1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
/**
* consteval_huffman.hpp - Provides compile-time text compression.
* Written by Clyne Sullivan.
* https://github.com/tcsullivan/consteval-huffman
*/
#ifndef TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
#define TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
#include <algorithm>
#include <concepts>
#include <span>
#include <type_traits>
namespace detail
{
// Provides a string container for the huffman compressor.
// Using this allows for automatic string data length measurement, as
// well as implementation of the _huffman suffix.
template<typename T, unsigned long int N>
requires(std::same_as<std::remove_cvref_t<T>, char> ||
std::same_as<std::remove_cvref_t<T>, unsigned char>)
struct huffman_string_container {
T data[N];
consteval huffman_string_container(const T (&s)[N]) noexcept {
std::copy(s, s + N, data);
}
consteval operator const T *() const noexcept {
return data;
}
consteval auto size() const noexcept {
return N;
}
};
}
/**
* Compresses the given data string using Huffman coding, providing a
* minimal run-time interface for decompressing the data.
* @tparam raw_data The string of data to be compressed.
*/
template<auto raw_data>
requires(
std::same_as<std::remove_cvref_t<decltype(raw_data)>,
detail::huffman_string_container<std::remove_cvref_t<decltype(raw_data.data[0])>,
raw_data.size()>> &&
raw_data.size() > 0)
class huffman_compressor
{
using size_t = long int;
using usize_t = unsigned long int;
// Note: class internals need to be defined before the public interface.
// See the bottom of the class definition for usage.
private:
// Node structure used to build a tree for calculating Huffman codes.
struct node {
int value = 0;
size_t freq = 0;
// Below values are indices into the node list
int parent = -1;
int left = -1;
int right = -1;
};
/**
* Builds a list of nodes for every character that appears in the given data.
* This list is sorted by increasing frequency.
* @return Compile-time allocated array of nodes
*/
consteval static auto build_node_list() noexcept {
// Build a list for counting every occuring value
auto list = std::span(new node[256] {}, 256);
for (int i = 0; i < 256; i++)
list[i].value = i;
for (usize_t i = 0; i < raw_data.size(); i++)
list[raw_data[i]].freq++;
std::sort(list.begin(), list.end(),
[](const auto& a, const auto& b) { return a.freq < b.freq; });
// Filter out the non-occuring values, and build a compact list to return
auto first_valid_node = std::find_if(list.begin(), list.end(),
[](const auto& n) { return n.freq != 0; });
auto fit_size = std::distance(first_valid_node, list.end());
if (fit_size < 2)
fit_size = 2;
auto fit_list = std::span(new node[fit_size] {}, fit_size);
std::copy(first_valid_node, list.end(), fit_list.begin());
delete[] list.data();
return fit_list;
}
/**
* Returns the count of how many nodes are in the node tree.
*/
consteval static auto tree_count() noexcept {
auto list = build_node_list();
auto count = list.size() * 2 - 1;
delete[] list.data();
return count;
}
/**
* Builds a tree out of the node list, allowing for the calculation of
* Huffman codes.
* @return Compile-time allocated tree of nodes, root node at index zero.
*/
consteval static auto build_node_tree() noexcept {
auto list = build_node_list();
auto tree = std::span(new node[tree_count()] {}, tree_count());
auto list_end = list.end(); // Track end of list as it shrinks
auto tree_begin = tree.end(); // Build tree from bottom
int next_parent_node_value = 0x100; // Give parent nodes unique ids
while (1) {
// Create parent node for two least-occuring values
node new_node {
next_parent_node_value++,
list[0].freq + list[1].freq,
-1,
list[0].value,
list[1].value
};
// Move the two nodes into the tree and remove them from the list
*--tree_begin = list[0];
*--tree_begin = list[1];
std::copy(list.begin() + 2, list_end--, list.begin());
if (std::distance(list.begin(), list_end) == 1) {
list.front() = new_node;
break;
}
// Insert the parent node back into the list
auto insertion_point = std::find_if(list.begin(), list_end - 1,
[&new_node](const auto& n) { return n.freq >= new_node.freq; });
if (insertion_point != list_end - 1) {
*(list_end - 1) = node();
std::copy_backward(insertion_point, list_end - 1, list_end);
}
*insertion_point = new_node;
}
// Connect child nodes to their parents
tree[0] = list[0];
for (auto iter = tree.begin(); ++iter != tree.end();) {
if (iter->parent == -1) {
auto parent = std::find_if(tree.begin(), iter,
[&iter](const auto& n) {
return n.left == iter->value || n.right == iter->value;
});
if (parent != iter)
iter->parent = std::distance(tree.begin(), parent);
}
}
delete[] list.data();
return tree;
}
/**
* Determines the size of the compressed data.
* @return A pair of total bytes used, and bits used in last byte.
*/
consteval static auto compressed_size_info() noexcept {
auto tree = build_node_tree();
size_t bytes = 1, bits = 0;
for (usize_t i = 0; i < raw_data.size(); i++) {
auto c = static_cast<int>(raw_data[i]);
auto leaf = std::find_if(tree.begin(), tree.end(),
[c](const auto& n) { return n.value == c; });
while (leaf->parent != -1) {
if (++bits == 8)
bits = 0, bytes++;
leaf = tree.begin() + leaf->parent;
}
}
delete[] tree.data();
return std::make_pair(bytes, bits);
}
/**
* Compresses the input data, storing the result in the object instance.
