/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ typedef struct { int32_t value : 18; } sample_t; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define SAMPLE_COUNT (256) // Sample count per half-transfer #define SAMPLES_PER_REPORT (48000) // Report every second given our 48 kHz rate #define MIC_OFFSET_DB ( 0.f) // Linear offset #define MIC_SENSITIVITY (-26.f) // dBFS value expected at MIC_REF_DB #define MIC_REF_DB ( 94.f) // dB where sensitivity is specified #define MIC_BITS (18) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi1; DMA_HandleTypeDef hdma_spi1_rx; DMA_HandleTypeDef hdma_spi1_tx; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ static const uint8_t I2S_Frame_Buffer[8] = { 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF }; static uint8_t I2S_Receive_Buffer[SAMPLE_COUNT * 2 * sizeof(sample_t)]; float ln10; float MIC_REF_AMPL; static float DB_Sum_Squares = 0.f; static unsigned DB_Count = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_SPI1_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ static HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed( SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData, uint16_t TxSize, uint16_t RxSize); static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ int __io_putchar(int ch) { uint8_t buf = ch; HAL_UART_Transmit(&huart2, &buf, sizeof(buf), HAL_TIMEOUT); return buf; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ ln10 = qfp_fln(10.f); MIC_REF_AMPL = qfp_fmul(qfp_int2float((1 << (MIC_BITS - 1)) - 1), qfp_fpow(10.f, MIC_SENSITIVITY / 20.f)); /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_SPI1_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ __enable_irq(); HAL_SPI_TransmitReceive_DMA_Mixed(&hspi1, I2S_Frame_Buffer, I2S_Receive_Buffer, sizeof(I2S_Frame_Buffer), sizeof(I2S_Receive_Buffer)); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { HAL_GPIO_WritePin(IDLE_GPIO_Port, IDLE_Pin, GPIO_PIN_SET); __WFI(); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_9; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_8; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* DMA1_Channel2_3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_GREEN_GPIO_Port, LED_GREEN_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_RED_GPIO_Port, LED_RED_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(IDLE_GPIO_Port, IDLE_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LED_GREEN_Pin */ GPIO_InitStruct.Pin = LED_GREEN_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_GREEN_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : Joystick_Pin */ GPIO_InitStruct.Pin = Joystick_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(Joystick_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LED_BLUE_Pin */ GPIO_InitStruct.Pin = LED_BLUE_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_BLUE_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LED_RED_Pin */ GPIO_InitStruct.Pin = LED_RED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_RED_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : IDLE_Pin */ GPIO_InitStruct.Pin = IDLE_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM; HAL_GPIO_Init(IDLE_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed( SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData, uint16_t TxSize, uint16_t RxSize) { HAL_StatusTypeDef errorcode = HAL_OK; assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); __HAL_LOCK(hspi); hspi->State = HAL_SPI_STATE_BUSY_TX_RX; hspi->ErrorCode = HAL_SPI_ERROR_NONE; hspi->pTxBuffPtr = (uint8_t *)pTxData; hspi->TxXferSize = TxSize; hspi->TxXferCount = TxSize; hspi->pRxBuffPtr = (uint8_t *)pRxData; hspi->RxXferSize = RxSize; hspi->RxXferCount = RxSize; hspi->RxISR = NULL; hspi->TxISR = NULL; /* Reset the threshold bit */ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX); /* Set RX Fifo threshold according the reception data length: 8bit */ SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; hspi->hdmarx->XferErrorCallback = NULL; hspi->hdmarx->XferAbortCallback = NULL; hspi->hdmatx->XferHalfCpltCallback = NULL; hspi->hdmatx->XferCpltCallback = NULL; hspi->hdmatx->XferErrorCallback = NULL; hspi->hdmatx->XferAbortCallback = NULL; /* Enable the Rx DMA Stream/Channel */ errorcode = HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount); if (HAL_OK != errorcode) { /* Update SPI error code */ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); goto error; } /* Enable Rx DMA Request */ SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); /* Enable the Tx DMA Stream/Channel */ errorcode = HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount); if (HAL_OK != errorcode) { /* Update SPI error code */ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); goto error; } /* Check if the SPI is already enabled */ if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) { __HAL_SPI_ENABLE(hspi); } /* Enable the SPI Error Interrupt Bit */ __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); /* Enable Tx DMA Request */ SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); error : __HAL_UNLOCK(hspi); return errorcode; } void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) { SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)hdma->Parent; (void)hspi; } static float process(float in_div4) { static float z1 = 0, z2 = 0, z3 = 0, z5 = 0; float out1 = qfp_fadd(in_div4, z1); z1 = qfp_fadd(qfp_fmul(1.062f, out1), z2); z2 = qfp_fsub(qfp_fmul(-0.14f, out1), in_div4); float out2 = qfp_fadd(out1, z3); z3 = out1; float out3 = qfp_fadd(out2, z5); z5 = qfp_fsub(qfp_fmul(0.985f, out3), out2); return out3; } void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) { HAL_GPIO_WritePin(IDLE_GPIO_Port, IDLE_Pin, GPIO_PIN_RESET); SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)hdma->Parent; (void)hspi; sample_t *sample = (sample_t *)I2S_Receive_Buffer; for (int i = 0; i < SAMPLE_COUNT / 8; i++) { float f = process(qfp_int2float(sample[i].value / 4)); DB_Sum_Squares = qfp_fadd(DB_Sum_Squares, qfp_fmul(f, f)); } DB_Count += SAMPLE_COUNT * 2; // Pretend we sampled the entire I2S buffer if (DB_Count > SAMPLES_PER_REPORT) { float rms = qfp_fsqrt(qfp_fdiv(DB_Sum_Squares, qfp_uint2float(DB_Count))); float db = qfp_fadd(MIC_OFFSET_DB + MIC_REF_DB, qfp_fmul(20.f, qfp_flog10(qfp_fdiv(rms, MIC_REF_AMPL)))); DB_Sum_Squares = 0.f; DB_Count = 0; printf("%d dB\r\n", qfp_float2int(db)); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ __disable_irq(); printf("Unhandled error, halting!\r\n"); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ printf("Wrong parameters value: file %s on line %d\r\n", file, line); /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */