|
|
|
|
|
|
|
/**
|
|
|
|
* consteval_huffman.hpp - Provides compile-time text compression.
|
|
|
|
* Written by Clyne Sullivan.
|
|
|
|
* https://github.com/tcsullivan/consteval-huffman
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
|
|
|
|
#define TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <span>
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compresses the given character string using Huffman coding, providing a
|
|
|
|
* minimal run-time interface for decompressing the data.
|
|
|
|
* @tparam data The string of data to be compressed.
|
|
|
|
* @tparam data_length The size in bytes of the data, defaults to using strlen().
|
|
|
|
*/
|
|
|
|
template<const char *data, std::size_t data_length = std::char_traits<char>::length(data)>
|
|
|
|
class huffman_compress
|
|
|
|
{
|
|
|
|
using size_t = unsigned long int;
|
|
|
|
|
|
|
|
// Jump to the bottom of this header for the public-facing features of this
|
|
|
|
// class.
|
|
|
|
// The internals needed to be defined before they were used.
|
|
|
|
private:
|
|
|
|
// Node structure used to build a tree for calculating Huffman codes.
|
|
|
|
struct node {
|
|
|
|
int value = 0;
|
|
|
|
size_t freq = 0;
|
|
|
|
|
|
|
|
// Below values are indices into the node list
|
|
|
|
int parent = -1;
|
|
|
|
int left = -1;
|
|
|
|
int right = -1;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Builds a list of nodes for every character that appears in the given data.
|
|
|
|
* This list is sorted by increasing frequency.
|
|
|
|
* @return Compile-time allocated array of nodes
|
|
|
|
*/
|
|
|
|
consteval static auto build_node_list() {
|
|
|
|
// Build a list for counting every occuring value
|
|
|
|
auto list = std::span(new node[256] {}, 256);
|
|
|
|
for (int i = 0; i < 256; i++)
|
|
|
|
list[i].value = i;
|
|
|
|
for (size_t i = 0; i < data_length; i++)
|
|
|
|
list[data[i]].freq++;
|
|
|
|
|
|
|
|
std::sort(list.begin(), list.end(),
|
|
|
|
[](const auto& a, const auto& b) { return a.freq < b.freq; });
|
|
|
|
|
|
|
|
// Filter out the non-occuring values, and build a compact list to return
|
|
|
|
auto first_valid_node = std::find_if(list.begin(), list.end(),
|
|
|
|
[](const auto& n) { return n.freq != 0; });
|
|
|
|
auto fit_size = std::distance(first_valid_node, list.end());
|
|
|
|
auto fit_list = std::span(new node[fit_size] {}, fit_size);
|
|
|
|
std::copy(first_valid_node, list.end(), fit_list.begin());
|
|
|
|
delete[] list.data();
|
|
|
|
return fit_list;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the count of how many nodes are in the node tree.
|
|
|
|
*/
|
|
|
|
consteval static auto tree_count() {
|
|
|
|
auto list = build_node_list();
|
|
|
|
auto count = list.size() * 2 - 1;
|
|
|
|
delete[] list.data();
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Builds a tree out of the node list, allowing for the calculation of
|
|
|
|
* Huffman codes.
|
|
|
|
* @return Compile-time allocated tree of nodes, root node at index zero.
|
|
|
|
*/
|
|
|
|
consteval static auto build_node_tree() {
|
|
|
|
auto list = build_node_list();
|
|
|
|
auto tree = std::span(new node[tree_count()] {}, tree_count());
|
|
|
|
|
|
|
|
auto list_end = list.end(); // Track end of list as it shrinks
|
|
|
|
auto tree_begin = tree.end(); // Build tree from bottom
|
|
|
|
int next_parent_node_value = 0x100; // Give parent nodes unique ids
|
|
|
|
while (1) {
|
|
|
|
// Create parent node for two least-occuring values
|
|
|
|
node new_node {
|
|
|
|
next_parent_node_value++,
|
|
|
|
list[0].freq + list[1].freq,
|
|
|
|
-1,
|
|
|
|
list[0].value,
|
|
|
|
list[1].value
|
|
|
|
};
|
|
|
|
|
|
|
|
// Move the two nodes into the tree and remove them from the list
|
|
|
|
*--tree_begin = list[0];
|
|
|
|
*--tree_begin = list[1];
|
|
|
|
std::copy(list.begin() + 2, list_end--, list.begin());
|
|
|
|
if (std::distance(list.begin(), list_end) == 1) {
|
|
|
|
list.front() = new_node;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Insert the parent node back into the list
|
|
|
|
auto insertion_point = std::find_if(list.begin(), list_end - 1,
|
|
|
|
[&new_node](const auto& n) { return n.freq >= new_node.freq; });
|
|
|
|
if (insertion_point != list_end - 1) {
|
|
|
|
*(list_end - 1) = node();
|
|
|
|
std::copy_backward(insertion_point, list_end - 1, list_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
*insertion_point = new_node;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Connect child nodes to their parents
|
|
|
|
tree[0] = list[0];
|
|
|
|
for (auto iter = tree.begin(); ++iter != tree.end();) {
|
|
|
|
if (iter->parent == -1) {
|
|
|
|
auto parent = std::find_if(tree.begin(), iter,
|
|
|
|
[&iter](const auto& n) { return n.left == iter->value || n.right == iter->value; });
|
|
|
|
if (parent != iter)
|
|
|
|
iter->parent = std::distance(tree.begin(), parent);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] list.data();
|
|
|
|
return tree;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determines the size of the compressed data.
|
|
|
|
* @return A pair of total bytes used, and bits used in last byte.
|
|
|
|
*/
|
|
|
|
consteval static auto compressed_size_info() {
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
size_t bytes = 1, bits = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < data_length; i++) {
|
|
|
|
auto leaf = std::find_if(tree.begin(), tree.end(),
|
|
|
|
[c = data[i]](const auto& n) { return n.value == c; });
|
|
|
|
|
|
|
|
while (leaf->parent != -1) {
|
|
|
|
if (++bits == 8)
|
|
|
|
bits = 0, bytes++;
|
|
|
|
leaf = tree.begin() + leaf->parent;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] tree.data();
|
|
|
|
return std::make_pair(bytes, bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compresses the input data, storing the result in the object instance.
|
|
|
|
*/
|
|
|
|
consteval void compress()
|
|
|
|
{
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
|
|
|
|
// Set up byte and bit count (note, we're compressing the data backwards)
|
|
|
|
auto [bytes, bits] = compressed_size_info();
|
|
|
|
if (bits > 0)
|
|
|
|
bits = 8 - bits;
|
|
|
|
else
|
|
|
|
bits = 0, bytes--;
|
|
|
|
|
|
|
|
// Compress data backwards, because we obtain the Huffman codes backwards
|
|
|
|
// as we traverse towards the parent node.
|
|
|
|
for (auto i = data_length; i > 0; i--) {
|
|
|
|
auto leaf = std::find_if(tree.begin(), tree.end(),
|
|
|
|
[c = data[i - 1]](auto& n) { return n.value == c; });
|
|
|
|
|
|
|
|
while (leaf->parent != -1) {
|
|
|
|
auto parent = tree.begin() + leaf->parent;
|
|
|
|
if (parent->right == leaf->value)
|
|
|
|
compressed_data[bytes - 1] |= (1 << bits);
|
|
|
|
if (++bits == 8)
|
|
|
|
bits = 0, --bytes;
|
|
|
|
leaf = parent;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] tree.data();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Builds the decode tree, used to decompress the data.
|
|
|
|
* Format: three bytes per node.
|
|
|
|
* 1. Node value, 2. Distance to left child, 3. Distance to right child.
|
|
|
|
*/
|
|
|
|
consteval void build_decode_tree() {
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
|
|
|
|
for (size_t i = 0; i < tree_count(); i++) {
|
|
|
|
// Only store node value if it represents a data value
|
|
|
|
decode_tree[i * 3] = tree[i].value <= 0xFF ? tree[i].value : 0;
|
|
|
|
|
|
|
|
size_t j;
|
|
|
|
// Find the left child of this node
|
|
|
|
for (j = i + 1; j < tree_count(); j++) {
|
|
|
|
if (tree[i].left == tree[j].value)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
decode_tree[i * 3 + 1] = j < tree_count() ? j - i : 0;
|
|
|
|
// Find the right child of this node
|
|
|
|
for (j = i + 1; j < tree_count(); j++) {
|
|
|
|
if (tree[i].right == tree[j].value)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
decode_tree[i * 3 + 2] = j < tree_count() ? j - i : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] tree.data();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Contains the compressed data.
|
|
|
|
unsigned char compressed_data[compressed_size_info().first] = {};
|
|
|
|
// Contains a 'tree' that can be used to decompress the data.
|
|
|
|
unsigned char decode_tree[3 * tree_count()] = {};
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Utility for decoding compressed data.
|
|
|
|
class decode_info {
|
|
|
|
public:
|
|
|
|
decode_info(const huffman_compress<data, data_length>& comp_data) :
|
|
|
|
m_data(comp_data) { get_next(); }
|
|
|
|
|
|
|
|
// Checks if another byte is available
|
|
|
|
operator bool() const {
|
|
|
|
const auto [size_bytes, last_bits] = m_data.compressed_size_info();
|
|
|
|
return m_pos < (size_bytes - 1) || m_bit > (8 - last_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Gets the current byte
|
|
|
|
int operator*() const { return m_current; }
|
|
|
|
// Moves to the next byte
|
|
|
|
int operator++() {
|
|
|
|
get_next();
|
|
|
|
return m_current;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Internal: moves to next byte
|
|
|
|
void get_next() {
|
|
|
|
auto *node = m_data.decode_tree;
|
|
|
|
do {
|
|
|
|
bool bit = m_data.compressed_data[m_pos] & (1 << (m_bit - 1));
|
|
|
|
if (--m_bit == 0)
|
|
|
|
m_bit = 8, m_pos++;
|
|
|
|
node += 3 * node[bit ? 2 : 1];
|
|
|
|
} while (node[1] != 0);
|
|
|
|
m_current = *node;
|
|
|
|
}
|
|
|
|
|
|
|
|
const huffman_compress<data>& m_data;
|
|
|
|
size_t m_pos = 0;
|
|
|
|
unsigned char m_bit = 8;
|
|
|
|
int m_current = -1;
|
|
|
|
|
|
|
|
friend class huffman_compress;
|
|
|
|
};
|
|
|
|
|
|
|
|
consteval huffman_compress() {
|
|
|
|
build_decode_tree();
|
|
|
|
compress();
|
|
|
|
}
|
|
|
|
|
|
|
|
consteval static auto compressed_size() {
|
|
|
|
return sizeof(compressed_data) + sizeof(decode_tree);
|
|
|
|
}
|
|
|
|
consteval static auto uncompressed_size() {
|
|
|
|
return data_length;
|
|
|
|
}
|
|
|
|
consteval static auto bytes_saved() {
|
|
|
|
return uncompressed_size() - compressed_size();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates a decoder object for iteratively decompressing the data.
|
|
|
|
auto get_decoder() const {
|
|
|
|
return decode_info(*this);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
|
|
|
|
|