/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_mag_f16.c * Description: Floating-point complex magnitude * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/complex_math_functions_f16.h" #if defined(ARM_FLOAT16_SUPPORTED) /** @ingroup groupCmplxMath */ /** @defgroup cmplx_mag Complex Magnitude Computes the magnitude of the elements of a complex data vector. The <code>pSrc</code> points to the source data and <code>pDst</code> points to the where the result should be written. <code>numSamples</code> specifies the number of complex samples in the input array and the data is stored in an interleaved fashion (real, imag, real, imag, ...). The input array has a total of <code>2*numSamples</code> values; the output array has a total of <code>numSamples</code> values. The underlying algorithm is used: <pre> for (n = 0; n < numSamples; n++) { pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2); } </pre> There are separate functions for floating-point, Q15, and Q31 data types. */ /** @addtogroup cmplx_mag @{ */ /** @brief Floating-point complex magnitude. @param[in] pSrc points to input vector @param[out] pDst points to output vector @param[in] numSamples number of samples in each vector @return none */ #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" void arm_cmplx_mag_f16( const float16_t * pSrc, float16_t * pDst, uint32_t numSamples) { int32_t blockSize = numSamples; /* loop counters */ uint32_t blkCnt; /* loop counters */ f16x8x2_t vecSrc; f16x8_t sum; /* Compute 4 complex samples at a time */ blkCnt = blockSize >> 3; while (blkCnt > 0U) { q15x8_t newtonStartVec; f16x8_t sumHalf, invSqrt; vecSrc = vld2q(pSrc); pSrc += 16; sum = vmulq(vecSrc.val[0], vecSrc.val[0]); sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]); /* * inlined Fast SQRT using inverse SQRT newton-raphson method */ /* compute initial value */ newtonStartVec = vdupq_n_s16(INVSQRT_MAGIC_F16) - vshrq((q15x8_t) sum, 1); sumHalf = sum * 0.5f; /* * compute 3 x iterations * * The more iterations, the more accuracy. * If you need to trade a bit of accuracy for more performance, * you can comment out the 3rd use of the macro. */ INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, (f16x8_t) newtonStartVec); INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt); INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt); /* * set negative values to 0 */ invSqrt = vdupq_m(invSqrt, (float16_t)0.0f, vcmpltq(invSqrt, (float16_t)0.0f)); /* * sqrt(x) = x * invSqrt(x) */ sum = vmulq(sum, invSqrt); vstrhq_f16(pDst, sum); pDst += 8; /* * Decrement the blockSize loop counter */ blkCnt--; } /* * tail */ blkCnt = blockSize & 7; if (blkCnt > 0U) { mve_pred16_t p0 = vctp16q(blkCnt); q15x8_t newtonStartVec; f16x8_t sumHalf, invSqrt; vecSrc = vld2q((float16_t const *)pSrc); sum = vmulq(vecSrc.val[0], vecSrc.val[0]); sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]); /* * inlined Fast SQRT using inverse SQRT newton-raphson method */ /* compute initial value */ newtonStartVec = vdupq_n_s16(INVSQRT_MAGIC_F16) - vshrq((q15x8_t) sum, 1); sumHalf = vmulq(sum, (float16_t)0.5); /* * compute 2 x iterations */ INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, (f16x8_t) newtonStartVec); INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt); /* * set negative values to 0 */ invSqrt = vdupq_m(invSqrt, (float16_t)0.0, vcmpltq(invSqrt, (float16_t)0.0)); /* * sqrt(x) = x * invSqrt(x) */ sum = vmulq(sum, invSqrt); vstrhq_p_f16(pDst, sum, p0); } } #else void arm_cmplx_mag_f16( const float16_t * pSrc, float16_t * pDst, uint32_t numSamples) { uint32_t blkCnt; /* loop counter */ _Float16 real, imag; /* Temporary variables to hold input values */ #if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ real = *pSrc++; imag = *pSrc++; /* store result in destination buffer. */ arm_sqrt_f16((real * real) + (imag * imag), pDst++); real = *pSrc++; imag = *pSrc++; arm_sqrt_f16((real * real) + (imag * imag), pDst++); real = *pSrc++; imag = *pSrc++; arm_sqrt_f16((real * real) + (imag * imag), pDst++); real = *pSrc++; imag = *pSrc++; arm_sqrt_f16((real * real) + (imag * imag), pDst++); /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ real = *pSrc++; imag = *pSrc++; /* store result in destination buffer. */ arm_sqrt_f16((real * real) + (imag * imag), pDst++); /* Decrement loop counter */ blkCnt--; } } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of cmplx_mag group */ #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */