aboutsummaryrefslogtreecommitdiffstats
path: root/msp430/alee-msp430.cpp
blob: c2706129d2cca3cf92b3a70d50b0d6fa4726a60e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/**
 * Alee Forth: A portable and concise Forth implementation in modern C++.
 * Copyright (C) 2023  Clyne Sullivan <clyne@bitgloo.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#include "alee.hpp"
#include "libalee/ctype.hpp"
#include "lzss.h"
static const
#include "msp430fr2476_all.h"

#include <cstring>
#include <msp430.h>

#include "splitmemdictrw.hpp"

static char strbuf[80];

static void readchar(State& state);
static void serput(int c);
static void serputs(const char *s);
static void printint(DoubleCell n, char *buf, int base);

static Error findword(State&, Word);

static void initGPIO();
static void initClock();
static void initUART();
static void Software_Trim();
#define MCLK_FREQ_MHZ (8)    // MCLK = 8MHz

#define ALEE_RODICTSIZE (9200)
__attribute__((section(".lodict")))
#include "core.fth.h"

static bool exitLpm;
static Addr isr_list[24] = {};

using DictType = SplitMemDictRW<ALEE_RODICTSIZE, 32767>;

alignas(DictType)
static unsigned char dictbuf[sizeof(DictType)];
static auto dict = reinterpret_cast<DictType *>(dictbuf);

int main()
{
    WDTCTL = WDTPW | WDTHOLD;
    initGPIO();
    initClock();
    initUART();
    SYSCFG0 = FRWPPW;

    (void)alee_dat_len;
    dict->lodict = alee_dat;
    dict->hidict = 0x10000;
    State state (*dict, readchar);
    Parser::customParse = findword;

    serputs("alee forth\n\r");

    auto ptr = strbuf;
    while (1) {
        if (UCA0IFG & UCRXIFG) {
            auto c = static_cast<char>(UCA0RXBUF);
            serput(c);

            if (c == '\r') {
                *ptr = '\0';

                serputs("\n\r");

                if (auto r = Parser::parse(state, strbuf); r == Error::none) {
                    serputs(state.compiling() ? " compiled" : " ok");
                } else {
                    switch (r) {
                    case Error::noword:
                        serputs("unknown word...");
                        break;
                    default:
                        serputs("error...");
                        break;
                    }
                }

                serputs("\n\r");

                ptr = strbuf;
            } else if (c == '\b') {
                if (ptr > strbuf)
                    --ptr;
            } else if (ptr < strbuf + sizeof(strbuf)) {
                if (c >= 'A' && c <= 'Z')
                    c += 32;
                *ptr++ = c;
            }
        }
    }
}

void readchar(State& state)
{
    auto idx = state.dict.read(Dictionary::Input);
    Addr addr = Dictionary::Input + sizeof(Cell) + idx;

    while (!(UCA0IFG & UCRXIFG));
    auto c = static_cast<uint8_t>(UCA0RXBUF);
    if (isupper(c))
        c += 32;
    state.dict.writebyte(addr, c ? c : ' ');
}

void serput(int c)
{
    while (!(UCA0IFG & UCTXIFG));
    UCA0TXBUF = static_cast<char>(c);
}

void serputs(const char *s)
{
    while (*s)
        serput(*s++);
}

void printint(DoubleCell n, char *buf, int base)
{
    static const char digit[] = "0123456789ABCDEF";

    char *ptr = buf;
    bool neg = n < 0;

    if (neg)
        n = -n;

    do {
        *ptr++ = digit[n % base];
    } while ((n /= base));

    if (neg)
        serput('-');

    do {
        serput(*--ptr);
    } while (ptr > buf);
    serput(' ');
}

void user_sys(State& state)
{
    switch (state.pop()) {
    case 0: // .
        printint(state.pop(), strbuf, state.dict.read(Dictionary::Base));
        break;
    case 1: // unused
        state.push(static_cast<Addr>(state.dict.capacity() - state.dict.here()));
        break;
    case 2: // emit
        serput(state.pop());
        break;
    case 10:
        { auto index = state.pop() - 20;
          isr_list[index] = state.pop(); }
        break;
    case 11:
        { auto addr = state.pop();
          *reinterpret_cast<uint8_t *>(addr) = state.pop() & 0xFFu; }
        break;
    case 12:
        state.push(*reinterpret_cast<uint8_t *>(state.pop()));
        break;
    case 13:
        { auto addr = state.pop();
          *reinterpret_cast<uint16_t *>(addr) = state.pop() & 0xFFFFu; }
        break;
    case 14:
        state.push(*reinterpret_cast<uint16_t *>(state.pop()));
        break;
    case 15:
        _bis_SR_register(state.pop());
        break;
    case 16:
        _bic_SR_register(state.pop());
        break;
    case 17:
        exitLpm |= true;
        break;
    default:
        break;
    }
}

#define LZSS_MAGIC_SEPARATOR (0xFB)

static char lzword[32];
static int lzwlen;
static char lzbuf[32];
static char *lzptr;

Error findword(State& state, Word word)
{
    char *ptr = lzword;
    for (auto it = word.begin(&state.dict); it != word.end(&state.dict); ++it) {
        *ptr = *it;
        if (islower(*ptr))
            *ptr -= 32;
        ++ptr;
    }
    lzwlen = (int)(ptr - lzword);

    lzptr = lzbuf;
    lzssinit(msp430fr2476_all_lzss, msp430fr2476_all_lzss_len);

    auto ret = decode([](int c) {
        if (c != LZSS_MAGIC_SEPARATOR) {
            *lzptr++ = (char)c;
        } else {
            if (lzwlen == lzptr - lzbuf - 2 && strncmp(lzword, lzbuf, lzptr - lzbuf - 2) == 0) {
                lzwlen = (*(lzptr - 2) << 8) | *(lzptr - 1);
                return 1;
            } else {
                lzptr = lzbuf;
            }
        }
        return 0;
    });

    if (ret == EOF) {
        return Error::noword;
    } else {
        Parser::processLiteral(state, (Cell)lzwlen);
        return Error::none;
    }
}

void initGPIO()
{
    // Unnecessary, but done by TI example
    P1DIR = 0xFF; P2DIR = 0xFF;
    P1REN = 0xFF; P2REN = 0xFF;
    P1OUT = 0x00; P2OUT = 0x00;

    // Set LED pins to outputs
    P6DIR |= BIT0 | BIT1 | BIT2;
    P6OUT |= BIT0 | BIT1 | BIT2;
    P5DIR |= BIT5 | BIT6 | BIT7;
    P5OUT |= BIT5 | BIT6 | BIT7;

    // Setup buttons w/ pullups
    P3DIR &= ~BIT4; P3REN |= BIT4; P3OUT |= BIT4;
    P2DIR &= ~BIT3; P2REN |= BIT3; P2OUT |= BIT3;

    // Allow GPIO configurations to be applied
    PM5CTL0 &= ~LOCKLPM5;

    // Safety measure, prevent unwarranted interrupts
    P5IFG = 0;
    P6IFG = 0;
}

void initClock()
{
    __bis_SR_register(SCG0);                 // disable FLL
    CSCTL3 |= SELREF__REFOCLK;               // Set REFO as FLL reference source
    CSCTL1 = DCOFTRIMEN_1 | DCOFTRIM0 | DCOFTRIM1 | DCORSEL_3;// DCOFTRIM=3, DCO Range = 8MHz
    CSCTL2 = FLLD_0 + 243;                   // DCODIV = 8MHz
    __delay_cycles(3);
    __bic_SR_register(SCG0);                // enable FLL
    Software_Trim();                        // Software Trim to get the best DCOFTRIM value

    CSCTL4 = SELMS__DCOCLKDIV | SELA__REFOCLK; // set default REFO(~32768Hz) as ACLK source, ACLK = 32768Hz
                                               // default DCODIV as MCLK and SMCLK source
}

void initUART()
{
    // Configure UART pins
    P5SEL0 |= BIT1 | BIT2;                    // set 2-UART pin as second function
    SYSCFG3|=USCIA0RMP;                       //Set the remapping source
    // Configure UART
    UCA0CTLW0 |= UCSWRST;
    UCA0CTLW0 |= UCSSEL__SMCLK;

    // Baud Rate calculation
    // 8000000/(16*9600) = 52.083
    // Fractional portion = 0.083
    // User's Guide Table 17-4: UCBRSx = 0x49
    // UCBRFx = int ( (52.083-52)*16) = 1
    UCA0BR0 = 52;                             // 8000000/16/9600
    UCA0BR1 = 0x00;
    UCA0MCTLW = 0x4900 | UCOS16 | UCBRF_1;

    UCA0CTLW0 &= ~UCSWRST;                    // Initialize eUSCI
}

void Software_Trim()
{
    unsigned int oldDcoTap = 0xffff;
    unsigned int newDcoTap = 0xffff;
    unsigned int newDcoDelta = 0xffff;
    unsigned int bestDcoDelta = 0xffff;
    unsigned int csCtl0Copy = 0;
    unsigned int csCtl1Copy = 0;
    unsigned int csCtl0Read = 0;
    unsigned int csCtl1Read = 0;
    unsigned int dcoFreqTrim = 3;
    unsigned char endLoop = 0;

    do
    {
        CSCTL0 = 0x100;                         // DCO Tap = 256
        do
        {
            CSCTL7 &= ~DCOFFG;                  // Clear DCO fault flag
        }while (CSCTL7 & DCOFFG);               // Test DCO fault flag

        __delay_cycles((unsigned int)3000 * MCLK_FREQ_MHZ);// Wait FLL lock status (FLLUNLOCK) to be stable
                                                           // Suggest to wait 24 cycles of divided FLL reference clock
        while((CSCTL7 & (FLLUNLOCK0 | FLLUNLOCK1)) && ((CSCTL7 & DCOFFG) == 0));

        csCtl0Read = CSCTL0;                   // Read CSCTL0
        csCtl1Read = CSCTL1;                   // Read CSCTL1

        oldDcoTap = newDcoTap;                 // Record DCOTAP value of last time
        newDcoTap = csCtl0Read & 0x01ff;       // Get DCOTAP value of this time
        dcoFreqTrim = (csCtl1Read & 0x0070)>>4;// Get DCOFTRIM value

        if(newDcoTap < 256)                    // DCOTAP < 256
        {
            newDcoDelta = 256 - newDcoTap;     // Delta value between DCPTAP and 256
            if((oldDcoTap != 0xffff) && (oldDcoTap >= 256)) // DCOTAP cross 256
                endLoop = 1;                   // Stop while loop
            else
            {
                dcoFreqTrim--;
                CSCTL1 = (csCtl1Read & (~DCOFTRIM)) | (dcoFreqTrim<<4);
            }
        }
        else                                   // DCOTAP >= 256
        {
            newDcoDelta = newDcoTap - 256;     // Delta value between DCPTAP and 256
            if(oldDcoTap < 256)                // DCOTAP cross 256
                endLoop = 1;                   // Stop while loop
            else
            {
                dcoFreqTrim++;
                CSCTL1 = (csCtl1Read & (~DCOFTRIM)) | (dcoFreqTrim<<4);
            }
        }

        if(newDcoDelta < bestDcoDelta)         // Record DCOTAP closest to 256
        {
            csCtl0Copy = csCtl0Read;
            csCtl1Copy = csCtl1Read;
            bestDcoDelta = newDcoDelta;
        }

    }while(endLoop == 0);                      // Poll until endLoop == 1

    CSCTL0 = csCtl0Copy;                       // Reload locked DCOTAP
    CSCTL1 = csCtl1Copy;                       // Reload locked DCOFTRIM
    while(CSCTL7 & (FLLUNLOCK0 | FLLUNLOCK1)); // Poll until FLL is locked
}

bool alee_isr_handle(unsigned index)
{
    const Addr isr = isr_list[index];

    if (isr != 0) {
        State isrstate (*dict, readchar);
        exitLpm = false;
        isrstate.execute(isr);
        return exitLpm;
    }

    return false;
}

#define DEFINE_ISR(VVV, III) \
    __attribute__((interrupt(VVV))) \
    void VVV##_ISR() { \
        if (alee_isr_handle(III)) \
            _low_power_mode_off_on_exit(); }

DEFINE_ISR(ECOMP0_VECTOR, 0)
DEFINE_ISR(PORT6_VECTOR, 1)
DEFINE_ISR(PORT5_VECTOR, 2)
DEFINE_ISR(PORT4_VECTOR, 3)
DEFINE_ISR(PORT3_VECTOR, 4)
DEFINE_ISR(PORT2_VECTOR, 5)
DEFINE_ISR(PORT1_VECTOR, 6)
DEFINE_ISR(ADC_VECTOR, 7)
DEFINE_ISR(EUSCI_B1_VECTOR, 8)
DEFINE_ISR(EUSCI_B0_VECTOR, 9)
DEFINE_ISR(EUSCI_A1_VECTOR, 10)
DEFINE_ISR(EUSCI_A0_VECTOR, 11)
DEFINE_ISR(WDT_VECTOR, 12)
DEFINE_ISR(RTC_VECTOR, 13)
DEFINE_ISR(TIMER0_B1_VECTOR, 14)
DEFINE_ISR(TIMER0_B0_VECTOR, 15)
DEFINE_ISR(TIMER3_A1_VECTOR, 16)
DEFINE_ISR(TIMER3_A0_VECTOR, 17)
DEFINE_ISR(TIMER2_A1_VECTOR, 18)
DEFINE_ISR(TIMER2_A0_VECTOR, 19)
DEFINE_ISR(TIMER1_A1_VECTOR, 20)
DEFINE_ISR(TIMER1_A0_VECTOR, 21)
DEFINE_ISR(TIMER0_A1_VECTOR, 22)
DEFINE_ISR(TIMER0_A0_VECTOR, 23)