Merge pull request 'external-register' (#1) from external-register into master

Reviewed-on: #1
master
Clyne 2 years ago
commit 2a5fe35aee

@ -0,0 +1,178 @@
## Guided Overview
Let's say you have a couple LEDs that are controlled by memory-mapped
registers, a common case for embedded microcontrollers. To begin, you'll need
to define the register used to control the LEDs.
For an 8-bit register at memory address `0x0021`, you would write:
```cpp
using PORTA_OUT = fr::MemRegister<uint8_t, 0x0021>;
```
`MemRegister` is an `Register` that uses `MemoryIO` access. Registers
have static functions for interacting with their contents; for example, we
could now do `PORTA_OUT::write(0x10)` or `auto state = PORTA::read()`.
A lot more can be done with registers once we define some register masks. A
`RegisterMask` lets us name one or more bits within a register.
To name our two LEDs, which are only controlled by single bits, we write:
```cpp
using LED_1 = fr::RegisterMask<PORTA_OUT, (1 << 0)>; // bit zero
using LED_2 = fr::RegisterMask<PORTA_OUT, (1 << 2)>; // bit two
```
We can also give a name to both LEDs:
```cpp
using LED_ALL = fr::RegisterMask<PORTA_OUT, (1 << 0) | (1 << 2)>;
```
Now, we can control the LEDs either directly or through the register. Direct
calls would be like `LED_1::set()`; there is also `clear`, `toggle`, `read`,
`write`, and `test`.
These calls can also be made through the register using template parameters:
```cpp
PORTA_OUT::set<LED_2>();
```
Registers can take multiple masks at once too. The masks will be merged so that
the register is only read and written once:
```cpp
PORTA_OUT::toggle<LED_1, LED_2>();
```
A `modify` function is also supported, which takes a list of mask operations as
shown below. This allows the different operations to be carried out together,
still keeping to a single register read and write:
```cpp
PORTA_OUT::modify<LED_1::set, LED_2::clear>(); // Only have LED_1 turned on
```
What if we need to add a third LED? And what if that LED is on a different
register, PORTB?
This is where `RegisterGroup` comes in handy:
```cpp
using PORTB_OUT = fr::MemRegister<uint8_t, 0x0041>;
using LED_3 = fr::RegisterMask<PORTB_OUT, (1 << 5)>;
// Group the output ports together:
using LEDS = fr::RegisterGroup<PORTA_OUT, PORTB_OUT>;
```
By grouping the two registers, we can carry out our modification calls without
worrying about which mask is for what register. The `RegisterGroup` will take
of that, while still merging operations when possible to maintain minimal I/O:
```cpp
LEDS::clear<LED_1, LED_2, LED_3>();
LEDS::modify<LED_1::set,
LED_2::clear,
LED_3::toggle>(); // You get the idea...
```
## Other features
### Multi-bit masks
Say bits two through five in a register select a clock's prescaler:
```cpp
using CLOCK_DIV = fr::RegisterMask<CLOCK_CONTROL, 0x3C>;
```
The mask's `write` function will let you write values to the field:
```cpp
CLOCK_DIV::write<0x03>();
```
This will read the register's current value, clear all bits selected by the
mask, set the new value `0x03` in the mask's location, then update the
register.
`write` can also be included in `modify` chains:
```cpp
CLOCK_CONTROL::modify<CLOCK_DIV::write<0x03>, CLOCK_ENABLE::set>();
```
A `RegisterMaskValue` can also be defined to identify specific values:
```cpp
using CLOCK_DIV4 = fr::RegisterMaskValue<CLOCK_DIV, 0x03>;
```
`RegisterMaskValue` supports three functions: `set`, which would call
`CLOCK_DIV::write<0x03>()`; `clear`, which clears the masked bits; and `test`,
which would confirm that the register contains the value `0x03` in the masked
bits' location.
### External registers
"External" registers are registers that are not memory-mapped. These are also
supported in *funreg*, and can even be placed in `RegisterGroup`s with
other register types.
An "access type" must be defined to specify how the register is accessed. Here
is the definition of `MemoryIO`, which is used for memory-mapped registers:
```cpp
template<typename T, uintptr_t Addr>
struct MemoryIO {
using type = T;
constexpr static auto addr = Addr;
/**
* Reads the register's value.
*/
constexpr static T read() {
return *reinterpret_cast<volatile T*>(Addr);
}
/**
* Overwrites the register's value.
*/
constexpr static void write(const T& value) {
*reinterpret_cast<volatile T*>(Addr) = value;
}
};
```
Custom access types should use `MemoryIO` as a template. For example, here is
an access type for ports on x86 processors:
```cpp
template<typename T, uintptr_t Addr>
struct PortIO {
using type = T;
constexpr static auto addr = Addr;
static T read() {
T ret;
asm volatile("in %0, %1" : "=r" (ret) : "r" (Addr));
return ret;
}
static void write(const T& value) {
asm volatile("out %0, %1" :: "r" (value), "r" (Addr));
}
};
```
Now, just define your register(s) using `ExtRegister`:
```cpp
using KEYBOARD = fr::ExtRegister<PortIO, uint8_t, 0x60>;
```

@ -1,16 +1,34 @@
# funreg: Functional Memory-mapped Register I/O
# funreg: Functional Register I/O using modern C++
*funreg* provides a functional approach to operating on memory-mapped registers
with zero overhead. This library primarily targets embedded firmware, where
these types of operations are frequently encountered.
*funreg* provides a functional approach to interacting with registers.
The library includes support for memory-mapped registers; however, other types
of registers can be supported through creating a simple access interface.
What makes this library unique is its ability to carry out multiple register
operations with a single function call, reducing this to a single register read
and write. Further, registers can be organized into "groups": these groups can
receive a list of operations for any of the contained registers, and will
optimize down to a single read and write for each register.
A unique feature of this library is its ability to handle multiple register
operations with a single function call; these operations will be merged
together so that the register is only read and written once.
A tutorial or guide will be added soon.
Registers may also be organized into groups. These groups can similarly receive
a list of operations, which will be directed the to the appropriate registers
for the same single-read-single-write process.
For example, LEDs can be controlled by a microcontroller with a single call:
```cpp
LEDS::modify<LED1::set, LED2::clear, LED3::set>();
```
...no matter if the LEDs use different registers, or if any of them are
controlled by an external circuit rather than a built-in IO peripheral.
See `GUIDE.md` for a walk-through of the available functionality.
## Feature overview
* Define registers of any size, at any address, with optional custom access interface
* Define register masks to name the bits of registers
* Define register groups so ease programming (e.g. define an `RTC` group to work with all real-time clock registers at once)
* Make modifications through groups, masks, or the registers directly
## Requirements

@ -1,5 +1,5 @@
/**
* funreg.hpp - Functional memory-mapped register I/O using modern C++.
* funreg.hpp - Functional register I/O using modern C++.
* Written by Clyne Sullivan.
* <https://github.com/tcsullivan/funreg>
*/
@ -7,11 +7,22 @@
#ifndef FUNCTIONAL_REGISTER_IO_H
#define FUNCTIONAL_REGISTER_IO_H
/**
* Comment to disable external/custom register access.
* When disabled, only memory-mapped register access is supported.
* fr::Register can then also be used instead of fr::MemRegister.
*/
#define FUNREG_ENABLE_EXTERNAL_IO
#include <stdint.h>
#ifdef FUNREG_ENABLE_EXTERNAL_IO
#include <type_traits>
#endif
namespace fr {
// A utility to measure a bit-mask's offset from bit zero.
// A utility to measure a bit-mask's offset from bit zero.
template<auto Mask, unsigned int N = 0>
constexpr auto BitOffset = []() constexpr {
if constexpr (Mask & 1)
@ -21,23 +32,66 @@ constexpr auto BitOffset = []() constexpr {
}();
/**
* @struct Register
* @brief Defines a memory-mapped register, given bit-size and address.
* @tparam T The integer type that matches the size of the register.
* @struct MemoryIO
* @brief Specifies how to access a memory-mapped register.
* @tparam T The size of the register.
* @tparam Addr The memory address of the register.
*
* Defines a memory-mapped register that is usually accessed with a pointer of
* type T*, and is located at address Addr.
* To create an I/O access type for external register access, use this
* structure as a template.
*/
template<typename T, uintptr_t Addr>
struct MemoryIO {
using type = T;
constexpr static auto addr = Addr;
/**
* Reads the register's value.
*/
constexpr static T read() {
return *reinterpret_cast<volatile T*>(Addr);
}
/**
* Overwrites the register's value.
*/
constexpr static void write(const T& value) {
*reinterpret_cast<volatile T*>(Addr) = value;
}
};
/**
* @struct Register
* @brief Defines a register, given how to access it.
* @tparam Access Specifies register access. See MemoryIO for an example.
*
* Use only as a type, e.g. "using GPIO_OUT = Register<uint32_t, 0xA0004120>"
* When FUNREG_ENABLE_EXTERNAL_IO is not defined, Register assumes MemoryIO
* access. The template parameters become that of MemoryIO.
*/
#ifdef FUNREG_ENABLE_EXTERNAL_IO
template<typename Access>
struct Register {
using access = Access;
using T = typename Access::type;
constexpr static auto Addr = Access::addr;
#else
template<typename T, uintptr_t Addr>
struct Register {
using RegAccess = MemoryIO<T, Addr>;
#endif // FUNREG_ENABLE_EXTERNAL_IO
/**
* Gets a pointer to the register.
*/
constexpr static auto get() {
return reinterpret_cast<volatile T*>(Addr);
constexpr static T read() {
return Access::read();
}
/**
* Overwrites the register's value.
*/
constexpr static void write(const T& value) {
Access::write(value);
}
/**
@ -45,14 +99,14 @@ struct Register {
*/
template<typename... Masks>
static void set() {
apply<Masks...>([](auto r, auto m) { *r = *r | m; });
apply<Masks...>([](auto r, auto m) { return r | m; });
}
/**
* Sets register bits to '1' according to the given mask.
*/
static void set(const T& mask) {
*get() = *get() | mask;
write(read() | mask);
}
/**
@ -60,14 +114,14 @@ struct Register {
*/
template<typename... Masks>
static void clear() {
apply<Masks...>([](auto r, auto m) { *r = *r & ~m; });
apply<Masks...>([](auto r, auto m) { return r & ~m; });
}
/**
* Clears register bits to '0' according to the given mask.
*/
static void clear(const T& mask) {
*get() = *get() & ~mask;
write(read() & ~mask);
}
/**
@ -75,14 +129,14 @@ struct Register {
*/
template<typename... Masks>
static void toggle() {
apply<Masks...>([](auto r, auto m) { *r = *r ^ m; });
apply<Masks...>([](auto r, auto m) { return r ^m; });
}
/**
* Toggles bits in the register according to the given mask.
*/
static void toggle(const T& mask) {
*get() = *get() ^ mask;
write(read() ^ mask);
}
/**
@ -92,26 +146,10 @@ struct Register {
*/
template<typename... Masks>
static auto read() {
if constexpr (sizeof...(Masks) > 0) {
if (((Addr == Masks::reg::addr) | ...)) {
auto mask =
([] {
return Addr == Masks::reg::addr ? Masks::mask : 0;
}() | ...);
return *get() & mask;
} else {
return 0;
}
} else {
return *get();
}
}
/**
* Overwrites the entire register with the given value.
*/
static void write(const T& value) {
*get() = value;
if constexpr (sizeof...(Masks) > 0)
return read() & mergeMasks<Masks...>();
else
return read();
}
/**
@ -121,17 +159,10 @@ struct Register {
template<typename... Masks>
static bool test() {
if constexpr (sizeof...(Masks) > 0) {
if (((Addr == Masks::reg::addr) | ...)) {
auto mask =
([] {
return Addr == Masks::reg::addr ? Masks::mask : 0;
}() | ...);
return (*get() & mask) == mask;
} else {
return 0;
}
auto mask = mergeMasks<Masks...>();
return (read() & mask) == mask;
} else {
return *get() != 0;
return read() != 0;
}
}
@ -144,17 +175,17 @@ struct Register {
*/
template<typename... Ops>
static void modify() {
if (((Addr == Ops::reg::addr) | ...)) {
auto mask = *get();
if constexpr ((isThis<typename Ops::reg> | ...)) {
auto mask = read();
([&mask] {
if (Addr == Ops::reg::addr)
if constexpr (isThis<typename Ops::reg>)
mask = Ops(mask);
}(), ...);
*get() = mask;
write(mask);
}
}
// Below is meant for internal use only.
// Below is meant for internal use only.
// Applies bit-masks to the register through the provided function.
// The provided function receives a pointer to the register's data and a
@ -163,21 +194,50 @@ struct Register {
template<typename... Masks>
static void apply(auto fn) {
if constexpr (sizeof...(Masks) > 0) {
auto mask =
auto mask = mergeMasks<Masks...>();
if constexpr (mask)
write(fn(read(), mask));
} else {
write(fn(read(), T(0) - 1));
}
}
// Takes a list of bit-masks, and returns a merged mask of those which are
// meant for this register.
template<typename... Masks>
static auto mergeMasks() {
if constexpr (sizeof...(Masks) > 0) {
if constexpr ((isThis<typename Masks::reg> | ...)) {
auto mask =
([] {
return Addr == Masks::reg::addr ? Masks::mask : 0;
return isThis<typename Masks::reg> ? Masks::mask : 0;
}() | ...);
if (mask)
fn(get(), mask);
return mask;
} else {
return 0;
}
} else {
fn(get(), T(0) - 1);
return 0;
}
}
#ifdef FUNREG_ENABLE_EXTERNAL_IO
// Determines if the given register matches this one.
template<typename Reg>
constexpr static bool isThis = [] {
return std::is_same_v<typename Reg::access, access> && Addr == Reg::Addr;
}();
#else
// Determines if the given register matches this one.
template<typename Reg>
constexpr static bool isThis = [] {
return Addr == Reg::Addr;
}();
#endif // FUNREG_ENABLE_EXTERNAL_IO
Register() = delete;
using type = T;
constexpr static auto addr = Addr;
};
/**
@ -203,7 +263,7 @@ struct RegisterMask
*/
struct set {
constexpr set() {
*Reg::get() = *Reg::get() | Mask;
Reg::write(Reg::read() | Mask);
}
// For internal use.
@ -219,7 +279,7 @@ struct RegisterMask
*/
struct clear {
constexpr clear() {
*Reg::get() = *Reg::get() & ~Mask;
Reg::write(Reg::read() & ~Mask);
}
// For internal use.
@ -235,7 +295,7 @@ struct RegisterMask
*/
struct toggle {
constexpr toggle() {
*Reg::get() = *Reg::get() ^ Mask;
Reg::write(Reg::read() ^ Mask);
}
// For internal use.
@ -249,7 +309,7 @@ struct RegisterMask
* Reads from the paired register, applying the bit-mask.
*/
static auto read() {
return *Reg::get() & Mask;
return Reg::read() & Mask;
}
/**
@ -272,10 +332,10 @@ struct RegisterMask
template<T value>
struct write {
constexpr write() {
auto r = *Reg::get();
auto r = Reg::read();
r &= ~Mask;
r |= value << BitOffset<Mask>;
*Reg::get() = r;
Reg::write(r);
}
// For internal use.
@ -332,7 +392,7 @@ struct RegisterMaskValue
* Tests if this value is currently set in the register.
*/
static bool test() {
return Mask::read() & (value << BitOffset<Mask>);
return (Mask::read() & Mask::mask) == (value << BitOffset<Mask>);
}
};
@ -352,11 +412,11 @@ public:
/**
* Sets bits throughout this group's registers according to the given masks.
* Bit-masks for the same register will be merged so that each register is
* only written once.
* only written once.
*/
template<typename... Masks>
static void set() {
apply<Masks...>([](auto r, auto m) { *r = *r | m; });
apply<Masks...>([](auto r, auto m) { return r | m; });
}
/**
@ -366,7 +426,7 @@ public:
*/
template<typename... Masks>
static void clear() {
apply<Masks...>([](auto r, auto m) { *r = *r & ~m; });
apply<Masks...>([](auto r, auto m) { return r & ~m; });
}
/**
@ -376,7 +436,7 @@ public:
*/
template<typename... Masks>
static void toggle() {
apply<Masks...>([](auto r, auto m) { *r = *r ^ m; });
apply<Masks...>([](auto r, auto m) { return r ^ m; });
}
/**
@ -407,6 +467,38 @@ private:
template<typename... RegMasks>
constexpr auto Masks = (RegMasks::mask | ...);
#ifdef FUNREG_ENABLE_EXTERNAL_IO
/**
* Defines a register that is accessed through memory, i.e. memory-mapped.
* @tparam T The variable type used to access the register (e.g. uint32_t).
* @tparam Addr The memory address of the register.
*/
template<typename T, uintptr_t Addr>
using MemRegister = Register<MemoryIO<T, Addr>>;
/**
* Defines a register that is accessed through external or custom means.
* @tparam ExtIO A type that provides access functionality (e.g. MemoryIO).
* @tparam T The variable type used to access the register (e.g. uint32_t).
* @tparam Addr The memory address of the register.
*
* Custom access types should be defined using MemoryIO as a template.
*/
template<template<typename, uintptr_t> typename ExtIO, typename T, uintptr_t Addr>
using ExtRegister = Register<ExtIO<T, Addr>>;
#else
/**
* Defines a register that is accessed through memory, i.e. memory-mapped.
* @tparam T The variable type used to access the register (e.g. uint32_t).
* @tparam Addr The memory address of the register.
*
* With external I/O disabled, the Register type may be used directly instead.
*/
template<typename T, uintptr_t Addr>
using MemRegister = Register<T, Addr>;
#endif // FUNREG_ENABLE_EXTERNAL_IO
} // namespace fr
#endif // FUNCTIONAL_REGISTER_IO_H

Loading…
Cancel
Save