/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_rfft_fast_f64.c * Description: RFFT & RIFFT Double precision Floating point process function * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/transform_functions.h" void stage_rfft_f64( const arm_rfft_fast_instance_f64 * S, float64_t * p, float64_t * pOut) { uint32_t k; /* Loop Counter */ float64_t twR, twI; /* RFFT Twiddle coefficients */ const float64_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ float64_t *pA = p; /* increasing pointer */ float64_t *pB = p; /* decreasing pointer */ float64_t xAR, xAI, xBR, xBI; /* temporary variables */ float64_t t1a, t1b; /* temporary variables */ float64_t p0, p1, p2, p3; /* temporary variables */ k = (S->Sint).fftLen - 1; /* Pack first and last sample of the frequency domain together */ xBR = pB[0]; xBI = pB[1]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++ ; twI = *pCoeff++ ; // U1 = XA(1) + XB(1); % It is real t1a = xBR + xAR ; // U2 = XB(1) - XA(1); % It is imaginary t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); *pOut++ = 0.5 * ( t1a + t1b ); *pOut++ = 0.5 * ( t1a - t1b ); // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); pB = p + 2*k; pA += 2; do { /* function X = my_split_rfft(X, ifftFlag) % X is a series of real numbers L = length(X); XC = X(1:2:end) +i*X(2:2:end); XA = fft(XC); XB = conj(XA([1 end:-1:2])); TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; for l = 2:L/2 XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); end XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); X = XA; */ xBI = pB[1]; xBR = pB[0]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xBR - xAR ; t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); p0 = twR * t1a; p1 = twI * t1a; p2 = twR * t1b; p3 = twI * t1b; *pOut++ = 0.5 * (xAR + xBR + p0 + p3 ); //xAR *pOut++ = 0.5 * (xAI - xBI + p1 - p2 ); //xAI pA += 2; pB -= 2; k--; } while (k > 0U); } /* Prepares data for inverse cfft */ void merge_rfft_f64( const arm_rfft_fast_instance_f64 * S, float64_t * p, float64_t * pOut) { uint32_t k; /* Loop Counter */ float64_t twR, twI; /* RFFT Twiddle coefficients */ const float64_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ float64_t *pA = p; /* increasing pointer */ float64_t *pB = p; /* decreasing pointer */ float64_t xAR, xAI, xBR, xBI; /* temporary variables */ float64_t t1a, t1b, r, s, t, u; /* temporary variables */ k = (S->Sint).fftLen - 1; xAR = pA[0]; xAI = pA[1]; pCoeff += 2 ; *pOut++ = 0.5 * ( xAR + xAI ); *pOut++ = 0.5 * ( xAR - xAI ); pB = p + 2*k ; pA += 2 ; while (k > 0U) { /* G is half of the frequency complex spectrum */ //for k = 2:N // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); xBI = pB[1] ; xBR = pB[0] ; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xAR - xBR ; t1b = xAI + xBI ; r = twR * t1a; s = twI * t1b; t = twI * t1a; u = twR * t1b; // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); *pOut++ = 0.5 * (xAR + xBR - r - s ); //xAR *pOut++ = 0.5 * (xAI - xBI + t - u ); //xAI pA += 2; pB -= 2; k--; } } /** @ingroup groupTransforms */ /** @addtogroup RealFFT @{ */ /** @brief Processing function for the Double Precision floating-point real FFT. @param[in] S points to an arm_rfft_fast_instance_f64 structure @param[in] p points to input buffer (Source buffer is modified by this function.) @param[in] pOut points to output buffer @param[in] ifftFlag - value = 0: RFFT - value = 1: RIFFT @return none */ void arm_rfft_fast_f64( arm_rfft_fast_instance_f64 * S, float64_t * p, float64_t * pOut, uint8_t ifftFlag) { arm_cfft_instance_f64 * Sint = &(S->Sint); Sint->fftLen = S->fftLenRFFT / 2; /* Calculation of Real FFT */ if (ifftFlag) { /* Real FFT compression */ merge_rfft_f64(S, p, pOut); /* Complex radix-4 IFFT process */ arm_cfft_f64( Sint, pOut, ifftFlag, 1); } else { /* Calculation of RFFT of input */ arm_cfft_f64( Sint, p, ifftFlag, 1); /* Real FFT extraction */ stage_rfft_f64(S, p, pOut); } } /** * @} end of RealFFT group */