/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_jensenshannon_distance_f32.c * Description: Jensen-Shannon distance between two vectors * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/distance_functions.h" #include #include /** @addtogroup JensenShannon @{ */ #if !defined(ARM_MATH_MVEF) || defined(ARM_MATH_AUTOVECTORIZE) /// @private __STATIC_INLINE float32_t rel_entr(float32_t x, float32_t y) { return (x * logf(x / y)); } #endif #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" #include "arm_vec_math.h" float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize) { uint32_t blkCnt; float32_t tmp; f32x4_t a, b, t, tmpV, accumV; accumV = vdupq_n_f32(0.0f); blkCnt = blockSize >> 2; while (blkCnt > 0U) { a = vld1q(pA); b = vld1q(pB); t = vaddq(a, b); t = vmulq(t, 0.5f); tmpV = vmulq(a, vrecip_medprec_f32(t)); tmpV = vlogq_f32(tmpV); accumV = vfmaq(accumV, a, tmpV); tmpV = vmulq_f32(b, vrecip_medprec_f32(t)); tmpV = vlogq_f32(tmpV); accumV = vfmaq(accumV, b, tmpV); pA += 4; pB += 4; blkCnt--; } /* * tail * (will be merged thru tail predication) */ blkCnt = blockSize & 3; if (blkCnt > 0U) { mve_pred16_t p0 = vctp32q(blkCnt); a = vldrwq_z_f32(pA, p0); b = vldrwq_z_f32(pB, p0); t = vaddq(a, b); t = vmulq(t, 0.5f); tmpV = vmulq_f32(a, vrecip_medprec_f32(t)); tmpV = vlogq_f32(tmpV); accumV = vfmaq_m_f32(accumV, a, tmpV, p0); tmpV = vmulq_f32(b, vrecip_medprec_f32(t)); tmpV = vlogq_f32(tmpV); accumV = vfmaq_m_f32(accumV, b, tmpV, p0); } arm_sqrt_f32(vecAddAcrossF32Mve(accumV) / 2.0f, &tmp); return (tmp); } #else #if defined(ARM_MATH_NEON) #include "NEMath.h" /** * @brief Jensen-Shannon distance between two vectors * * This function is assuming that elements of second vector are > 0 * and 0 only when the corresponding element of first vector is 0. * Otherwise the result of the computation does not make sense * and for speed reasons, the cases returning NaN or Infinity are not * managed. * * When the function is computing x log (x / y) with x == 0 and y == 0, * it will compute the right result (0) but a division by zero will occur * and should be ignored in client code. * * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize) { float32_t accum, result, tmp,a,b; uint32_t blkCnt; float32x4_t aV,bV,t, tmpV, accumV; float32x2_t accumV2; accum = 0.0f; accumV = vdupq_n_f32(0.0f); blkCnt = blockSize >> 2; while(blkCnt > 0) { aV = vld1q_f32(pA); bV = vld1q_f32(pB); t = vaddq_f32(aV,bV); t = vmulq_n_f32(t, 0.5f); tmpV = vmulq_f32(aV, vinvq_f32(t)); tmpV = vlogq_f32(tmpV); accumV = vmlaq_f32(accumV, aV, tmpV); tmpV = vmulq_f32(bV, vinvq_f32(t)); tmpV = vlogq_f32(tmpV); accumV = vmlaq_f32(accumV, bV, tmpV); pA += 4; pB += 4; blkCnt --; } accumV2 = vpadd_f32(vget_low_f32(accumV),vget_high_f32(accumV)); accum = vget_lane_f32(accumV2, 0) + vget_lane_f32(accumV2, 1); blkCnt = blockSize & 3; while(blkCnt > 0) { a = *pA; b = *pB; tmp = (a + b) / 2.0f; accum += rel_entr(a, tmp); accum += rel_entr(b, tmp); pA++; pB++; blkCnt --; } arm_sqrt_f32(accum/2.0f, &result); return(result); } #else /** * @brief Jensen-Shannon distance between two vectors * * This function is assuming that elements of second vector are > 0 * and 0 only when the corresponding element of first vector is 0. * Otherwise the result of the computation does not make sense * and for speed reasons, the cases returning NaN or Infinity are not * managed. * * When the function is computing x log (x / y) with x == 0 and y == 0, * it will compute the right result (0) but a division by zero will occur * and should be ignored in client code. * * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize) { float32_t left, right,sum, result, tmp; uint32_t i; left = 0.0f; right = 0.0f; for(i=0; i < blockSize; i++) { tmp = (pA[i] + pB[i]) / 2.0f; left += rel_entr(pA[i], tmp); right += rel_entr(pB[i], tmp); } sum = left + right; arm_sqrt_f32(sum/2.0f, &result); return(result); } #endif #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** * @} end of JensenShannon group */