1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
#include <main.h>
#include <stdint.h>
#include <math.h>
extern Gyro gyro; // Originally defined in init.c
/*
* These keep track of the current LCD 'window' and the number of 'windows' that exist.
*/
static signed int ctty=0;
const unsigned int mtty=4;
static double imeDriveLeft;
static double imeDriveRight;
static double imeRotater;
static double gyroRotation;
/*
* This runs as a separate task to update the LCD.
*/
void operatorLCD(void *unused){
static int ime;
while(1){
/*
* Display information according to the current 'window'.
*/
switch(ctty){
default:
case 0: // Welcome screen
lcdSetText(uart1,1," JOHN CENA ");
lcdPrint(uart1,2," ===========%3d",motorGet(CANNON1));
break;
case 1: // Battery levels in volts
lcdPrint(uart1,1,"MAIN: %0.3f",(float)(powerLevelMain()/1000.0f));
lcdPrint(uart1,2,"EXP : %0.3f",(float)(analogRead(1) / 280.0f));
break;
case 2: // Gyroscope readings
imeGet(IROTATER,&ime);
double rot = ime / 3.0L / 627.2L * 10;
rot = floor(rot) / 10;
lcdPrint(uart1,1,"Gyro: %d",gyroGet(gyro));
lcdPrint(uart1,2,"Rot.: %.1lf",rot);
break;
case 3:
lcdPrint(uart1,1,"%.3lf",imeDriveLeft);
lcdPrint(uart1,2,"%.3lf",imeDriveRight);
break;
}
delay(500);
}
}
void operatorPoll(){
static int idl,idr,ir,gr;
while(1){
/*
* Read in rotations of motors and the current angle of the robot.
*/
imeGet(DRIVEL,&idl); // Get reading
imeDriveLeft = idl / 627.0L; // Convert to wheel rotations
imeDriveLeft *= 8.64L; // Convert to distance in inches
imeGet(DRIVER,&idr); // Get reading
imeDriveRight = idr / 627.0L; // Convert to wheel rotations
imeDriveRight *= 8.64L; // Convert to distance in inches
imeGet(ROTATER,&ir);
imeRotater = ir / 627.0L;
gyroRotation = gyroGet(gyro);
delay(100);
}
}
void operatorControl(){
static bool selfAim = false;
static char uiinc = 0; // See below
static char in,lift; // Used to set the multiple cannon motors to the same joy-stick reading.
taskCreate(operatorLCD ,TASK_DEFAULT_STACK_SIZE,NULL,TASK_PRIORITY_DEFAULT);
taskCreate(operatorPoll,TASK_DEFAULT_STACK_SIZE,NULL,TASK_PRIORITY_DEFAULT);
while(1){
// Set the drive motors speeds.
motorSet(DRIVEL,joystickGetAnalog(1,3));
motorSet(DRIVER,joystickGetAnalog(1,2));
// Set the rotating motor speed.
if(!selfAim){
motorSet(ROTATER,-joystickGetAnalog(2,1)/2);
}else{
//static int gc=0,gl=0;
//gl = gc;
//gc = gyroGet(gyro);
}
// Set the cannon's speed.
in=joystickGetAnalog(2,3);
motorSet(CANNON1,in);
motorSet(CANNON2,in);
motorSet(CANNON3,in);
motorSet(CANNON4,in);
// Set the intake's speed.
motorSet(INTAKE,joystickGetDigital(1,6,JOY_UP )? 127 :
joystickGetDigital(1,6,JOY_DOWN)? -127 :
0 );
// Set the lift's speed.
lift=joystickGetDigital(2,6,JOY_UP )? 127 :
joystickGetDigital(2,6,JOY_DOWN)? -127 :
0 ;
motorSet(LIFT1,lift);
motorSet(LIFT2,lift);
/*
* Miscellaneous operation handlers.
*/
if(++uiinc==20){ // Equates to every 200ms
uiinc=0;
// Goto next 'window'.
if(joystickGetDigital(1,7,JOY_UP) ||
joystickGetDigital(2,7,JOY_UP) ){
if(++ctty==mtty)ctty=0;
}
// Goto previous 'window'.
if(joystickGetDigital(1,7,JOY_DOWN) ||
joystickGetDigital(2,7,JOY_DOWN) ){
if(--ctty==-1)ctty=mtty-1;
}
// Run autonomous (for testing wo/ competition switch).
if(joystickGetDigital(1,7,JOY_RIGHT))
autonomous();
// Goto test area.
if(joystickGetDigital(1,7,JOY_LEFT)){
static double target = 0;
if(!target) target = (imeDriveLeft+imeDriveRight) / 2 + 13;
motorSet(DRIVEL,60);
motorSet(DRIVER,60);
while((imeDriveLeft+imeDriveRight) / 2 < target)
delay(10);
motorSet(DRIVEL,0);
motorSet(DRIVER,0);
}
}
delay(10); // Short delay to allow task switching.
}
}
//Totally Theoretical PseudoCode for AutoShoot
//Based on IME data:
double lVel;//=velocity of left side
double rVel;//=velocity of right side
double cVel;//=velocity of center (calculated below)
double aVel;//=angular velocity (calculated below)
//Used to find rectangular vectors * double aVel=angular velocity of robot
//Used to store the rectangular vectors:
double xVel1;
double xVel2;
double yVel1;
double yVel2;
//Final Position Vectors, robot and target
double xPos;
double yPos;
double xTarget;
double yTarget;
//time difference variables
double time1=0;
double time2=0;
int start;//1 is right blue, 2 is left blue, 3 is right blue, 4 is left blue
//Vector Assignments:
void Vectors(){
if(start==1){xPos=37;yPos=138;xTarget=137;yTarget=7;}
if(start==2){xPos=13;yPos=114;xTarget=137;yTarget=7;}
if(start==3){xPos=37;yPos=13;xTarget=137;yTarget=137;}
if(start==4){xPos=13;yPos=37;xTarget=137;yTarget=137;}
while(1){//something in the brackets
imeGetVelocity(DRIVEL,&lVel);//get reading of left velocity
lVel=lVel/24.5*8.64;
imeGetVelocity(DRIVER,&rVel);//get reading of right velocity
rVel=rVel/24.5*8.64;
int i=0;//counter for use of alternating variables
i++;
if(i==1){//just used the first time
time1=milis();
}
cVel=(lVel+rVel)/2;//calculates the (c)enter of the robot's velocity
if(lVel>rVel){
aVel=cVel/(16*lVel/(rVel-lVel));
}
if(rVel>lVel){
aVel=cVel/(16*rVel/(lVel-rVel));
}
else{
aVel=0;
if(i%2==0){
xVel1=cos(aVel)*cVel;//every 2 it uses these variables
yVel1=sin(aVel)*cVel;
}
else{
xVel2=cos(aVel)*cVel;//otherwise it uses these
yVel2=sin(aVel)*cVel;
}
time2=milis();//records the time before calculating
xPos+=((xVel1+xVel2)/2)*(time2-time1);//finds the area of the x curve using trapezoidal approx.
yPos+=((yVel1+yVel2)/2)*(time2-time1);//finds the area of the y curve using trapezoidal approx.
delay(20);
}
time1=milis();//records time between calculations for next time
}//end of while
}//end of Vectors
|