /* Initialization error: DAC instance is not disabled. */ + status = ERROR; + } + return status; +} + +/** + * @brief Set each @ref LL_DAC_InitTypeDef field to default value. + * @param DAC_InitStruct pointer to a @ref LL_DAC_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_DAC_StructInit(LL_DAC_InitTypeDef *DAC_InitStruct) +{ + /* Set DAC_InitStruct fields to default values */ + DAC_InitStruct->TriggerSource = LL_DAC_TRIG_SOFTWARE; + DAC_InitStruct->WaveAutoGeneration = LL_DAC_WAVE_AUTO_GENERATION_NONE; + /* Note: Parameter discarded if wave auto generation is disabled, */ + /* set anyway to its default value. */ + DAC_InitStruct->WaveAutoGenerationConfig = LL_DAC_NOISE_LFSR_UNMASK_BIT0; + DAC_InitStruct->OutputBuffer = LL_DAC_OUTPUT_BUFFER_ENABLE; + DAC_InitStruct->OutputConnection = LL_DAC_OUTPUT_CONNECT_GPIO; + DAC_InitStruct->OutputMode = LL_DAC_OUTPUT_MODE_NORMAL; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* DAC1 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dma.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dma.c new file mode 100644 index 0000000..c0839d3 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_dma.c @@ -0,0 +1,353 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_dma.c + * @author GPM Application Team + * @brief DMA LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_dma.h" +#include "stm32u0xx_ll_bus.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (DMA1) || defined (DMA2) + +/** @defgroup DMA_LL DMA + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup DMA_LL_Private_Macros + * @{ + */ +#define IS_LL_DMA_DIRECTION(__VALUE__) (((__VALUE__) == LL_DMA_DIRECTION_PERIPH_TO_MEMORY) || \ + ((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_PERIPH) || \ + ((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_MEMORY)) + +#define IS_LL_DMA_MODE(__VALUE__) (((__VALUE__) == LL_DMA_MODE_NORMAL) || \ + ((__VALUE__) == LL_DMA_MODE_CIRCULAR)) + +#define IS_LL_DMA_PERIPHINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_PERIPH_INCREMENT) || \ + ((__VALUE__) == LL_DMA_PERIPH_NOINCREMENT)) + +#define IS_LL_DMA_MEMORYINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_MEMORY_INCREMENT) || \ + ((__VALUE__) == LL_DMA_MEMORY_NOINCREMENT)) + +#define IS_LL_DMA_PERIPHDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_PDATAALIGN_BYTE) || \ + ((__VALUE__) == LL_DMA_PDATAALIGN_HALFWORD) || \ + ((__VALUE__) == LL_DMA_PDATAALIGN_WORD)) + +#define IS_LL_DMA_MEMORYDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_MDATAALIGN_BYTE) || \ + ((__VALUE__) == LL_DMA_MDATAALIGN_HALFWORD) || \ + ((__VALUE__) == LL_DMA_MDATAALIGN_WORD)) + +#define IS_LL_DMA_NBDATA(__VALUE__) ((__VALUE__) <= 0x0000FFFFU) + +#define IS_LL_DMA_PERIPHREQUEST(__VALUE__) ((__VALUE__) <= LL_DMAMUX_MAX_REQ) + +#define IS_LL_DMA_PRIORITY(__VALUE__) (((__VALUE__) == LL_DMA_PRIORITY_LOW) || \ + ((__VALUE__) == LL_DMA_PRIORITY_MEDIUM) || \ + ((__VALUE__) == LL_DMA_PRIORITY_HIGH) || \ + ((__VALUE__) == LL_DMA_PRIORITY_VERYHIGH)) + +#if defined(DMA2) +#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \ + (((CHANNEL) == LL_DMA_CHANNEL_1) || \ + ((CHANNEL) == LL_DMA_CHANNEL_2) || \ + ((CHANNEL) == LL_DMA_CHANNEL_3) || \ + ((CHANNEL) == LL_DMA_CHANNEL_4) || \ + ((CHANNEL) == LL_DMA_CHANNEL_5) || \ + ((CHANNEL) == LL_DMA_CHANNEL_6) || \ + ((CHANNEL) == LL_DMA_CHANNEL_7))) || \ + (((INSTANCE) == DMA2) && \ + (((CHANNEL) == LL_DMA_CHANNEL_1) || \ + ((CHANNEL) == LL_DMA_CHANNEL_2) || \ + ((CHANNEL) == LL_DMA_CHANNEL_3) || \ + ((CHANNEL) == LL_DMA_CHANNEL_4) || \ + ((CHANNEL) == LL_DMA_CHANNEL_5)))) +#else /* DMA1 */ +#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \ + (((CHANNEL) == LL_DMA_CHANNEL_1) || \ + ((CHANNEL) == LL_DMA_CHANNEL_2) || \ + ((CHANNEL) == LL_DMA_CHANNEL_3) || \ + ((CHANNEL) == LL_DMA_CHANNEL_4) || \ + ((CHANNEL) == LL_DMA_CHANNEL_5) || \ + ((CHANNEL) == LL_DMA_CHANNEL_6) || \ + ((CHANNEL) == LL_DMA_CHANNEL_7)))) +#endif /* DMA2 */ +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup DMA_LL_Exported_Functions + * @{ + */ + +/** @addtogroup DMA_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize the DMA registers to their default reset values. + * @param DMAx DMAx Instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_DMA_CHANNEL_1 + * @arg @ref LL_DMA_CHANNEL_2 + * @arg @ref LL_DMA_CHANNEL_3 + * @arg @ref LL_DMA_CHANNEL_4 + * @arg @ref LL_DMA_CHANNEL_5 + * @arg @ref LL_DMA_CHANNEL_6 + * @arg @ref LL_DMA_CHANNEL_7 + * @arg @ref LL_DMA_CHANNEL_ALL + * @retval An ErrorStatus enumeration value: + * - SUCCESS: DMA registers are de-initialized + * - ERROR: DMA registers are not de-initialized + */ +ErrorStatus LL_DMA_DeInit(DMA_TypeDef *DMAx, uint32_t Channel) +{ + ErrorStatus status = SUCCESS; + + /* Check the DMA Instance DMAx and Channel parameters*/ + assert_param(IS_LL_DMA_ALL_CHANNEL_INSTANCE(DMAx, Channel) || (Channel == LL_DMA_CHANNEL_ALL)); + + if (Channel == LL_DMA_CHANNEL_ALL) + { + if (DMAx == DMA1) + { + /* Force reset of DMA clock */ + LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_DMA1); + + /* Release reset of DMA clock */ + LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_DMA1); + } +#if defined(DMA2) + else if (DMAx == DMA2) + { + /* Force reset of DMA clock */ + LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_DMA2); + + /* Release reset of DMA clock */ + LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_DMA2); + } +#endif /* DMA2 */ + else + { + status = ERROR; + } + } + else + { + DMA_Channel_TypeDef *tmp; + + tmp = (DMA_Channel_TypeDef *)(__LL_DMA_GET_CHANNEL_INSTANCE(DMAx, Channel)); + + /* Disable the selected DMAx_Channely */ + CLEAR_BIT(tmp->CCR, DMA_CCR_EN); + + /* Reset DMAx_Channely control register */ + WRITE_REG(tmp->CCR, 0U); + + /* Reset DMAx_Channely remaining bytes register */ + WRITE_REG(tmp->CNDTR, 0U); + + /* Reset DMAx_Channely peripheral address register */ + WRITE_REG(tmp->CPAR, 0U); + + /* Reset DMAx_Channely memory address register */ + WRITE_REG(tmp->CMAR, 0U); + + /* Reset Request register field for DMAx Channel */ + LL_DMA_SetPeriphRequest(DMAx, Channel, LL_DMAMUX_REQ_MEM2MEM); + + if (Channel == LL_DMA_CHANNEL_1) + { + /* Reset interrupt pending bits for DMAx Channel1 */ + LL_DMA_ClearFlag_GI1(DMAx); + } + else if (Channel == LL_DMA_CHANNEL_2) + { + /* Reset interrupt pending bits for DMAx Channel2 */ + LL_DMA_ClearFlag_GI2(DMAx); + } + else if (Channel == LL_DMA_CHANNEL_3) + { + /* Reset interrupt pending bits for DMAx Channel3 */ + LL_DMA_ClearFlag_GI3(DMAx); + } + else if (Channel == LL_DMA_CHANNEL_4) + { + /* Reset interrupt pending bits for DMAx Channel4 */ + LL_DMA_ClearFlag_GI4(DMAx); + } + else if (Channel == LL_DMA_CHANNEL_5) + { + /* Reset interrupt pending bits for DMAx Channel5 */ + LL_DMA_ClearFlag_GI5(DMAx); + } + else if (Channel == LL_DMA_CHANNEL_6) + { + /* Reset interrupt pending bits for DMAx Channel6 */ + LL_DMA_ClearFlag_GI6(DMAx); + } + else if (Channel == LL_DMA_CHANNEL_7) + { + /* Reset interrupt pending bits for DMAx Channel7 */ + LL_DMA_ClearFlag_GI7(DMAx); + } + else + { + status = ERROR; + } + } + + return status; +} + +/** + * @brief Initialize the DMA registers according to the specified parameters in DMA_InitStruct. + * @note To convert DMAx_Channely Instance to DMAx Instance and Channely, use helper macros : + * @arg @ref __LL_DMA_GET_INSTANCE + * @arg @ref __LL_DMA_GET_CHANNEL + * @param DMAx DMAx Instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_DMA_CHANNEL_1 + * @arg @ref LL_DMA_CHANNEL_2 + * @arg @ref LL_DMA_CHANNEL_3 + * @arg @ref LL_DMA_CHANNEL_4 + * @arg @ref LL_DMA_CHANNEL_5 + * @arg @ref LL_DMA_CHANNEL_6 + * @arg @ref LL_DMA_CHANNEL_7 + * @param DMA_InitStruct pointer to a @ref LL_DMA_InitTypeDef structure. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: DMA registers are initialized + * - ERROR: Not applicable + */ +ErrorStatus LL_DMA_Init(DMA_TypeDef *DMAx, uint32_t Channel, LL_DMA_InitTypeDef *DMA_InitStruct) +{ + /* Check the DMA Instance DMAx and Channel parameters*/ + assert_param(IS_LL_DMA_ALL_CHANNEL_INSTANCE(DMAx, Channel)); + + /* Check the DMA parameters from DMA_InitStruct */ + assert_param(IS_LL_DMA_DIRECTION(DMA_InitStruct->Direction)); + assert_param(IS_LL_DMA_MODE(DMA_InitStruct->Mode)); + assert_param(IS_LL_DMA_PERIPHINCMODE(DMA_InitStruct->PeriphOrM2MSrcIncMode)); + assert_param(IS_LL_DMA_MEMORYINCMODE(DMA_InitStruct->MemoryOrM2MDstIncMode)); + assert_param(IS_LL_DMA_PERIPHDATASIZE(DMA_InitStruct->PeriphOrM2MSrcDataSize)); + assert_param(IS_LL_DMA_MEMORYDATASIZE(DMA_InitStruct->MemoryOrM2MDstDataSize)); + assert_param(IS_LL_DMA_NBDATA(DMA_InitStruct->NbData)); + assert_param(IS_LL_DMA_PERIPHREQUEST(DMA_InitStruct->PeriphRequest)); + assert_param(IS_LL_DMA_PRIORITY(DMA_InitStruct->Priority)); + + /*---------------------------- DMAx CCR Configuration ------------------------ + * Configure DMAx_Channely: data transfer direction, data transfer mode, + * peripheral and memory increment mode, + * data size alignment and priority level with parameters : + * - Direction: DMA_CCR_DIR and DMA_CCR_MEM2MEM bits + * - Mode: DMA_CCR_CIRC bit + * - PeriphOrM2MSrcIncMode: DMA_CCR_PINC bit + * - MemoryOrM2MDstIncMode: DMA_CCR_MINC bit + * - PeriphOrM2MSrcDataSize: DMA_CCR_PSIZE[1:0] bits + * - MemoryOrM2MDstDataSize: DMA_CCR_MSIZE[1:0] bits + * - Priority: DMA_CCR_PL[1:0] bits + */ + LL_DMA_ConfigTransfer(DMAx, Channel, DMA_InitStruct->Direction | \ + DMA_InitStruct->Mode | \ + DMA_InitStruct->PeriphOrM2MSrcIncMode | \ + DMA_InitStruct->MemoryOrM2MDstIncMode | \ + DMA_InitStruct->PeriphOrM2MSrcDataSize | \ + DMA_InitStruct->MemoryOrM2MDstDataSize | \ + DMA_InitStruct->Priority); + + /*-------------------------- DMAx CMAR Configuration ------------------------- + * Configure the memory or destination base address with parameter : + * - MemoryOrM2MDstAddress: DMA_CMAR_MA[31:0] bits + */ + LL_DMA_SetMemoryAddress(DMAx, Channel, DMA_InitStruct->MemoryOrM2MDstAddress); + + /*-------------------------- DMAx CPAR Configuration ------------------------- + * Configure the peripheral or source base address with parameter : + * - PeriphOrM2MSrcAddress: DMA_CPAR_PA[31:0] bits + */ + LL_DMA_SetPeriphAddress(DMAx, Channel, DMA_InitStruct->PeriphOrM2MSrcAddress); + + /*--------------------------- DMAx CNDTR Configuration ----------------------- + * Configure the peripheral base address with parameter : + * - NbData: DMA_CNDTR_NDT[15:0] bits + */ + LL_DMA_SetDataLength(DMAx, Channel, DMA_InitStruct->NbData); + + /*--------------------------- DMAMUXx CCR Configuration ---------------------- + * Configure the DMA request for DMA Channels on DMAMUX Channel x with parameter : + * - PeriphRequest: DMA_CxCR[7:0] bits + */ + LL_DMA_SetPeriphRequest(DMAx, Channel, DMA_InitStruct->PeriphRequest); + + return SUCCESS; +} + +/** + * @brief Set each @ref LL_DMA_InitTypeDef field to default value. + * @param DMA_InitStruct Pointer to a @ref LL_DMA_InitTypeDef structure. + * @retval None + */ +void LL_DMA_StructInit(LL_DMA_InitTypeDef *DMA_InitStruct) +{ + /* Set DMA_InitStruct fields to default values */ + DMA_InitStruct->PeriphOrM2MSrcAddress = 0x00000000U; + DMA_InitStruct->MemoryOrM2MDstAddress = 0x00000000U; + DMA_InitStruct->Direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY; + DMA_InitStruct->Mode = LL_DMA_MODE_NORMAL; + DMA_InitStruct->PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT; + DMA_InitStruct->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_NOINCREMENT; + DMA_InitStruct->PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_BYTE; + DMA_InitStruct->MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE; + DMA_InitStruct->NbData = 0x00000000U; + DMA_InitStruct->PeriphRequest = LL_DMAMUX_REQ_MEM2MEM; + DMA_InitStruct->Priority = LL_DMA_PRIORITY_LOW; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* DMA1 || DMA2 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_exti.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_exti.c new file mode 100644 index 0000000..1cb27a9 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_exti.c @@ -0,0 +1,248 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_exti.c + * @author MCD Application Team + * @brief EXTI LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_exti.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (EXTI) + +/** @defgroup EXTI_LL EXTI + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup EXTI_LL_Private_Macros + * @{ + */ + +#define IS_LL_EXTI_LINE_0_31(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_0_31) == 0x00000000U) +#define IS_LL_EXTI_LINE_32_63(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_32_63) == 0x00000000U) + +#define IS_LL_EXTI_MODE(__VALUE__) (((__VALUE__) == LL_EXTI_MODE_IT) \ + || ((__VALUE__) == LL_EXTI_MODE_EVENT) \ + || ((__VALUE__) == LL_EXTI_MODE_IT_EVENT)) + +#define IS_LL_EXTI_TRIGGER(__VALUE__) (((__VALUE__) == LL_EXTI_TRIGGER_NONE) \ + || ((__VALUE__) == LL_EXTI_TRIGGER_RISING) \ + || ((__VALUE__) == LL_EXTI_TRIGGER_FALLING) \ + || ((__VALUE__) == LL_EXTI_TRIGGER_RISING_FALLING)) + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup EXTI_LL_Exported_Functions + * @{ + */ + +/** @addtogroup EXTI_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize the EXTI registers to their default reset values. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: EXTI registers are de-initialized + * - ERROR: not applicable + */ +uint32_t LL_EXTI_DeInit(void) +{ + /* Interrupt mask register set to default reset values */ + LL_EXTI_WriteReg(IMR1, 0xFFC00000U); + /* Event mask register set to default reset values */ + LL_EXTI_WriteReg(EMR1, 0x00000000U); + /* Rising Trigger selection register set to default reset values */ + LL_EXTI_WriteReg(RTSR1, 0x00000000U); + /* Falling Trigger selection register set to default reset values */ + LL_EXTI_WriteReg(FTSR1, 0x00000000U); + /* Software interrupt event register set to default reset values */ + LL_EXTI_WriteReg(SWIER1, 0x00000000U); + /* Pending register set to default reset values */ + LL_EXTI_WriteReg(RPR1, 0x0017FFFFU); + LL_EXTI_WriteReg(FPR1, 0x0017FFFFU); + /* Interrupt mask register 2 set to default reset values */ + LL_EXTI_WriteReg(IMR2, 0x0000003FU); + /* Event mask register 2 set to default reset values */ + LL_EXTI_WriteReg(EMR2, 0x00000000U); + + return SUCCESS; +} + +/** + * @brief Initialize the EXTI registers according to the specified parameters in EXTI_InitStruct. + * @param EXTI_InitStruct pointer to a @ref LL_EXTI_InitTypeDef structure. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: EXTI registers are initialized + * - ERROR: not applicable + */ +uint32_t LL_EXTI_Init(LL_EXTI_InitTypeDef *EXTI_InitStruct) +{ + ErrorStatus status = SUCCESS; + /* Check the parameters */ + assert_param(IS_LL_EXTI_LINE_0_31(EXTI_InitStruct->Line_0_31)); + assert_param(IS_LL_EXTI_LINE_32_63(EXTI_InitStruct->Line_32_63)); + assert_param(IS_FUNCTIONAL_STATE(EXTI_InitStruct->LineCommand)); + assert_param(IS_LL_EXTI_MODE(EXTI_InitStruct->Mode)); + + /* ENABLE LineCommand */ + if (EXTI_InitStruct->LineCommand != DISABLE) + { + assert_param(IS_LL_EXTI_TRIGGER(EXTI_InitStruct->Trigger)); + + /* Configure EXTI Lines in range from 0 to 31 */ + if (EXTI_InitStruct->Line_0_31 != LL_EXTI_LINE_NONE) + { + switch (EXTI_InitStruct->Mode) + { + case LL_EXTI_MODE_IT: + /* First Disable Event on provided Lines */ + LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31); + /* Then Enable IT on provided Lines */ + LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31); + break; + case LL_EXTI_MODE_EVENT: + /* First Disable IT on provided Lines */ + LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31); + /* Then Enable Event on provided Lines */ + LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31); + break; + case LL_EXTI_MODE_IT_EVENT: + /* Directly Enable IT & Event on provided Lines */ + LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31); + LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31); + break; + default: + status = ERROR; + break; + } + if (EXTI_InitStruct->Trigger != LL_EXTI_TRIGGER_NONE) + { + switch (EXTI_InitStruct->Trigger) + { + case LL_EXTI_TRIGGER_RISING: + /* First Disable Falling Trigger on provided Lines */ + LL_EXTI_DisableFallingTrig_0_31(EXTI_InitStruct->Line_0_31); + /* Then Enable Rising Trigger on provided Lines */ + LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31); + break; + case LL_EXTI_TRIGGER_FALLING: + /* First Disable Rising Trigger on provided Lines */ + LL_EXTI_DisableRisingTrig_0_31(EXTI_InitStruct->Line_0_31); + /* Then Enable Falling Trigger on provided Lines */ + LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31); + break; + case LL_EXTI_TRIGGER_RISING_FALLING: + LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31); + LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31); + break; + default: + status = ERROR; + break; + } + } + } + /* Configure EXTI Lines in range from 32 to 63 */ + if (EXTI_InitStruct->Line_32_63 != LL_EXTI_LINE_NONE) + { + switch (EXTI_InitStruct->Mode) + { + case LL_EXTI_MODE_IT: + /* First Disable Event on provided Lines */ + LL_EXTI_DisableEvent_32_63(EXTI_InitStruct->Line_32_63); + /* Then Enable IT on provided Lines */ + LL_EXTI_EnableIT_32_63(EXTI_InitStruct->Line_32_63); + break; + case LL_EXTI_MODE_EVENT: + /* First Disable IT on provided Lines */ + LL_EXTI_DisableIT_32_63(EXTI_InitStruct->Line_32_63); + /* Then Enable Event on provided Lines */ + LL_EXTI_EnableEvent_32_63(EXTI_InitStruct->Line_32_63); + break; + case LL_EXTI_MODE_IT_EVENT: + /* Directly Enable IT & Event on provided Lines */ + LL_EXTI_EnableIT_32_63(EXTI_InitStruct->Line_32_63); + LL_EXTI_EnableEvent_32_63(EXTI_InitStruct->Line_32_63); + break; + default: + status = ERROR; + break; + } + } + } + /* DISABLE LineCommand */ + else + { + /* De-configure EXTI Lines in range from 0 to 31 */ + LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31); + LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31); + /* De-configure EXTI Lines in range from 32 to 63 */ + LL_EXTI_DisableIT_32_63(EXTI_InitStruct->Line_32_63); + LL_EXTI_DisableEvent_32_63(EXTI_InitStruct->Line_32_63); + } + return status; +} + +/** + * @brief Set each @ref LL_EXTI_InitTypeDef field to default value. + * @param EXTI_InitStruct Pointer to a @ref LL_EXTI_InitTypeDef structure. + * @retval None + */ +void LL_EXTI_StructInit(LL_EXTI_InitTypeDef *EXTI_InitStruct) +{ + EXTI_InitStruct->Line_0_31 = LL_EXTI_LINE_NONE; + EXTI_InitStruct->Line_32_63 = LL_EXTI_LINE_NONE; + EXTI_InitStruct->LineCommand = DISABLE; + EXTI_InitStruct->Mode = LL_EXTI_MODE_IT; + EXTI_InitStruct->Trigger = LL_EXTI_TRIGGER_FALLING; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* defined (EXTI) */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_gpio.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_gpio.c new file mode 100644 index 0000000..299defb --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_gpio.c @@ -0,0 +1,263 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_gpio.c + * @author MCD Application Team + * @brief GPIO LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_gpio.h" +#include "stm32u0xx_ll_bus.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +/** @addtogroup GPIO_LL + * @{ + */ +/** MISRA C:2012 deviation rule has been granted for following rules: + * Rule-12.2 - Medium: RHS argument is in interval [0,INF] which is out of + * range of the shift operator in following API : + * LL_GPIO_Init + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup GPIO_LL_Private_Macros + * @{ + */ +#define IS_LL_GPIO_PIN(__VALUE__) (((0x00u) < (__VALUE__)) && ((__VALUE__) <= (LL_GPIO_PIN_ALL))) + +#define IS_LL_GPIO_MODE(__VALUE__) (((__VALUE__) == LL_GPIO_MODE_INPUT) ||\ + ((__VALUE__) == LL_GPIO_MODE_OUTPUT) ||\ + ((__VALUE__) == LL_GPIO_MODE_ALTERNATE) ||\ + ((__VALUE__) == LL_GPIO_MODE_ANALOG)) + +#define IS_LL_GPIO_OUTPUT_TYPE(__VALUE__) (((__VALUE__) == LL_GPIO_OUTPUT_PUSHPULL) ||\ + ((__VALUE__) == LL_GPIO_OUTPUT_OPENDRAIN)) + +#define IS_LL_GPIO_SPEED(__VALUE__) (((__VALUE__) == LL_GPIO_SPEED_FREQ_LOW) ||\ + ((__VALUE__) == LL_GPIO_SPEED_FREQ_MEDIUM) ||\ + ((__VALUE__) == LL_GPIO_SPEED_FREQ_HIGH) ||\ + ((__VALUE__) == LL_GPIO_SPEED_FREQ_VERY_HIGH)) + +#define IS_LL_GPIO_PULL(__VALUE__) (((__VALUE__) == LL_GPIO_PULL_NO) ||\ + ((__VALUE__) == LL_GPIO_PULL_UP) ||\ + ((__VALUE__) == LL_GPIO_PULL_DOWN)) + +#define IS_LL_GPIO_ALTERNATE(__VALUE__) (((__VALUE__) == LL_GPIO_AF_0 ) ||\ + ((__VALUE__) == LL_GPIO_AF_1 ) ||\ + ((__VALUE__) == LL_GPIO_AF_2 ) ||\ + ((__VALUE__) == LL_GPIO_AF_3 ) ||\ + ((__VALUE__) == LL_GPIO_AF_4 ) ||\ + ((__VALUE__) == LL_GPIO_AF_5 ) ||\ + ((__VALUE__) == LL_GPIO_AF_6 ) ||\ + ((__VALUE__) == LL_GPIO_AF_7 ) ||\ + ((__VALUE__) == LL_GPIO_AF_8 ) ||\ + ((__VALUE__) == LL_GPIO_AF_9 ) ||\ + ((__VALUE__) == LL_GPIO_AF_10 ) ||\ + ((__VALUE__) == LL_GPIO_AF_11 ) ||\ + ((__VALUE__) == LL_GPIO_AF_12 ) ||\ + ((__VALUE__) == LL_GPIO_AF_13 ) ||\ + ((__VALUE__) == LL_GPIO_AF_14 ) ||\ + ((__VALUE__) == LL_GPIO_AF_15 )) +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup GPIO_LL_Exported_Functions + * @{ + */ + +/** @addtogroup GPIO_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize GPIO registers (Registers restored to their default values). + * @param GPIOx GPIO Port + * @retval An ErrorStatus enumeration value: + * - SUCCESS: GPIO registers are de-initialized + * - ERROR: Wrong GPIO Port + */ +ErrorStatus LL_GPIO_DeInit(GPIO_TypeDef *GPIOx) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + + /* Force and Release reset on clock of GPIOx Port */ + if (GPIOx == GPIOA) + { + LL_IOP_GRP1_ForceReset(LL_IOP_GRP1_PERIPH_GPIOA); + LL_IOP_GRP1_ReleaseReset(LL_IOP_GRP1_PERIPH_GPIOA); + } + else if (GPIOx == GPIOB) + { + LL_IOP_GRP1_ForceReset(LL_IOP_GRP1_PERIPH_GPIOB); + LL_IOP_GRP1_ReleaseReset(LL_IOP_GRP1_PERIPH_GPIOB); + } + else if (GPIOx == GPIOC) + { + LL_IOP_GRP1_ForceReset(LL_IOP_GRP1_PERIPH_GPIOC); + LL_IOP_GRP1_ReleaseReset(LL_IOP_GRP1_PERIPH_GPIOC); + } + else if (GPIOx == GPIOD) + { + LL_IOP_GRP1_ForceReset(LL_IOP_GRP1_PERIPH_GPIOD); + LL_IOP_GRP1_ReleaseReset(LL_IOP_GRP1_PERIPH_GPIOD); + } +#if defined (GPIOE) + else if (GPIOx == GPIOE) + { + LL_IOP_GRP1_ForceReset(LL_IOP_GRP1_PERIPH_GPIOE); + LL_IOP_GRP1_ReleaseReset(LL_IOP_GRP1_PERIPH_GPIOE); + } +#endif /* GPIOE */ + else if (GPIOx == GPIOF) + { + LL_IOP_GRP1_ForceReset(LL_IOP_GRP1_PERIPH_GPIOF); + LL_IOP_GRP1_ReleaseReset(LL_IOP_GRP1_PERIPH_GPIOF); + } + else + { + status = ERROR; + } + + return (status); +} + +/** + * @brief Initialize GPIO registers according to the specified parameters in GPIO_InitStruct. + * @param GPIOx GPIO Port + * @param GPIO_InitStruct pointer to a @ref LL_GPIO_InitTypeDef structure + * that contains the configuration information for the specified GPIO peripheral. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: GPIO registers are initialized according to GPIO_InitStruct content + * - ERROR: Not applicable + */ +ErrorStatus LL_GPIO_Init(GPIO_TypeDef *GPIOx, LL_GPIO_InitTypeDef *GPIO_InitStruct) +{ + uint32_t pinpos; + uint32_t currentpin; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + assert_param(IS_LL_GPIO_PIN(GPIO_InitStruct->Pin)); + assert_param(IS_LL_GPIO_MODE(GPIO_InitStruct->Mode)); + assert_param(IS_LL_GPIO_PULL(GPIO_InitStruct->Pull)); + + /* ------------------------- Configure the port pins ---------------- */ + /* Initialize pinpos on first pin set */ + pinpos = 0; + + /* Configure the port pins */ + while (((GPIO_InitStruct->Pin) >> pinpos) != 0x00u) + { + /* Get current io position */ + currentpin = (GPIO_InitStruct->Pin) & (0x00000001uL << pinpos); + + if (currentpin != 0x00u) + { + if ((GPIO_InitStruct->Mode == LL_GPIO_MODE_OUTPUT) || (GPIO_InitStruct->Mode == LL_GPIO_MODE_ALTERNATE)) + { + /* Check Speed mode parameters */ + assert_param(IS_LL_GPIO_SPEED(GPIO_InitStruct->Speed)); + + /* Speed mode configuration */ + LL_GPIO_SetPinSpeed(GPIOx, currentpin, GPIO_InitStruct->Speed); + + /* Check Output mode parameters */ + assert_param(IS_LL_GPIO_OUTPUT_TYPE(GPIO_InitStruct->OutputType)); + + /* Output mode configuration*/ + LL_GPIO_SetPinOutputType(GPIOx, currentpin, GPIO_InitStruct->OutputType); + } + + /* Pull-up Pull down resistor configuration*/ + LL_GPIO_SetPinPull(GPIOx, currentpin, GPIO_InitStruct->Pull); + + if (GPIO_InitStruct->Mode == LL_GPIO_MODE_ALTERNATE) + { + /* Check Alternate parameter */ + assert_param(IS_LL_GPIO_ALTERNATE(GPIO_InitStruct->Alternate)); + + /* Speed mode configuration */ + if (currentpin < LL_GPIO_PIN_8) + { + LL_GPIO_SetAFPin_0_7(GPIOx, currentpin, GPIO_InitStruct->Alternate); + } + else + { + LL_GPIO_SetAFPin_8_15(GPIOx, currentpin, GPIO_InitStruct->Alternate); + } + } + + /* Pin Mode configuration */ + LL_GPIO_SetPinMode(GPIOx, currentpin, GPIO_InitStruct->Mode); + } + pinpos++; + } + + return (SUCCESS); +} + +/** + * @brief Set each @ref LL_GPIO_InitTypeDef field to default value. + * @param GPIO_InitStruct pointer to a @ref LL_GPIO_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ + +void LL_GPIO_StructInit(LL_GPIO_InitTypeDef *GPIO_InitStruct) +{ + /* Reset GPIO init structure parameters values */ + GPIO_InitStruct->Pin = LL_GPIO_PIN_ALL; + GPIO_InitStruct->Mode = LL_GPIO_MODE_ANALOG; + GPIO_InitStruct->Speed = LL_GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct->OutputType = LL_GPIO_OUTPUT_PUSHPULL; + GPIO_InitStruct->Pull = LL_GPIO_PULL_NO; + GPIO_InitStruct->Alternate = LL_GPIO_AF_0; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_i2c.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_i2c.c new file mode 100644 index 0000000..5b6d32d --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_i2c.c @@ -0,0 +1,229 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_i2c.c + * @author MCD Application Team + * @brief I2C LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_i2c.h" +#include "stm32u0xx_ll_bus.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (I2C1) || defined (I2C2) || defined (I2C3) || defined (I2C4) + +/** @defgroup I2C_LL I2C + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup I2C_LL_Private_Macros + * @{ + */ + +#define IS_LL_I2C_ANALOG_FILTER(__VALUE__) (((__VALUE__) == LL_I2C_ANALOGFILTER_ENABLE) || \ + ((__VALUE__) == LL_I2C_ANALOGFILTER_DISABLE)) + +#define IS_LL_I2C_DIGITAL_FILTER(__VALUE__) ((__VALUE__) <= 0x0000000FU) + +#define IS_LL_I2C_OWN_ADDRESS1(__VALUE__) ((__VALUE__) <= 0x000003FFU) + +#define IS_LL_I2C_TYPE_ACKNOWLEDGE(__VALUE__) (((__VALUE__) == LL_I2C_ACK) || \ + ((__VALUE__) == LL_I2C_NACK)) + +#define IS_LL_I2C_OWN_ADDRSIZE(__VALUE__) (((__VALUE__) == LL_I2C_OWNADDRESS1_7BIT) || \ + ((__VALUE__) == LL_I2C_OWNADDRESS1_10BIT)) +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup I2C_LL_Exported_Functions + * @{ + */ + +/** @addtogroup I2C_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize the I2C registers to their default reset values. + * @param I2Cx I2C Instance. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: I2C registers are de-initialized + * - ERROR: I2C registers are not de-initialized + */ +ErrorStatus LL_I2C_DeInit(const I2C_TypeDef *I2Cx) +{ + ErrorStatus status = SUCCESS; + + /* Check the I2C Instance I2Cx */ + assert_param(IS_I2C_ALL_INSTANCE(I2Cx)); + + if (I2Cx == I2C1) + { + /* Force reset of I2C clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_I2C1); + + /* Release reset of I2C clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_I2C1); + } + else if (I2Cx == I2C2) + { + /* Force reset of I2C clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_I2C2); + + /* Release reset of I2C clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_I2C2); + + } + else if (I2Cx == I2C3) + { + /* Force reset of I2C clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_I2C3); + + /* Release reset of I2C clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_I2C3); + } +#if defined(I2C4) + else if (I2Cx == I2C4) + { + /* Force reset of I2C clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_I2C4); + + /* Release reset of I2C clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_I2C4); + } +#endif /* I2C4 */ + else + { + status = ERROR; + } + + return status; +} + +/** + * @brief Initialize the I2C registers according to the specified parameters in I2C_InitStruct. + * @param I2Cx I2C Instance. + * @param I2C_InitStruct pointer to a @ref LL_I2C_InitTypeDef structure. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: I2C registers are initialized + * - ERROR: Not applicable + */ +ErrorStatus LL_I2C_Init(I2C_TypeDef *I2Cx, const LL_I2C_InitTypeDef *I2C_InitStruct) +{ + /* Check the I2C Instance I2Cx */ + assert_param(IS_I2C_ALL_INSTANCE(I2Cx)); + + /* Check the I2C parameters from I2C_InitStruct */ + assert_param(IS_LL_I2C_ANALOG_FILTER(I2C_InitStruct->AnalogFilter)); + assert_param(IS_LL_I2C_DIGITAL_FILTER(I2C_InitStruct->DigitalFilter)); + assert_param(IS_LL_I2C_OWN_ADDRESS1(I2C_InitStruct->OwnAddress1)); + assert_param(IS_LL_I2C_TYPE_ACKNOWLEDGE(I2C_InitStruct->TypeAcknowledge)); + assert_param(IS_LL_I2C_OWN_ADDRSIZE(I2C_InitStruct->OwnAddrSize)); + + /* Disable the selected I2Cx Peripheral */ + LL_I2C_Disable(I2Cx); + + /*---------------------------- I2Cx CR1 Configuration ------------------------ + * Configure the analog and digital noise filters with parameters : + * - AnalogFilter: I2C_CR1_ANFOFF bit + * - DigitalFilter: I2C_CR1_DNF[3:0] bits + */ + LL_I2C_ConfigFilters(I2Cx, I2C_InitStruct->AnalogFilter, I2C_InitStruct->DigitalFilter); + + /*---------------------------- I2Cx TIMINGR Configuration -------------------- + * Configure the SDA setup, hold time and the SCL high, low period with parameter : + * - Timing: I2C_TIMINGR_PRESC[3:0], I2C_TIMINGR_SCLDEL[3:0], I2C_TIMINGR_SDADEL[3:0], + * I2C_TIMINGR_SCLH[7:0] and I2C_TIMINGR_SCLL[7:0] bits + */ + LL_I2C_SetTiming(I2Cx, I2C_InitStruct->Timing); + + /* Enable the selected I2Cx Peripheral */ + LL_I2C_Enable(I2Cx); + + /*---------------------------- I2Cx OAR1 Configuration ----------------------- + * Disable, Configure and Enable I2Cx device own address 1 with parameters : + * - OwnAddress1: I2C_OAR1_OA1[9:0] bits + * - OwnAddrSize: I2C_OAR1_OA1MODE bit + */ + LL_I2C_DisableOwnAddress1(I2Cx); + LL_I2C_SetOwnAddress1(I2Cx, I2C_InitStruct->OwnAddress1, I2C_InitStruct->OwnAddrSize); + + /* OwnAdress1 == 0 is reserved for General Call address */ + if (I2C_InitStruct->OwnAddress1 != 0U) + { + LL_I2C_EnableOwnAddress1(I2Cx); + } + + /*---------------------------- I2Cx CR2 Configuration ------------------------ + * Configure the ACKnowledge or Non ACKnowledge condition + * after the address receive match code or next received byte with parameter : + * - TypeAcknowledge: I2C_CR2_NACK bit + */ + LL_I2C_AcknowledgeNextData(I2Cx, I2C_InitStruct->TypeAcknowledge); + + return SUCCESS; +} + +/** + * @brief Set each @ref LL_I2C_InitTypeDef field to default value. + * @param I2C_InitStruct Pointer to a @ref LL_I2C_InitTypeDef structure. + * @retval None + */ +void LL_I2C_StructInit(LL_I2C_InitTypeDef *I2C_InitStruct) +{ + /* Set I2C_InitStruct fields to default values */ + I2C_InitStruct->Timing = 0U; + I2C_InitStruct->AnalogFilter = LL_I2C_ANALOGFILTER_ENABLE; + I2C_InitStruct->DigitalFilter = 0U; + I2C_InitStruct->OwnAddress1 = 0U; + I2C_InitStruct->TypeAcknowledge = LL_I2C_NACK; + I2C_InitStruct->OwnAddrSize = LL_I2C_OWNADDRESS1_7BIT; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* I2C1 || I2C2 || I2C3 || I2C4 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lptim.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lptim.c new file mode 100644 index 0000000..b6b7423 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lptim.c @@ -0,0 +1,198 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_lptim.c + * @author MCD Application Team + * @brief LPTIM LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_lptim.h" +#include "stm32u0xx_ll_bus.h" +#include "stm32u0xx_ll_rcc.h" + + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (LPTIM1) || defined (LPTIM2) || defined (LPTIM3) + +/** @addtogroup LPTIM_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup LPTIM_LL_Private_Macros + * @{ + */ +#define IS_LL_LPTIM_CLOCK_SOURCE(__VALUE__) (((__VALUE__) == LL_LPTIM_CLK_SOURCE_INTERNAL) \ + || ((__VALUE__) == LL_LPTIM_CLK_SOURCE_EXTERNAL)) + +#define IS_LL_LPTIM_CLOCK_PRESCALER(__VALUE__) (((__VALUE__) == LL_LPTIM_PRESCALER_DIV1) \ + || ((__VALUE__) == LL_LPTIM_PRESCALER_DIV2) \ + || ((__VALUE__) == LL_LPTIM_PRESCALER_DIV4) \ + || ((__VALUE__) == LL_LPTIM_PRESCALER_DIV8) \ + || ((__VALUE__) == LL_LPTIM_PRESCALER_DIV16) \ + || ((__VALUE__) == LL_LPTIM_PRESCALER_DIV32) \ + || ((__VALUE__) == LL_LPTIM_PRESCALER_DIV64) \ + || ((__VALUE__) == LL_LPTIM_PRESCALER_DIV128)) + +#define IS_LL_LPTIM_WAVEFORM(__VALUE__) (((__VALUE__) == LL_LPTIM_OUTPUT_WAVEFORM_PWM) \ + || ((__VALUE__) == LL_LPTIM_OUTPUT_WAVEFORM_SETONCE)) + +/** + * @} + */ + + +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @defgroup LPTIM_Private_Functions LPTIM Private Functions + * @{ + */ +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup LPTIM_LL_Exported_Functions + * @{ + */ + +/** @addtogroup LPTIM_LL_EF_Init + * @{ + */ + +/** + * @brief Set LPTIMx registers to their reset values. + * @param LPTIMx LP Timer instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: LPTIMx registers are de-initialized + * - ERROR: invalid LPTIMx instance + */ +ErrorStatus LL_LPTIM_DeInit(const LPTIM_TypeDef *LPTIMx) +{ + ErrorStatus result = SUCCESS; + + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(LPTIMx)); + + if (LPTIMx == LPTIM1) + { + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_LPTIM1); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPTIM1); + } + else if (LPTIMx == LPTIM2) + { + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_LPTIM2); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPTIM2); + } +#if defined(LPTIM3) + else if (LPTIMx == LPTIM3) + { + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_LPTIM3); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPTIM3); + } +#endif /* LPTIM3 */ + else + { + result = ERROR; + } + + return result; +} + +/** + * @brief Set each fields of the LPTIM_InitStruct structure to its default + * value. + * @param LPTIM_InitStruct pointer to a @ref LL_LPTIM_InitTypeDef structure + * @retval None + */ +void LL_LPTIM_StructInit(LL_LPTIM_InitTypeDef *LPTIM_InitStruct) +{ + /* Set the default configuration */ + LPTIM_InitStruct->ClockSource = LL_LPTIM_CLK_SOURCE_INTERNAL; + LPTIM_InitStruct->Prescaler = LL_LPTIM_PRESCALER_DIV1; + LPTIM_InitStruct->Waveform = LL_LPTIM_OUTPUT_WAVEFORM_PWM; +} + +/** + * @brief Configure the LPTIMx peripheral according to the specified parameters. + * @note LL_LPTIM_Init can only be called when the LPTIM instance is disabled. + * @note LPTIMx can be disabled using unitary function @ref LL_LPTIM_Disable(). + * @param LPTIMx LP Timer Instance + * @param LPTIM_InitStruct pointer to a @ref LL_LPTIM_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: LPTIMx instance has been initialized + * - ERROR: LPTIMx instance hasn't been initialized + */ +ErrorStatus LL_LPTIM_Init(LPTIM_TypeDef *LPTIMx, const LL_LPTIM_InitTypeDef *LPTIM_InitStruct) +{ + ErrorStatus result = SUCCESS; + /* Check the parameters */ + assert_param(IS_LPTIM_INSTANCE(LPTIMx)); + assert_param(IS_LL_LPTIM_CLOCK_SOURCE(LPTIM_InitStruct->ClockSource)); + assert_param(IS_LL_LPTIM_CLOCK_PRESCALER(LPTIM_InitStruct->Prescaler)); + assert_param(IS_LL_LPTIM_WAVEFORM(LPTIM_InitStruct->Waveform)); + + /* The LPTIMx_CFGR register must only be modified when the LPTIM is disabled + (ENABLE bit is reset to 0). + */ + if (LL_LPTIM_IsEnabled(LPTIMx) == 1UL) + { + result = ERROR; + } + else + { + /* Set CKSEL bitfield according to ClockSource value */ + /* Set PRESC bitfield according to Prescaler value */ + /* Set WAVE bitfield according to Waveform value */ + MODIFY_REG(LPTIMx->CFGR, + (LPTIM_CFGR_CKSEL | LPTIM_CFGR_PRESC | LPTIM_CFGR_WAVE), + LPTIM_InitStruct->ClockSource | \ + LPTIM_InitStruct->Prescaler | \ + LPTIM_InitStruct->Waveform); + } + + return result; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* LPTIM1 || LPTIM2 || LPTIM3 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lpuart.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lpuart.c new file mode 100644 index 0000000..a994c32 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_lpuart.c @@ -0,0 +1,320 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_lpuart.c + * @author MCD Application Team + * @brief LPUART LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_lpuart.h" +#include "stm32u0xx_ll_rcc.h" +#include "stm32u0xx_ll_bus.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (LPUART1) || defined (LPUART2) || defined (LPUART3) + +/** @addtogroup LPUART_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup LPUART_LL_Private_Constants + * @{ + */ + +/* Definition of default baudrate value used for LPUART initialisation */ +#define LPUART_DEFAULT_BAUDRATE (9600U) + +/** + * @} + */ + + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup LPUART_LL_Private_Macros + * @{ + */ + +/* Check of parameters for configuration of LPUART registers */ + +#define IS_LL_LPUART_PRESCALER(__VALUE__) (((__VALUE__) == LL_LPUART_PRESCALER_DIV1) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV2) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV4) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV6) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV8) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV10) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV12) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV16) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV32) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV64) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV128) \ + || ((__VALUE__) == LL_LPUART_PRESCALER_DIV256)) + +/* __BAUDRATE__ Depending on constraints applicable for LPUART BRR register */ +/* value : */ +/* - fck must be in the range [3 x baudrate, 4096 x baudrate] */ +/* - LPUART_BRR register value should be >= 0x300 */ +/* - LPUART_BRR register value should be <= 0xFFFFF (20 bits) */ +/* Baudrate specified by the user should belong to [8, 16000000].*/ +#define IS_LL_LPUART_BAUDRATE(__BAUDRATE__) (((__BAUDRATE__) <= 16000000U) && ((__BAUDRATE__) >= 8U)) + +/* __VALUE__ BRR content must be greater than or equal to 0x300. */ +#define IS_LL_LPUART_BRR_MIN(__VALUE__) ((__VALUE__) >= 0x300U) + +/* __VALUE__ BRR content must be lower than or equal to 0xFFFFF. */ +#define IS_LL_LPUART_BRR_MAX(__VALUE__) ((__VALUE__) <= 0x000FFFFFU) + +#define IS_LL_LPUART_DIRECTION(__VALUE__) (((__VALUE__) == LL_LPUART_DIRECTION_NONE) \ + || ((__VALUE__) == LL_LPUART_DIRECTION_RX) \ + || ((__VALUE__) == LL_LPUART_DIRECTION_TX) \ + || ((__VALUE__) == LL_LPUART_DIRECTION_TX_RX)) + +#define IS_LL_LPUART_PARITY(__VALUE__) (((__VALUE__) == LL_LPUART_PARITY_NONE) \ + || ((__VALUE__) == LL_LPUART_PARITY_EVEN) \ + || ((__VALUE__) == LL_LPUART_PARITY_ODD)) + +#define IS_LL_LPUART_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_LPUART_DATAWIDTH_7B) \ + || ((__VALUE__) == LL_LPUART_DATAWIDTH_8B) \ + || ((__VALUE__) == LL_LPUART_DATAWIDTH_9B)) + +#define IS_LL_LPUART_STOPBITS(__VALUE__) (((__VALUE__) == LL_LPUART_STOPBITS_1) \ + || ((__VALUE__) == LL_LPUART_STOPBITS_2)) + +#define IS_LL_LPUART_HWCONTROL(__VALUE__) (((__VALUE__) == LL_LPUART_HWCONTROL_NONE) \ + || ((__VALUE__) == LL_LPUART_HWCONTROL_RTS) \ + || ((__VALUE__) == LL_LPUART_HWCONTROL_CTS) \ + || ((__VALUE__) == LL_LPUART_HWCONTROL_RTS_CTS)) + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup LPUART_LL_Exported_Functions + * @{ + */ + +/** @addtogroup LPUART_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize LPUART registers (Registers restored to their default values). + * @param LPUARTx LPUART Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: LPUART registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_LPUART_DeInit(const USART_TypeDef *LPUARTx) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_LPUART_INSTANCE(LPUARTx)); + + if (LPUARTx == LPUART1) + { + /* Force reset of LPUART peripheral */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_LPUART1); + + /* Release reset of LPUART peripheral */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPUART1); + } + else if (LPUARTx == LPUART2) + { + /* Force reset of LPUART peripheral */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_LPUART2); + + /* Release reset of LPUART peripheral */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPUART2); + } +#if defined(LPUART3) + else if (LPUARTx == LPUART3) + { + /* Force reset of LPUART peripheral */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_LPUART3); + + /* Release reset of LPUART peripheral */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPUART3); + } +#endif /* LPUART3 */ + else + { + status = ERROR; + } + + return (status); +} + +/** + * @brief Initialize LPUART registers according to the specified + * parameters in LPUART_InitStruct. + * @note As some bits in LPUART configuration registers can only be written when + * the LPUART is disabled (USART_CR1_UE bit =0), + * LPUART Peripheral should be in disabled state prior calling this function. + * Otherwise, ERROR result will be returned. + * @note Baud rate value stored in LPUART_InitStruct BaudRate field, should be valid (different from 0). + * @param LPUARTx LPUART Instance + * @param LPUART_InitStruct pointer to a @ref LL_LPUART_InitTypeDef structure + * that contains the configuration information for the specified LPUART peripheral. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: LPUART registers are initialized according to LPUART_InitStruct content + * - ERROR: Problem occurred during LPUART Registers initialization + */ +ErrorStatus LL_LPUART_Init(USART_TypeDef *LPUARTx, const LL_LPUART_InitTypeDef *LPUART_InitStruct) +{ + ErrorStatus status = ERROR; + uint32_t periphclk = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check the parameters */ + assert_param(IS_LPUART_INSTANCE(LPUARTx)); + assert_param(IS_LL_LPUART_PRESCALER(LPUART_InitStruct->PrescalerValue)); + assert_param(IS_LL_LPUART_BAUDRATE(LPUART_InitStruct->BaudRate)); + assert_param(IS_LL_LPUART_DATAWIDTH(LPUART_InitStruct->DataWidth)); + assert_param(IS_LL_LPUART_STOPBITS(LPUART_InitStruct->StopBits)); + assert_param(IS_LL_LPUART_PARITY(LPUART_InitStruct->Parity)); + assert_param(IS_LL_LPUART_DIRECTION(LPUART_InitStruct->TransferDirection)); + assert_param(IS_LL_LPUART_HWCONTROL(LPUART_InitStruct->HardwareFlowControl)); + + /* LPUART needs to be in disabled state, in order to be able to configure some bits in + CRx registers. Otherwise (LPUART not in Disabled state) => return ERROR */ + if (LL_LPUART_IsEnabled(LPUARTx) == 0U) + { + /*---------------------------- LPUART CR1 Configuration ----------------------- + * Configure LPUARTx CR1 (LPUART Word Length, Parity and Transfer Direction bits) with parameters: + * - DataWidth: USART_CR1_M bits according to LPUART_InitStruct->DataWidth value + * - Parity: USART_CR1_PCE, USART_CR1_PS bits according to LPUART_InitStruct->Parity value + * - TransferDirection: USART_CR1_TE, USART_CR1_RE bits according to LPUART_InitStruct->TransferDirection value + */ + MODIFY_REG(LPUARTx->CR1, + (USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE), + (LPUART_InitStruct->DataWidth | LPUART_InitStruct->Parity | LPUART_InitStruct->TransferDirection)); + + /*---------------------------- LPUART CR2 Configuration ----------------------- + * Configure LPUARTx CR2 (Stop bits) with parameters: + * - Stop Bits: USART_CR2_STOP bits according to LPUART_InitStruct->StopBits value. + */ + LL_LPUART_SetStopBitsLength(LPUARTx, LPUART_InitStruct->StopBits); + + /*---------------------------- LPUART CR3 Configuration ----------------------- + * Configure LPUARTx CR3 (Hardware Flow Control) with parameters: + * - HardwareFlowControl: USART_CR3_RTSE, USART_CR3_CTSE bits according + * to LPUART_InitStruct->HardwareFlowControl value. + */ + LL_LPUART_SetHWFlowCtrl(LPUARTx, LPUART_InitStruct->HardwareFlowControl); + + /*---------------------------- LPUART BRR Configuration ----------------------- + * Retrieve Clock frequency used for LPUART Peripheral + */ + if (LPUARTx == LPUART1) + { + periphclk = LL_RCC_GetLPUARTClockFreq(LL_RCC_LPUART1_CLKSOURCE); + } + else if (LPUARTx == LPUART2) + { + periphclk = LL_RCC_GetLPUARTClockFreq(LL_RCC_LPUART2_CLKSOURCE); + } +#if defined(LPUART3) + else if (LPUARTx == LPUART3) + { + periphclk = LL_RCC_GetLPUARTClockFreq(LL_RCC_LPUART3_CLKSOURCE); + } +#endif /* LPUART3 */ + else + { + /* Nothing to do, as error code is already assigned to ERROR value */ + } + + /* Configure the LPUART Baud Rate : + - prescaler value is required + - valid baud rate value (different from 0) is required + - Peripheral clock as returned by RCC service, should be valid (different from 0). + */ + if ((periphclk != LL_RCC_PERIPH_FREQUENCY_NO) + && (LPUART_InitStruct->BaudRate != 0U)) + { + status = SUCCESS; + LL_LPUART_SetBaudRate(LPUARTx, + periphclk, + LPUART_InitStruct->PrescalerValue, + LPUART_InitStruct->BaudRate); + + /* Check BRR is greater than or equal to 0x300 */ + assert_param(IS_LL_LPUART_BRR_MIN(LPUARTx->BRR)); + + /* Check BRR is lower than or equal to 0xFFFFF */ + assert_param(IS_LL_LPUART_BRR_MAX(LPUARTx->BRR)); + } + + /*---------------------------- LPUART PRESC Configuration ----------------------- + * Configure LPUARTx PRESC (Prescaler) with parameters: + * - PrescalerValue: LPUART_PRESC_PRESCALER bits according to LPUART_InitStruct->PrescalerValue value. + */ + LL_LPUART_SetPrescaler(LPUARTx, LPUART_InitStruct->PrescalerValue); + } + + return (status); +} + +/** + * @brief Set each @ref LL_LPUART_InitTypeDef field to default value. + * @param LPUART_InitStruct pointer to a @ref LL_LPUART_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ + +void LL_LPUART_StructInit(LL_LPUART_InitTypeDef *LPUART_InitStruct) +{ + /* Set LPUART_InitStruct fields to default values */ + LPUART_InitStruct->PrescalerValue = LL_LPUART_PRESCALER_DIV1; + LPUART_InitStruct->BaudRate = LPUART_DEFAULT_BAUDRATE; + LPUART_InitStruct->DataWidth = LL_LPUART_DATAWIDTH_8B; + LPUART_InitStruct->StopBits = LL_LPUART_STOPBITS_1; + LPUART_InitStruct->Parity = LL_LPUART_PARITY_NONE ; + LPUART_InitStruct->TransferDirection = LL_LPUART_DIRECTION_TX_RX; + LPUART_InitStruct->HardwareFlowControl = LL_LPUART_HWCONTROL_NONE; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* LPUART1 || LPUART2 || LPUART3 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_opamp.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_opamp.c new file mode 100644 index 0000000..f49365e --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_opamp.c @@ -0,0 +1,226 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_opamp.c + * @author MCD Application Team + * @brief OPAMP LL module driver + ****************************************************************************** + * @attention + * + * Copyright (c) 2021 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_opamp.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (OPAMP1) + +/** @addtogroup OPAMP_LL OPAMP + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ + +/** @addtogroup OPAMP_LL_Private_Macros + * @{ + */ + +/* Check of parameters for configuration of OPAMP hierarchical scope: */ +/* OPAMP instance. */ + +#define IS_LL_OPAMP_POWER_MODE(__POWER_MODE__) (((__POWER_MODE__) == LL_OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED) ||\ + ((__POWER_MODE__) == LL_OPAMP_POWERMODE_LOWPOWER_NORMALSPEED)) + + +#define IS_LL_OPAMP_FUNCTIONAL_MODE(__FUNCTIONAL_MODE__) (((__FUNCTIONAL_MODE__) == LL_OPAMP_MODE_STANDALONE) ||\ + ((__FUNCTIONAL_MODE__) == LL_OPAMP_MODE_FOLLOWER) ||\ + ((__FUNCTIONAL_MODE__) == LL_OPAMP_MODE_PGA)) + +/* Note: Comparator non-inverting inputs parameters are the same on all */ +/* OPAMP instances. */ +/* However, comparator instance kept as macro parameter for */ +/* compatibility with other STM32 families. */ +#define IS_LL_OPAMP_INPUT_NONINVERTING(__OPAMPX__, __INPUT_NONINVERTING__) \ + ( ((__INPUT_NONINVERTING__) == LL_OPAMP_INPUT_NONINVERT_IO0) \ + || ((__INPUT_NONINVERTING__) == LL_OPAMP_INPUT_NONINV_DAC1_CH1) \ + ) + +/* Note: Comparator non-inverting inputs parameters are the same on all */ +/* OPAMP instances. */ +/* However, comparator instance kept as macro parameter for */ +/* compatibility with other STM32 families. */ +#define IS_LL_OPAMP_INPUT_INVERTING(__OPAMPX__, __INPUT_INVERTING__) \ + ( ((__INPUT_INVERTING__) == LL_OPAMP_INPUT_INVERT_IO0) \ + || ((__INPUT_INVERTING__) == LL_OPAMP_INPUT_INVERT_CONNECT_NO) \ + ) + +/** + * @} + */ + + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup OPAMP_LL_Exported_Functions + * @{ + */ + +/** @addtogroup OPAMP_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize registers of the selected OPAMP instance + * to their default reset values. + * @param OPAMPx OPAMP instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: OPAMP registers are de-initialized + * - ERROR: OPAMP registers are not de-initialized + */ +ErrorStatus LL_OPAMP_DeInit(OPAMP_TypeDef *OPAMPx) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_OPAMP_ALL_INSTANCE(OPAMPx)); + + LL_OPAMP_WriteReg(OPAMPx, CSR, 0x00000000U); + + return status; +} + +/** + * @brief Initialize some features of OPAMP instance. + * @note This function reset bit of calibration mode to ensure + * to be in functional mode, in order to have OPAMP parameters + * (inputs selection, ...) set with the corresponding OPAMP mode + * to be effective. + * @note This function configures features of the selected OPAMP instance. + * Some features are also available at scope OPAMP common instance + * (common to several OPAMP instances). + * @param OPAMPx OPAMP instance + * @param OPAMP_InitStruct Pointer to a @ref LL_OPAMP_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: OPAMP registers are initialized + * - ERROR: OPAMP registers are not initialized + */ +ErrorStatus LL_OPAMP_Init(OPAMP_TypeDef *OPAMPx, const LL_OPAMP_InitTypeDef *OPAMP_InitStruct) +{ + /* Check the parameters */ + assert_param(IS_OPAMP_ALL_INSTANCE(OPAMPx)); + assert_param(IS_LL_OPAMP_POWER_MODE(OPAMP_InitStruct->PowerMode)); + assert_param(IS_LL_OPAMP_FUNCTIONAL_MODE(OPAMP_InitStruct->FunctionalMode)); + assert_param(IS_LL_OPAMP_INPUT_NONINVERTING(OPAMPx, OPAMP_InitStruct->InputNonInverting)); + + /* Note: OPAMP inverting input can be used with OPAMP in mode standalone */ + /* or PGA with external capacitors for filtering circuit. */ + /* Otherwise (OPAMP in mode follower), OPAMP inverting input is */ + /* not used (not connected to GPIO pin). */ + if (OPAMP_InitStruct->FunctionalMode != LL_OPAMP_MODE_FOLLOWER) + { + assert_param(IS_LL_OPAMP_INPUT_INVERTING(OPAMPx, OPAMP_InitStruct->InputInverting)); + } + + /* Configuration of OPAMP instance : */ + /* - PowerMode */ + /* - Functional mode */ + /* - Input non-inverting */ + /* - Input inverting */ + /* Note: Bit OPAMP_CSR_CALON reset to ensure to be in functional mode. */ + if (OPAMP_InitStruct->FunctionalMode != LL_OPAMP_MODE_FOLLOWER) + { + MODIFY_REG(OPAMPx->CSR, + OPAMP_CSR_OPALPM + | OPAMP_CSR_OPAMODE + | OPAMP_CSR_CALON + | OPAMP_CSR_VM_SEL + | OPAMP_CSR_VP_SEL + , + OPAMP_InitStruct->PowerMode + | OPAMP_InitStruct->FunctionalMode + | OPAMP_InitStruct->InputNonInverting + | OPAMP_InitStruct->InputInverting + ); + } + else + { + MODIFY_REG(OPAMPx->CSR, + OPAMP_CSR_OPALPM + | OPAMP_CSR_OPAMODE + | OPAMP_CSR_CALON + | OPAMP_CSR_VM_SEL + | OPAMP_CSR_VP_SEL + , + OPAMP_InitStruct->PowerMode + | LL_OPAMP_MODE_FOLLOWER + | OPAMP_InitStruct->InputNonInverting + | LL_OPAMP_INPUT_INVERT_CONNECT_NO + ); + } + + /* Set the power supply range to high for performance purpose */ + /* The OPAMP_CSR_OPARANGE is common configuration for all OPAMPs */ + /* bit OPAMP_CSR_OPARANGE applies for both OPAMPs */ + MODIFY_REG(OPAMP1->CSR, OPAMP_CSR_OPARANGE, OPAMP_CSR_OPARANGE); + + return SUCCESS; +} + +/** + * @brief Set each @ref LL_OPAMP_InitTypeDef field to default value. + * @param OPAMP_InitStruct pointer to a @ref LL_OPAMP_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_OPAMP_StructInit(LL_OPAMP_InitTypeDef *OPAMP_InitStruct) +{ + /* Set OPAMP_InitStruct fields to default values */ + OPAMP_InitStruct->PowerMode = LL_OPAMP_POWERMODE_NORMALPOWER_NORMALSPEED; + OPAMP_InitStruct->FunctionalMode = LL_OPAMP_MODE_FOLLOWER; + OPAMP_InitStruct->InputNonInverting = LL_OPAMP_INPUT_NONINVERT_IO0; + /* Note: Parameter discarded if OPAMP in functional mode follower, */ + /* set anyway to its default value. */ + OPAMP_InitStruct->InputInverting = LL_OPAMP_INPUT_INVERT_CONNECT_NO; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* OPAMP1 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_pwr.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_pwr.c new file mode 100644 index 0000000..fcfb9ee --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_pwr.c @@ -0,0 +1,82 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_pwr.c + * @author MCD Application Team + * @brief PWR LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_pwr.h" +#include "stm32u0xx_ll_bus.h" + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined(PWR) + +/** @defgroup PWR_LL PWR + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup PWR_LL_Exported_Functions + * @{ + */ + +/** @addtogroup PWR_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize the PWR registers to their default reset values. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: PWR registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_PWR_DeInit(void) +{ + /* Force reset of PWR clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_PWR); + + /* Release reset of PWR clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_PWR); + + return SUCCESS; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +#endif /* defined(PWR) */ +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rcc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rcc.c new file mode 100644 index 0000000..5021495 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rcc.c @@ -0,0 +1,1116 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_rcc.c + * @author MCD Application Team + * @brief RCC LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_rcc.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_LL_DRIVER */ +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined(RCC) + +/** @addtogroup RCC_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup RCC_LL_Private_Macros + * @{ + */ +#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_USART2_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_USART3_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_USART4_CLKSOURCE)) +#if defined (LPUART3) +#define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_LPUART2_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_LPUART3_CLKSOURCE)) +#else +#define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_LPUART2_CLKSOURCE)) +#endif /* LPUART3 */ +#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_I2C3_CLKSOURCE)) +#if defined (LPTIM3) +#define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_LPTIM2_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_LPTIM3_CLKSOURCE)) +#else +#define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_LPTIM2_CLKSOURCE)) +#endif /* LPTIM3 */ +#define IS_LL_RCC_TIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_TIM1_CLKSOURCE) \ + || ((__VALUE__) == LL_RCC_TIM15_CLKSOURCE)) + +#define IS_LL_RCC_RNG_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_RNG_CLKSOURCE)) +#if defined (USB) +#define IS_LL_RCC_USB_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USB_CLKSOURCE)) +#endif /* USB */ +#define IS_LL_RCC_ADC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_ADC_CLKSOURCE)) + + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup RCC_LL_Private_Functions RCC Private functions + * @{ + */ +uint32_t RCC_GetSystemClockFreq(void); +uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency); +uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency); +uint32_t RCC_PLL_GetFreqDomain_SYS(void); +uint32_t RCC_PLL_GetFreqDomain_PLLP(void); +uint32_t RCC_PLL_GetFreqDomain_PLLQ(void); +/** + * @} + */ + + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup RCC_LL_Exported_Functions + * @{ + */ + +/** @addtogroup RCC_LL_EF_Init + * @{ + */ + +/** + * @brief Reset the RCC clock configuration to the default reset state. + * @note The default reset state of the clock configuration is given below: + * - MSI ON and used as system clock source + * - HSE, HSI, PLL and PLLSAIxSource OFF + * - AHB, APB prescaler set to 1. + * - CSS, MCO OFF + * - All interrupts disabled + * @note This function doesn't modify the configuration of the + * - Peripheral clocks + * - LSI, LSE and RTC clocks + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RCC registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_RCC_DeInit(void) +{ + uint32_t vl_mask = 0U; + + /* Set MSION bit */ + LL_RCC_MSI_Enable(); + + /* Insure MSIRDY bit is set before writing default MSIRANGE value */ + while (LL_RCC_MSI_IsReady() == 0U) + { + __NOP(); + } + + /* Set MSIRANGE default value */ + LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6); + /* Set MSITRIM bits to the reset value*/ + LL_RCC_MSI_SetCalibTrimming(0); + + /* Set HSITRIM bits to the reset value*/ + LL_RCC_HSI_SetCalibTrimming(0x10U); + + /* Reset CFGR register */ + LL_RCC_WriteReg(CFGR, 0x00000000U); + + vl_mask = 0xFFFFFFFFU; +#if defined(RCC_CRRCR_HSI48ON) + /* Reset HSION, HSIKERON, HSIASFS, HSEON, PLLSYSON bits */ + CLEAR_BIT(vl_mask, (RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSEON | RCC_CRRCR_HSI48ON | + RCC_CR_PLLON)); +#else + CLEAR_BIT(vl_mask, (RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSEON | RCC_CR_PLLON)); +#endif /* RCC_CRRCR_HSI48ON */ + /* Write new mask in CR register */ + LL_RCC_WriteReg(CR, vl_mask); + + /* Reset PLLCFGR register */ + LL_RCC_WriteReg(PLLCFGR, 16U << RCC_PLLCFGR_PLLN_Pos); + + /* Reset HSEBYP bit */ + LL_RCC_HSE_DisableBypass(); + + /* Disable all interrupts */ + LL_RCC_WriteReg(CIER, 0x00000000U); + + return SUCCESS; +} + +/** + * @} + */ + +/** @addtogroup RCC_LL_EF_Get_Freq + * @brief Return the frequencies of different on chip clocks; System, AHB, APB buses clocks + * and different peripheral clocks available on the device. + * @note If SYSCLK source is MSI, function returns values based on MSI_VALUE(*) + * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**) + * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***) + * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(***) + * or HSI_VALUE(**) or MSI_VALUE(*) multiplied/divided by the PLL factors. + * @note (*) MSI_VALUE is a constant defined in this file (default value + * 4 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (**) HSI_VALUE is a constant defined in this file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (***) HSE_VALUE is a constant defined in this file (default value + * 8 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * @note The result of this function could be incorrect when using fractional + * value for HSE crystal. + * @note This function can be used by the user application to compute the + * baud-rate for the communication peripherals or configure other parameters. + * @{ + */ + +/** + * @brief Return the frequencies of different on chip clocks; System, AHB, APB buses clocks + * @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function + * must be called to update structure fields. Otherwise, any + * configuration based on this function will be incorrect. + * @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies + * @retval None + */ +void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks) +{ + /* Get SYSCLK frequency */ + RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq(); + + /* HCLK clock frequency */ + RCC_Clocks->HCLK_Frequency = RCC_GetHCLKClockFreq(RCC_Clocks->SYSCLK_Frequency); + + /* PCLK1 clock frequency */ + RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK_Frequency); + +} + +/** + * @brief Return USARTx clock frequency + * @param USARTxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_USART1_CLKSOURCE + * @arg @ref LL_RCC_USART2_CLKSOURCE + * @arg @ref LL_RCC_USART3_CLKSOURCE + * @arg @ref LL_RCC_USART4_CLKSOURCE + * + * @retval USART clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready + */ +uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource) +{ + uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource)); + + if (USARTxSource == LL_RCC_USART1_CLKSOURCE) + { + /* USART1CLK clock frequency */ + switch (LL_RCC_GetUSARTClockSource(USARTxSource)) + { + case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */ + usart_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + usart_frequency = HSI_VALUE; + } + break; + + case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady()) + { + usart_frequency = LSE_VALUE; + } + break; + + case LL_RCC_USART1_CLKSOURCE_PCLK1: /* USART1 Clock is PCLK1 */ + usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } + else if (USARTxSource == LL_RCC_USART2_CLKSOURCE) + { + /* USART2CLK clock frequency */ + switch (LL_RCC_GetUSARTClockSource(USARTxSource)) + { + case LL_RCC_USART2_CLKSOURCE_SYSCLK: /* USART2 Clock is System Clock */ + usart_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_USART2_CLKSOURCE_HSI: /* USART2 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + usart_frequency = HSI_VALUE; + } + break; + + case LL_RCC_USART2_CLKSOURCE_LSE: /* USART2 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady()) + { + usart_frequency = LSE_VALUE; + } + break; + + case LL_RCC_USART2_CLKSOURCE_PCLK1: /* USART2 Clock is PCLK1 */ + usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } + else if ((USARTxSource == LL_RCC_USART3_CLKSOURCE) || (USARTxSource == LL_RCC_USART4_CLKSOURCE)) + { + /* USART3 or USART4 clock frequency : PCLK */ + usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + } + return usart_frequency; +} + +/** + * @brief Return TIMx clock frequency + * @param TIMxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_TIM1_CLKSOURCE + * @arg @ref LL_RCC_TIM15_CLKSOURCE + * + * (*) value not defined in all devices. + * @retval USART clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready + */ +uint32_t LL_RCC_GetTIMClockFreq(uint32_t TIMxSource) +{ + uint32_t tim_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_TIM_CLKSOURCE(TIMxSource)); + + if (TIMxSource == LL_RCC_TIM1_CLKSOURCE) + { + /* TIM1CLK clock frequency */ + switch (LL_RCC_GetTIMClockSource(TIMxSource)) + { + case LL_RCC_TIM1_CLKSOURCE_PCLK1: /* TIM1 Clock is System Clock */ + if (LL_RCC_GetAPB1Prescaler() == LL_RCC_APB1_DIV_1) + { + tim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + } + else + { + tim_frequency = 2 * (RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()))); + } + break; + + case LL_RCC_TIM1_CLKSOURCE_PLLQ: /* TIM1 Clock is PLLQ Osc. */ + if (LL_RCC_PLL_IsReady()) + { + tim_frequency = RCC_PLL_GetFreqDomain_PLLQ(); + } + break; + + default: + break; + } + } + else if (TIMxSource == LL_RCC_TIM15_CLKSOURCE) + { + switch (LL_RCC_GetTIMClockSource(TIMxSource)) + { + case LL_RCC_TIM15_CLKSOURCE_PCLK1: /* TIM15 Clock is System Clock */ + if (LL_RCC_GetAPB1Prescaler() == LL_RCC_APB1_DIV_1) + { + tim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + } + else + { + tim_frequency = 2 * (RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq()))); + } + break; + + case LL_RCC_TIM15_CLKSOURCE_PLLQ: /* TIM15 Clock is PLLQ Osc. */ + if (LL_RCC_PLL_IsReady()) + { + tim_frequency = RCC_PLL_GetFreqDomain_PLLQ(); + } + break; + + default: + break; + } + } + return tim_frequency; +} + +/** + * @brief Return LPUARTx clock frequency + * @param LPUARTxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_LPUART1_CLKSOURCE + * @retval LPUART clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready + */ +uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource) +{ + uint32_t lpuart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_LPUART_CLKSOURCE(LPUARTxSource)); + + if (LPUARTxSource == LL_RCC_LPUART1_CLKSOURCE) + { + /* LPUART1CLK clock frequency */ + switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource)) + { + case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */ + lpuart_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_LPUART1_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */ + lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + lpuart_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady() == 1) + { + lpuart_frequency = LSE_VALUE; + } + break; + + default: + break; + } + } + else if (LPUARTxSource == LL_RCC_LPUART2_CLKSOURCE) + { + /* LPUART1CLK clock frequency */ + switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource)) + { + case LL_RCC_LPUART2_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */ + lpuart_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_LPUART2_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + lpuart_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPUART2_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady()) + { + lpuart_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPUART2_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */ + lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } +#if defined (LPUART3) + else if (LPUARTxSource == LL_RCC_LPUART3_CLKSOURCE) + { + /* LPUART1CLK clock frequency */ + switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource)) + { + case LL_RCC_LPUART3_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */ + lpuart_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_LPUART3_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + lpuart_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPUART3_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady()) + { + lpuart_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPUART3_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */ + lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } +#endif /* LPUART3 */ + return lpuart_frequency; +} + +/** + * @brief Return RTC clock frequency + * @retval RTC clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (LSI, LSE or HSE) are not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected + */ +uint32_t LL_RCC_GetRTCClockFreq(void) +{ + uint32_t rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* RTCCLK clock frequency */ + switch (LL_RCC_GetRTCClockSource()) + { + case LL_RCC_RTC_CLKSOURCE_LSE: /* LSE clock used as RTC clock source */ + if (LL_RCC_LSE_IsReady() == 1U) + { + rtc_frequency = LSE_VALUE; + } + break; + + case LL_RCC_RTC_CLKSOURCE_LSI: /* LSI clock used as RTC clock source */ + if (LL_RCC_LSI_IsReady() == 1U) + { + if (READ_BIT(RCC->CSR, RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV) + { + rtc_frequency = LSI_VALUE / 128U; + } + else + { + rtc_frequency = LSI_VALUE; + } + } + break; + + case LL_RCC_RTC_CLKSOURCE_HSE_DIV32: /* HSE clock used as ADC clock source */ + rtc_frequency = HSE_VALUE / 32U; + break; + + case LL_RCC_RTC_CLKSOURCE_NONE: /* No clock used as RTC clock source */ + rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + break; + + default: + break; + } + + return rtc_frequency; +} + +/** + * @brief Return I2Cx clock frequency + * @param I2CxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_I2C1_CLKSOURCE + * @arg @ref LL_RCC_I2C3_CLKSOURCE + * + * (*) value not defined in all devices. + * @retval I2C clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that HSI oscillator is not ready + */ +uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource) +{ + uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource)); + + if (I2CxSource == LL_RCC_I2C1_CLKSOURCE) + { + /* I2C1 CLK clock frequency */ + switch (LL_RCC_GetI2CClockSource(I2CxSource)) + { + case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */ + i2c_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + i2c_frequency = HSI_VALUE; + } + break; + + case LL_RCC_I2C1_CLKSOURCE_PCLK1: /* I2C1 Clock is PCLK1 */ + i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } + else if (I2CxSource == LL_RCC_I2C3_CLKSOURCE) + { + /* I2C3 CLK clock frequency */ + switch (LL_RCC_GetI2CClockSource(I2CxSource)) + { + case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */ + i2c_frequency = RCC_GetSystemClockFreq(); + break; + + case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + i2c_frequency = HSI_VALUE; + } + break; + + case LL_RCC_I2C3_CLKSOURCE_PCLK1: /* I2C3 Clock is PCLK1 */ + i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } + + return i2c_frequency; +} + +/** + * @brief Return LPTIMx clock frequency + * @param LPTIMxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_LPTIM1_CLKSOURCE + * @arg @ref LL_RCC_LPTIM2_CLKSOURCE + * @arg @ref LL_RCC_LPTIM3_CLKSOURCE (*) + * + * (*) value not defined in all devices. + * @retval LPTIM clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI, LSI or LSE) is not ready + */ +uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource) +{ + uint32_t lptim_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_LPTIM_CLKSOURCE(LPTIMxSource)); + + if (LPTIMxSource == LL_RCC_LPTIM1_CLKSOURCE) + { + /* LPTIM1CLK clock frequency */ + switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource)) + { + case LL_RCC_LPTIM1_CLKSOURCE_LSI: /* LPTIM1 Clock is LSI Osc. */ + if (LL_RCC_LSI_IsReady() == 1U) + { + if (READ_BIT(RCC->CSR, RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV) + { + lptim_frequency = LSI_VALUE / 128U; + } + else + { + lptim_frequency = LSI_VALUE; + } + } + break; + case LL_RCC_LPTIM1_CLKSOURCE_HSI: /* LPTIM1 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + lptim_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPTIM1_CLKSOURCE_LSE: /* LPTIM1 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady()) + { + lptim_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPTIM1_CLKSOURCE_PCLK1: /* LPTIM1 Clock is PCLK1 */ + lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } + else if (LPTIMxSource == LL_RCC_LPTIM2_CLKSOURCE) + { + /* LPTIM2CLK clock frequency */ + switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource)) + { + case LL_RCC_LPTIM2_CLKSOURCE_LSI: /* LPTIM2 Clock is LSI Osc. */ + if (LL_RCC_LSI_IsReady() == 1U) + { + if (READ_BIT(RCC->CSR, RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV) + { + lptim_frequency = LSI_VALUE / 128U; + } + else + { + lptim_frequency = LSI_VALUE; + } + } + break; + + case LL_RCC_LPTIM2_CLKSOURCE_HSI: /* LPTIM2 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + lptim_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPTIM2_CLKSOURCE_LSE: /* LPTIM2 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady()) + { + lptim_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPTIM2_CLKSOURCE_PCLK1: /* LPTIM2 Clock is PCLK1 */ + lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } +#if defined (LPTIM3) + else + { + if (LPTIMxSource == LL_RCC_LPTIM3_CLKSOURCE) + { + /* LPTIM2CLK clock frequency */ + switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource)) + { + case LL_RCC_LPTIM3_CLKSOURCE_LSI: /* LPTIM3 Clock is LSI Osc. */ + if (LL_RCC_LSI_IsReady() == 1U) + { + if (READ_BIT(RCC->CSR, RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV) + { + lptim_frequency = LSI_VALUE / 128U; + } + else + { + lptim_frequency = LSI_VALUE; + } + } + break; + + case LL_RCC_LPTIM3_CLKSOURCE_HSI: /* LPTIM3 Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + lptim_frequency = HSI_VALUE; + } + break; + + case LL_RCC_LPTIM3_CLKSOURCE_LSE: /* LPTIM3 Clock is LSE Osc. */ + if (LL_RCC_LSE_IsReady()) + { + lptim_frequency = LSE_VALUE; + } + break; + + case LL_RCC_LPTIM3_CLKSOURCE_PCLK1: /* LPTIM3 Clock is PCLK1 */ + lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); + break; + + default: + break; + } + } + } +#endif /* LPTIM3 */ + return lptim_frequency; +} + +/** + * @brief Return RNGx clock frequency + * @param RNGxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_RNG_CLKSOURCE + * @retval RNG clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI) or PLL is not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected + */ +uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource) +{ + uint32_t rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_RNG_CLKSOURCE(RNGxSource)); + + /* RNGCLK clock frequency */ + switch (LL_RCC_GetRNGClockSource(RNGxSource)) + { + case LL_RCC_RNG_CLKSOURCE_PLLQ: /* PLL clock used as RNG clock source */ + if (LL_RCC_PLL_IsReady()) + { + rng_frequency = RCC_PLL_GetFreqDomain_PLLQ(); + } + break; + + case LL_RCC_RNG_CLKSOURCE_MSI: /* MSI clock used as RNG clock source */ + if (LL_RCC_MSI_IsReady()) + { + rng_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), + (LL_RCC_MSI_IsEnabledRangeSelect() ? + LL_RCC_MSI_GetRange() : + LL_RCC_MSI_GetRangeAfterStandby())); + } + break; + + case LL_RCC_RNG_CLKSOURCE_NONE: /* No clock used as RNG clock source */ + rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + break; + + default: + break; + + } + + return rng_frequency; +} + +#if defined (USB) +/** + * @brief Return USBx clock frequency + * @param USBxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_USB_CLKSOURCE + * @retval USB clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI) or PLL is not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected + */ +uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource) +{ + uint32_t usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_USB_CLKSOURCE(USBxSource)); + + /* USBCLK clock frequency */ + switch (LL_RCC_GetUSBClockSource(USBxSource)) + { + case LL_RCC_USB_CLKSOURCE_PLLQ: /* PLL clock used as USB clock source */ + if (LL_RCC_PLL_IsReady()) + { + usb_frequency = RCC_PLL_GetFreqDomain_PLLQ(); + } + break; + + case LL_RCC_USB_CLKSOURCE_MSI: /* MSI clock used as USB clock source */ + if (LL_RCC_MSI_IsReady()) + { + usb_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), + (LL_RCC_MSI_IsEnabledRangeSelect() ? + LL_RCC_MSI_GetRange() : + LL_RCC_MSI_GetRangeAfterStandby())); + } + break; + + case LL_RCC_USB_CLKSOURCE_NONE: /* No clock used as USB clock source */ + usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + break; + + default: + break; + } + + return usb_frequency; +} +#endif /* USB */ +/** + * @brief Return ADCx clock frequency + * @param ADCxSource This parameter can be one of the following values: + * @arg @ref LL_RCC_ADC_CLKSOURCE + * @retval ADC clock frequency (in Hz) + * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI) or PLL is not ready + * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected + */ +uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource) +{ + uint32_t adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check parameter */ + assert_param(IS_LL_RCC_ADC_CLKSOURCE(ADCxSource)); + + /* ADCCLK clock frequency */ + switch (LL_RCC_GetADCClockSource(ADCxSource)) + { + case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */ + adc_frequency = RCC_GetSystemClockFreq(); + break; + case LL_RCC_ADC_CLKSOURCE_HSI: /* ADC Clock is HSI Osc. */ + if (LL_RCC_HSI_IsReady()) + { + adc_frequency = HSI_VALUE; + } + break; + case LL_RCC_ADC_CLKSOURCE_PLLP: /* ADC Clock is HSI Osc. */ + if (LL_RCC_PLL_IsReady() == 1U) + { + if (LL_RCC_PLL_IsEnabledDomain_PLLP() == 1U) + { + adc_frequency = RCC_PLL_GetFreqDomain_PLLP(); + } + } + break; + case LL_RCC_ADC_CLKSOURCE_NONE: /* No clock used as ADC clock source */ + adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; + break; + + default: + break; + } + + return adc_frequency; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup RCC_LL_Private_Functions + * @{ + */ + +/** + * @brief Return SYSTEM clock frequency + * @retval SYSTEM clock frequency (in Hz) + */ +uint32_t RCC_GetSystemClockFreq(void) +{ + uint32_t frequency = 0U; + + /* Get SYSCLK source -------------------------------------------------------*/ + switch (LL_RCC_GetSysClkSource()) + { + case LL_RCC_SYS_CLKSOURCE_STATUS_MSI: /* MSI used as system clock source */ + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), + (LL_RCC_MSI_IsEnabledRangeSelect() ? + LL_RCC_MSI_GetRange() : + LL_RCC_MSI_GetRangeAfterStandby())); + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ + frequency = HSI_VALUE; + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */ + frequency = HSE_VALUE; + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_LSI: /* LSI used as system clock source */ + if (READ_BIT(RCC->CSR, RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV) + { + frequency = LSI_VALUE / 128U; + } + else + { + frequency = LSI_VALUE; + } + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_LSE: /* LSE used as system clock source */ + frequency = LSE_VALUE; + break; + + case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */ + frequency = RCC_PLL_GetFreqDomain_SYS(); + break; + + default: + frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), + (LL_RCC_MSI_IsEnabledRangeSelect() ? + LL_RCC_MSI_GetRange() : + LL_RCC_MSI_GetRangeAfterStandby())); + break; + } + + return frequency; +} + +/** + * @brief Return HCLK clock frequency + * @param SYSCLK_Frequency SYSCLK clock frequency + * @retval HCLK clock frequency (in Hz) + */ +uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency) +{ + /* HCLK clock frequency */ + return __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler()); +} + +/** + * @brief Return PCLK1 clock frequency + * @param HCLK_Frequency HCLK clock frequency + * @retval PCLK1 clock frequency (in Hz) + */ +uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency) +{ + /* PCLK1 clock frequency */ + return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler()); +} + +/** + * @brief Return PLLR clock frequency used for system domain + * @retval PLL clock frequency (in Hz) + */ +uint32_t RCC_PLL_GetFreqDomain_SYS(void) +{ + uint32_t pllinputfreq = 0U; + uint32_t pllsource = 0U; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN + SYSCLK = PLL_VCO / PLLR + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), + (LL_RCC_MSI_IsEnabledRangeSelect() ? + LL_RCC_MSI_GetRange() : + LL_RCC_MSI_GetRangeAfterStandby())); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + pllinputfreq = HSE_VALUE; + break; + + default: + pllinputfreq = 0U; + break; + } + return __LL_RCC_CALC_PLLCLK_R_FREQ(pllinputfreq, LL_RCC_PLL_GetM(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetR()); +} + +/** + * @brief Return PLLP clock frequency used for ADC domain + * @retval PLL clock frequency (in Hz) + */ +uint32_t RCC_PLL_GetFreqDomain_PLLP(void) +{ + uint32_t pllinputfreq = 0U; + uint32_t pllsource = 0U; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN + PLLP clock = PLL_VCO / PLLP + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + pllinputfreq = HSE_VALUE; + break; + + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), + (LL_RCC_MSI_IsEnabledRangeSelect() ? + LL_RCC_MSI_GetRange() : + LL_RCC_MSI_GetRangeAfterStandby())); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + default: + pllinputfreq = 0U; + break; + } + return __LL_RCC_CALC_PLLCLK_P_FREQ(pllinputfreq, LL_RCC_PLL_GetM(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP()); +} + +/** + * @brief Return PLLQ clock frequency used for 48 MHz domain + * @retval PLL clock frequency (in Hz) + */ +uint32_t RCC_PLL_GetFreqDomain_PLLQ(void) +{ + uint32_t pllinputfreq = 0U; + uint32_t pllsource = 0U; + + /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN + PLLQ clock = PLL_VCO / PLLQ + */ + pllsource = LL_RCC_PLL_GetMainSource(); + + switch (pllsource) + { + case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ + pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), + (LL_RCC_MSI_IsEnabledRangeSelect() ? + LL_RCC_MSI_GetRange() : + LL_RCC_MSI_GetRangeAfterStandby())); + break; + + case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ + pllinputfreq = HSI_VALUE; + break; + + case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ + pllinputfreq = HSE_VALUE; + break; + + default: + pllinputfreq = 0U; + break; + } + return __LL_RCC_CALC_PLLCLK_Q_FREQ(pllinputfreq, LL_RCC_PLL_GetM(), + LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ()); +} +/** + * @} + */ + +/** + * @} + */ + +#endif /* defined(RCC) */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rng.