*/
consteval void compress() noexcept {
auto tree = build_node_tree();
// Set up byte and bit count (note, we're compressing the data backwards)
auto [bytes, bits] = compressed_size_info();
if (bits > 0)
bits = 8 - bits;
else
bits = 0, bytes--;
// Compress data backwards, because we obtain the Huffman codes backwards
// as we traverse towards the parent node.
for (auto i = raw_data.size(); i > 0; i--) {
auto c = static_cast<int>(raw_data[i - 1]);
auto leaf = std::find_if(tree.begin(), tree.end(),
[c](auto& n) { return n.value == c; });
while (leaf->parent != -1) {
auto parent = tree.begin() + leaf->parent;
if (parent->right == leaf->value)
compressed_data[bytes - 1] |= (1 << bits);
if (++bits == 8)
bits = 0, --bytes;
leaf = parent;
}
}
delete[] tree.data();
}
/**
* Builds the decode tree, used to decompress the data.
* Format: three bytes per node.
* 1. Node value, 2. Distance to left child, 3. Distance to right child.
*/
consteval void build_decode_tree() noexcept {
auto tree = build_node_tree();
auto decode_tree = compressed_data + compressed_size_info().first;
for (usize_t i = 0; i < tree_count(); i++) {
// Only store node value if it represents a data value
decode_tree[i * 3] = tree[i].value <= 0xFF ? tree[i].value : 0;
usize_t j;
// Find the left child of this node
for (j = i + 1; j < tree_count(); j++) {
if (tree[i].left == tree[j].value)
break;
}
decode_tree[i * 3 + 1] = j < tree_count() ? j - i : 0;
// Find the right child of this node
for (j = i + 1; j < tree_count(); j++) {
if (tree[i].right == tree[j].value)
break;
}
decode_tree[i * 3 + 2] = j < tree_count() ? j - i : 0;
}
delete[] tree.data();
}
public:
consteval static auto compressed_size() noexcept {
return compressed_size_info().first + 3 * tree_count();
}
consteval static auto uncompressed_size() noexcept {
return raw_data.size();
}
consteval static size_t bytes_saved() noexcept {
size_t diff = uncompressed_size() - compressed_size();
return diff > 0 ? diff : 0;
}
// Utility for decoding compressed data.
class decoder {
public:
using difference_type = std::ptrdiff_t;
using value_type = int;
decoder(const unsigned char *comp_data) noexcept
: m_data(comp_data),
m_table(comp_data + compressed_size_info().first) { get_next(); }
decoder() = default;
constexpr static decoder end(const unsigned char *comp_data) noexcept {
decoder ender;
ender.m_data = comp_data;
if constexpr (bytes_saved() > 0) {
const auto [size_bytes, last_bits] = compressed_size_info();
ender.m_data += size_bytes - 1;
ender.m_bit = 1 << (7 - last_bits);
} else {
ender.m_data += raw_data.size();
}
return ender;
}
bool operator==(const decoder& other) const noexcept {
return m_data == other.m_data &&
m_bit == other.m_bit &&
m_current == other.m_current;
}
auto operator*() const noexcept {
return m_current;
}
decoder& operator++() noexcept {
get_next();
return *this;
}
decoder operator++(int) noexcept {
auto old = *this;
get_next();
return old;
}
private:
void get_next() noexcept {
if (auto e = end(m_table - compressed_size_info().first);
m_data == e.m_data && m_bit == e.m_bit)
{
m_current = -1;
return;
}
if constexpr (bytes_saved() > 0) {
auto *node = m_table;
int data = *m_data;
auto bit = m_bit;
do {
node += (data & bit) ? node[2] * 3u : node[1] * 3u;
bit >>= 1;
if (!bit)
bit = 0x80, data = *++m_data;
} while (node[1] != 0);
m_bit = bit;
m_current = *node;
} else {
m_current = *m_data++;
}
}
const unsigned char *m_data = nullptr;
const unsigned char *m_table = nullptr;
unsigned char m_bit = 0x80;
int m_current = -1;
friend class huffman_compressor;
};
// Stick the forward_iterator check here just so it's run
consteval huffman_compressor() noexcept
requires (std::forward_iterator<decoder>)
{
if constexpr (bytes_saved() > 0) {
build_decode_tree();
compress();
} else {
std::copy(raw_data.data, raw_data.data + raw_data.size(),
compressed_data);
}
}
auto begin() const noexcept {
return decoder(compressed_data);
}
auto end() const noexcept {
return decoder::end(compressed_data);
}
auto cbegin() const noexcept { return begin(); }
auto cend() const noexcept { return end(); }
// For accessing the compressed data
auto data() const noexcept {
if constexpr (bytes_saved() > 0)
return compressed_data;
else
return raw_data;
}
auto size() const noexcept {
if constexpr (bytes_saved() > 0)
return compressed_size();
else
return uncompressed_size();
}
private:
// Contains the compressed data, followed by the decoding tree.
unsigned char compressed_data[
bytes_saved() > 0 ? compressed_size_info().first + 3 * tree_count()
: raw_data.size()] = {0};
};
template <detail::huffman_string_container hsc>
constexpr auto operator ""_huffman()
{
return huffman_compressor<hsc>();
}
template <detail::huffman_string_container hsc>
constexpr auto huffman_compress = huffman_compressor<hsc>();
#endif // TCSULLIVAN_CONSTEVAL_HUFFMAN_HPP_
|