/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_solve_upper_triangular_f32.c * Description: Solve linear system UT X = A with UT upper triangular matrix * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/matrix_functions.h" /** @ingroup groupMatrix */ /** @addtogroup MatrixInv @{ */ /** * @brief Solve UT . X = A where UT is an upper triangular matrix * @param[in] ut The upper triangular matrix * @param[in] a The matrix a * @param[out] dst The solution X of UT . X = A * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" arm_status arm_mat_solve_upper_triangular_f32( const arm_matrix_instance_f32 * ut, const arm_matrix_instance_f32 * a, arm_matrix_instance_f32 * dst) { arm_status status; /* status of matrix inverse */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((ut->numRows != ut->numCols) || (ut->numRows != a->numRows) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { int i,j,k,n,cols; n = dst->numRows; cols = dst->numCols; float32_t *pX = dst->pData; float32_t *pUT = ut->pData; float32_t *pA = a->pData; float32_t *ut_row; float32_t *a_col; float32_t invUT; f32x4_t vecA; f32x4_t vecX; for(i=n-1; i >= 0 ; i--) { for(j=0; j+3 < cols; j +=4) { vecA = vld1q_f32(&pA[i * cols + j]); for(k=n-1; k > i; k--) { vecX = vld1q_f32(&pX[cols*k+j]); vecA = vfmsq(vecA,vdupq_n_f32(pUT[n*i + k]),vecX); } if (pUT[n*i + i]==0.0f) { return(ARM_MATH_SINGULAR); } invUT = 1.0f / pUT[n*i + i]; vecA = vmulq(vecA,vdupq_n_f32(invUT)); vst1q(&pX[i*cols+j],vecA); } for(; j < cols; j ++) { a_col = &pA[j]; ut_row = &pUT[n*i]; float32_t tmp=a_col[i * cols]; for(k=n-1; k > i; k--) { tmp -= ut_row[k] * pX[cols*k+j]; } if (ut_row[i]==0.0f) { return(ARM_MATH_SINGULAR); } tmp = tmp / ut_row[i]; pX[i*cols+j] = tmp; } } status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE) arm_status arm_mat_solve_upper_triangular_f32( const arm_matrix_instance_f32 * ut, const arm_matrix_instance_f32 * a, arm_matrix_instance_f32 * dst) { arm_status status; /* status of matrix inverse */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((ut->numRows != ut->numCols) || (ut->numRows != a->numRows) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { int i,j,k,n,cols; n = dst->numRows; cols = dst->numCols; float32_t *pX = dst->pData; float32_t *pUT = ut->pData; float32_t *pA = a->pData; float32_t *ut_row; float32_t *a_col; float32_t invUT; f32x4_t vecA; f32x4_t vecX; for(i=n-1; i >= 0 ; i--) { for(j=0; j+3 < cols; j +=4) { vecA = vld1q_f32(&pA[i * cols + j]); for(k=n-1; k > i; k--) { vecX = vld1q_f32(&pX[cols*k+j]); vecA = vfmsq_f32(vecA,vdupq_n_f32(pUT[n*i + k]),vecX); } if (pUT[n*i + i]==0.0f) { return(ARM_MATH_SINGULAR); } invUT = 1.0f / pUT[n*i + i]; vecA = vmulq_f32(vecA,vdupq_n_f32(invUT)); vst1q_f32(&pX[i*cols+j],vecA); } for(; j < cols; j ++) { a_col = &pA[j]; ut_row = &pUT[n*i]; float32_t tmp=a_col[i * cols]; for(k=n-1; k > i; k--) { tmp -= ut_row[k] * pX[cols*k+j]; } if (ut_row[i]==0.0f) { return(ARM_MATH_SINGULAR); } tmp = tmp / ut_row[i]; pX[i*cols+j] = tmp; } } status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_mat_solve_upper_triangular_f32( const arm_matrix_instance_f32 * ut, const arm_matrix_instance_f32 * a, arm_matrix_instance_f32 * dst) { arm_status status; /* status of matrix inverse */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((ut->numRows != ut->numCols) || (ut->numRows != a->numRows) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { int i,j,k,n,cols; float32_t *pX = dst->pData; float32_t *pUT = ut->pData; float32_t *pA = a->pData; float32_t *ut_row; float32_t *a_col; n = dst->numRows; cols = dst->numCols; for(j=0; j < cols; j ++) { a_col = &pA[j]; for(i=n-1; i >= 0 ; i--) { float32_t tmp=a_col[i * cols]; ut_row = &pUT[n*i]; for(k=n-1; k > i; k--) { tmp -= ut_row[k] * pX[cols*k+j]; } if (ut_row[i]==0.0f) { return(ARM_MATH_SINGULAR); } tmp = tmp / ut_row[i]; pX[i*cols+j] = tmp; } } status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* #if defined(ARM_MATH_NEON) */ #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of MatrixInv group */