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rng.c new file mode 100644 index 0000000..32c5b8b --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rng.c @@ -0,0 +1,158 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_rng.c + * @author MCD Application Team + * @brief RNG LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_rng.h" +#include "stm32u0xx_ll_bus.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (RNG) + +/** @addtogroup RNG_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup RNG_LL_Private_Macros RNG Private Macros + * @{ + */ +#define IS_LL_RNG_CED(__MODE__) (((__MODE__) == LL_RNG_CED_ENABLE) || \ + ((__MODE__) == LL_RNG_CED_DISABLE)) + +#define IS_LL_RNG_CLOCK_DIVIDER(__CLOCK_DIV__) ((__CLOCK_DIV__) <=0x0Fu) + + +#define IS_LL_RNG_NIST_COMPLIANCE(__NIST_COMPLIANCE__) (((__NIST_COMPLIANCE__) == LL_RNG_NIST_COMPLIANT) || \ + ((__NIST_COMPLIANCE__) == LL_RNG_NOTNIST_COMPLIANT)) + +#define IS_LL_RNG_CONFIG1 (__CONFIG1__) ((__CONFIG1__) <= 0x3FUL) + +#define IS_LL_RNG_CONFIG2 (__CONFIG2__) ((__CONFIG2__) <= 0x07UL) + +#define IS_LL_RNG_CONFIG3 (__CONFIG3__) ((__CONFIG3__) <= 0xFUL) +/** + * @} + */ +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup RNG_LL_Exported_Functions + * @{ + */ + +/** @addtogroup RNG_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize RNG registers (Registers restored to their default values). + * @param RNGx RNG Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RNG registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_RNG_DeInit(const RNG_TypeDef *RNGx) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_RNG_ALL_INSTANCE(RNGx)); + if (RNGx == RNG) + { + /* Enable RNG reset state */ + LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_RNG); + + /* Release RNG from reset state */ + LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_RNG); + } + else + { + status = ERROR; + } + + return status; +} + +/** + * @brief Initialize RNG registers according to the specified parameters in RNG_InitStruct. + * @param RNGx RNG Instance + * @param RNG_InitStruct pointer to a LL_RNG_InitTypeDef structure + * that contains the configuration information for the specified RNG peripheral. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RNG registers are initialized according to RNG_InitStruct content + * - ERROR: not applicable + */ +ErrorStatus LL_RNG_Init(RNG_TypeDef *RNGx, const LL_RNG_InitTypeDef *RNG_InitStruct) +{ + /* Check the parameters */ + assert_param(IS_RNG_ALL_INSTANCE(RNGx)); + assert_param(IS_LL_RNG_CED(RNG_InitStruct->ClockErrorDetection)); + + /* Clock Error Detection Configuration when CONDRT bit is set to 1 */ + MODIFY_REG(RNGx->CR, RNG_CR_CED | RNG_CR_CONDRST, RNG_InitStruct->ClockErrorDetection | RNG_CR_CONDRST); + /* Writing bits CONDRST=0*/ + CLEAR_BIT(RNGx->CR, RNG_CR_CONDRST); + + return (SUCCESS); +} + +/** + * @brief Set each @ref LL_RNG_InitTypeDef field to default value. + * @param RNG_InitStruct pointer to a @ref LL_RNG_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_RNG_StructInit(LL_RNG_InitTypeDef *RNG_InitStruct) +{ + /* Set RNG_InitStruct fields to default values */ + RNG_InitStruct->ClockErrorDetection = LL_RNG_CED_ENABLE; + +} +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* RNG */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rtc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rtc.c new file mode 100644 index 0000000..2c125d1 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_rtc.c @@ -0,0 +1,868 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_rtc.c + * @author MCD Application Team + * @brief RTC LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_rtc.h" +#include "stm32u0xx_ll_cortex.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined(RTC) + +/** @addtogroup RTC_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup RTC_LL_Private_Constants + * @{ + */ +/* Default values used for prescaler */ +#define RTC_ASYNCH_PRESC_DEFAULT ((uint32_t) 0x0000007FU) +#define RTC_SYNCH_PRESC_DEFAULT ((uint32_t) 0x000000FFU) + +/* Values used for timeout */ +#define RTC_INITMODE_TIMEOUT ((uint32_t) 1000U) /* 1s when tick set to 1ms */ +#define RTC_SYNCHRO_TIMEOUT ((uint32_t) 1000U) /* 1s when tick set to 1ms */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup RTC_LL_Private_Macros + * @{ + */ + +#define IS_LL_RTC_HOURFORMAT(__VALUE__) (((__VALUE__) == LL_RTC_HOURFORMAT_24HOUR) \ + || ((__VALUE__) == LL_RTC_HOURFORMAT_AMPM)) + +#define IS_LL_RTC_ASYNCH_PREDIV(__VALUE__) ((__VALUE__) <= 0x7FU) + +#define IS_LL_RTC_SYNCH_PREDIV(__VALUE__) ((__VALUE__) <= 0x7FFFU) + +#define IS_LL_RTC_FORMAT(__VALUE__) (((__VALUE__) == LL_RTC_FORMAT_BIN) \ + || ((__VALUE__) == LL_RTC_FORMAT_BCD)) + +#define IS_LL_RTC_TIME_FORMAT(__VALUE__) (((__VALUE__) == LL_RTC_TIME_FORMAT_AM_OR_24) \ + || ((__VALUE__) == LL_RTC_TIME_FORMAT_PM)) + +#define IS_LL_RTC_HOUR12(__HOUR__) (((__HOUR__) > 0U) && ((__HOUR__) <= 12U)) +#define IS_LL_RTC_HOUR24(__HOUR__) ((__HOUR__) <= 23U) +#define IS_LL_RTC_MINUTES(__MINUTES__) ((__MINUTES__) <= 59U) +#define IS_LL_RTC_SECONDS(__SECONDS__) ((__SECONDS__) <= 59U) + +#define IS_LL_RTC_WEEKDAY(__VALUE__) (((__VALUE__) == LL_RTC_WEEKDAY_MONDAY) \ + || ((__VALUE__) == LL_RTC_WEEKDAY_TUESDAY) \ + || ((__VALUE__) == LL_RTC_WEEKDAY_WEDNESDAY) \ + || ((__VALUE__) == LL_RTC_WEEKDAY_THURSDAY) \ + || ((__VALUE__) == LL_RTC_WEEKDAY_FRIDAY) \ + || ((__VALUE__) == LL_RTC_WEEKDAY_SATURDAY) \ + || ((__VALUE__) == LL_RTC_WEEKDAY_SUNDAY)) + +#define IS_LL_RTC_DAY(__DAY__) (((__DAY__) >= (uint32_t)1U) && ((__DAY__) <= (uint32_t)31U)) + +#define IS_LL_RTC_MONTH(__VALUE__) (((__VALUE__) == LL_RTC_MONTH_JANUARY) \ + || ((__VALUE__) == LL_RTC_MONTH_FEBRUARY) \ + || ((__VALUE__) == LL_RTC_MONTH_MARCH) \ + || ((__VALUE__) == LL_RTC_MONTH_APRIL) \ + || ((__VALUE__) == LL_RTC_MONTH_MAY) \ + || ((__VALUE__) == LL_RTC_MONTH_JUNE) \ + || ((__VALUE__) == LL_RTC_MONTH_JULY) \ + || ((__VALUE__) == LL_RTC_MONTH_AUGUST) \ + || ((__VALUE__) == LL_RTC_MONTH_SEPTEMBER) \ + || ((__VALUE__) == LL_RTC_MONTH_OCTOBER) \ + || ((__VALUE__) == LL_RTC_MONTH_NOVEMBER) \ + || ((__VALUE__) == LL_RTC_MONTH_DECEMBER)) + +#define IS_LL_RTC_YEAR(__YEAR__) ((__YEAR__) <= 99U) + +#define IS_LL_RTC_ALMA_MASK(__VALUE__) (((__VALUE__) == LL_RTC_ALMA_MASK_NONE) \ + || ((__VALUE__) == LL_RTC_ALMA_MASK_DATEWEEKDAY) \ + || ((__VALUE__) == LL_RTC_ALMA_MASK_HOURS) \ + || ((__VALUE__) == LL_RTC_ALMA_MASK_MINUTES) \ + || ((__VALUE__) == LL_RTC_ALMA_MASK_SECONDS) \ + || ((__VALUE__) == LL_RTC_ALMA_MASK_ALL)) + +#define IS_LL_RTC_ALMB_MASK(__VALUE__) (((__VALUE__) == LL_RTC_ALMB_MASK_NONE) \ + || ((__VALUE__) == LL_RTC_ALMB_MASK_DATEWEEKDAY) \ + || ((__VALUE__) == LL_RTC_ALMB_MASK_HOURS) \ + || ((__VALUE__) == LL_RTC_ALMB_MASK_MINUTES) \ + || ((__VALUE__) == LL_RTC_ALMB_MASK_SECONDS) \ + || ((__VALUE__) == LL_RTC_ALMB_MASK_ALL)) + + +#define IS_LL_RTC_ALMA_DATE_WEEKDAY_SEL(__SEL__) (((__SEL__) == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) || \ + ((__SEL__) == LL_RTC_ALMA_DATEWEEKDAYSEL_WEEKDAY)) + +#define IS_LL_RTC_ALMB_DATE_WEEKDAY_SEL(__SEL__) (((__SEL__) == LL_RTC_ALMB_DATEWEEKDAYSEL_DATE) || \ + ((__SEL__) == LL_RTC_ALMB_DATEWEEKDAYSEL_WEEKDAY)) + + +/** + * @} + */ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup RTC_LL_Exported_Functions + * @{ + */ + +/** @addtogroup RTC_LL_EF_Init + * @{ + */ + +/** + * @brief De-Initializes the RTC registers to their default reset values. + * @note This function doesn't reset the RTC Clock source and RTC Backup Data + * registers. + * @param RTCx RTC Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RTC registers are de-initialized + * - ERROR: RTC registers are not de-initialized + */ +ErrorStatus LL_RTC_DeInit(RTC_TypeDef *RTCx) +{ + ErrorStatus status = ERROR; + + /* Check the parameter */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + + /* Disable the write protection for RTC registers */ + LL_RTC_DisableWriteProtection(RTCx); + + /* Set Initialization mode */ + if (LL_RTC_EnterInitMode(RTCx) != ERROR) + { + /* Reset TR, DR and CR registers */ + LL_RTC_WriteReg(RTCx, TR, 0x00000000U); + LL_RTC_WriteReg(RTCx, DR, (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0)); + LL_RTC_WriteReg(RTCx, SSR, 0x00000000U); + LL_RTC_WriteReg(RTCx, SSR, 0x00000000U); + LL_RTC_WriteReg(RTCx, WUTR, RTC_WUTR_WUT); + /* Reset All CR bits except CR[2:0] */ + LL_RTC_WriteReg(RTCx, CR, (LL_RTC_ReadReg(RTCx, CR) & RTC_CR_WUCKSEL)); + LL_RTC_WriteReg(RTCx, PRER, (RTC_PRER_PREDIV_A | RTC_SYNCH_PRESC_DEFAULT)); + LL_RTC_WriteReg(RTCx, ALRMAR, 0x00000000U); + LL_RTC_WriteReg(RTCx, ALRMBR, 0x00000000U); + LL_RTC_WriteReg(RTCx, SHIFTR, 0x00000000U); + LL_RTC_WriteReg(RTCx, CALR, 0x00000000U); + LL_RTC_WriteReg(RTCx, ALRMASSR, 0x00000000U); + LL_RTC_WriteReg(RTCx, ALRMBSSR, 0x00000000U); + + /* Exit Initialization mode */ + LL_RTC_DisableInitMode(RTCx); + + /* Wait till the RTC RSF flag is set */ + status = LL_RTC_WaitForSynchro(RTCx); + } + + /* Enable the write protection for RTC registers */ + LL_RTC_EnableWriteProtection(RTCx); + + return status; +} + +/** + * @brief Initializes the RTC registers according to the specified parameters + * in RTC_InitStruct. + * @param RTCx RTC Instance + * @param RTC_InitStruct pointer to a @ref LL_RTC_InitTypeDef structure that contains + * the configuration information for the RTC peripheral. + * @note The RTC Prescaler register is write protected and can be written in + * initialization mode only. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RTC registers are initialized + * - ERROR: RTC registers are not initialized + */ +ErrorStatus LL_RTC_Init(RTC_TypeDef *RTCx, LL_RTC_InitTypeDef *RTC_InitStruct) +{ + ErrorStatus status = ERROR; + + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + assert_param(IS_LL_RTC_HOURFORMAT(RTC_InitStruct->HourFormat)); + assert_param(IS_LL_RTC_ASYNCH_PREDIV(RTC_InitStruct->AsynchPrescaler)); + assert_param(IS_LL_RTC_SYNCH_PREDIV(RTC_InitStruct->SynchPrescaler)); + + /* Disable the write protection for RTC registers */ + LL_RTC_DisableWriteProtection(RTCx); + + /* Set Initialization mode */ + if (LL_RTC_EnterInitMode(RTCx) != ERROR) + { + /* Set Hour Format */ + LL_RTC_SetHourFormat(RTCx, RTC_InitStruct->HourFormat); + + /* Configure Synchronous and Asynchronous prescaler factor */ + LL_RTC_SetSynchPrescaler(RTCx, RTC_InitStruct->SynchPrescaler); + LL_RTC_SetAsynchPrescaler(RTCx, RTC_InitStruct->AsynchPrescaler); + + /* Exit Initialization mode */ + LL_RTC_DisableInitMode(RTCx); + + status = SUCCESS; + } + /* Enable the write protection for RTC registers */ + LL_RTC_EnableWriteProtection(RTCx); + + return status; +} + +/** + * @brief Set each @ref LL_RTC_InitTypeDef field to default value. + * @param RTC_InitStruct pointer to a @ref LL_RTC_InitTypeDef structure which will be initialized. + * @retval None + */ +void LL_RTC_StructInit(LL_RTC_InitTypeDef *RTC_InitStruct) +{ + /* Set RTC_InitStruct fields to default values */ + RTC_InitStruct->HourFormat = LL_RTC_HOURFORMAT_24HOUR; + RTC_InitStruct->AsynchPrescaler = RTC_ASYNCH_PRESC_DEFAULT; + RTC_InitStruct->SynchPrescaler = RTC_SYNCH_PRESC_DEFAULT; +} + +/** + * @brief Set the RTC current time. + * @param RTCx RTC Instance + * @param RTC_Format This parameter can be one of the following values: + * @arg @ref LL_RTC_FORMAT_BIN + * @arg @ref LL_RTC_FORMAT_BCD + * @param RTC_TimeStruct pointer to a RTC_TimeTypeDef structure that contains + * the time configuration information for the RTC. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RTC Time register is configured + * - ERROR: RTC Time register is not configured + */ +ErrorStatus LL_RTC_TIME_Init(RTC_TypeDef *RTCx, uint32_t RTC_Format, LL_RTC_TimeTypeDef *RTC_TimeStruct) +{ + ErrorStatus status = ERROR; + + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + assert_param(IS_LL_RTC_FORMAT(RTC_Format)); + + if (RTC_Format == LL_RTC_FORMAT_BIN) + { + if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) + { + assert_param(IS_LL_RTC_HOUR12(RTC_TimeStruct->Hours)); + assert_param(IS_LL_RTC_TIME_FORMAT(RTC_TimeStruct->TimeFormat)); + } + else + { + RTC_TimeStruct->TimeFormat = 0x00U; + assert_param(IS_LL_RTC_HOUR24(RTC_TimeStruct->Hours)); + } + assert_param(IS_LL_RTC_MINUTES(RTC_TimeStruct->Minutes)); + assert_param(IS_LL_RTC_SECONDS(RTC_TimeStruct->Seconds)); + } + else + { + if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) + { + assert_param(IS_LL_RTC_HOUR12(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Hours))); + assert_param(IS_LL_RTC_TIME_FORMAT(RTC_TimeStruct->TimeFormat)); + } + else + { + RTC_TimeStruct->TimeFormat = 0x00U; + assert_param(IS_LL_RTC_HOUR24(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Hours))); + } + assert_param(IS_LL_RTC_MINUTES(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Minutes))); + assert_param(IS_LL_RTC_SECONDS(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Seconds))); + } + + /* Disable the write protection for RTC registers */ + LL_RTC_DisableWriteProtection(RTCx); + + /* Set Initialization mode */ + if (LL_RTC_EnterInitMode(RTCx) != ERROR) + { + /* Check the input parameters format */ + if (RTC_Format != LL_RTC_FORMAT_BIN) + { + LL_RTC_TIME_Config(RTCx, RTC_TimeStruct->TimeFormat, RTC_TimeStruct->Hours, + RTC_TimeStruct->Minutes, RTC_TimeStruct->Seconds); + } + else + { + LL_RTC_TIME_Config(RTCx, RTC_TimeStruct->TimeFormat, __LL_RTC_CONVERT_BIN2BCD(RTC_TimeStruct->Hours), + __LL_RTC_CONVERT_BIN2BCD(RTC_TimeStruct->Minutes), + __LL_RTC_CONVERT_BIN2BCD(RTC_TimeStruct->Seconds)); + } + + /* Exit Initialization mode */ + LL_RTC_DisableInitMode(RTC); + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if (LL_RTC_IsShadowRegBypassEnabled(RTCx) == 0U) + { + status = LL_RTC_WaitForSynchro(RTCx); + } + else + { + status = SUCCESS; + } + } + /* Enable the write protection for RTC registers */ + LL_RTC_EnableWriteProtection(RTCx); + + return status; +} + +/** + * @brief Set each @ref LL_RTC_TimeTypeDef field to default value (Time = 00h:00min:00sec). + * @param RTC_TimeStruct pointer to a @ref LL_RTC_TimeTypeDef structure which will be initialized. + * @retval None + */ +void LL_RTC_TIME_StructInit(LL_RTC_TimeTypeDef *RTC_TimeStruct) +{ + /* Time = 00h:00min:00sec */ + RTC_TimeStruct->TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24; + RTC_TimeStruct->Hours = 0U; + RTC_TimeStruct->Minutes = 0U; + RTC_TimeStruct->Seconds = 0U; +} + +/** + * @brief Set the RTC current date. + * @param RTCx RTC Instance + * @param RTC_Format This parameter can be one of the following values: + * @arg @ref LL_RTC_FORMAT_BIN + * @arg @ref LL_RTC_FORMAT_BCD + * @param RTC_DateStruct: pointer to a RTC_DateTypeDef structure that contains + * the date configuration information for the RTC. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RTC Day register is configured + * - ERROR: RTC Day register is not configured + */ +ErrorStatus LL_RTC_DATE_Init(RTC_TypeDef *RTCx, uint32_t RTC_Format, LL_RTC_DateTypeDef *RTC_DateStruct) +{ + ErrorStatus status = ERROR; + + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + assert_param(IS_LL_RTC_FORMAT(RTC_Format)); + + if ((RTC_Format == LL_RTC_FORMAT_BIN) && ((RTC_DateStruct->Month & 0x10U) == 0x10U)) + { + RTC_DateStruct->Month = (RTC_DateStruct->Month & (uint32_t)~(0x10U)) + 0x0AU; + } + if (RTC_Format == LL_RTC_FORMAT_BIN) + { + assert_param(IS_LL_RTC_YEAR(RTC_DateStruct->Year)); + assert_param(IS_LL_RTC_MONTH(RTC_DateStruct->Month)); + assert_param(IS_LL_RTC_DAY(RTC_DateStruct->Day)); + } + else + { + assert_param(IS_LL_RTC_YEAR(__LL_RTC_CONVERT_BCD2BIN(RTC_DateStruct->Year))); + assert_param(IS_LL_RTC_MONTH(__LL_RTC_CONVERT_BCD2BIN(RTC_DateStruct->Month))); + assert_param(IS_LL_RTC_DAY(__LL_RTC_CONVERT_BCD2BIN(RTC_DateStruct->Day))); + } + assert_param(IS_LL_RTC_WEEKDAY(RTC_DateStruct->WeekDay)); + + /* Disable the write protection for RTC registers */ + LL_RTC_DisableWriteProtection(RTCx); + + /* Set Initialization mode */ + if (LL_RTC_EnterInitMode(RTCx) != ERROR) + { + /* Check the input parameters format */ + if (RTC_Format != LL_RTC_FORMAT_BIN) + { + LL_RTC_DATE_Config(RTCx, RTC_DateStruct->WeekDay, RTC_DateStruct->Day, RTC_DateStruct->Month, + RTC_DateStruct->Year); + } + else + { + LL_RTC_DATE_Config(RTCx, RTC_DateStruct->WeekDay, __LL_RTC_CONVERT_BIN2BCD(RTC_DateStruct->Day), + __LL_RTC_CONVERT_BIN2BCD(RTC_DateStruct->Month), + __LL_RTC_CONVERT_BIN2BCD(RTC_DateStruct->Year)); + } + + /* Exit Initialization mode */ + LL_RTC_DisableInitMode(RTC); + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if (LL_RTC_IsShadowRegBypassEnabled(RTCx) == 0U) + { + status = LL_RTC_WaitForSynchro(RTCx); + } + else + { + status = SUCCESS; + } + } + /* Enable the write protection for RTC registers */ + LL_RTC_EnableWriteProtection(RTCx); + + return status; +} + +/** + * @brief Set each @ref LL_RTC_DateTypeDef field to default value (date = Monday, January 01 xx00) + * @param RTC_DateStruct pointer to a @ref LL_RTC_DateTypeDef structure which will be initialized. + * @retval None + */ +void LL_RTC_DATE_StructInit(LL_RTC_DateTypeDef *RTC_DateStruct) +{ + /* Monday, January 01 xx00 */ + RTC_DateStruct->WeekDay = LL_RTC_WEEKDAY_MONDAY; + RTC_DateStruct->Day = 1U; + RTC_DateStruct->Month = LL_RTC_MONTH_JANUARY; + RTC_DateStruct->Year = 0U; +} + +/** + * @brief Set the RTC Alarm A. + * @note The Alarm register can only be written when the corresponding Alarm + * is disabled (Use @ref LL_RTC_ALMA_Disable function). + * @param RTCx RTC Instance + * @param RTC_Format This parameter can be one of the following values: + * @arg @ref LL_RTC_FORMAT_BIN + * @arg @ref LL_RTC_FORMAT_BCD + * @param RTC_AlarmStruct pointer to a @ref LL_RTC_AlarmTypeDef structure that + * contains the alarm configuration parameters. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ALARMA registers are configured + * - ERROR: ALARMA registers are not configured + */ +ErrorStatus LL_RTC_ALMA_Init(RTC_TypeDef *RTCx, uint32_t RTC_Format, LL_RTC_AlarmTypeDef *RTC_AlarmStruct) +{ + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + assert_param(IS_LL_RTC_FORMAT(RTC_Format)); + assert_param(IS_LL_RTC_ALMA_MASK(RTC_AlarmStruct->AlarmMask)); + assert_param(IS_LL_RTC_ALMA_DATE_WEEKDAY_SEL(RTC_AlarmStruct->AlarmDateWeekDaySel)); + + if (RTC_Format == LL_RTC_FORMAT_BIN) + { + if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) + { + assert_param(IS_LL_RTC_HOUR12(RTC_AlarmStruct->AlarmTime.Hours)); + assert_param(IS_LL_RTC_TIME_FORMAT(RTC_AlarmStruct->AlarmTime.TimeFormat)); + } + else + { + RTC_AlarmStruct->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_LL_RTC_HOUR24(RTC_AlarmStruct->AlarmTime.Hours)); + } + assert_param(IS_LL_RTC_MINUTES(RTC_AlarmStruct->AlarmTime.Minutes)); + assert_param(IS_LL_RTC_SECONDS(RTC_AlarmStruct->AlarmTime.Seconds)); + + if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) + { + assert_param(IS_LL_RTC_DAY(RTC_AlarmStruct->AlarmDateWeekDay)); + } + else + { + assert_param(IS_LL_RTC_WEEKDAY(RTC_AlarmStruct->AlarmDateWeekDay)); + } + } + else + { + if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) + { + assert_param(IS_LL_RTC_HOUR12(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Hours))); + assert_param(IS_LL_RTC_TIME_FORMAT(RTC_AlarmStruct->AlarmTime.TimeFormat)); + } + else + { + RTC_AlarmStruct->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_LL_RTC_HOUR24(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Hours))); + } + + assert_param(IS_LL_RTC_MINUTES(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Minutes))); + assert_param(IS_LL_RTC_SECONDS(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Seconds))); + + if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) + { + assert_param(IS_LL_RTC_DAY(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmDateWeekDay))); + } + else + { + assert_param(IS_LL_RTC_WEEKDAY(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmDateWeekDay))); + } + } + + /* Disable the write protection for RTC registers */ + LL_RTC_DisableWriteProtection(RTCx); + + /* Select weekday selection */ + if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) + { + /* Set the date for ALARM */ + LL_RTC_ALMA_DisableWeekday(RTCx); + if (RTC_Format != LL_RTC_FORMAT_BIN) + { + LL_RTC_ALMA_SetDay(RTCx, RTC_AlarmStruct->AlarmDateWeekDay); + } + else + { + LL_RTC_ALMA_SetDay(RTCx, __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmDateWeekDay)); + } + } + else + { + /* Set the week day for ALARM */ + LL_RTC_ALMA_EnableWeekday(RTCx); + LL_RTC_ALMA_SetWeekDay(RTCx, RTC_AlarmStruct->AlarmDateWeekDay); + } + + /* Configure the Alarm register */ + if (RTC_Format != LL_RTC_FORMAT_BIN) + { + LL_RTC_ALMA_ConfigTime(RTCx, RTC_AlarmStruct->AlarmTime.TimeFormat, RTC_AlarmStruct->AlarmTime.Hours, + RTC_AlarmStruct->AlarmTime.Minutes, RTC_AlarmStruct->AlarmTime.Seconds); + } + else + { + LL_RTC_ALMA_ConfigTime(RTCx, RTC_AlarmStruct->AlarmTime.TimeFormat, + __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Hours), + __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Minutes), + __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Seconds)); + } + /* Set ALARM mask */ + LL_RTC_ALMA_SetMask(RTCx, RTC_AlarmStruct->AlarmMask); + + /* Enable the write protection for RTC registers */ + LL_RTC_EnableWriteProtection(RTCx); + + return SUCCESS; +} + +/** + * @brief Set the RTC Alarm B. + * @note The Alarm register can only be written when the corresponding Alarm + * is disabled (@ref LL_RTC_ALMB_Disable function). + * @param RTCx RTC Instance + * @param RTC_Format This parameter can be one of the following values: + * @arg @ref LL_RTC_FORMAT_BIN + * @arg @ref LL_RTC_FORMAT_BCD + * @param RTC_AlarmStruct pointer to a @ref LL_RTC_AlarmTypeDef structure that + * contains the alarm configuration parameters. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ALARMB registers are configured + * - ERROR: ALARMB registers are not configured + */ +ErrorStatus LL_RTC_ALMB_Init(RTC_TypeDef *RTCx, uint32_t RTC_Format, LL_RTC_AlarmTypeDef *RTC_AlarmStruct) +{ + /* Check the parameters */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + assert_param(IS_LL_RTC_FORMAT(RTC_Format)); + assert_param(IS_LL_RTC_ALMB_MASK(RTC_AlarmStruct->AlarmMask)); + assert_param(IS_LL_RTC_ALMB_DATE_WEEKDAY_SEL(RTC_AlarmStruct->AlarmDateWeekDaySel)); + + if (RTC_Format == LL_RTC_FORMAT_BIN) + { + if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) + { + assert_param(IS_LL_RTC_HOUR12(RTC_AlarmStruct->AlarmTime.Hours)); + assert_param(IS_LL_RTC_TIME_FORMAT(RTC_AlarmStruct->AlarmTime.TimeFormat)); + } + else + { + RTC_AlarmStruct->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_LL_RTC_HOUR24(RTC_AlarmStruct->AlarmTime.Hours)); + } + assert_param(IS_LL_RTC_MINUTES(RTC_AlarmStruct->AlarmTime.Minutes)); + assert_param(IS_LL_RTC_SECONDS(RTC_AlarmStruct->AlarmTime.Seconds)); + + if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMB_DATEWEEKDAYSEL_DATE) + { + assert_param(IS_LL_RTC_DAY(RTC_AlarmStruct->AlarmDateWeekDay)); + } + else + { + assert_param(IS_LL_RTC_WEEKDAY(RTC_AlarmStruct->AlarmDateWeekDay)); + } + } + else + { + if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) + { + assert_param(IS_LL_RTC_HOUR12(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Hours))); + assert_param(IS_LL_RTC_TIME_FORMAT(RTC_AlarmStruct->AlarmTime.TimeFormat)); + } + else + { + RTC_AlarmStruct->AlarmTime.TimeFormat = 0x00U; + assert_param(IS_LL_RTC_HOUR24(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Hours))); + } + + assert_param(IS_LL_RTC_MINUTES(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Minutes))); + assert_param(IS_LL_RTC_SECONDS(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Seconds))); + + if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMB_DATEWEEKDAYSEL_DATE) + { + assert_param(IS_LL_RTC_DAY(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmDateWeekDay))); + } + else + { + assert_param(IS_LL_RTC_WEEKDAY(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmDateWeekDay))); + } + } + + /* Disable the write protection for RTC registers */ + LL_RTC_DisableWriteProtection(RTCx); + + /* Select weekday selection */ + if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMB_DATEWEEKDAYSEL_DATE) + { + /* Set the date for ALARM */ + LL_RTC_ALMB_DisableWeekday(RTCx); + if (RTC_Format != LL_RTC_FORMAT_BIN) + { + LL_RTC_ALMB_SetDay(RTCx, RTC_AlarmStruct->AlarmDateWeekDay); + } + else + { + LL_RTC_ALMB_SetDay(RTCx, __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmDateWeekDay)); + } + } + else + { + /* Set the week day for ALARM */ + LL_RTC_ALMB_EnableWeekday(RTCx); + LL_RTC_ALMB_SetWeekDay(RTCx, RTC_AlarmStruct->AlarmDateWeekDay); + } + + /* Configure the Alarm register */ + if (RTC_Format != LL_RTC_FORMAT_BIN) + { + LL_RTC_ALMB_ConfigTime(RTCx, RTC_AlarmStruct->AlarmTime.TimeFormat, RTC_AlarmStruct->AlarmTime.Hours, + RTC_AlarmStruct->AlarmTime.Minutes, RTC_AlarmStruct->AlarmTime.Seconds); + } + else + { + LL_RTC_ALMB_ConfigTime(RTCx, RTC_AlarmStruct->AlarmTime.TimeFormat, + __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Hours), + __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Minutes), + __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Seconds)); + } + /* Set ALARM mask */ + LL_RTC_ALMB_SetMask(RTCx, RTC_AlarmStruct->AlarmMask); + + /* Enable the write protection for RTC registers */ + LL_RTC_EnableWriteProtection(RTCx); + + return SUCCESS; +} + +/** + * @brief Set each @ref LL_RTC_AlarmTypeDef of ALARMA field to default value (Time = 00h:00mn:00sec / + * Day = 1st day of the month/Mask = all fields are masked). + * @param RTC_AlarmStruct pointer to a @ref LL_RTC_AlarmTypeDef structure which will be initialized. + * @retval None + */ +void LL_RTC_ALMA_StructInit(LL_RTC_AlarmTypeDef *RTC_AlarmStruct) +{ + /* Alarm Time Settings : Time = 00h:00mn:00sec */ + RTC_AlarmStruct->AlarmTime.TimeFormat = LL_RTC_ALMA_TIME_FORMAT_AM; + RTC_AlarmStruct->AlarmTime.Hours = 0U; + RTC_AlarmStruct->AlarmTime.Minutes = 0U; + RTC_AlarmStruct->AlarmTime.Seconds = 0U; + + /* Alarm Day Settings : Day = 1st day of the month */ + RTC_AlarmStruct->AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE; + RTC_AlarmStruct->AlarmDateWeekDay = 1U; + + /* Alarm Masks Settings : Mask = all fields are not masked */ + RTC_AlarmStruct->AlarmMask = LL_RTC_ALMA_MASK_NONE; +} + +/** + * @brief Set each @ref LL_RTC_AlarmTypeDef of ALARMA field to default value (Time = 00h:00mn:00sec / + * Day = 1st day of the month/Mask = all fields are masked). + * @param RTC_AlarmStruct pointer to a @ref LL_RTC_AlarmTypeDef structure which will be initialized. + * @retval None + */ +void LL_RTC_ALMB_StructInit(LL_RTC_AlarmTypeDef *RTC_AlarmStruct) +{ + /* Alarm Time Settings : Time = 00h:00mn:00sec */ + RTC_AlarmStruct->AlarmTime.TimeFormat = LL_RTC_ALMB_TIME_FORMAT_AM; + RTC_AlarmStruct->AlarmTime.Hours = 0U; + RTC_AlarmStruct->AlarmTime.Minutes = 0U; + RTC_AlarmStruct->AlarmTime.Seconds = 0U; + + /* Alarm Day Settings : Day = 1st day of the month */ + RTC_AlarmStruct->AlarmDateWeekDaySel = LL_RTC_ALMB_DATEWEEKDAYSEL_DATE; + RTC_AlarmStruct->AlarmDateWeekDay = 1U; + + /* Alarm Masks Settings : Mask = all fields are not masked */ + RTC_AlarmStruct->AlarmMask = LL_RTC_ALMB_MASK_NONE; +} + +/** + * @brief Enters the RTC Initialization mode. + * @note The RTC Initialization mode is write protected, use the + * @ref LL_RTC_DisableWriteProtection before calling this function. + * @param RTCx RTC Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RTC is in Init mode + * - ERROR: RTC is not in Init mode + */ +ErrorStatus LL_RTC_EnterInitMode(RTC_TypeDef *RTCx) +{ + __IO uint32_t timeout = RTC_INITMODE_TIMEOUT; + ErrorStatus status = SUCCESS; + uint32_t tmp = 0U; + + /* Check the parameter */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + + /* Check if the Initialization mode is set */ + if (LL_RTC_IsActiveFlag_INIT(RTCx) == 0U) + { + /* Set the Initialization mode */ + LL_RTC_EnableInitMode(RTCx); + + /* Wait till RTC is in INIT state and if Time out is reached exit */ + tmp = LL_RTC_IsActiveFlag_INIT(RTCx); + while ((timeout != 0U) && (tmp != 1U)) + { + if (LL_SYSTICK_IsActiveCounterFlag() == 1U) + { + timeout --; + } + tmp = LL_RTC_IsActiveFlag_INIT(RTCx); + if (timeout == 0U) + { + status = ERROR; + } + } + } + return status; +} + +/** + * @brief Exit the RTC Initialization mode. + * @note When the initialization sequence is complete, the calendar restarts + * counting after 4 RTCCLK cycles. + * @note The RTC Initialization mode is write protected, use the + * @ref LL_RTC_DisableWriteProtection before calling this function. + * @param RTCx RTC Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RTC exited from in Init mode + * - ERROR: Not applicable + */ +ErrorStatus LL_RTC_ExitInitMode(RTC_TypeDef *RTCx) +{ + /* Check the parameter */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + + /* Disable initialization mode */ + LL_RTC_DisableInitMode(RTCx); + + return SUCCESS; +} + +/** + * @brief Waits until the RTC Time and Day registers (RTC_TR and RTC_DR) are + * synchronized with RTC APB clock. + * @note The RTC Resynchronization mode is write protected, use the + * @ref LL_RTC_DisableWriteProtection before calling this function. + * @note To read the calendar through the shadow registers after Calendar + * initialization, calendar update or after wakeup from low power modes + * the software must first clear the RSF flag. + * The software must then wait until it is set again before reading + * the calendar, which means that the calendar registers have been + * correctly copied into the RTC_TR and RTC_DR shadow registers. + * @param RTCx RTC Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: RTC registers are synchronised + * - ERROR: RTC registers are not synchronised + */ +ErrorStatus LL_RTC_WaitForSynchro(RTC_TypeDef *RTCx) +{ + __IO uint32_t timeout = RTC_SYNCHRO_TIMEOUT; + ErrorStatus status = SUCCESS; + uint32_t tmp = 0U; + + /* Check the parameter */ + assert_param(IS_RTC_ALL_INSTANCE(RTCx)); + + /* Clear RSF flag */ + LL_RTC_ClearFlag_RS(RTCx); + + /* Wait the registers to be synchronised */ + tmp = LL_RTC_IsActiveFlag_RS(RTCx); + while ((timeout != 0U) && (tmp != 0U)) + { + if (LL_SYSTICK_IsActiveCounterFlag() == 1U) + { + timeout--; + } + tmp = LL_RTC_IsActiveFlag_RS(RTCx); + if (timeout == 0U) + { + status = ERROR; + } + } + + if (status != ERROR) + { + timeout = RTC_SYNCHRO_TIMEOUT; + tmp = LL_RTC_IsActiveFlag_RS(RTCx); + while ((timeout != 0U) && (tmp != 1U)) + { + if (LL_SYSTICK_IsActiveCounterFlag() == 1U) + { + timeout--; + } + tmp = LL_RTC_IsActiveFlag_RS(RTCx); + if (timeout == 0U) + { + status = ERROR; + } + } + } + + return (status); +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* defined(RTC) */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_spi.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_spi.c new file mode 100644 index 0000000..fa3e640 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_spi.c @@ -0,0 +1,295 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_spi.c + * @author MCD Application Team + * @brief SPI LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_spi.h" +#include "stm32u0xx_ll_bus.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (SPI1) || defined (SPI2) || defined (SPI3) + +/** @addtogroup SPI_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup SPI_LL_Private_Constants SPI Private Constants + * @{ + */ +/* SPI registers Masks */ +#define SPI_CR1_CLEAR_MASK (SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_MSTR | \ + SPI_CR1_BR | SPI_CR1_LSBFIRST | SPI_CR1_SSI | \ + SPI_CR1_SSM | SPI_CR1_RXONLY | SPI_CR1_CRCL | \ + SPI_CR1_CRCNEXT | SPI_CR1_CRCEN | SPI_CR1_BIDIOE | \ + SPI_CR1_BIDIMODE) +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup SPI_LL_Private_Macros SPI Private Macros + * @{ + */ +#define IS_LL_SPI_TRANSFER_DIRECTION(__VALUE__) (((__VALUE__) == LL_SPI_FULL_DUPLEX) \ + || ((__VALUE__) == LL_SPI_SIMPLEX_RX) \ + || ((__VALUE__) == LL_SPI_HALF_DUPLEX_RX) \ + || ((__VALUE__) == LL_SPI_HALF_DUPLEX_TX)) + +#define IS_LL_SPI_MODE(__VALUE__) (((__VALUE__) == LL_SPI_MODE_MASTER) \ + || ((__VALUE__) == LL_SPI_MODE_SLAVE)) + +#define IS_LL_SPI_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_SPI_DATAWIDTH_4BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_5BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_6BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_7BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_8BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_9BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_10BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_11BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_12BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_13BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_14BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_15BIT) \ + || ((__VALUE__) == LL_SPI_DATAWIDTH_16BIT)) + +#define IS_LL_SPI_POLARITY(__VALUE__) (((__VALUE__) == LL_SPI_POLARITY_LOW) \ + || ((__VALUE__) == LL_SPI_POLARITY_HIGH)) + +#define IS_LL_SPI_PHASE(__VALUE__) (((__VALUE__) == LL_SPI_PHASE_1EDGE) \ + || ((__VALUE__) == LL_SPI_PHASE_2EDGE)) + +#define IS_LL_SPI_NSS(__VALUE__) (((__VALUE__) == LL_SPI_NSS_SOFT) \ + || ((__VALUE__) == LL_SPI_NSS_HARD_INPUT) \ + || ((__VALUE__) == LL_SPI_NSS_HARD_OUTPUT)) + +#define IS_LL_SPI_BAUDRATE(__VALUE__) (((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV2) \ + || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV4) \ + || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV8) \ + || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV16) \ + || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV32) \ + || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV64) \ + || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV128) \ + || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV256)) + +#define IS_LL_SPI_BITORDER(__VALUE__) (((__VALUE__) == LL_SPI_LSB_FIRST) \ + || ((__VALUE__) == LL_SPI_MSB_FIRST)) + +#define IS_LL_SPI_CRCCALCULATION(__VALUE__) (((__VALUE__) == LL_SPI_CRCCALCULATION_ENABLE) \ + || ((__VALUE__) == LL_SPI_CRCCALCULATION_DISABLE)) + +#define IS_LL_SPI_CRC_POLYNOMIAL(__VALUE__) ((__VALUE__) >= 0x1U) + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup SPI_LL_Exported_Functions + * @{ + */ + +/** @addtogroup SPI_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize the SPI registers to their default reset values. + * @param SPIx SPI Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: SPI registers are de-initialized + * - ERROR: SPI registers are not de-initialized + */ +ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx) +{ + ErrorStatus status = ERROR; + + /* Check the parameters */ + assert_param(IS_SPI_ALL_INSTANCE(SPIx)); + +#if defined(SPI1) + if (SPIx == SPI1) + { + /* Force reset of SPI clock */ + LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_SPI1); + + /* Release reset of SPI clock */ + LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_SPI1); + + status = SUCCESS; + } +#endif /* SPI1 */ +#if defined(SPI2) + if (SPIx == SPI2) + { + /* Force reset of SPI clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI2); + + /* Release reset of SPI clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI2); + + status = SUCCESS; + } +#endif /* SPI2 */ +#if defined(SPI3) + if (SPIx == SPI3) + { + /* Force reset of SPI clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI3); + + /* Release reset of SPI clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI3); + + status = SUCCESS; + } +#endif /* SPI3 */ + + return status; +} + +/** + * @brief Initialize the SPI registers according to the specified parameters in SPI_InitStruct. + * @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0), + * SPI peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned. + * @param SPIx SPI Instance + * @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure + * @retval An ErrorStatus enumeration value. (Return always SUCCESS) + */ +ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct) +{ + ErrorStatus status = ERROR; + + /* Check the SPI Instance SPIx*/ + assert_param(IS_SPI_ALL_INSTANCE(SPIx)); + + /* Check the SPI parameters from SPI_InitStruct*/ + assert_param(IS_LL_SPI_TRANSFER_DIRECTION(SPI_InitStruct->TransferDirection)); + assert_param(IS_LL_SPI_MODE(SPI_InitStruct->Mode)); + assert_param(IS_LL_SPI_DATAWIDTH(SPI_InitStruct->DataWidth)); + assert_param(IS_LL_SPI_POLARITY(SPI_InitStruct->ClockPolarity)); + assert_param(IS_LL_SPI_PHASE(SPI_InitStruct->ClockPhase)); + assert_param(IS_LL_SPI_NSS(SPI_InitStruct->NSS)); + assert_param(IS_LL_SPI_BAUDRATE(SPI_InitStruct->BaudRate)); + assert_param(IS_LL_SPI_BITORDER(SPI_InitStruct->BitOrder)); + assert_param(IS_LL_SPI_CRCCALCULATION(SPI_InitStruct->CRCCalculation)); + + if (LL_SPI_IsEnabled(SPIx) == 0x00000000U) + { + /*---------------------------- SPIx CR1 Configuration ------------------------ + * Configure SPIx CR1 with parameters: + * - TransferDirection: SPI_CR1_BIDIMODE, SPI_CR1_BIDIOE and SPI_CR1_RXONLY bits + * - Master/Slave Mode: SPI_CR1_MSTR bit + * - ClockPolarity: SPI_CR1_CPOL bit + * - ClockPhase: SPI_CR1_CPHA bit + * - NSS management: SPI_CR1_SSM bit + * - BaudRate prescaler: SPI_CR1_BR[2:0] bits + * - BitOrder: SPI_CR1_LSBFIRST bit + * - CRCCalculation: SPI_CR1_CRCEN bit + */ + MODIFY_REG(SPIx->CR1, + SPI_CR1_CLEAR_MASK, + SPI_InitStruct->TransferDirection | SPI_InitStruct->Mode | + SPI_InitStruct->ClockPolarity | SPI_InitStruct->ClockPhase | + SPI_InitStruct->NSS | SPI_InitStruct->BaudRate | + SPI_InitStruct->BitOrder | SPI_InitStruct->CRCCalculation); + + /*---------------------------- SPIx CR2 Configuration ------------------------ + * Configure SPIx CR2 with parameters: + * - DataWidth: DS[3:0] bits + * - NSS management: SSOE bit + */ + MODIFY_REG(SPIx->CR2, + SPI_CR2_DS | SPI_CR2_SSOE, + SPI_InitStruct->DataWidth | (SPI_InitStruct->NSS >> 16U)); + + /* Set Rx FIFO to Quarter (1 Byte) in case of 8 Bits mode. No DataPacking by default */ + if (SPI_InitStruct->DataWidth < LL_SPI_DATAWIDTH_9BIT) + { + LL_SPI_SetRxFIFOThreshold(SPIx, LL_SPI_RX_FIFO_TH_QUARTER); + } + + /*---------------------------- SPIx CRCPR Configuration ---------------------- + * Configure SPIx CRCPR with parameters: + * - CRCPoly: CRCPOLY[15:0] bits + */ + if (SPI_InitStruct->CRCCalculation == LL_SPI_CRCCALCULATION_ENABLE) + { + assert_param(IS_LL_SPI_CRC_POLYNOMIAL(SPI_InitStruct->CRCPoly)); + LL_SPI_SetCRCPolynomial(SPIx, SPI_InitStruct->CRCPoly); + } + status = SUCCESS; + } + + return status; +} + +/** + * @brief Set each @ref LL_SPI_InitTypeDef field to default value. + * @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct) +{ + /* Set SPI_InitStruct fields to default values */ + SPI_InitStruct->TransferDirection = LL_SPI_FULL_DUPLEX; + SPI_InitStruct->Mode = LL_SPI_MODE_SLAVE; + SPI_InitStruct->DataWidth = LL_SPI_DATAWIDTH_8BIT; + SPI_InitStruct->ClockPolarity = LL_SPI_POLARITY_LOW; + SPI_InitStruct->ClockPhase = LL_SPI_PHASE_1EDGE; + SPI_InitStruct->NSS = LL_SPI_NSS_HARD_INPUT; + SPI_InitStruct->BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV2; + SPI_InitStruct->BitOrder = LL_SPI_MSB_FIRST; + SPI_InitStruct->CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE; + SPI_InitStruct->CRCPoly = 7U; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_tim.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_tim.c new file mode 100644 index 0000000..5757176 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_tim.c @@ -0,0 +1,1339 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_tim.c + * @author MCD Application Team + * @brief TIM LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_tim.h" +#include "stm32u0xx_ll_bus.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined (TIM1) \ + || defined (TIM2) \ + || defined (TIM3) \ + || defined (TIM6) \ + || defined (TIM7) \ + || defined (TIM15) \ + || defined (TIM16) + +/** @addtogroup TIM_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup TIM_LL_Private_Macros + * @{ + */ +#define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \ + || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \ + || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \ + || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \ + || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN)) + +#define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \ + || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \ + || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4)) + +#define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \ + || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \ + || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \ + || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \ + || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \ + || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \ + || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \ + || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \ + || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \ + || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \ + || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \ + || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \ + || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM1) \ + || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM2)) + +#define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \ + || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE)) + +#define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \ + || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW)) + +#define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \ + || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH)) + +#define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \ + || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \ + || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC)) + +#define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \ + || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \ + || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \ + || ((__VALUE__) == LL_TIM_ICPSC_DIV8)) + +#define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \ + || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8)) + +#define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ + || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \ + || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE)) + +#define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \ + || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \ + || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12)) + +#define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ + || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING)) + +#define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \ + || ((__VALUE__) == LL_TIM_OSSR_ENABLE)) + +#define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \ + || ((__VALUE__) == LL_TIM_OSSI_ENABLE)) + +#define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \ + || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \ + || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \ + || ((__VALUE__) == LL_TIM_LOCKLEVEL_3)) + +#define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \ + || ((__VALUE__) == LL_TIM_BREAK_ENABLE)) + +#define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \ + || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH)) + +#define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \ + || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8)) + +#define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT) \ + || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL)) + +#define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \ + || ((__VALUE__) == LL_TIM_BREAK2_ENABLE)) + +#define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \ + || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH)) + +#define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \ + || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8)) + +#define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT) \ + || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL)) + +#define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \ + || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE)) +/** + * @} + */ + + +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup TIM_LL_Private_Functions TIM Private Functions + * @{ + */ +static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); +static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); +static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); +static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); +static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); +static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); +static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); +static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); +static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); +static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup TIM_LL_Exported_Functions + * @{ + */ + +/** @addtogroup TIM_LL_EF_Init + * @{ + */ + +/** + * @brief Set TIMx registers to their reset values. + * @param TIMx Timer instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: invalid TIMx instance + */ +ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx) +{ + ErrorStatus result = SUCCESS; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(TIMx)); + + if (TIMx == TIM1) + { + LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM1); + LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM1); + } + else if (TIMx == TIM2) + { + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2); + } + else if (TIMx == TIM3) + { + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3); + } + else if (TIMx == TIM6) + { + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6); + } + else if (TIMx == TIM7) + { + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7); + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7); + } + else if (TIMx == TIM15) + { + LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM15); + LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM15); + } + else if (TIMx == TIM16) + { + LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM16); + LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM16); + } + else + { + result = ERROR; + } + + return result; +} + +/** + * @brief Set the fields of the time base unit configuration data structure + * to their default values. + * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure) + * @retval None + */ +void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct) +{ + /* Set the default configuration */ + TIM_InitStruct->Prescaler = (uint16_t)0x0000; + TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP; + TIM_InitStruct->Autoreload = 0xFFFFFFFFU; + TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; + TIM_InitStruct->RepetitionCounter = 0x00000000U; +} + +/** + * @brief Configure the TIMx time base unit. + * @param TIMx Timer Instance + * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure + * (TIMx time base unit configuration data structure) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct) +{ + uint32_t tmpcr1; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode)); + assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision)); + + tmpcr1 = LL_TIM_ReadReg(TIMx, CR1); + + if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) + { + /* Select the Counter Mode */ + MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode); + } + + if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) + { + /* Set the clock division */ + MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision); + } + + /* Write to TIMx CR1 */ + LL_TIM_WriteReg(TIMx, CR1, tmpcr1); + + /* Set the Autoreload value */ + LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload); + + /* Set the Prescaler value */ + LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler); + + if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) + { + /* Set the Repetition Counter value */ + LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter); + } + + /* Generate an update event to reload the Prescaler + and the repetition counter value (if applicable) immediately */ + LL_TIM_GenerateEvent_UPDATE(TIMx); + + return SUCCESS; +} + +/** + * @brief Set the fields of the TIMx output channel configuration data + * structure to their default values. + * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure + * (the output channel configuration data structure) + * @retval None + */ +void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) +{ + /* Set the default configuration */ + TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN; + TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE; + TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE; + TIM_OC_InitStruct->CompareValue = 0x00000000U; + TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH; + TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH; + TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW; + TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW; +} + +/** + * @brief Configure the TIMx output channel. + * @param TIMx Timer Instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @arg @ref LL_TIM_CHANNEL_CH5 + * @arg @ref LL_TIM_CHANNEL_CH6 + * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration + * data structure) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx output channel is initialized + * - ERROR: TIMx output channel is not initialized + */ +ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) +{ + ErrorStatus result = ERROR; + + switch (Channel) + { + case LL_TIM_CHANNEL_CH1: + result = OC1Config(TIMx, TIM_OC_InitStruct); + break; + case LL_TIM_CHANNEL_CH2: + result = OC2Config(TIMx, TIM_OC_InitStruct); + break; + case LL_TIM_CHANNEL_CH3: + result = OC3Config(TIMx, TIM_OC_InitStruct); + break; + case LL_TIM_CHANNEL_CH4: + result = OC4Config(TIMx, TIM_OC_InitStruct); + break; + case LL_TIM_CHANNEL_CH5: + result = OC5Config(TIMx, TIM_OC_InitStruct); + break; + case LL_TIM_CHANNEL_CH6: + result = OC6Config(TIMx, TIM_OC_InitStruct); + break; + default: + break; + } + + return result; +} + +/** + * @brief Set the fields of the TIMx input channel configuration data + * structure to their default values. + * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration + * data structure) + * @retval None + */ +void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) +{ + /* Set the default configuration */ + TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING; + TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; + TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1; + TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1; +} + +/** + * @brief Configure the TIMx input channel. + * @param TIMx Timer Instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data + * structure) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx output channel is initialized + * - ERROR: TIMx output channel is not initialized + */ +ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct) +{ + ErrorStatus result = ERROR; + + switch (Channel) + { + case LL_TIM_CHANNEL_CH1: + result = IC1Config(TIMx, TIM_IC_InitStruct); + break; + case LL_TIM_CHANNEL_CH2: + result = IC2Config(TIMx, TIM_IC_InitStruct); + break; + case LL_TIM_CHANNEL_CH3: + result = IC3Config(TIMx, TIM_IC_InitStruct); + break; + case LL_TIM_CHANNEL_CH4: + result = IC4Config(TIMx, TIM_IC_InitStruct); + break; + default: + break; + } + + return result; +} + +/** + * @brief Fills each TIM_EncoderInitStruct field with its default value + * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface + * configuration data structure) + * @retval None + */ +void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) +{ + /* Set the default configuration */ + TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1; + TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; + TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; + TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; + TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; + TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING; + TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; + TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1; + TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1; +} + +/** + * @brief Configure the encoder interface of the timer instance. + * @param TIMx Timer Instance + * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface + * configuration data structure) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode)); + assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity)); + assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput)); + assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler)); + assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter)); + assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity)); + assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput)); + assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler)); + assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter)); + + /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ + TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Configure TI1 */ + tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); + tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U); + tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U); + tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U); + + /* Configure TI2 */ + tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC); + tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U); + tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U); + tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U); + + /* Set TI1 and TI2 polarity and enable TI1 and TI2 */ + tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity); + tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U); + tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); + + /* Set encoder mode */ + LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode); + + /* Write to TIMx CCMR1 */ + LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + return SUCCESS; +} + +/** + * @brief Set the fields of the TIMx Hall sensor interface configuration data + * structure to their default values. + * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface + * configuration data structure) + * @retval None + */ +void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) +{ + /* Set the default configuration */ + TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; + TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; + TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; + TIM_HallSensorInitStruct->CommutationDelay = 0U; +} + +/** + * @brief Configure the Hall sensor interface of the timer instance. + * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR + * to the TI1 input channel + * @note TIMx slave mode controller is configured in reset mode. + Selected internal trigger is TI1F_ED. + * @note Channel 1 is configured as input, IC1 is mapped on TRC. + * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed + * between 2 changes on the inputs. It gives information about motor speed. + * @note Channel 2 is configured in output PWM 2 mode. + * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay. + * @note OC2REF is selected as trigger output on TRGO. + * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used + * when TIMx operates in Hall sensor interface mode. + * @param TIMx Timer Instance + * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor + * interface configuration data structure) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) +{ + uint32_t tmpcr2; + uint32_t tmpccmr1; + uint32_t tmpccer; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity)); + assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler)); + assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter)); + + /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ + TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); + + /* Get the TIMx CR2 register value */ + tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Get the TIMx SMCR register value */ + tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR); + + /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */ + tmpcr2 |= TIM_CR2_TI1S; + + /* OC2REF signal is used as trigger output (TRGO) */ + tmpcr2 |= LL_TIM_TRGO_OC2REF; + + /* Configure the slave mode controller */ + tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS); + tmpsmcr |= LL_TIM_TS_TI1F_ED; + tmpsmcr |= LL_TIM_SLAVEMODE_RESET; + + /* Configure input channel 1 */ + tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); + tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U); + tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U); + tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U); + + /* Configure input channel 2 */ + tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE); + tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U); + + /* Set Channel 1 polarity and enable Channel 1 and Channel2 */ + tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity); + tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); + + /* Write to TIMx CR2 */ + LL_TIM_WriteReg(TIMx, CR2, tmpcr2); + + /* Write to TIMx SMCR */ + LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr); + + /* Write to TIMx CCMR1 */ + LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + /* Write to TIMx CCR2 */ + LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay); + + return SUCCESS; +} + +/** + * @brief Set the fields of the Break and Dead Time configuration data structure + * to their default values. + * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration + * data structure) + * @retval None + */ +void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct) +{ + /* Set the default configuration */ + TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE; + TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE; + TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF; + TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00; + TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE; + TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW; + TIM_BDTRInitStruct->BreakFilter = LL_TIM_BREAK_FILTER_FDIV1; + TIM_BDTRInitStruct->BreakAFMode = LL_TIM_BREAK_AFMODE_INPUT; + TIM_BDTRInitStruct->Break2State = LL_TIM_BREAK2_DISABLE; + TIM_BDTRInitStruct->Break2Polarity = LL_TIM_BREAK2_POLARITY_LOW; + TIM_BDTRInitStruct->Break2Filter = LL_TIM_BREAK2_FILTER_FDIV1; + TIM_BDTRInitStruct->Break2AFMode = LL_TIM_BREAK2_AFMODE_INPUT; + TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE; +} + +/** + * @brief Configure the Break and Dead Time feature of the timer instance. + * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR + * and DTG[7:0] can be write-locked depending on the LOCK configuration, it + * can be necessary to configure all of them during the first write access to + * the TIMx_BDTR register. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a second break input. + * @param TIMx Timer Instance + * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration + * data structure) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: Break and Dead Time is initialized + * - ERROR: not applicable + */ +ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct) +{ + uint32_t tmpbdtr = 0; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState)); + assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState)); + assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel)); + assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState)); + assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity)); + assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput)); + assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter)); + assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode)); + + /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, + the OSSI State, the dead time value and the Automatic Output Enable Bit */ + + /* Set the BDTR bits */ + MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime); + MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel); + MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState); + MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity); + MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode); + + if (IS_TIM_BKIN2_INSTANCE(TIMx)) + { + assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State)); + assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity)); + assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter)); + assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode)); + + /* Set the BREAK2 input related BDTR bit-fields */ + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter)); + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State); + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity); + MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode); + } + + /* Set TIMx_BDTR */ + LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr); + + return SUCCESS; +} +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup TIM_LL_Private_Functions TIM Private Functions + * @brief Private functions + * @{ + */ +/** + * @brief Configure the TIMx output channel 1. + * @param TIMx Timer Instance + * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); + + /* Disable the Channel 1: Reset the CC1E Bit */ + CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Get the TIMx CR2 register value */ + tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); + + /* Reset Capture/Compare selection Bits */ + CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S); + + /* Set the Output Compare Mode */ + MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode); + + /* Set the Output Compare Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity); + + /* Set the Output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); + + /* Set the complementary output Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U); + + /* Set the complementary output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U); + + /* Set the Output Idle state */ + MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState); + + /* Set the complementary output Idle state */ + MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U); + } + + /* Write to TIMx CR2 */ + LL_TIM_WriteReg(TIMx, CR2, tmpcr2); + + /* Write to TIMx CCMR1 */ + LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); + + /* Set the Capture Compare Register value */ + LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx output channel 2. + * @param TIMx Timer Instance + * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); + + /* Disable the Channel 2: Reset the CC2E Bit */ + CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Get the TIMx CR2 register value */ + tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); + + /* Reset Capture/Compare selection Bits */ + CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S); + + /* Select the Output Compare Mode */ + MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U); + + /* Set the Output Compare Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U); + + /* Set the Output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); + + /* Set the complementary output Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U); + + /* Set the complementary output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U); + + /* Set the Output Idle state */ + MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U); + + /* Set the complementary output Idle state */ + MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U); + } + + /* Write to TIMx CR2 */ + LL_TIM_WriteReg(TIMx, CR2, tmpcr2); + + /* Write to TIMx CCMR1 */ + LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); + + /* Set the Capture Compare Register value */ + LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx output channel 3. + * @param TIMx Timer Instance + * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); + + /* Disable the Channel 3: Reset the CC3E Bit */ + CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Get the TIMx CR2 register value */ + tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); + + /* Get the TIMx CCMR2 register value */ + tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); + + /* Reset Capture/Compare selection Bits */ + CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S); + + /* Select the Output Compare Mode */ + MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode); + + /* Set the Output Compare Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U); + + /* Set the Output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); + + /* Set the complementary output Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U); + + /* Set the complementary output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U); + + /* Set the Output Idle state */ + MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U); + + /* Set the complementary output Idle state */ + MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U); + } + + /* Write to TIMx CR2 */ + LL_TIM_WriteReg(TIMx, CR2, tmpcr2); + + /* Write to TIMx CCMR2 */ + LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); + + /* Set the Capture Compare Register value */ + LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx output channel 4. + * @param TIMx Timer Instance + * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); + + /* Disable the Channel 4: Reset the CC4E Bit */ + CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Get the TIMx CR2 register value */ + tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); + + /* Get the TIMx CCMR2 register value */ + tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); + + /* Reset Capture/Compare selection Bits */ + CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S); + + /* Select the Output Compare Mode */ + MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U); + + /* Set the Output Compare Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U); + + /* Set the Output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); + + /* Set the Output Idle state */ + MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U); + } + + /* Write to TIMx CR2 */ + LL_TIM_WriteReg(TIMx, CR2, tmpcr2); + + /* Write to TIMx CCMR2 */ + LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); + + /* Set the Capture Compare Register value */ + LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx output channel 5. + * @param TIMx Timer Instance + * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) +{ + uint32_t tmpccmr3; + uint32_t tmpccer; + + /* Check the parameters */ + assert_param(IS_TIM_CC5_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); + + /* Disable the Channel 5: Reset the CC5E Bit */ + CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Get the TIMx CCMR3 register value */ + tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3); + + /* Select the Output Compare Mode */ + MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode); + + /* Set the Output Compare Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U); + + /* Set the Output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); + + /* Set the Output Idle state */ + MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U); + + } + + /* Write to TIMx CCMR3 */ + LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3); + + /* Set the Capture Compare Register value */ + LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx output channel 6. + * @param TIMx Timer Instance + * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) +{ + uint32_t tmpccmr3; + uint32_t tmpccer; + + /* Check the parameters */ + assert_param(IS_TIM_CC6_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); + assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); + assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); + + /* Disable the Channel 5: Reset the CC6E Bit */ + CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E); + + /* Get the TIMx CCER register value */ + tmpccer = LL_TIM_ReadReg(TIMx, CCER); + + /* Get the TIMx CCMR3 register value */ + tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3); + + /* Select the Output Compare Mode */ + MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U); + + /* Set the Output Compare Polarity */ + MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U); + + /* Set the Output State */ + MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); + assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); + + /* Set the Output Idle state */ + MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U); + } + + /* Write to TIMx CCMR3 */ + LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3); + + /* Set the Capture Compare Register value */ + LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue); + + /* Write to TIMx CCER */ + LL_TIM_WriteReg(TIMx, CCER, tmpccer); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx input channel 1. + * @param TIMx Timer Instance + * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); + assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); + assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); + assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E; + + /* Select the Input and set the filter and the prescaler value */ + MODIFY_REG(TIMx->CCMR1, + (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC), + (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); + + /* Select the Polarity and set the CC1E Bit */ + MODIFY_REG(TIMx->CCER, + (TIM_CCER_CC1P | TIM_CCER_CC1NP), + (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E)); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx input channel 2. + * @param TIMx Timer Instance + * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); + assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); + assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); + assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E; + + /* Select the Input and set the filter and the prescaler value */ + MODIFY_REG(TIMx->CCMR1, + (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC), + (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); + + /* Select the Polarity and set the CC2E Bit */ + MODIFY_REG(TIMx->CCER, + (TIM_CCER_CC2P | TIM_CCER_CC2NP), + ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E)); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx input channel 3. + * @param TIMx Timer Instance + * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); + assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); + assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); + assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); + + /* Disable the Channel 3: Reset the CC3E Bit */ + TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E; + + /* Select the Input and set the filter and the prescaler value */ + MODIFY_REG(TIMx->CCMR2, + (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC), + (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); + + /* Select the Polarity and set the CC3E Bit */ + MODIFY_REG(TIMx->CCER, + (TIM_CCER_CC3P | TIM_CCER_CC3NP), + ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E)); + + return SUCCESS; +} + +/** + * @brief Configure the TIMx input channel 4. + * @param TIMx Timer Instance + * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: TIMx registers are de-initialized + * - ERROR: not applicable + */ +static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(TIMx)); + assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); + assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); + assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); + assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E; + + /* Select the Input and set the filter and the prescaler value */ + MODIFY_REG(TIMx->CCMR2, + (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC), + (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); + + /* Select the Polarity and set the CC4E Bit */ + MODIFY_REG(TIMx->CCER, + (TIM_CCER_CC4P | TIM_CCER_CC4NP), + ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E)); + + return SUCCESS; +} + + +/** + * @} + */ + +/** + * @} + */ + +#endif /* TIM1 || TIM2 || TIM3 || TIM6 || TIM7 || TIM15 || TIM16 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usart.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usart.c new file mode 100644 index 0000000..427a6d7 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usart.c @@ -0,0 +1,414 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_usart.c + * @author MCD Application Team + * @brief USART LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_usart.h" +#include "stm32u0xx_ll_rcc.h" +#include "stm32u0xx_ll_bus.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +#if defined(USART1) || defined(USART2) || defined(USART3) || defined(USART4) + +/** @addtogroup USART_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup USART_LL_Private_Constants + * @{ + */ + +/* Definition of default baudrate value used for USART initialisation */ +#define USART_DEFAULT_BAUDRATE (9600U) + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup USART_LL_Private_Macros + * @{ + */ + +#define IS_LL_USART_PRESCALER(__VALUE__) (((__VALUE__) == LL_USART_PRESCALER_DIV1) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV2) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV4) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV6) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV8) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV10) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV12) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV16) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV32) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV64) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV128) \ + || ((__VALUE__) == LL_USART_PRESCALER_DIV256)) + +/* __BAUDRATE__ The maximum Baud Rate is derived from the maximum clock available + * divided by the smallest oversampling used on the USART (i.e. 8) */ +#define IS_LL_USART_BAUDRATE(__BAUDRATE__) ((__BAUDRATE__) <= 6000000U) + +/* __VALUE__ In case of oversampling by 16 and 8, BRR content must be greater than or equal to 16d. */ +#define IS_LL_USART_BRR_MIN(__VALUE__) ((__VALUE__) >= 16U) + +#define IS_LL_USART_DIRECTION(__VALUE__) (((__VALUE__) == LL_USART_DIRECTION_NONE) \ + || ((__VALUE__) == LL_USART_DIRECTION_RX) \ + || ((__VALUE__) == LL_USART_DIRECTION_TX) \ + || ((__VALUE__) == LL_USART_DIRECTION_TX_RX)) + +#define IS_LL_USART_PARITY(__VALUE__) (((__VALUE__) == LL_USART_PARITY_NONE) \ + || ((__VALUE__) == LL_USART_PARITY_EVEN) \ + || ((__VALUE__) == LL_USART_PARITY_ODD)) + +#define IS_LL_USART_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_USART_DATAWIDTH_7B) \ + || ((__VALUE__) == LL_USART_DATAWIDTH_8B) \ + || ((__VALUE__) == LL_USART_DATAWIDTH_9B)) + +#define IS_LL_USART_OVERSAMPLING(__VALUE__) (((__VALUE__) == LL_USART_OVERSAMPLING_16) \ + || ((__VALUE__) == LL_USART_OVERSAMPLING_8)) + +#define IS_LL_USART_LASTBITCLKOUTPUT(__VALUE__) (((__VALUE__) == LL_USART_LASTCLKPULSE_NO_OUTPUT) \ + || ((__VALUE__) == LL_USART_LASTCLKPULSE_OUTPUT)) + +#define IS_LL_USART_CLOCKPHASE(__VALUE__) (((__VALUE__) == LL_USART_PHASE_1EDGE) \ + || ((__VALUE__) == LL_USART_PHASE_2EDGE)) + +#define IS_LL_USART_CLOCKPOLARITY(__VALUE__) (((__VALUE__) == LL_USART_POLARITY_LOW) \ + || ((__VALUE__) == LL_USART_POLARITY_HIGH)) + +#define IS_LL_USART_CLOCKOUTPUT(__VALUE__) (((__VALUE__) == LL_USART_CLOCK_DISABLE) \ + || ((__VALUE__) == LL_USART_CLOCK_ENABLE)) + +#define IS_LL_USART_STOPBITS(__VALUE__) (((__VALUE__) == LL_USART_STOPBITS_0_5) \ + || ((__VALUE__) == LL_USART_STOPBITS_1) \ + || ((__VALUE__) == LL_USART_STOPBITS_1_5) \ + || ((__VALUE__) == LL_USART_STOPBITS_2)) + +#define IS_LL_USART_HWCONTROL(__VALUE__) (((__VALUE__) == LL_USART_HWCONTROL_NONE) \ + || ((__VALUE__) == LL_USART_HWCONTROL_RTS) \ + || ((__VALUE__) == LL_USART_HWCONTROL_CTS) \ + || ((__VALUE__) == LL_USART_HWCONTROL_RTS_CTS)) + +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup USART_LL_Exported_Functions + * @{ + */ + +/** @addtogroup USART_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize USART registers (Registers restored to their default values). + * @param USARTx USART Instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: USART registers are de-initialized + * - ERROR: USART registers are not de-initialized + */ +ErrorStatus LL_USART_DeInit(const USART_TypeDef *USARTx) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(USARTx)); + + if (USARTx == USART1) + { + /* Force reset of USART clock */ + LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_USART1); + + /* Release reset of USART clock */ + LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_USART1); + } + else if (USARTx == USART2) + { + /* Force reset of USART clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART2); + + /* Release reset of USART clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART2); + } + else if (USARTx == USART3) + { + /* Force reset of USART clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART3); + + /* Release reset of USART clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART3); + } + else if (USARTx == USART4) + { + /* Force reset of USART clock */ + LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART4); + + /* Release reset of USART clock */ + LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART4); + } + else + { + status = ERROR; + } + + return (status); +} + +/** + * @brief Initialize USART registers according to the specified + * parameters in USART_InitStruct. + * @note As some bits in USART configuration registers can only be written when + * the USART is disabled (USART_CR1_UE bit =0), USART Peripheral should be in disabled state prior calling + * this function. Otherwise, ERROR result will be returned. + * @note Baud rate value stored in USART_InitStruct BaudRate field, should be valid (different from 0). + * @param USARTx USART Instance + * @param USART_InitStruct pointer to a LL_USART_InitTypeDef structure + * that contains the configuration information for the specified USART peripheral. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: USART registers are initialized according to USART_InitStruct content + * - ERROR: Problem occurred during USART Registers initialization + */ +ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, const LL_USART_InitTypeDef *USART_InitStruct) +{ + ErrorStatus status = ERROR; + uint32_t periphclk = LL_RCC_PERIPH_FREQUENCY_NO; + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(USARTx)); + assert_param(IS_LL_USART_PRESCALER(USART_InitStruct->PrescalerValue)); + assert_param(IS_LL_USART_BAUDRATE(USART_InitStruct->BaudRate)); + assert_param(IS_LL_USART_DATAWIDTH(USART_InitStruct->DataWidth)); + assert_param(IS_LL_USART_STOPBITS(USART_InitStruct->StopBits)); + assert_param(IS_LL_USART_PARITY(USART_InitStruct->Parity)); + assert_param(IS_LL_USART_DIRECTION(USART_InitStruct->TransferDirection)); + assert_param(IS_LL_USART_HWCONTROL(USART_InitStruct->HardwareFlowControl)); + assert_param(IS_LL_USART_OVERSAMPLING(USART_InitStruct->OverSampling)); + + /* USART needs to be in disabled state, in order to be able to configure some bits in + CRx registers */ + if (LL_USART_IsEnabled(USARTx) == 0U) + { + /*---------------------------- USART CR1 Configuration --------------------- + * Configure USARTx CR1 (USART Word Length, Parity, Mode and Oversampling bits) with parameters: + * - DataWidth: USART_CR1_M bits according to USART_InitStruct->DataWidth value + * - Parity: USART_CR1_PCE, USART_CR1_PS bits according to USART_InitStruct->Parity value + * - TransferDirection: USART_CR1_TE, USART_CR1_RE bits according to USART_InitStruct->TransferDirection value + * - Oversampling: USART_CR1_OVER8 bit according to USART_InitStruct->OverSampling value. + */ + MODIFY_REG(USARTx->CR1, + (USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | + USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8), + (USART_InitStruct->DataWidth | USART_InitStruct->Parity | + USART_InitStruct->TransferDirection | USART_InitStruct->OverSampling)); + + /*---------------------------- USART CR2 Configuration --------------------- + * Configure USARTx CR2 (Stop bits) with parameters: + * - Stop Bits: USART_CR2_STOP bits according to USART_InitStruct->StopBits value. + * - CLKEN, CPOL, CPHA and LBCL bits are to be configured using LL_USART_ClockInit(). + */ + LL_USART_SetStopBitsLength(USARTx, USART_InitStruct->StopBits); + + /*---------------------------- USART CR3 Configuration --------------------- + * Configure USARTx CR3 (Hardware Flow Control) with parameters: + * - HardwareFlowControl: USART_CR3_RTSE, USART_CR3_CTSE bits according to + * USART_InitStruct->HardwareFlowControl value. + */ + LL_USART_SetHWFlowCtrl(USARTx, USART_InitStruct->HardwareFlowControl); + + /*---------------------------- USART BRR Configuration --------------------- + * Retrieve Clock frequency used for USART Peripheral + */ + if (USARTx == USART1) + { + periphclk = LL_RCC_GetUSARTClockFreq(LL_RCC_USART1_CLKSOURCE); + } + else if (USARTx == USART2) + { + periphclk = LL_RCC_GetUSARTClockFreq(LL_RCC_USART2_CLKSOURCE); + } + else if (USARTx == USART3) + { + periphclk = LL_RCC_GetUSARTClockFreq(LL_RCC_USART3_CLKSOURCE); + } + else if (USARTx == USART4) + { + periphclk = LL_RCC_GetUSARTClockFreq(LL_RCC_USART4_CLKSOURCE); + } + else + { + /* Nothing to do, as error code is already assigned to ERROR value */ + } + + /* Configure the USART Baud Rate : + - prescaler value is required + - valid baud rate value (different from 0) is required + - Peripheral clock as returned by RCC service, should be valid (different from 0). + */ + if ((periphclk != LL_RCC_PERIPH_FREQUENCY_NO) + && (USART_InitStruct->BaudRate != 0U)) + { + status = SUCCESS; + LL_USART_SetBaudRate(USARTx, + periphclk, + USART_InitStruct->PrescalerValue, + USART_InitStruct->OverSampling, + USART_InitStruct->BaudRate); + + /* Check BRR is greater than or equal to 16d */ + assert_param(IS_LL_USART_BRR_MIN(USARTx->BRR)); + } + + /*---------------------------- USART PRESC Configuration ----------------------- + * Configure USARTx PRESC (Prescaler) with parameters: + * - PrescalerValue: USART_PRESC_PRESCALER bits according to USART_InitStruct->PrescalerValue value. + */ + LL_USART_SetPrescaler(USARTx, USART_InitStruct->PrescalerValue); + } + /* Endif (=> USART not in Disabled state => return ERROR) */ + + return (status); +} + +/** + * @brief Set each @ref LL_USART_InitTypeDef field to default value. + * @param USART_InitStruct pointer to a @ref LL_USART_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ + +void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct) +{ + /* Set USART_InitStruct fields to default values */ + USART_InitStruct->PrescalerValue = LL_USART_PRESCALER_DIV1; + USART_InitStruct->BaudRate = USART_DEFAULT_BAUDRATE; + USART_InitStruct->DataWidth = LL_USART_DATAWIDTH_8B; + USART_InitStruct->StopBits = LL_USART_STOPBITS_1; + USART_InitStruct->Parity = LL_USART_PARITY_NONE ; + USART_InitStruct->TransferDirection = LL_USART_DIRECTION_TX_RX; + USART_InitStruct->HardwareFlowControl = LL_USART_HWCONTROL_NONE; + USART_InitStruct->OverSampling = LL_USART_OVERSAMPLING_16; +} + +/** + * @brief Initialize USART Clock related settings according to the + * specified parameters in the USART_ClockInitStruct. + * @note As some bits in USART configuration registers can only be written when + * the USART is disabled (USART_CR1_UE bit =0), USART Peripheral should be in disabled state prior calling + * this function. Otherwise, ERROR result will be returned. + * @param USARTx USART Instance + * @param USART_ClockInitStruct pointer to a @ref LL_USART_ClockInitTypeDef structure + * that contains the Clock configuration information for the specified USART peripheral. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: USART registers related to Clock settings are initialized according + * to USART_ClockInitStruct content + * - ERROR: Problem occurred during USART Registers initialization + */ +ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, const LL_USART_ClockInitTypeDef *USART_ClockInitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check USART Instance and Clock signal output parameters */ + assert_param(IS_UART_INSTANCE(USARTx)); + assert_param(IS_LL_USART_CLOCKOUTPUT(USART_ClockInitStruct->ClockOutput)); + + /* USART needs to be in disabled state, in order to be able to configure some bits in + CRx registers */ + if (LL_USART_IsEnabled(USARTx) == 0U) + { + /* Ensure USART instance is USART capable */ + assert_param(IS_USART_INSTANCE(USARTx)); + + /* Check clock related parameters */ + assert_param(IS_LL_USART_CLOCKPOLARITY(USART_ClockInitStruct->ClockPolarity)); + assert_param(IS_LL_USART_CLOCKPHASE(USART_ClockInitStruct->ClockPhase)); + assert_param(IS_LL_USART_LASTBITCLKOUTPUT(USART_ClockInitStruct->LastBitClockPulse)); + + /*---------------------------- USART CR2 Configuration ----------------------- + * Configure USARTx CR2 (Clock signal related bits) with parameters: + * - Clock Output: USART_CR2_CLKEN bit according to USART_ClockInitStruct->ClockOutput value + * - Clock Polarity: USART_CR2_CPOL bit according to USART_ClockInitStruct->ClockPolarity value + * - Clock Phase: USART_CR2_CPHA bit according to USART_ClockInitStruct->ClockPhase value + * - Last Bit Clock Pulse Output: USART_CR2_LBCL bit according to USART_ClockInitStruct->LastBitClockPulse value. + */ + MODIFY_REG(USARTx->CR2, + USART_CR2_CLKEN | USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, + USART_ClockInitStruct->ClockOutput | USART_ClockInitStruct->ClockPolarity | + USART_ClockInitStruct->ClockPhase | USART_ClockInitStruct->LastBitClockPulse); + } + /* Else (USART not in Disabled state => return ERROR */ + else + { + status = ERROR; + } + + return (status); +} + +/** + * @brief Set each field of a @ref LL_USART_ClockInitTypeDef type structure to default value. + * @param USART_ClockInitStruct pointer to a @ref LL_USART_ClockInitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct) +{ + /* Set LL_USART_ClockInitStruct fields with default values */ + USART_ClockInitStruct->ClockOutput = LL_USART_CLOCK_DISABLE; + USART_ClockInitStruct->ClockPolarity = LL_USART_POLARITY_LOW; /* Not relevant when ClockOutput = + LL_USART_CLOCK_DISABLE */ + USART_ClockInitStruct->ClockPhase = LL_USART_PHASE_1EDGE; /* Not relevant when ClockOutput = + LL_USART_CLOCK_DISABLE */ + USART_ClockInitStruct->LastBitClockPulse = LL_USART_LASTCLKPULSE_NO_OUTPUT; /* Not relevant when ClockOutput = + LL_USART_CLOCK_DISABLE */ +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* USART1 || USART2 || USART3 || USART4 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ + + diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usb.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usb.c new file mode 100644 index 0000000..d23da79 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_usb.c @@ -0,0 +1,972 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_usb.c + * @author MCD Application Team + * @brief USB Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Fill parameters of Init structure in USB_CfgTypeDef structure. + + (#) Call USB_CoreInit() API to initialize the USB Core peripheral. + + (#) The upper HAL HCD/PCD driver will call the right routines for its internal processes. + + @endverbatim + + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_hal.h" + +/** @addtogroup STM32U0xx_LL_USB_DRIVER + * @{ + */ + +#if defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) +#if defined (USB_DRD_FS) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +static HAL_StatusTypeDef USB_CoreReset(USB_DRD_TypeDef *USBx); + +/** + * @brief Reset the USB Core (needed after USB clock settings change) + * @param USBx Selected device + * @retval HAL status + */ +static HAL_StatusTypeDef USB_CoreReset(USB_DRD_TypeDef *USBx) +{ + /* Disable Host Mode */ + USBx->CNTR &= ~USB_CNTR_HOST; + + /* Force Reset IP */ + USBx->CNTR |= USB_CNTR_USBRST; + + return HAL_OK; +} + +/** + * @brief Initializes the USB Core + * @param USBx USB Instance + * @param cfg pointer to a USB_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_CoreInit(USB_DRD_TypeDef *USBx, USB_DRD_CfgTypeDef cfg) +{ + HAL_StatusTypeDef ret; + UNUSED(cfg); + + if (USBx == NULL) + { + return HAL_ERROR; + } + + /* Reset after a PHY select */ + ret = USB_CoreReset(USBx); + + /* Clear pending interrupts */ + USBx->ISTR = 0U; + + return ret; +} + +/** + * @brief USB_EnableGlobalInt + * Enables the controller's Global Int in the AHB Config reg + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_EnableGlobalInt(USB_DRD_TypeDef *USBx) +{ + uint32_t winterruptmask; + + /* Clear pending interrupts */ + USBx->ISTR = 0U; + + /* Set winterruptmask variable */ + winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM | + USB_CNTR_SUSPM | USB_CNTR_ERRM | + USB_CNTR_SOFM | USB_CNTR_ESOFM | + USB_CNTR_RESETM | USB_CNTR_L1REQM; + + /* Set interrupt mask */ + USBx->CNTR = winterruptmask; + + return HAL_OK; +} + +/** + * @brief USB_DisableGlobalInt + * Disable the controller's Global Int in the AHB Config reg + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DisableGlobalInt(USB_DRD_TypeDef *USBx) +{ + uint32_t winterruptmask; + + /* Set winterruptmask variable */ + winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM | + USB_CNTR_SUSPM | USB_CNTR_ERRM | + USB_CNTR_SOFM | USB_CNTR_ESOFM | + USB_CNTR_RESETM | USB_CNTR_L1REQM; + + /* Clear interrupt mask */ + USBx->CNTR &= ~winterruptmask; + + return HAL_OK; +} + +/** + * @brief USB_SetCurrentMode Set functional mode + * @param USBx Selected device + * @param mode current core mode + * This parameter can be one of the these values: + * @arg USB_DEVICE_MODE Peripheral mode + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetCurrentMode(USB_DRD_TypeDef *USBx, USB_DRD_ModeTypeDef mode) +{ + if (mode == USB_DEVICE_MODE) + { + USBx->CNTR &= ~USB_CNTR_HOST; + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief USB_DevInit Initializes the USB controller registers + * for device mode + * @param USBx Selected device + * @param cfg pointer to a USB_DRD_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevInit(USB_DRD_TypeDef *USBx, USB_DRD_CfgTypeDef cfg) +{ + HAL_StatusTypeDef ret; + + /* Prevent unused argument(s) compilation warning */ + UNUSED(cfg); + + /* Force Reset */ + USBx->CNTR = USB_CNTR_USBRST; + + /* Release Reset */ + USBx->CNTR &= ~USB_CNTR_USBRST; + + /* Set the Device Mode */ + ret = USB_SetCurrentMode(USBx, USB_DEVICE_MODE); + + /* Clear pending interrupts */ + USBx->ISTR = 0U; + + return ret; +} + +/** + * @brief USB_FlushTxFifo : Flush a Tx FIFO + * @param USBx : Selected device + * @param num : FIFO number + * This parameter can be a value from 1 to 15 + 15 means Flush all Tx FIFOs + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushTxFifo(USB_DRD_TypeDef const *USBx, uint32_t num) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(USBx); + UNUSED(num); + + /* NOTE : - This function is not required by USB Device FS peripheral, it is used + only by USB OTG FS peripheral. + - This function is added to ensure compatibility across platforms. + */ + + return HAL_OK; +} + +/** + * @brief USB_FlushRxFifo : Flush Rx FIFO + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushRxFifo(USB_DRD_TypeDef const *USBx) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(USBx); + + /* NOTE : - This function is not required by USB Device FS peripheral, it is used + only by USB OTG FS peripheral. + - This function is added to ensure compatibility across platforms. + */ + + return HAL_OK; +} + + +#if defined (HAL_PCD_MODULE_ENABLED) +/** + * @brief Activate and configure an endpoint + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateEndpoint(USB_DRD_TypeDef *USBx, USB_DRD_EPTypeDef *ep) +{ + HAL_StatusTypeDef ret = HAL_OK; + uint32_t wEpRegVal; + + wEpRegVal = PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_T_MASK; + + /* initialize Endpoint */ + switch (ep->type) + { + case EP_TYPE_CTRL: + wEpRegVal |= USB_EP_CONTROL; + break; + + case EP_TYPE_BULK: + wEpRegVal |= USB_EP_BULK; + break; + + case EP_TYPE_INTR: + wEpRegVal |= USB_EP_INTERRUPT; + break; + + case EP_TYPE_ISOC: + wEpRegVal |= USB_EP_ISOCHRONOUS; + break; + + default: + ret = HAL_ERROR; + break; + } + + PCD_SET_ENDPOINT(USBx, ep->num, (wEpRegVal | USB_EP_VTRX | USB_EP_VTTX)); + + PCD_SET_EP_ADDRESS(USBx, ep->num, ep->num); + + if (ep->doublebuffer == 0U) + { + if (ep->is_in != 0U) + { + /*Set the endpoint Transmit buffer address */ + PCD_SET_EP_TX_ADDRESS(USBx, ep->num, ep->pmaadress); + PCD_CLEAR_TX_DTOG(USBx, ep->num); + + if (ep->type != EP_TYPE_ISOC) + { + /* Configure NAK status for the Endpoint */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK); + } + else + { + /* Configure TX Endpoint to disabled state */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); + } + } + else + { + /* Set the endpoint Receive buffer address */ + PCD_SET_EP_RX_ADDRESS(USBx, ep->num, ep->pmaadress); + + /* Set the endpoint Receive buffer counter */ + PCD_SET_EP_RX_CNT(USBx, ep->num, ep->maxpacket); + PCD_CLEAR_RX_DTOG(USBx, ep->num); + + if (ep->num == 0U) + { + /* Configure VALID status for EP0 */ + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); + } + else + { + /* Configure NAK status for OUT Endpoint */ + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_NAK); + } + } + } +#if (USE_USB_DOUBLE_BUFFER == 1U) + /* Double Buffer */ + else + { + if (ep->type == EP_TYPE_BULK) + { + /* Set bulk endpoint as double buffered */ + PCD_SET_BULK_EP_DBUF(USBx, ep->num); + } + else + { + /* Set the ISOC endpoint in double buffer mode */ + PCD_CLEAR_EP_KIND(USBx, ep->num); + } + + /* Set buffer address for double buffered mode */ + PCD_SET_EP_DBUF_ADDR(USBx, ep->num, ep->pmaaddr0, ep->pmaaddr1); + + if (ep->is_in == 0U) + { + /* Clear the data toggle bits for the endpoint IN/OUT */ + PCD_CLEAR_RX_DTOG(USBx, ep->num); + PCD_CLEAR_TX_DTOG(USBx, ep->num); + + /* Set endpoint RX count */ + PCD_SET_EP_DBUF_CNT(USBx, ep->num, ep->is_in, ep->maxpacket); + + /* Set endpoint RX to valid state */ + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); + } + else + { + /* Clear the data toggle bits for the endpoint IN/OUT */ + PCD_CLEAR_RX_DTOG(USBx, ep->num); + PCD_CLEAR_TX_DTOG(USBx, ep->num); + + if (ep->type != EP_TYPE_ISOC) + { + /* Configure NAK status for the Endpoint */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK); + } + else + { + /* Configure TX Endpoint to disabled state */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); + } + + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); + } + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + return ret; +} + +/** + * @brief De-activate and de-initialize an endpoint + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeactivateEndpoint(USB_DRD_TypeDef *USBx, USB_DRD_EPTypeDef *ep) +{ + if (ep->doublebuffer == 0U) + { + if (ep->is_in != 0U) + { + PCD_CLEAR_TX_DTOG(USBx, ep->num); + + /* Configure DISABLE status for the Endpoint */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); + } + + else + { + PCD_CLEAR_RX_DTOG(USBx, ep->num); + + /* Configure DISABLE status for the Endpoint */ + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); + } + } +#if (USE_USB_DOUBLE_BUFFER == 1U) + /* Double Buffer */ + else + { + if (ep->is_in == 0U) + { + /* Clear the data toggle bits for the endpoint IN/OUT*/ + PCD_CLEAR_RX_DTOG(USBx, ep->num); + PCD_CLEAR_TX_DTOG(USBx, ep->num); + + /* Reset value of the data toggle bits for the endpoint out*/ + PCD_TX_DTOG(USBx, ep->num); + + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); + } + else + { + /* Clear the data toggle bits for the endpoint IN/OUT*/ + PCD_CLEAR_RX_DTOG(USBx, ep->num); + PCD_CLEAR_TX_DTOG(USBx, ep->num); + PCD_RX_DTOG(USBx, ep->num); + + /* Configure DISABLE status for the Endpoint*/ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); + } + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + return HAL_OK; +} + +/** + * @brief USB_EPStartXfer setup and starts a transfer over an EP + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPStartXfer(USB_DRD_TypeDef *USBx, USB_DRD_EPTypeDef *ep) +{ + uint32_t len; +#if (USE_USB_DOUBLE_BUFFER == 1U) + uint16_t pmabuffer; + uint16_t wEPVal; +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + /* IN endpoint */ + if (ep->is_in == 1U) + { + /* Multi packet transfer */ + if (ep->xfer_len > ep->maxpacket) + { + len = ep->maxpacket; + } + else + { + len = ep->xfer_len; + } + + /* configure and validate Tx endpoint */ + if (ep->doublebuffer == 0U) + { + USB_WritePMA(USBx, ep->xfer_buff, ep->pmaadress, (uint16_t)len); + PCD_SET_EP_TX_CNT(USBx, ep->num, len); + } +#if (USE_USB_DOUBLE_BUFFER == 1U) + else + { + /* double buffer bulk management */ + if (ep->type == EP_TYPE_BULK) + { + if (ep->xfer_len_db > ep->maxpacket) + { + /* enable double buffer */ + PCD_SET_BULK_EP_DBUF(USBx, ep->num); + + /* each Time to write in PMA xfer_len_db will */ + ep->xfer_len_db -= len; + + /* Fill the two first buffer in the Buffer0 & Buffer1 */ + if ((PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_DTOG_TX) != 0U) + { + /* Set the Double buffer counter for pmabuffer1 */ + PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len); + pmabuffer = ep->pmaaddr1; + + /* Write the user buffer to USB PMA */ + USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); + ep->xfer_buff += len; + + if (ep->xfer_len_db > ep->maxpacket) + { + ep->xfer_len_db -= len; + } + else + { + len = ep->xfer_len_db; + ep->xfer_len_db = 0U; + } + + /* Set the Double buffer counter for pmabuffer0 */ + PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len); + pmabuffer = ep->pmaaddr0; + + /* Write the user buffer to USB PMA */ + USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); + } + else + { + /* Set the Double buffer counter for pmabuffer0 */ + PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len); + pmabuffer = ep->pmaaddr0; + + /* Write the user buffer to USB PMA */ + USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); + ep->xfer_buff += len; + + if (ep->xfer_len_db > ep->maxpacket) + { + ep->xfer_len_db -= len; + } + else + { + len = ep->xfer_len_db; + ep->xfer_len_db = 0U; + } + + /* Set the Double buffer counter for pmabuffer1 */ + PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len); + pmabuffer = ep->pmaaddr1; + + /* Write the user buffer to USB PMA */ + USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); + } + } + /* auto Switch to single buffer mode when transfer xfer_len_db; + + /* disable double buffer mode for Bulk endpoint */ + PCD_CLEAR_BULK_EP_DBUF(USBx, ep->num); + + /* Set Tx count with nbre of byte to be transmitted */ + PCD_SET_EP_TX_CNT(USBx, ep->num, len); + pmabuffer = ep->pmaaddr0; + + /* Write the user buffer to USB PMA */ + USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); + } + } + else /* Manage isochronous double buffer IN mode */ + { + /* Each Time to write in PMA xfer_len_db will */ + ep->xfer_len_db -= len; + + /* Fill the data buffer */ + if ((PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_DTOG_TX) != 0U) + { + /* Set the Double buffer counter for pmabuffer1 */ + PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len); + pmabuffer = ep->pmaaddr1; + + /* Write the user buffer to USB PMA */ + USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); + } + else + { + /* Set the Double buffer counter for pmabuffer0 */ + PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len); + pmabuffer = ep->pmaaddr0; + + /* Write the user buffer to USB PMA */ + USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); + } + } + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_VALID); + } + else /* OUT endpoint */ + { + if (ep->doublebuffer == 0U) + { + if ((ep->xfer_len == 0U) && (ep->type == EP_TYPE_CTRL)) + { + /* This is a status out stage set the OUT_STATUS */ + PCD_SET_OUT_STATUS(USBx, ep->num); + } + else + { + PCD_CLEAR_OUT_STATUS(USBx, ep->num); + } + + /* Multi packet transfer */ + if (ep->xfer_len > ep->maxpacket) + { + ep->xfer_len -= ep->maxpacket; + } + else + { + ep->xfer_len = 0U; + } + } +#if (USE_USB_DOUBLE_BUFFER == 1U) + else + { + /* First Transfer Coming From HAL_PCD_EP_Receive & From ISR */ + /* Set the Double buffer counter */ + if (ep->type == EP_TYPE_BULK) + { + /* Coming from ISR */ + if (ep->xfer_count != 0U) + { + /* Update last value to check if there is blocking state */ + wEPVal = (uint16_t)PCD_GET_ENDPOINT(USBx, ep->num); + + /* Blocking State */ + if ((((wEPVal & USB_EP_DTOG_RX) != 0U) && ((wEPVal & USB_EP_DTOG_TX) != 0U)) || + (((wEPVal & USB_EP_DTOG_RX) == 0U) && ((wEPVal & USB_EP_DTOG_TX) == 0U))) + { + PCD_FREE_USER_BUFFER(USBx, ep->num, 0U); + } + } + } + /* iso out double */ + else if (ep->type == EP_TYPE_ISOC) + { + /* Only single packet transfer supported in FS */ + ep->xfer_len = 0U; + } + else + { + return HAL_ERROR; + } + } +#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */ + + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); + } + + return HAL_OK; +} + + +/** + * @brief USB_EPSetStall set a stall condition over an EP + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPSetStall(USB_DRD_TypeDef *USBx, USB_DRD_EPTypeDef *ep) +{ + if (ep->is_in != 0U) + { + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_STALL); + } + else + { + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_STALL); + } + + return HAL_OK; +} + +/** + * @brief USB_EPClearStall Clear a stall condition over an EP + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPClearStall(USB_DRD_TypeDef *USBx, USB_DRD_EPTypeDef *ep) +{ + if (ep->is_in != 0U) + { + PCD_CLEAR_TX_DTOG(USBx, ep->num); + + if (ep->type != EP_TYPE_ISOC) + { + /* Configure NAK status for the Endpoint */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK); + } + } + else + { + PCD_CLEAR_RX_DTOG(USBx, ep->num); + + /* Configure VALID status for the Endpoint */ + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); + } + + return HAL_OK; +} + +/** + * @brief USB_EPStoptXfer Stop transfer on an EP + * @param USBx usb device instance + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPStopXfer(USB_DRD_TypeDef *USBx, USB_DRD_EPTypeDef *ep) +{ + /* IN endpoint */ + if (ep->is_in == 1U) + { + if (ep->doublebuffer == 0U) + { + if (ep->type != EP_TYPE_ISOC) + { + /* Configure NAK status for the Endpoint */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK); + } + else + { + /* Configure TX Endpoint to disabled state */ + PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); + } + } + } + else /* OUT endpoint */ + { + if (ep->doublebuffer == 0U) + { + if (ep->type != EP_TYPE_ISOC) + { + /* Configure NAK status for the Endpoint */ + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_NAK); + } + else + { + /* Configure RX Endpoint to disabled state */ + PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); + } + } + } + + return HAL_OK; +} +#endif /* defined (HAL_PCD_MODULE_ENABLED) */ + +/** + * @brief USB_StopDevice Stop the usb device mode + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_StopDevice(USB_DRD_TypeDef *USBx) +{ + /* disable all interrupts and force USB reset */ + USBx->CNTR = USB_CNTR_USBRST; + + /* clear interrupt status register */ + USBx->ISTR = 0U; + + /* switch-off device */ + USBx->CNTR = (USB_CNTR_USBRST | USB_CNTR_PDWN); + + return HAL_OK; +} + +/** + * @brief USB_SetDevAddress Stop the usb device mode + * @param USBx Selected device + * @param address new device address to be assigned + * This parameter can be a value from 0 to 255 + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetDevAddress(USB_DRD_TypeDef *USBx, uint8_t address) +{ + if (address == 0U) + { + /* set device address and enable function */ + USBx->DADDR = USB_DADDR_EF; + } + + return HAL_OK; +} + +/** + * @brief USB_DevConnect Connect the USB device by enabling the pull-up/pull-down + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevConnect(USB_DRD_TypeDef *USBx) +{ + /* Enabling DP Pull-UP bit to Connect internal PU resistor on USB DP line */ + USBx->BCDR |= USB_BCDR_DPPU; + + return HAL_OK; +} + +/** + * @brief USB_DevDisconnect Disconnect the USB device by disabling the pull-up/pull-down + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevDisconnect(USB_DRD_TypeDef *USBx) +{ + /* Disable DP Pull-Up bit to disconnect the Internal PU resistor on USB DP line */ + USBx->BCDR &= ~(USB_BCDR_DPPU); + + return HAL_OK; +} + +/** + * @brief USB_ReadInterrupts return the global USB interrupt status + * @param USBx Selected device + * @retval USB Global Interrupt status + */ +uint32_t USB_ReadInterrupts(USB_DRD_TypeDef const *USBx) +{ + uint32_t tmpreg; + + tmpreg = USBx->ISTR; + return tmpreg; +} + +/** + * @brief USB_ActivateRemoteWakeup : active remote wakeup signalling + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_DRD_TypeDef *USBx) +{ + USBx->CNTR |= USB_CNTR_L2RES; + + return HAL_OK; +} + +/** + * @brief USB_DeActivateRemoteWakeup de-active remote wakeup signalling + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_DRD_TypeDef *USBx) +{ + USBx->CNTR &= ~USB_CNTR_L2RES; + + return HAL_OK; +} + +/** + * @brief Copy a buffer from user memory area to packet memory area (PMA) + * @param USBx USB peripheral instance register address. + * @param pbUsrBuf pointer to user memory area. + * @param wPMABufAddr address into PMA. + * @param wNBytes no. of bytes to be copied. + * @retval None + */ +void USB_WritePMA(USB_DRD_TypeDef const *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes) +{ + UNUSED(USBx); + uint32_t WrVal; + uint32_t count; + __IO uint32_t *pdwVal; + uint32_t NbWords = ((uint32_t)wNBytes + 3U) >> 2U; + /* Due to the PMA access 32bit only so the last non word data should be processed alone */ + uint16_t remaining_bytes = wNBytes % 4U; + uint8_t *pBuf = pbUsrBuf; + + /* Check if there is a remaining byte */ + if (remaining_bytes != 0U) + { + NbWords--; + } + + /* Get the PMA Buffer pointer */ + pdwVal = (__IO uint32_t *)(USB_DRD_PMAADDR + (uint32_t)wPMABufAddr); + + /* Write the Calculated Word into the PMA related Buffer */ + for (count = NbWords; count != 0U; count--) + { + *pdwVal = __UNALIGNED_UINT32_READ(pBuf); + pdwVal++; + /* Increment pBuf 4 Time as Word Increment */ + pBuf++; + pBuf++; + pBuf++; + pBuf++; + } + + /* When Number of data is not word aligned, write the remaining Byte */ + if (remaining_bytes != 0U) + { + WrVal = 0U; + + do + { + WrVal |= (uint32_t)(*(uint8_t *)pBuf) << (8U * count); + count++; + pBuf++; + remaining_bytes--; + } while (remaining_bytes != 0U); + + *pdwVal = WrVal; + } +} + +/** + * @brief Copy data from packet memory area (PMA) to user memory buffer + * @param USBx USB peripheral instance register address. + * @param pbUsrBuf pointer to user memory area. + * @param wPMABufAddr address into PMA. + * @param wNBytes no. of bytes to be copied. + * @retval None + */ +void USB_ReadPMA(USB_DRD_TypeDef const *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes) +{ + UNUSED(USBx); + uint32_t count; + uint32_t RdVal; + __IO uint32_t *pdwVal; + uint32_t NbWords = ((uint32_t)wNBytes + 3U) >> 2U; + /*Due to the PMA access 32bit only so the last non word data should be processed alone */ + uint16_t remaining_bytes = wNBytes % 4U; + uint8_t *pBuf = pbUsrBuf; + + /* Get the PMA Buffer pointer */ + pdwVal = (__IO uint32_t *)(USB_DRD_PMAADDR + (uint32_t)wPMABufAddr); + + /* if nbre of byte is not word aligned decrement the nbre of word*/ + if (remaining_bytes != 0U) + { + NbWords--; + } + + /*Read the Calculated Word From the PMA related Buffer*/ + for (count = NbWords; count != 0U; count--) + { + __UNALIGNED_UINT32_WRITE(pBuf, *pdwVal); + + pdwVal++; + pBuf++; + pBuf++; + pBuf++; + pBuf++; + } + + /*When Number of data is not word aligned, read the remaining byte*/ + if (remaining_bytes != 0U) + { + RdVal = *(__IO uint32_t *)pdwVal; + + do + { + *(uint8_t *)pBuf = (uint8_t)(RdVal >> (8U * (uint8_t)(count))); + count++; + pBuf++; + remaining_bytes--; + } while (remaining_bytes != 0U); + } +} + + +/** + * @} + */ + +/** + * @} + */ +#endif /* defined (USB_DRD_FS) */ +#endif /* defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) */ + +/** + * @} + */ diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_utils.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_utils.c new file mode 100644 index 0000000..3743cb5 --- /dev/null +++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_ll_utils.c @@ -0,0 +1,695 @@ +/** + ****************************************************************************** + * @file stm32u0xx_ll_utils.c + * @author MCD Application Team + * @brief UTILS LL module driver. + ****************************************************************************** + * @attention + * + * Copyright (c) 2023 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ +/* Includes ------------------------------------------------------------------*/ +#include "stm32u0xx_ll_utils.h" +#include "stm32u0xx_ll_rcc.h" +#include "stm32u0xx_ll_system.h" +#include "stm32u0xx_ll_pwr.h" +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif /* USE_FULL_ASSERT */ + +/** @addtogroup STM32U0xx_LL_Driver + * @{ + */ + +/** @addtogroup UTILS_LL + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup UTILS_LL_Private_Constants + * @{ + */ +#define UTILS_MAX_FREQUENCY_SCALE1 56000000U /*!< Maximum frequency for system clock at power scale1, in Hz */ +#define UTILS_MAX_FREQUENCY_SCALE2 18000000U /*!< Maximum frequency for system clock at power scale2, in Hz */ + +/* Defines used for PLL range */ +#define UTILS_PLLVCO_INPUT_MIN 4000000U /*!< Frequency min for PLLVCO input, in Hz */ +#define UTILS_PLLVCO_INPUT_MAX 16000000U /*!< Frequency max for PLLVCO input, in Hz */ +#define UTILS_PLLVCO_OUTPUT_MIN 96000000U /*!< Frequency min for PLLVCO output, in Hz */ +#define UTILS_PLLVCO_OUTPUT_MAX 344000000U /*!< Frequency max for PLLVCO output, in Hz */ + +/* Defines used for FLASH latency according to HCLK Frequency */ +#define UTILS_SCALE1_LATENCY1_FREQ 24000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */ +#define UTILS_SCALE1_LATENCY2_FREQ 48000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */ +#define UTILS_SCALE1_LATENCY3_FREQ 56000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 1 */ +#define UTILS_SCALE2_LATENCY1_FREQ 8000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */ +#define UTILS_SCALE2_LATENCY2_FREQ 16000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */ +#define UTILS_SCALE2_LATENCY3_FREQ 18000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 2 */ + +/* Defines used for HCLK frequency check */ +#define UTILS_HCLK_MAX 56000000U /*!< HCLK frequency maximum at 64MHz */ + + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @addtogroup UTILS_LL_Private_Macros + * @{ + */ +#define IS_LL_UTILS_SYSCLK_DIV(__VALUE__) (((__VALUE__) == LL_RCC_SYSCLK_DIV_1) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_2) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_4) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_8) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_16) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_64) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_128) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_256) \ + || ((__VALUE__) == LL_RCC_SYSCLK_DIV_512)) + +#define IS_LL_UTILS_APB1_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB1_DIV_1) \ + || ((__VALUE__) == LL_RCC_APB1_DIV_2) \ + || ((__VALUE__) == LL_RCC_APB1_DIV_4) \ + || ((__VALUE__) == LL_RCC_APB1_DIV_8) \ + || ((__VALUE__) == LL_RCC_APB1_DIV_16)) + +#define IS_LL_UTILS_HSI_DIV(__VALUE__) (((__VALUE__) == LL_RCC_HSI_DIV_1) \ + || ((__VALUE__) == LL_RCC_HSI_DIV_2) \ + || ((__VALUE__) == LL_RCC_HSI_DIV_4) \ + || ((__VALUE__) == LL_RCC_HSI_DIV_8) \ + || ((__VALUE__) == LL_RCC_HSI_DIV_16) \ + || ((__VALUE__) == LL_RCC_HSI_DIV_32) \ + || ((__VALUE__) == LL_RCC_HSI_DIV_64) \ + || ((__VALUE__) == LL_RCC_HSI_DIV_128)) + +#define IS_LL_UTILS_PLLM_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PLLM_DIV_1) \ + || ((__VALUE__) == LL_RCC_PLLM_DIV_2) \ + || ((__VALUE__) == LL_RCC_PLLM_DIV_3) \ + || ((__VALUE__) == LL_RCC_PLLM_DIV_4) \ + || ((__VALUE__) == LL_RCC_PLLM_DIV_5) \ + || ((__VALUE__) == LL_RCC_PLLM_DIV_6) \ + || ((__VALUE__) == LL_RCC_PLLM_DIV_7) \ + || ((__VALUE__) == LL_RCC_PLLM_DIV_8)) + +#define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((8 <= (__VALUE__)) && ((__VALUE__) <= 86)) + +#define IS_LL_UTILS_PLLR_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PLLR_DIV_2) \ + || ((__VALUE__) == LL_RCC_PLLR_DIV_3) \ + || ((__VALUE__) == LL_RCC_PLLR_DIV_4) \ + || ((__VALUE__) == LL_RCC_PLLR_DIV_5) \ + || ((__VALUE__) == LL_RCC_PLLR_DIV_6) \ + || ((__VALUE__) == LL_RCC_PLLR_DIV_7) \ + || ((__VALUE__) == LL_RCC_PLLR_DIV_8)) + +#define IS_LL_UTILS_PLLVCO_INPUT(__VALUE__) ((UTILS_PLLVCO_INPUT_MIN <= (__VALUE__)) && \ + ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX)) + +#define IS_LL_UTILS_PLLVCO_OUTPUT(__VALUE__) ((UTILS_PLLVCO_OUTPUT_MIN <= (__VALUE__)) && \ + ((__VALUE__) <= UTILS_PLLVCO_OUTPUT_MAX)) + +#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) \ + ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? \ + ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \ + ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2)) + +#define IS_LL_UTILS_HSE_BYPASS(__STATE__) (((__STATE__) == LL_UTILS_HSEBYPASS_ON) \ + || ((__STATE__) == LL_UTILS_HSEBYPASS_OFF)) +/** + * @} + */ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup UTILS_LL_Private_Functions UTILS Private functions + * @{ + */ +static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, + LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct); +static ErrorStatus UTILS_SetFlashLatency(uint32_t HCLKS_Frequency); +static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, + LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct); +static ErrorStatus UTILS_PLL_IsBusy(void); + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup UTILS_LL_Exported_Functions + * @{ + */ + +/** @addtogroup UTILS_LL_EF_DELAY + * @{ + */ +/** + * @brief This function configures the Cortex-M SysTick source to have 1ms time base. + * @note When a RTOS is used, it is recommended to avoid changing the Systick + * configuration by calling this function, for a delay use rather osDelay RTOS service. + * @param HCLKFrequency HCLK frequency in Hz + * @note HCLK frequency can be calculated thanks to RCC helper macro or function + @ref LL_RCC_GetSystemClocksFreq (HCLK_Frequency field) + * @retval None + */ +void LL_Init1msTick(uint32_t HCLKFrequency) +{ + /* Use frequency provided in argument */ + LL_InitTick(HCLKFrequency, 1000); +} + + +/** + * @brief This function provides accurate delay (in milliseconds) based + * on SysTick counter flag + * @note When a RTOS is used, it is recommended to avoid using blocking delay + * and use rather osDelay service. + * @note To respect 1ms timebase, user should call @ref LL_Init1msTick function which + * will configure Systick to 1ms + * @param Delay specifies the delay time length, in milliseconds. + * @retval None + */ +void LL_mDelay(uint32_t Delay) +{ + __IO uint32_t tmp = SysTick->CTRL; /* Clear the COUNTFLAG first */ + /* Add this code to indicate that local variable is not used */ + ((void)tmp); + + /* Add a period to guaranty minimum wait */ + if (Delay < LL_MAX_DELAY) + { + Delay++; + } + + while (Delay) + { + if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0) + { + Delay--; + } + } +} + +/** + * @} + */ + +/** @addtogroup UTILS_EF_SYSTEM + * @brief System Configuration functions + * + @verbatim + =============================================================================== + ##### System Configuration functions ##### + =============================================================================== + [..] + System, HCLK, AHB, and APB buses clocks configuration + + (+) The maximum frequency of the SYSCLK, HCLK, and PCLK + is 640000000 Hz. + + @endverbatim + @internal + Depending on the device voltage range, the maximum frequency should be + adapted accordingly: + (++) HCLK clock frequency for STM32U0xx device + (++) +--------------------------------------------------------+ + (++) | Latency | HCLKS clock frequency (MHz) | + (++) | |--------------------------------------| + (++) | | voltage range 1 | voltage range 2 | + (++) | | 1.2 V | 1.0 V | + (++) |-----------------|-------------------|------------------| + (++) |0WS(1 CPU cycles)| 0 < HCLKS <= 24 | 0 < HCLKS <= 8 | + (++) |-----------------|-------------------|------------------| + (++) |1WS(2 CPU cycles)| 24< HCLKS <= 48 | 8 < HCLKS <= 16 | + (++) |-----------------|-------------------|------------------| + (++) |2WS(3 CPU cycles)| 48< HCLKS <= 56 | 16< HCLKS <= 18 | + (++) +--------------------------------------------------------+ + @endinternal + * @{ + */ + +/** + * @brief This function sets directly SystemCoreClock CMSIS variable. + * @note Variable can be calculated also through SystemCoreClockUpdate function. + * @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro) + * @retval None + */ +void LL_SetSystemCoreClock(uint32_t HCLKFrequency) +{ + /* HCLK clock frequency */ + SystemCoreClock = HCLKFrequency; +} + +/** + * @brief This function configures system clock with MSI as clock source of the PLL + * @note The application needs to ensure that PLL is disabled + * @note The application needs to ensure that PLL configuration is valid + * @note The application needs to ensure that MSI range is valid. + * @note The application needs to ensure that BUS prescalers are valid + * @note Function is based on the following formula: + * - PLL output frequency = (((MSI frequency / PLLM) * PLLN) / PLLR) + * - PLLM:ensure that the VCO input frequency ranges from 4 to 16 MHz (PLLVCO_input = MSI frequency / PLLM) + * - PLLN:ensure that the VCO output frequency is between 96 and 344 MHz (PLLVCO_output = PLLVCO_input * PLLN) + * - PLLR:ensure that max frequency at 122000000 Hz is reached (PLLVCO_output / PLLR) + * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains + * the configuration information for the PLL. + * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains + * the configuration information for the BUS prescalers. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: Max frequency configuration done + * - ERROR: Max frequency configuration not done + */ +ErrorStatus LL_PLL_ConfigSystemClock_MSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, + LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) +{ + ErrorStatus status = SUCCESS; + uint32_t pllrfreq = 0U; + uint32_t msi_range = 0U; + + /* Check if one of the PLL is enabled */ + if (UTILS_PLL_IsBusy() == SUCCESS) + { + /* Get the current MSI range & check coherency */ + msi_range = LL_RCC_MSI_GetRange(); + switch (msi_range) + { + case LL_RCC_MSIRANGE_0: /* MSI = 100 KHz */ + case LL_RCC_MSIRANGE_1: /* MSI = 200 KHz */ + case LL_RCC_MSIRANGE_2: /* MSI = 400 KHz */ + case LL_RCC_MSIRANGE_3: /* MSI = 800 KHz */ + case LL_RCC_MSIRANGE_4: /* MSI = 1 MHz */ + case LL_RCC_MSIRANGE_5: /* MSI = 2 MHz */ + /* PLLVCO input frequency can not in the range from 4 to 16 MHz*/ + status = ERROR; + break; + + case LL_RCC_MSIRANGE_6: /* MSI = 4 MHz */ + case LL_RCC_MSIRANGE_7: /* MSI = 8 MHz */ + case LL_RCC_MSIRANGE_8: /* MSI = 16 MHz */ + case LL_RCC_MSIRANGE_9: /* MSI = 24 MHz */ + case LL_RCC_MSIRANGE_10: /* MSI = 32 MHz */ + case LL_RCC_MSIRANGE_11: /* MSI = 48 MHz */ + default: + break; + } + + /* PLL is ready, MSI range is valid and HCLK frequency is coherent + Main PLL configuration and activation */ + if (status != ERROR) + { + /* Calculate the new PLL output frequency & verify all PLL stages are correct (VCO input ranges, + VCO output ranges & SYSCLK max) when assert activated */ + pllrfreq = UTILS_GetPLLOutputFrequency(__LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGESEL_RUN, msi_range), + UTILS_PLLInitStruct); + + /* Enable MSI if not enabled */ + if (LL_RCC_MSI_IsReady() != 1U) + { + LL_RCC_MSI_Enable(); + while ((LL_RCC_MSI_IsReady() != 1U)) + { + /* Wait for MSI ready */ + } + } + + /* Configure PLL domain SYS */ + LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_MSI, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, + UTILS_PLLInitStruct->PLLR); + + /* Enable PLL and switch system clock to PLL - latency check done internally */ + status = UTILS_EnablePLLAndSwitchSystem(pllrfreq, UTILS_ClkInitStruct); + } + } + else + { + /* Current PLL configuration cannot be modified */ + status = ERROR; + } + + return status; +} + +/** + * @brief This function configures system clock at maximum frequency with HSI as clock source of the PLL + * @note The application need to ensure that PLL is disabled + * @note The application needs to ensure that PLL configuration is valid + * @note The application needs to ensure that BUS prescalers are valid + * @note Function is based on the following formula: + * - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLR) + * - PLLM:ensure that the VCO input frequency ranges from 4 to 16 MHz (PLLVCO_input = HSI frequency / PLLM) + * - PLLN:ensure that the VCO output frequency is between 96 and 344 MHz (PLLVCO_output = PLLVCO_input * PLLN) + * - PLLR:ensure that max frequency at 122000000 Hz is reach (PLLVCO_output / PLLR) + * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains + * the configuration information for the PLL. + * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains + * the configuration information for the BUS prescalers. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: Max frequency configuration done + * - ERROR: Max frequency configuration not done + */ +ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, + LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) +{ + ErrorStatus status = SUCCESS; + uint32_t pllrfreq = 0U; + + /* Check if one of the PLL is enabled */ + if (UTILS_PLL_IsBusy() == SUCCESS) + { + /* Calculate the new PLL output frequency */ + pllrfreq = UTILS_GetPLLOutputFrequency(HSI_VALUE, UTILS_PLLInitStruct); + + /* Enable HSI if not enabled */ + if (LL_RCC_HSI_IsReady() != 1U) + { + LL_RCC_HSI_Enable(); + while (LL_RCC_HSI_IsReady() != 1U) + { + /* Wait for HSI ready */ + } + } + + /* Configure PLL */ + LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, + UTILS_PLLInitStruct->PLLR); + + /* Enable PLL and switch system clock to PLL */ + status = UTILS_EnablePLLAndSwitchSystem(pllrfreq, UTILS_ClkInitStruct); + } + else + { + /* Current PLL configuration cannot be modified */ + status = ERROR; + } + + return status; +} + +/** + * @brief This function configures system clock with HSE as clock source of the PLL + * @note The application need to ensure that PLL, PLLSAI1 and/or PLLSAI2 are disabled. + * @note The application needs to ensure that PLL configuration is valid + * @note The application needs to ensure that BUS prescalers are valid + * @note Function is based on the following formula: + * - PLL output frequency = (((HSE frequency / PLLM) * PLLN) / PLLR) + * - PLLM: ensure that the VCO input frequency ranges from 4 to 16 MHz (PLLVCO_input = HSE frequency / PLLM) + * - PLLN: ensure that the VCO output frequency is between 96 and 344 MHz (PLLVCO_output = PLLVCO_input * PLLN) + * - PLLR: ensure that max frequency at 122000000 Hz is reached (PLLVCO_output / PLLR) + * @param HSEBypass This parameter can be one of the following values: + * @arg @ref LL_UTILS_HSEBYPASS_ON + * @arg @ref LL_UTILS_HSEBYPASS_OFF + * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains + * the configuration information for the PLL. + * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains + * the configuration information for the BUS prescalers. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: Max frequency configuration done + * - ERROR: Max frequency configuration not done + */ +ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEBypass, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, + LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) +{ + ErrorStatus status = SUCCESS; + uint32_t pllrfreq = 0U; + + /* Check the parameters */ + assert_param(IS_LL_UTILS_HSE_BYPASS(HSEBypass)); + + /* Check if one of the PLL is enabled */ + if (UTILS_PLL_IsBusy() == SUCCESS) + { + /* Calculate the new PLL output frequency */ + pllrfreq = UTILS_GetPLLOutputFrequency(HSE_VALUE, UTILS_PLLInitStruct); + + /* Enable HSE if not enabled */ + if (LL_RCC_HSE_IsReady() != 1U) + { + /* Check if need to enable HSE bypass feature or not */ + if (HSEBypass == LL_UTILS_HSEBYPASS_ON) + { + LL_RCC_HSE_EnableBypass(); + } + else + { + LL_RCC_HSE_DisableBypass(); + } + + /* Enable HSE */ + LL_RCC_HSE_Enable(); + while (LL_RCC_HSE_IsReady() != 1U) + { + /* Wait for HSE ready */ + } + } + + /* Configure PLL */ + LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, + UTILS_PLLInitStruct->PLLR); + + /* Enable PLL and switch system clock to PLL */ + status = UTILS_EnablePLLAndSwitchSystem(pllrfreq, UTILS_ClkInitStruct); + } + else + { + /* Current PLL configuration cannot be modified */ + status = ERROR; + } + + return status; +} + + +/** + * @} + */ + + +/** + * @} + */ + +/** @addtogroup UTILS_LL_Private_Functions + * @{ + */ +/** + * @brief Update number of Flash wait states in line with new frequency and current + voltage range. + * @param HCLK_Frequency HCLK frequency + * @retval An ErrorStatus enumeration value: + * - SUCCESS: Latency has been modified + * - ERROR: Latency cannot be modified + */ +static ErrorStatus UTILS_SetFlashLatency(uint32_t HCLK_Frequency) +{ + ErrorStatus status = SUCCESS; + + uint32_t latency = LL_FLASH_LATENCY_0; /* default value 0WS */ + + /* Frequency cannot be equal to 0 */ + if (HCLK_Frequency == 0U) + { + status = ERROR; + } + else + { + if (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) + { + if (HCLK_Frequency <= UTILS_SCALE1_LATENCY1_FREQ) + { + /* HCLKS_Frequency <= 24MHz default LL_FLASH_LATENCY_0 0WS */ + latency = LL_FLASH_LATENCY_0; + } + else if (HCLK_Frequency <= UTILS_SCALE1_LATENCY2_FREQ) + { + /* 24 < HCLKS <= 48 => 1WS (1 CPU cycles) */ + latency = LL_FLASH_LATENCY_1; + } + else if (HCLK_Frequency <= UTILS_SCALE1_LATENCY3_FREQ) + { + /* 48 < HCLK <= 56 => 2WS (3 CPU cycles) */ + latency = LL_FLASH_LATENCY_2; + } + else + { + status = ERROR; + } + } + else if (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) + { + if (HCLK_Frequency <= UTILS_SCALE2_LATENCY1_FREQ) + { + /* HCLK < 8 => 0WS (1 CPU cycles) */ + latency = LL_FLASH_LATENCY_0; + } + else if (HCLK_Frequency <= UTILS_SCALE2_LATENCY2_FREQ) + { + /* 8 < HCLK <= 16 => 1WS (2 CPU cycles) */ + latency = LL_FLASH_LATENCY_1; + } + else if (HCLK_Frequency <= UTILS_SCALE2_LATENCY3_FREQ) + { + /* 16 < HCLK <= 18 => 2WS (3 CPU cycles) */ + latency = LL_FLASH_LATENCY_2; + } + else + { + status = ERROR; + } + } + /* else HCLK_Frequency <= 10MHz default LL_FLASH_LATENCY_0 0WS */ + LL_FLASH_SetLatency(latency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if (LL_FLASH_GetLatency() != latency) + { + status = ERROR; + } + } + return status; +} + +ErrorStatus LL_SetFlashLatency(uint32_t HCLK_Frequency) +{ + return UTILS_SetFlashLatency(HCLK_Frequency); +} + +/** + * @brief Function to check that PLL can be modified + * @param PLL_InputFrequency PLL input frequency (in Hz) + * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains + * the configuration information for the PLL. + * @retval PLL output frequency (in Hz) + */ +static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct) +{ + uint32_t pllfreq = 0U; + + /* Check the parameters */ + assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM)); + assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN)); + assert_param(IS_LL_UTILS_PLLR_VALUE(UTILS_PLLInitStruct->PLLR)); + + /* Check different PLL parameters according to RM */ + /* - PLLM: ensure that the VCO input frequency ranges from 4 to 16 MHz. */ + pllfreq = PLL_InputFrequency / (((UTILS_PLLInitStruct->PLLM >> RCC_PLLCFGR_PLLM_Pos) + 1U)); + assert_param(IS_LL_UTILS_PLLVCO_INPUT(pllfreq)); + + /* - PLLN: ensure that the VCO output frequency is between 96 and 344 MHz.*/ + pllfreq = pllfreq * (UTILS_PLLInitStruct->PLLN & (RCC_PLLCFGR_PLLN >> RCC_PLLCFGR_PLLN_Pos)); + assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(pllfreq)); + + /* - PLLR: ensure that max frequency at 64000000 Hz is reached */ + pllfreq = pllfreq / ((UTILS_PLLInitStruct->PLLR >> RCC_PLLCFGR_PLLR_Pos) + 1U); + assert_param(IS_LL_UTILS_PLL_FREQUENCY(pllfreq)); + + return pllfreq; +} + +/** + * @brief Function to check that PLL can be modified + * @retval An ErrorStatus enumeration value: + * - SUCCESS: PLL modification can be done + * - ERROR: PLL is busy + */ +static ErrorStatus UTILS_PLL_IsBusy(void) +{ + ErrorStatus status = SUCCESS; + + /* Check if PLL is busy*/ + if (LL_RCC_PLL_IsReady() != 0U) + { + /* PLL configuration cannot be modified */ + status = ERROR; + } + return status; +} + +/** + * @brief Function to enable PLL and switch system clock to PLL + * @param SYSCLK_Frequency SYSCLK frequency + * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains + * the configuration information for the BUS prescalers. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: No problem to switch system to PLL + * - ERROR: Problem to switch system to PLL + */ +static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, + LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) +{ + ErrorStatus status = SUCCESS; + uint32_t hclk_frequency ; + + assert_param(IS_LL_UTILS_SYSCLK_DIV(UTILS_ClkInitStruct->AHBCLKDivider)); + assert_param(IS_LL_UTILS_APB1_DIV(UTILS_ClkInitStruct->APB1CLKDivider)); + + /* Calculate HCLK frequency */ + hclk_frequency = __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, UTILS_ClkInitStruct->AHBCLKDivider); + + /* Increasing the number of wait states because of higher CPU frequency */ + if (SystemCoreClock < hclk_frequency) + { + /* Set FLASH latency to highest latency */ + status = UTILS_SetFlashLatency(hclk_frequency); + } + + /* Update system clock configuration */ + if (status == SUCCESS) + { + /* Enable PLL */ + LL_RCC_PLL_Enable(); + LL_RCC_PLL_EnableDomain_SYS(); + while (LL_RCC_PLL_IsReady() != 1U) + { + /* Wait for PLL ready */ + } + + /* Sysclk activation on the main PLL */ + LL_RCC_SetAHBPrescaler(UTILS_ClkInitStruct->AHBCLKDivider); + LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); + while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) + { + /* Wait for system clock switch to PLL */ + } + + /* Set APB1 prescaler*/ + LL_RCC_SetAPB1Prescaler(UTILS_ClkInitStruct->APB1CLKDivider); + } + + /* Decreasing the number of wait states because of lower CPU frequency */ + if (SystemCoreClock > hclk_frequency) + { + /* Set FLASH latency to lowest latency */ + status = UTILS_SetFlashLatency(hclk_frequency); + } + + /* Update SystemCoreClock variable */ + if (status == SUCCESS) + { + LL_SetSystemCoreClock(hclk_frequency); + } + + return status; +} + +/** + * @} + */ + + +/** + * @} + */ + +/** + * @} + */ -- cgit v1.2.3