/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi1; DMA_HandleTypeDef hdma_spi1_rx; DMA_HandleTypeDef hdma_spi1_tx; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ static /*const*/ uint8_t I2S_Frame_Buffer[8] = { 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF }; static uint8_t I2S_Receive_Buffer[2048]; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_SPI1_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ static HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed( SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t TxSize, uint16_t RxSize); static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ int __io_putchar(int ch) { uint8_t buf = ch; HAL_UART_Transmit(&huart2, &buf, sizeof(buf), HAL_TIMEOUT); return buf; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_SPI1_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ puts("Hello, world!"); __enable_irq(); HAL_SPI_TransmitReceive_DMA_Mixed(&hspi1, I2S_Frame_Buffer, I2S_Receive_Buffer, sizeof(I2S_Frame_Buffer), sizeof(I2S_Receive_Buffer)); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ //__WFI(); /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_9; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* DMA1_Channel2_3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_GREEN_GPIO_Port, LED_GREEN_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_RED_GPIO_Port, LED_RED_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LED_GREEN_Pin */ GPIO_InitStruct.Pin = LED_GREEN_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_GREEN_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : Joystick_Pin */ GPIO_InitStruct.Pin = Joystick_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(Joystick_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LED_BLUE_Pin */ GPIO_InitStruct.Pin = LED_BLUE_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_BLUE_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : SEG0_Pin SEG1_Pin SEG13_Pin SEG14_Pin SEG15_Pin SEG16_Pin SEG23_Pin */ GPIO_InitStruct.Pin = SEG0_Pin|SEG1_Pin|SEG13_Pin|SEG14_Pin |SEG15_Pin|SEG16_Pin|SEG23_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_LCD; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : SEG2_Pin SEG6_Pin SEG7_Pin SEG8_Pin COM3_Pin */ GPIO_InitStruct.Pin = SEG2_Pin|SEG6_Pin|SEG7_Pin|SEG8_Pin |COM3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_LCD; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : LED_RED_Pin */ GPIO_InitStruct.Pin = LED_RED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_RED_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : SEG3_Pin SEG4_Pin SEG5_Pin */ GPIO_InitStruct.Pin = SEG3_Pin|SEG4_Pin|SEG5_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_LCD; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pins : SHIELD_Pin SHIELD_CS_Pin */ GPIO_InitStruct.Pin = SHIELD_Pin|SHIELD_CS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF9_TSC; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : SEG9_Pin SEG10_Pin SEG11_Pin SEG12_Pin SEG17_Pin SEG18_Pin SEG19_Pin SEG20_Pin SEG21_Pin SEG22_Pin */ GPIO_InitStruct.Pin = SEG9_Pin|SEG10_Pin|SEG11_Pin|SEG12_Pin |SEG17_Pin|SEG18_Pin|SEG19_Pin|SEG20_Pin |SEG21_Pin|SEG22_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_LCD; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pins : TEKY_CS_Pin TEKY_Pin */ GPIO_InitStruct.Pin = TEKY_CS_Pin|TEKY_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF9_TSC; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pins : COM0_Pin COM1_Pin COM2_Pin */ GPIO_InitStruct.Pin = COM0_Pin|COM1_Pin|COM2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF11_LCD; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : USB_DM_Pin USB_DP_Pin */ GPIO_InitStruct.Pin = USB_DM_Pin|USB_DP_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : SDA_Pin SCL_Pin */ GPIO_InitStruct.Pin = SDA_Pin|SCL_Pin; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF4_I2C1; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed( SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t TxSize, uint16_t RxSize) { uint32_t tmp_mode; HAL_SPI_StateTypeDef tmp_state; HAL_StatusTypeDef errorcode = HAL_OK; /* Check rx & tx dma handles */ assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); /* Check Direction parameter */ assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); /* Process locked */ __HAL_LOCK(hspi); /* Init temporary variables */ tmp_state = hspi->State; tmp_mode = hspi->Init.Mode; if (!((tmp_state == HAL_SPI_STATE_READY) || ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) { errorcode = HAL_BUSY; goto error; } if ((pTxData == NULL) || (pRxData == NULL) || (TxSize == 0U) || (RxSize == 0U)) { errorcode = HAL_ERROR; goto error; } /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ if (hspi->State != HAL_SPI_STATE_BUSY_RX) { hspi->State = HAL_SPI_STATE_BUSY_TX_RX; } /* Set the transaction information */ hspi->ErrorCode = HAL_SPI_ERROR_NONE; hspi->pTxBuffPtr = (uint8_t *)pTxData; hspi->TxXferSize = TxSize; hspi->TxXferCount = TxSize; hspi->pRxBuffPtr = (uint8_t *)pRxData; hspi->RxXferSize = RxSize; hspi->RxXferCount = RxSize; /* Init field not used in handle to zero */ hspi->RxISR = NULL; hspi->TxISR = NULL; /* Reset the threshold bit */ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX); /* The packing mode management is enabled by the DMA settings according the spi data size */ if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) { /* Set fiforxthreshold according the reception data length: 16bit */ CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); } else { /* Set RX Fifo threshold according the reception data length: 8bit */ SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) { if ((hspi->TxXferSize & 0x1U) == 0x0U) { CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); hspi->TxXferCount = hspi->TxXferCount >> 1U; } else { SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); hspi->TxXferCount = (hspi->TxXferCount >> 1U) + 1U; } } if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) { /* Set RX Fifo threshold according the reception data length: 16bit */ CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); if ((hspi->RxXferCount & 0x1U) == 0x0U) { CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); hspi->RxXferCount = hspi->RxXferCount >> 1U; } else { SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); hspi->RxXferCount = (hspi->RxXferCount >> 1U) + 1U; } } } /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */ if (hspi->State == HAL_SPI_STATE_BUSY_RX) { while (1); // TODO confirm if can remove } else { /* Set the SPI Tx/Rx DMA Half transfer complete callback */ hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; } /* Set the DMA error callback */ hspi->hdmarx->XferErrorCallback = NULL;//SPI_DMAError; /* Set the DMA AbortCpltCallback */ hspi->hdmarx->XferAbortCallback = NULL; /* Enable the Rx DMA Stream/Channel */ if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount)) { /* Update SPI error code */ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); errorcode = HAL_ERROR; goto error; } /* Enable Rx DMA Request */ SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing is performed in DMA reception complete callback */ hspi->hdmatx->XferHalfCpltCallback = NULL; hspi->hdmatx->XferCpltCallback = NULL; hspi->hdmatx->XferErrorCallback = NULL; hspi->hdmatx->XferAbortCallback = NULL; /* Enable the Tx DMA Stream/Channel */ if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount)) { /* Update SPI error code */ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); errorcode = HAL_ERROR; goto error; } /* Check if the SPI is already enabled */ if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) { /* Enable SPI peripheral */ __HAL_SPI_ENABLE(hspi); } /* Enable the SPI Error Interrupt Bit */ __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); /* Enable Tx DMA Request */ SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); error : /* Process Unlocked */ __HAL_UNLOCK(hspi); return errorcode; } void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) { SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); (void)hspi; puts("hey!\r\n"); } void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) { SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); (void)hspi; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */