/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ typedef uint32_t sample_t; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define SAMPLE_COUNT (1024) // (Stereo!) Sample count per half-transfer #define SAMPLES_PER_REPORT (48000) // Report every second given our 48 kHz rate #define MIC_OFFSET_DB ( 0.f) // Linear offset #define MIC_SENSITIVITY (-26.f) // dBFS value expected at MIC_REF_DB #define MIC_REF_DB ( 94.f) // dB where sensitivity is specified #define MIC_BITS (18u) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi1; DMA_HandleTypeDef hdma_spi1_rx; DMA_HandleTypeDef hdma_spi1_tx; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ static const uint8_t I2S_Frame_Buffer[8] = { 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF }; static uint8_t I2S_Receive_Buffer[SAMPLE_COUNT * 2 * sizeof(sample_t)]; float ln10; float MIC_REF_AMPL; static float DB_Sum_Squares = 0.f; static int DB_Count = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_SPI1_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ static HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed( SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData, uint16_t TxSize, uint16_t RxSize); __RAM_FUNC static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); __RAM_FUNC static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ int __io_putchar(int ch) { uint8_t buf = ch; HAL_UART_Transmit(&huart2, &buf, sizeof(buf), HAL_TIMEOUT); return buf; } __RAM_FUNC void fvar_init(void) { ln10 = logf(10.f); MIC_REF_AMPL = (float)((1u << (MIC_BITS - 2)) - 1) * powf(10.f, MIC_SENSITIVITY / 20.f); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ fvar_init(); /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_SPI1_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ HAL_SPI_TransmitReceive_DMA_Mixed(&hspi1, I2S_Frame_Buffer, I2S_Receive_Buffer, sizeof(I2S_Frame_Buffer), sizeof(I2S_Receive_Buffer)); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ HAL_PWR_EnableSleepOnExit(); __enable_irq(); while (1) { __WFI(); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE2) != HAL_OK) { Error_Handler(); } /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = 0; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 12; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV8; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pins : PC13 PC14 PC15 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 */ GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0 |GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4 |GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8 |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : PH0 PH1 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOH, &GPIO_InitStruct); /*Configure GPIO pins : PA0 PA1 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA15 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5 |GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9 |GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : PB0 PB1 PB2 PB10 PB11 PB12 PB13 PB14 PB15 PB6 PB7 PB8 PB9 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10 |GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14 |GPIO_PIN_15|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8 |GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PD2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed( SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData, uint16_t TxSize, uint16_t RxSize) { HAL_StatusTypeDef errorcode = HAL_OK; assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); __HAL_LOCK(hspi); hspi->State = HAL_SPI_STATE_BUSY_TX_RX; hspi->ErrorCode = HAL_SPI_ERROR_NONE; hspi->pTxBuffPtr = (uint8_t *)pTxData; hspi->TxXferSize = TxSize; hspi->TxXferCount = TxSize; hspi->pRxBuffPtr = (uint8_t *)pRxData; hspi->RxXferSize = RxSize; hspi->RxXferCount = RxSize; hspi->RxISR = NULL; hspi->TxISR = NULL; /* Reset the threshold bit */ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX); /* Set RX Fifo threshold according the reception data length: 8bit */ SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; hspi->hdmarx->XferErrorCallback = NULL; hspi->hdmarx->XferAbortCallback = NULL; hspi->hdmatx->XferHalfCpltCallback = NULL; hspi->hdmatx->XferCpltCallback = NULL; hspi->hdmatx->XferErrorCallback = NULL; hspi->hdmatx->XferAbortCallback = NULL; /* Enable the Rx DMA Stream/Channel */ errorcode = HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount); if (HAL_OK != errorcode) { /* Update SPI error code */ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); goto error; } /* Enable Rx DMA Request */ SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); /* Enable the Tx DMA Stream/Channel */ errorcode = HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount); if (HAL_OK != errorcode) { /* Update SPI error code */ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); goto error; } /* Check if the SPI is already enabled */ if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) { __HAL_SPI_ENABLE(hspi); } /* Enable the SPI Error Interrupt Bit */ __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); /* Enable Tx DMA Request */ SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); error : __HAL_UNLOCK(hspi); return errorcode; } __RAM_FUNC static inline void process(float in_div4) { static float z[4] = {0.f, 0.f, 0.f, 0.f}; float out1 = in_div4 + z[0]; z[0] = out1 * 1.062f + z[1]; z[1] = out1 * -0.14f - in_div4; float out2 = out1 + z[2]; z[2] = out1; float out3 = out2 + z[3]; z[3] = out3 * 0.985f - out2; DB_Sum_Squares += out3 * out3; } __RAM_FUNC static void processSampleBlock(sample_t *sample) { //IDLE_GPIO_Port->ODR ^= IDLE_Pin; for (int i = 0; i < SAMPLE_COUNT; i += 2) { // 18-bit sample comes in as big-endian with right padding. // Use REVSH to extract 18-bit reading divided by four for process(). int samp; asm("revsh %0, %1" : "=l" (samp) : "l" (sample[i])); process(samp); } DB_Count += SAMPLE_COUNT / 2; if (DB_Count >= SAMPLES_PER_REPORT) { float rms = sqrtf(DB_Sum_Squares / DB_Count); float db = 20.f * log10f(rms / MIC_REF_AMPL) + MIC_OFFSET_DB + MIC_REF_DB; DB_Sum_Squares = 0.f; DB_Count = 0; printf("%d dB\r\n", (int)db); } //IDLE_GPIO_Port->ODR ^= IDLE_Pin; } void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) { processSampleBlock((sample_t *)I2S_Receive_Buffer + SAMPLE_COUNT); } void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) { processSampleBlock((sample_t *)I2S_Receive_Buffer); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ __disable_irq(); printf("Unhandled error, halting!\r\n"); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ printf("Wrong parameters value: file %s on line %d\r\n", file, line); /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */