/* * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_softmax_with_batch_q7.c * Description: Q7 softmax function * * $Date: 09. October 2020 * $Revision: V.1.0.1 * * Target Processor: Cortex-M and Cortex-A cores * * -------------------------------------------------------------------- */ #include "arm_nnfunctions.h" /** * @ingroup groupNN */ /** * @addtogroup Softmax * @{ */ /** * @brief Q7 softmax function with batch parameter * @param[in] vec_in pointer to input vector * @param[in] nb_batches number of batches * @param[in] dim_vec input vector dimention * @param[out] p_out pointer to output vector * * @details * * Here, instead of typical natural logarithm e based softmax, we use * 2-based softmax here, i.e.,: * * y_i = 2^(x_i) / sum(2^x_j) * * The relative output will be different here. * But mathematically, the gradient will be the same * with a log(2) scaling factor. * */ void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out) { for (int i = 0; i < nb_batches; i++) { arm_softmax_q7(vec_in, dim_vec, p_out); vec_in += dim_vec; p_out += dim_vec; } } /** * @} end of Softmax group */