aboutsummaryrefslogtreecommitdiffstats
path: root/README.md
blob: 050db38b152ff027c42b2da0cd03a350f6031566 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# constexpr-to-string

**Features:**

* Convert any integral type to a string at compile-time
* Supports converting to any base between 2 and 36 inclusive
* No external dependencies, only includes `type_traits` for template parameter checking
* Supports custom character types, e.g. `to_string<123, 10, wchar_t>`
* C++20: Supports floating-point-to-string conversion with `f_to_string`

**How to use:**

The file `to_string.hpp` provides a `to_string` utility, which may be used as below:

```cpp
const char *number = to_string<2147483648999954564, 16>; // produces "1DCD65003B9A1884"
puts(number);
puts(to_string<-42>); // produces "-42"
puts(to_string<30, 2>); // produces "11110"
```

With `to_string`, all that will be found in program disassembly are the resulting string literals, as if you wrote the strings yourself.

Try it [on Compiler Explorer](https://godbolt.org/z/T-MFoh).

`f_to_string.hpp`, requiring C++20, provides an `f_to_string` utility for floating-point conversion:

```cpp
puts(f_to_string<3.1415926>); // Defaults to 5-point precision: "3.14159"
puts(f_to_string<{3.1415926, 7}>); // Specify precision: "3.1415926"
```

# How it works

The basic structure of `to_string` is shown below:

```cpp
template<auto N, unsigned int base, typename char_type, /* N type-check and base bounds-check */>
struct to_string_t {
    char_type buf[];                          // Array size determination explained later.
    constexpr to_string_t() {}                // Converts the integer to a string stored in buf.
    constexpr operator char_type *() {}       // These allow for the object to be implicitly converted
    constexpr operator const char_type *() {} // to a character pointer.
    
    // begin() and end() are supported too.
};

template<auto N, unsigned int base = 10, typename char_type = char>
constexpr to_string_t<N, base, char_type> to_string;    // Simplifies usage, e.g. to_string_t<367>() becomes to_string<367>.
```

Since the number and base are template parameters, each differing `to_string` use will get its own character buffer.

The integer/string conversion is done using a simple method I learned over the years, where the string is built in reverse using `n % base` to calculate the value of the lowest digit:

(*Note: The below examples of code are not up-to-date, though they still give a general idea of how `to_string` works.*)

```cpp
constexpr char digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";

constexpr to_string_t() {
    auto ptr = buf + sizeof(buf) / sizeof(buf[0]);
    *--ptr = '\0';
    for (auto n = N < 0 ? -N : N; n; n /= base)
        *--ptr = digits[n % base];
    if (N < 0)
        *--ptr = '-';
}
```

As you may have noticed, `buf` needs to be given a size for all this to work; in fact, the above code relies on the buffer having a size equal to the generated string (or else `buf[0]` would still be uninitialized). This is actually the case: a lambda is used within `buf`'s declaration to count how many characters long the string will ultimately be. This counting is done in a manner similar to conversion loop shown above:

```cpp
char buf[([] {
              unsigned int len = N >= 0 ? 1 : 2; // Need one byte for '\0', two if there'll be a minus
              for (auto n = N < 0 ? -N : N; n; len++, n /= base);
              return len;
          }())];
```