/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_solve_upper_triangular_f64.c * Description: Solve linear system UT X = A with UT upper triangular matrix * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/matrix_functions.h" /** @ingroup groupMatrix */ /** @addtogroup MatrixInv @{ */ /** * @brief Solve UT . X = A where UT is an upper triangular matrix * @param[in] ut The upper triangular matrix * @param[in] a The matrix a * @param[out] dst The solution X of UT . X = A * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. */ arm_status arm_mat_solve_upper_triangular_f64( const arm_matrix_instance_f64 * ut, const arm_matrix_instance_f64 * a, arm_matrix_instance_f64 * dst) { arm_status status; /* status of matrix inverse */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((ut->numRows != ut->numCols) || (ut->numRows != a->numRows) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { int i,j,k,n,cols; float64_t *pX = dst->pData; float64_t *pUT = ut->pData; float64_t *pA = a->pData; float64_t *ut_row; float64_t *a_col; n = dst->numRows; cols = dst->numCols; for(j=0; j < cols; j ++) { a_col = &pA[j]; for(i=n-1; i >= 0 ; i--) { float64_t tmp=a_col[i * cols]; ut_row = &pUT[n*i]; for(k=n-1; k > i; k--) { tmp -= ut_row[k] * pX[cols*k+j]; } if (ut_row[i]==0.0) { return(ARM_MATH_SINGULAR); } tmp = tmp / ut_row[i]; pX[i*cols+j] = tmp; } } status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** @} end of MatrixInv group */