diff options
author | Andy Belle-Isle <drumsetmonkey@gmail.com> | 2019-08-30 00:45:36 -0400 |
---|---|---|
committer | Andy Belle-Isle <drumsetmonkey@gmail.com> | 2019-08-30 00:45:36 -0400 |
commit | dc2493e7525bb7633f697ef10f72b72b46222249 (patch) | |
tree | 9816755219e65d3f47fdce81c78f3736a7ddb8ab /deps/LuaJIT/doc/ext_ffi_semantics.html | |
parent | 9d2b31797d0cfd130802b69261df2cd402e39b49 (diff) |
Forget what I said, I just need to change git attributes to mark for vendor
Diffstat (limited to 'deps/LuaJIT/doc/ext_ffi_semantics.html')
-rw-r--r-- | deps/LuaJIT/doc/ext_ffi_semantics.html | 1261 |
1 files changed, 0 insertions, 1261 deletions
diff --git a/deps/LuaJIT/doc/ext_ffi_semantics.html b/deps/LuaJIT/doc/ext_ffi_semantics.html deleted file mode 100644 index 4b03da9..0000000 --- a/deps/LuaJIT/doc/ext_ffi_semantics.html +++ /dev/null @@ -1,1261 +0,0 @@ -<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> -<html> -<head> -<title>FFI Semantics</title> -<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> -<meta name="Copyright" content="Copyright (C) 2005-2018"> -<meta name="Language" content="en"> -<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen"> -<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print"> -<style type="text/css"> -table.convtable { line-height: 1.2; } -tr.convhead td { font-weight: bold; } -td.convop { font-style: italic; width: 40%; } -</style> -</head> -<body> -<div id="site"> -<a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a> -</div> -<div id="head"> -<h1>FFI Semantics</h1> -</div> -<div id="nav"> -<ul><li> -<a href="luajit.html">LuaJIT</a> -<ul><li> -<a href="http://luajit.org/download.html">Download <span class="ext">»</span></a> -</li><li> -<a href="install.html">Installation</a> -</li><li> -<a href="running.html">Running</a> -</li></ul> -</li><li> -<a href="extensions.html">Extensions</a> -<ul><li> -<a href="ext_ffi.html">FFI Library</a> -<ul><li> -<a href="ext_ffi_tutorial.html">FFI Tutorial</a> -</li><li> -<a href="ext_ffi_api.html">ffi.* API</a> -</li><li> -<a class="current" href="ext_ffi_semantics.html">FFI Semantics</a> -</li></ul> -</li><li> -<a href="ext_jit.html">jit.* Library</a> -</li><li> -<a href="ext_c_api.html">Lua/C API</a> -</li><li> -<a href="ext_profiler.html">Profiler</a> -</li></ul> -</li><li> -<a href="status.html">Status</a> -<ul><li> -<a href="changes.html">Changes</a> -</li></ul> -</li><li> -<a href="faq.html">FAQ</a> -</li><li> -<a href="http://luajit.org/performance.html">Performance <span class="ext">»</span></a> -</li><li> -<a href="http://wiki.luajit.org/">Wiki <span class="ext">»</span></a> -</li><li> -<a href="http://luajit.org/list.html">Mailing List <span class="ext">»</span></a> -</li></ul> -</div> -<div id="main"> -<p> -This page describes the detailed semantics underlying the FFI library -and its interaction with both Lua and C code. -</p> -<p> -Given that the FFI library is designed to interface with C code -and that declarations can be written in plain C syntax, <b>it -closely follows the C language semantics</b>, wherever possible. -Some minor concessions are needed for smoother interoperation with Lua -language semantics. -</p> -<p> -Please don't be overwhelmed by the contents of this page — this -is a reference and you may need to consult it, if in doubt. It doesn't -hurt to skim this page, but most of the semantics "just work" as you'd -expect them to work. It should be straightforward to write -applications using the LuaJIT FFI for developers with a C or C++ -background. -</p> - -<h2 id="clang">C Language Support</h2> -<p> -The FFI library has a built-in C parser with a minimal memory -footprint. It's used by the <a href="ext_ffi_api.html">ffi.* library -functions</a> to declare C types or external symbols. -</p> -<p> -It's only purpose is to parse C declarations, as found e.g. in -C header files. Although it does evaluate constant expressions, -it's <em>not</em> a C compiler. The body of <tt>inline</tt> -C function definitions is simply ignored. -</p> -<p> -Also, this is <em>not</em> a validating C parser. It expects and -accepts correctly formed C declarations, but it may choose to -ignore bad declarations or show rather generic error messages. If in -doubt, please check the input against your favorite C compiler. -</p> -<p> -The C parser complies to the <b>C99 language standard</b> plus -the following extensions: -</p> -<ul> - -<li>The <tt>'\e'</tt> escape in character and string literals.</li> - -<li>The C99/C++ boolean type, declared with the keywords <tt>bool</tt> -or <tt>_Bool</tt>.</li> - -<li>Complex numbers, declared with the keywords <tt>complex</tt> or -<tt>_Complex</tt>.</li> - -<li>Two complex number types: <tt>complex</tt> (aka -<tt>complex double</tt>) and <tt>complex float</tt>.</li> - -<li>Vector types, declared with the GCC <tt>mode</tt> or -<tt>vector_size</tt> attribute.</li> - -<li>Unnamed ('transparent') <tt>struct</tt>/<tt>union</tt> fields -inside a <tt>struct</tt>/<tt>union</tt>.</li> - -<li>Incomplete <tt>enum</tt> declarations, handled like incomplete -<tt>struct</tt> declarations.</li> - -<li>Unnamed <tt>enum</tt> fields inside a -<tt>struct</tt>/<tt>union</tt>. This is similar to a scoped C++ -<tt>enum</tt>, except that declared constants are visible in the -global namespace, too.</li> - -<li>Scoped <tt>static const</tt> declarations inside a -<tt>struct</tt>/<tt>union</tt> (from C++).</li> - -<li>Zero-length arrays (<tt>[0]</tt>), empty -<tt>struct</tt>/<tt>union</tt>, variable-length arrays (VLA, -<tt>[?]</tt>) and variable-length structs (VLS, with a trailing -VLA).</li> - -<li>C++ reference types (<tt>int &x</tt>).</li> - -<li>Alternate GCC keywords with '<tt>__</tt>', e.g. -<tt>__const__</tt>.</li> - -<li>GCC <tt>__attribute__</tt> with the following attributes: -<tt>aligned</tt>, <tt>packed</tt>, <tt>mode</tt>, -<tt>vector_size</tt>, <tt>cdecl</tt>, <tt>fastcall</tt>, -<tt>stdcall</tt>, <tt>thiscall</tt>.</li> - -<li>The GCC <tt>__extension__</tt> keyword and the GCC -<tt>__alignof__</tt> operator.</li> - -<li>GCC <tt>__asm__("symname")</tt> symbol name redirection for -function declarations.</li> - -<li>MSVC keywords for fixed-length types: <tt>__int8</tt>, -<tt>__int16</tt>, <tt>__int32</tt> and <tt>__int64</tt>.</li> - -<li>MSVC <tt>__cdecl</tt>, <tt>__fastcall</tt>, <tt>__stdcall</tt>, -<tt>__thiscall</tt>, <tt>__ptr32</tt>, <tt>__ptr64</tt>, -<tt>__declspec(align(n))</tt> and <tt>#pragma pack</tt>.</li> - -<li>All other GCC/MSVC-specific attributes are ignored.</li> - -</ul> -<p> -The following C types are pre-defined by the C parser (like -a <tt>typedef</tt>, except re-declarations will be ignored): -</p> -<ul> - -<li>Vararg handling: <tt>va_list</tt>, <tt>__builtin_va_list</tt>, -<tt>__gnuc_va_list</tt>.</li> - -<li>From <tt><stddef.h></tt>: <tt>ptrdiff_t</tt>, -<tt>size_t</tt>, <tt>wchar_t</tt>.</li> - -<li>From <tt><stdint.h></tt>: <tt>int8_t</tt>, <tt>int16_t</tt>, -<tt>int32_t</tt>, <tt>int64_t</tt>, <tt>uint8_t</tt>, -<tt>uint16_t</tt>, <tt>uint32_t</tt>, <tt>uint64_t</tt>, -<tt>intptr_t</tt>, <tt>uintptr_t</tt>.</li> - -<li>From <tt><unistd.h></tt> (POSIX): <tt>ssize_t</tt>.</li> - -</ul> -<p> -You're encouraged to use these types in preference to -compiler-specific extensions or target-dependent standard types. -E.g. <tt>char</tt> differs in signedness and <tt>long</tt> differs in -size, depending on the target architecture and platform ABI. -</p> -<p> -The following C features are <b>not</b> supported: -</p> -<ul> - -<li>A declaration must always have a type specifier; it doesn't -default to an <tt>int</tt> type.</li> - -<li>Old-style empty function declarations (K&R) are not allowed. -All C functions must have a proper prototype declaration. A -function declared without parameters (<tt>int foo();</tt>) is -treated as a function taking zero arguments, like in C++.</li> - -<li>The <tt>long double</tt> C type is parsed correctly, but -there's no support for the related conversions, accesses or arithmetic -operations.</li> - -<li>Wide character strings and character literals are not -supported.</li> - -<li><a href="#status">See below</a> for features that are currently -not implemented.</li> - -</ul> - -<h2 id="convert">C Type Conversion Rules</h2> - -<h3 id="convert_tolua">Conversions from C types to Lua objects</h3> -<p> -These conversion rules apply for <em>read accesses</em> to -C types: indexing pointers, arrays or -<tt>struct</tt>/<tt>union</tt> types; reading external variables or -constant values; retrieving return values from C calls: -</p> -<table class="convtable"> -<tr class="convhead"> -<td class="convin">Input</td> -<td class="convop">Conversion</td> -<td class="convout">Output</td> -</tr> -<tr class="odd separate"> -<td class="convin"><tt>int8_t</tt>, <tt>int16_t</tt></td><td class="convop">→<sup>sign-ext</sup> <tt>int32_t</tt> → <tt>double</tt></td><td class="convout">number</td></tr> -<tr class="even"> -<td class="convin"><tt>uint8_t</tt>, <tt>uint16_t</tt></td><td class="convop">→<sup>zero-ext</sup> <tt>int32_t</tt> → <tt>double</tt></td><td class="convout">number</td></tr> -<tr class="odd"> -<td class="convin"><tt>int32_t</tt>, <tt>uint32_t</tt></td><td class="convop">→ <tt>double</tt></td><td class="convout">number</td></tr> -<tr class="even"> -<td class="convin"><tt>int64_t</tt>, <tt>uint64_t</tt></td><td class="convop">boxed value</td><td class="convout">64 bit int cdata</td></tr> -<tr class="odd separate"> -<td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">→ <tt>double</tt></td><td class="convout">number</td></tr> -<tr class="even separate"> -<td class="convin"><tt>bool</tt></td><td class="convop">0 → <tt>false</tt>, otherwise <tt>true</tt></td><td class="convout">boolean</td></tr> -<tr class="odd separate"> -<td class="convin"><tt>enum</tt></td><td class="convop">boxed value</td><td class="convout">enum cdata</td></tr> -<tr class="even"> -<td class="convin">Complex number</td><td class="convop">boxed value</td><td class="convout">complex cdata</td></tr> -<tr class="odd"> -<td class="convin">Vector</td><td class="convop">boxed value</td><td class="convout">vector cdata</td></tr> -<tr class="even"> -<td class="convin">Pointer</td><td class="convop">boxed value</td><td class="convout">pointer cdata</td></tr> -<tr class="odd separate"> -<td class="convin">Array</td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr> -<tr class="even"> -<td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr> -</table> -<p> -Bitfields are treated like their underlying type. -</p> -<p> -Reference types are dereferenced <em>before</em> a conversion can take -place — the conversion is applied to the C type pointed to -by the reference. -</p> - -<h3 id="convert_fromlua">Conversions from Lua objects to C types</h3> -<p> -These conversion rules apply for <em>write accesses</em> to -C types: indexing pointers, arrays or -<tt>struct</tt>/<tt>union</tt> types; initializing cdata objects; -casts to C types; writing to external variables; passing -arguments to C calls: -</p> -<table class="convtable"> -<tr class="convhead"> -<td class="convin">Input</td> -<td class="convop">Conversion</td> -<td class="convout">Output</td> -</tr> -<tr class="odd separate"> -<td class="convin">number</td><td class="convop">→</td><td class="convout"><tt>double</tt></td></tr> -<tr class="even"> -<td class="convin">boolean</td><td class="convop"><tt>false</tt> → 0, <tt>true</tt> → 1</td><td class="convout"><tt>bool</tt></td></tr> -<tr class="odd separate"> -<td class="convin">nil</td><td class="convop"><tt>NULL</tt> →</td><td class="convout"><tt>(void *)</tt></td></tr> -<tr class="even"> -<td class="convin">lightuserdata</td><td class="convop">lightuserdata address →</td><td class="convout"><tt>(void *)</tt></td></tr> -<tr class="odd"> -<td class="convin">userdata</td><td class="convop">userdata payload →</td><td class="convout"><tt>(void *)</tt></td></tr> -<tr class="even"> -<td class="convin">io.* file</td><td class="convop">get FILE * handle →</td><td class="convout"><tt>(void *)</tt></td></tr> -<tr class="odd separate"> -<td class="convin">string</td><td class="convop">match against <tt>enum</tt> constant</td><td class="convout"><tt>enum</tt></td></tr> -<tr class="even"> -<td class="convin">string</td><td class="convop">copy string data + zero-byte</td><td class="convout"><tt>int8_t[]</tt>, <tt>uint8_t[]</tt></td></tr> -<tr class="odd"> -<td class="convin">string</td><td class="convop">string data →</td><td class="convout"><tt>const char[]</tt></td></tr> -<tr class="even separate"> -<td class="convin">function</td><td class="convop"><a href="#callback">create callback</a> →</td><td class="convout">C function type</td></tr> -<tr class="odd separate"> -<td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout">Array</td></tr> -<tr class="even"> -<td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr> -<tr class="odd separate"> -<td class="convin">cdata</td><td class="convop">cdata payload →</td><td class="convout">C type</td></tr> -</table> -<p> -If the result type of this conversion doesn't match the -C type of the destination, the -<a href="#convert_between">conversion rules between C types</a> -are applied. -</p> -<p> -Reference types are immutable after initialization ("no re-seating of -references"). For initialization purposes or when passing values to -reference parameters, they are treated like pointers. Note that unlike -in C++, there's no way to implement automatic reference generation of -variables under the Lua language semantics. If you want to call a -function with a reference parameter, you need to explicitly pass a -one-element array. -</p> - -<h3 id="convert_between">Conversions between C types</h3> -<p> -These conversion rules are more or less the same as the standard -C conversion rules. Some rules only apply to casts, or require -pointer or type compatibility: -</p> -<table class="convtable"> -<tr class="convhead"> -<td class="convin">Input</td> -<td class="convop">Conversion</td> -<td class="convout">Output</td> -</tr> -<tr class="odd separate"> -<td class="convin">Signed integer</td><td class="convop">→<sup>narrow or sign-extend</sup></td><td class="convout">Integer</td></tr> -<tr class="even"> -<td class="convin">Unsigned integer</td><td class="convop">→<sup>narrow or zero-extend</sup></td><td class="convout">Integer</td></tr> -<tr class="odd"> -<td class="convin">Integer</td><td class="convop">→<sup>round</sup></td><td class="convout"><tt>double</tt>, <tt>float</tt></td></tr> -<tr class="even"> -<td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">→<sup>trunc</sup> <tt>int32_t</tt> →<sup>narrow</sup></td><td class="convout"><tt>(u)int8_t</tt>, <tt>(u)int16_t</tt></td></tr> -<tr class="odd"> -<td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">→<sup>trunc</sup></td><td class="convout"><tt>(u)int32_t</tt>, <tt>(u)int64_t</tt></td></tr> -<tr class="even"> -<td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">→<sup>round</sup></td><td class="convout"><tt>float</tt>, <tt>double</tt></td></tr> -<tr class="odd separate"> -<td class="convin">Number</td><td class="convop">n == 0 → 0, otherwise 1</td><td class="convout"><tt>bool</tt></td></tr> -<tr class="even"> -<td class="convin"><tt>bool</tt></td><td class="convop"><tt>false</tt> → 0, <tt>true</tt> → 1</td><td class="convout">Number</td></tr> -<tr class="odd separate"> -<td class="convin">Complex number</td><td class="convop">convert real part</td><td class="convout">Number</td></tr> -<tr class="even"> -<td class="convin">Number</td><td class="convop">convert real part, imag = 0</td><td class="convout">Complex number</td></tr> -<tr class="odd"> -<td class="convin">Complex number</td><td class="convop">convert real and imag part</td><td class="convout">Complex number</td></tr> -<tr class="even separate"> -<td class="convin">Number</td><td class="convop">convert scalar and replicate</td><td class="convout">Vector</td></tr> -<tr class="odd"> -<td class="convin">Vector</td><td class="convop">copy (same size)</td><td class="convout">Vector</td></tr> -<tr class="even separate"> -<td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr> -<tr class="odd"> -<td class="convin">Array</td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr> -<tr class="even"> -<td class="convin">Function</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr> -<tr class="odd separate"> -<td class="convin">Number</td><td class="convop">convert via <tt>uintptr_t</tt> (cast)</td><td class="convout">Pointer</td></tr> -<tr class="even"> -<td class="convin">Pointer</td><td class="convop">convert address (compat/cast)</td><td class="convout">Pointer</td></tr> -<tr class="odd"> -<td class="convin">Pointer</td><td class="convop">convert address (cast)</td><td class="convout">Integer</td></tr> -<tr class="even"> -<td class="convin">Array</td><td class="convop">convert base address (cast)</td><td class="convout">Integer</td></tr> -<tr class="odd separate"> -<td class="convin">Array</td><td class="convop">copy (compat)</td><td class="convout">Array</td></tr> -<tr class="even"> -<td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">copy (identical type)</td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr> -</table> -<p> -Bitfields or <tt>enum</tt> types are treated like their underlying -type. -</p> -<p> -Conversions not listed above will raise an error. E.g. it's not -possible to convert a pointer to a complex number or vice versa. -</p> - -<h3 id="convert_vararg">Conversions for vararg C function arguments</h3> -<p> -The following default conversion rules apply when passing Lua objects -to the variable argument part of vararg C functions: -</p> -<table class="convtable"> -<tr class="convhead"> -<td class="convin">Input</td> -<td class="convop">Conversion</td> -<td class="convout">Output</td> -</tr> -<tr class="odd separate"> -<td class="convin">number</td><td class="convop">→</td><td class="convout"><tt>double</tt></td></tr> -<tr class="even"> -<td class="convin">boolean</td><td class="convop"><tt>false</tt> → 0, <tt>true</tt> → 1</td><td class="convout"><tt>bool</tt></td></tr> -<tr class="odd separate"> -<td class="convin">nil</td><td class="convop"><tt>NULL</tt> →</td><td class="convout"><tt>(void *)</tt></td></tr> -<tr class="even"> -<td class="convin">userdata</td><td class="convop">userdata payload →</td><td class="convout"><tt>(void *)</tt></td></tr> -<tr class="odd"> -<td class="convin">lightuserdata</td><td class="convop">lightuserdata address →</td><td class="convout"><tt>(void *)</tt></td></tr> -<tr class="even separate"> -<td class="convin">string</td><td class="convop">string data →</td><td class="convout"><tt>const char *</tt></td></tr> -<tr class="odd separate"> -<td class="convin"><tt>float</tt> cdata</td><td class="convop">→</td><td class="convout"><tt>double</tt></td></tr> -<tr class="even"> -<td class="convin">Array cdata</td><td class="convop">take base address</td><td class="convout">Element pointer</td></tr> -<tr class="odd"> -<td class="convin"><tt>struct</tt>/<tt>union</tt> cdata</td><td class="convop">take base address</td><td class="convout"><tt>struct</tt>/<tt>union</tt> pointer</td></tr> -<tr class="even"> -<td class="convin">Function cdata</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr> -<tr class="odd"> -<td class="convin">Any other cdata</td><td class="convop">no conversion</td><td class="convout">C type</td></tr> -</table> -<p> -To pass a Lua object, other than a cdata object, as a specific type, -you need to override the conversion rules: create a temporary cdata -object with a constructor or a cast and initialize it with the value -to pass: -</p> -<p> -Assuming <tt>x</tt> is a Lua number, here's how to pass it as an -integer to a vararg function: -</p> -<pre class="code"> -ffi.cdef[[ -int printf(const char *fmt, ...); -]] -ffi.C.printf("integer value: %d\n", ffi.new("int", x)) -</pre> -<p> -If you don't do this, the default Lua number → <tt>double</tt> -conversion rule applies. A vararg C function expecting an integer -will see a garbled or uninitialized value. -</p> - -<h2 id="init">Initializers</h2> -<p> -Creating a cdata object with -<a href="ext_ffi_api.html#ffi_new"><tt>ffi.new()</tt></a> or the -equivalent constructor syntax always initializes its contents, too. -Different rules apply, depending on the number of optional -initializers and the C types involved: -</p> -<ul> -<li>If no initializers are given, the object is filled with zero bytes.</li> - -<li>Scalar types (numbers and pointers) accept a single initializer. -The Lua object is <a href="#convert_fromlua">converted to the scalar -C type</a>.</li> - -<li>Valarrays (complex numbers and vectors) are treated like scalars -when a single initializer is given. Otherwise they are treated like -regular arrays.</li> - -<li>Aggregate types (arrays and structs) accept either a single cdata -initializer of the same type (copy constructor), a single -<a href="#init_table">table initializer</a>, or a flat list of -initializers.</li> - -<li>The elements of an array are initialized, starting at index zero. -If a single initializer is given for an array, it's repeated for all -remaining elements. This doesn't happen if two or more initializers -are given: all remaining uninitialized elements are filled with zero -bytes.</li> - -<li>Byte arrays may also be initialized with a Lua string. This copies -the whole string plus a terminating zero-byte. The copy stops early only -if the array has a known, fixed size.</li> - -<li>The fields of a <tt>struct</tt> are initialized in the order of -their declaration. Uninitialized fields are filled with zero -bytes.</li> - -<li>Only the first field of a <tt>union</tt> can be initialized with a -flat initializer.</li> - -<li>Elements or fields which are aggregates themselves are initialized -with a <em>single</em> initializer, but this may be a table -initializer or a compatible aggregate.</li> - -<li>Excess initializers cause an error.</li> - -</ul> - -<h2 id="init_table">Table Initializers</h2> -<p> -The following rules apply if a Lua table is used to initialize an -Array or a <tt>struct</tt>/<tt>union</tt>: -</p> -<ul> - -<li>If the table index <tt>[0]</tt> is non-<tt>nil</tt>, then the -table is assumed to be zero-based. Otherwise it's assumed to be -one-based.</li> - -<li>Array elements, starting at index zero, are initialized one-by-one -with the consecutive table elements, starting at either index -<tt>[0]</tt> or <tt>[1]</tt>. This process stops at the first -<tt>nil</tt> table element.</li> - -<li>If exactly one array element was initialized, it's repeated for -all the remaining elements. Otherwise all remaining uninitialized -elements are filled with zero bytes.</li> - -<li>The above logic only applies to arrays with a known fixed size. -A VLA is only initialized with the element(s) given in the table. -Depending on the use case, you may need to explicitly add a -<tt>NULL</tt> or <tt>0</tt> terminator to a VLA.</li> - -<li>A <tt>struct</tt>/<tt>union</tt> can be initialized in the -order of the declaration of its fields. Each field is initialized with -consecutive table elements, starting at either index <tt>[0]</tt> -or <tt>[1]</tt>. This process stops at the first <tt>nil</tt> table -element.</li> - -<li>Otherwise, if neither index <tt>[0]</tt> nor <tt>[1]</tt> is present, -a <tt>struct</tt>/<tt>union</tt> is initialized by looking up each field -name (as a string key) in the table. Each non-<tt>nil</tt> value is -used to initialize the corresponding field.</li> - -<li>Uninitialized fields of a <tt>struct</tt> are filled with zero -bytes, except for the trailing VLA of a VLS.</li> - -<li>Initialization of a <tt>union</tt> stops after one field has been -initialized. If no field has been initialized, the <tt>union</tt> is -filled with zero bytes.</li> - -<li>Elements or fields which are aggregates themselves are initialized -with a <em>single</em> initializer, but this may be a nested table -initializer (or a compatible aggregate).</li> - -<li>Excess initializers for an array cause an error. Excess -initializers for a <tt>struct</tt>/<tt>union</tt> are ignored. -Unrelated table entries are ignored, too.</li> - -</ul> -<p> -Example: -</p> -<pre class="code"> -local ffi = require("ffi") - -ffi.cdef[[ -struct foo { int a, b; }; -union bar { int i; double d; }; -struct nested { int x; struct foo y; }; -]] - -ffi.new("int[3]", {}) --> 0, 0, 0 -ffi.new("int[3]", {1}) --> 1, 1, 1 -ffi.new("int[3]", {1,2}) --> 1, 2, 0 -ffi.new("int[3]", {1,2,3}) --> 1, 2, 3 -ffi.new("int[3]", {[0]=1}) --> 1, 1, 1 -ffi.new("int[3]", {[0]=1,2}) --> 1, 2, 0 -ffi.new("int[3]", {[0]=1,2,3}) --> 1, 2, 3 -ffi.new("int[3]", {[0]=1,2,3,4}) --> error: too many initializers - -ffi.new("struct foo", {}) --> a = 0, b = 0 -ffi.new("struct foo", {1}) --> a = 1, b = 0 -ffi.new("struct foo", {1,2}) --> a = 1, b = 2 -ffi.new("struct foo", {[0]=1,2}) --> a = 1, b = 2 -ffi.new("struct foo", {b=2}) --> a = 0, b = 2 -ffi.new("struct foo", {a=1,b=2,c=3}) --> a = 1, b = 2 'c' is ignored - -ffi.new("union bar", {}) --> i = 0, d = 0.0 -ffi.new("union bar", {1}) --> i = 1, d = ? -ffi.new("union bar", {[0]=1,2}) --> i = 1, d = ? '2' is ignored -ffi.new("union bar", {d=2}) --> i = ?, d = 2.0 - -ffi.new("struct nested", {1,{2,3}}) --> x = 1, y.a = 2, y.b = 3 -ffi.new("struct nested", {x=1,y={2,3}}) --> x = 1, y.a = 2, y.b = 3 -</pre> - -<h2 id="cdata_ops">Operations on cdata Objects</h2> -<p> -All of the standard Lua operators can be applied to cdata objects or a -mix of a cdata object and another Lua object. The following list shows -the pre-defined operations. -</p> -<p> -Reference types are dereferenced <em>before</em> performing each of -the operations below — the operation is applied to the -C type pointed to by the reference. -</p> -<p> -The pre-defined operations are always tried first before deferring to a -metamethod or index table (if any) for the corresponding ctype (except -for <tt>__new</tt>). An error is raised if the metamethod lookup or -index table lookup fails. -</p> - -<h3 id="cdata_array">Indexing a cdata object</h3> -<ul> - -<li><b>Indexing a pointer/array</b>: a cdata pointer/array can be -indexed by a cdata number or a Lua number. The element address is -computed as the base address plus the number value multiplied by the -element size in bytes. A read access loads the element value and -<a href="#convert_tolua">converts it to a Lua object</a>. A write -access <a href="#convert_fromlua">converts a Lua object to the element -type</a> and stores the converted value to the element. An error is -raised if the element size is undefined or a write access to a -constant element is attempted.</li> - -<li><b>Dereferencing a <tt>struct</tt>/<tt>union</tt> field</b>: a -cdata <tt>struct</tt>/<tt>union</tt> or a pointer to a -<tt>struct</tt>/<tt>union</tt> can be dereferenced by a string key, -giving the field name. The field address is computed as the base -address plus the relative offset of the field. A read access loads the -field value and <a href="#convert_tolua">converts it to a Lua -object</a>. A write access <a href="#convert_fromlua">converts a Lua -object to the field type</a> and stores the converted value to the -field. An error is raised if a write access to a constant -<tt>struct</tt>/<tt>union</tt> or a constant field is attempted. -Scoped enum constants or static constants are treated like a constant -field.</li> - -<li><b>Indexing a complex number</b>: a complex number can be indexed -either by a cdata number or a Lua number with the values 0 or 1, or by -the strings <tt>"re"</tt> or <tt>"im"</tt>. A read access loads the -real part (<tt>[0]</tt>, <tt>.re</tt>) or the imaginary part -(<tt>[1]</tt>, <tt>.im</tt>) part of a complex number and -<a href="#convert_tolua">converts it to a Lua number</a>. The -sub-parts of a complex number are immutable — assigning to an -index of a complex number raises an error. Accessing out-of-bound -indexes returns unspecified results, but is guaranteed not to trigger -memory access violations.</li> - -<li><b>Indexing a vector</b>: a vector is treated like an array for -indexing purposes, except the vector elements are immutable — -assigning to an index of a vector raises an error.</li> - -</ul> -<p> -A ctype object can be indexed with a string key, too. The only -pre-defined operation is reading scoped constants of -<tt>struct</tt>/<tt>union</tt> types. All other accesses defer -to the corresponding metamethods or index tables (if any). -</p> -<p> -Note: since there's (deliberately) no address-of operator, a cdata -object holding a value type is effectively immutable after -initialization. The JIT compiler benefits from this fact when applying -certain optimizations. -</p> -<p> -As a consequence, the <em>elements</em> of complex numbers and -vectors are immutable. But the elements of an aggregate holding these -types <em>may</em> be modified of course. I.e. you cannot assign to -<tt>foo.c.im</tt>, but you can assign a (newly created) complex number -to <tt>foo.c</tt>. -</p> -<p> -The JIT compiler implements strict aliasing rules: accesses to different -types do <b>not</b> alias, except for differences in signedness (this -applies even to <tt>char</tt> pointers, unlike C99). Type punning -through unions is explicitly detected and allowed. -</p> - -<h3 id="cdata_call">Calling a cdata object</h3> -<ul> - -<li><b>Constructor</b>: a ctype object can be called and used as a -<a href="ext_ffi_api.html#ffi_new">constructor</a>. This is equivalent -to <tt>ffi.new(ct, ...)</tt>, unless a <tt>__new</tt> metamethod is -defined. The <tt>__new</tt> metamethod is called with the ctype object -plus any other arguments passed to the contructor. Note that you have to -use <tt>ffi.new</tt> inside of it, since calling <tt>ct(...)</tt> would -cause infinite recursion.</li> - -<li><b>C function call</b>: a cdata function or cdata function -pointer can be called. The passed arguments are -<a href="#convert_fromlua">converted to the C types</a> of the -parameters given by the function declaration. Arguments passed to the -variable argument part of vararg C function use -<a href="#convert_vararg">special conversion rules</a>. This -C function is called and the return value (if any) is -<a href="#convert_tolua">converted to a Lua object</a>.<br> -On Windows/x86 systems, <tt>__stdcall</tt> functions are automatically -detected and a function declared as <tt>__cdecl</tt> (the default) is -silently fixed up after the first call.</li> - -</ul> - -<h3 id="cdata_arith">Arithmetic on cdata objects</h3> -<ul> - -<li><b>Pointer arithmetic</b>: a cdata pointer/array and a cdata -number or a Lua number can be added or subtracted. The number must be -on the right hand side for a subtraction. The result is a pointer of -the same type with an address plus or minus the number value -multiplied by the element size in bytes. An error is raised if the -element size is undefined.</li> - -<li><b>Pointer difference</b>: two compatible cdata pointers/arrays -can be subtracted. The result is the difference between their -addresses, divided by the element size in bytes. An error is raised if -the element size is undefined or zero.</li> - -<li><b>64 bit integer arithmetic</b>: the standard arithmetic -operators (<tt>+ - * / % ^</tt> and unary -minus) can be applied to two cdata numbers, or a cdata number and a -Lua number. If one of them is an <tt>uint64_t</tt>, the other side is -converted to an <tt>uint64_t</tt> and an unsigned arithmetic operation -is performed. Otherwise both sides are converted to an -<tt>int64_t</tt> and a signed arithmetic operation is performed. The -result is a boxed 64 bit cdata object.<br> - -If one of the operands is an <tt>enum</tt> and the other operand is a -string, the string is converted to the value of a matching <tt>enum</tt> -constant before the above conversion.<br> - -These rules ensure that 64 bit integers are "sticky". Any -expression involving at least one 64 bit integer operand results -in another one. The undefined cases for the division, modulo and power -operators return <tt>2LL ^ 63</tt> or -<tt>2ULL ^ 63</tt>.<br> - -You'll have to explicitly convert a 64 bit integer to a Lua -number (e.g. for regular floating-point calculations) with -<tt>tonumber()</tt>. But note this may incur a precision loss.</li> - -<li><b>64 bit bitwise operations</b>: the rules for 64 bit -arithmetic operators apply analogously.<br> - -Unlike the other <tt>bit.*</tt> operations, <tt>bit.tobit()</tt> -converts a cdata number via <tt>int64_t</tt> to <tt>int32_t</tt> and -returns a Lua number.<br> - -For <tt>bit.band()</tt>, <tt>bit.bor()</tt> and <tt>bit.bxor()</tt>, the -conversion to <tt>int64_t</tt> or <tt>uint64_t</tt> applies to -<em>all</em> arguments, if <em>any</em> argument is a cdata number.<br> - -For all other operations, only the first argument is used to determine -the output type. This implies that a cdata number as a shift count for -shifts and rotates is accepted, but that alone does <em>not</em> cause -a cdata number output. - -</ul> - -<h3 id="cdata_comp">Comparisons of cdata objects</h3> -<ul> - -<li><b>Pointer comparison</b>: two compatible cdata pointers/arrays -can be compared. The result is the same as an unsigned comparison of -their addresses. <tt>nil</tt> is treated like a <tt>NULL</tt> pointer, -which is compatible with any other pointer type.</li> - -<li><b>64 bit integer comparison</b>: two cdata numbers, or a -cdata number and a Lua number can be compared with each other. If one -of them is an <tt>uint64_t</tt>, the other side is converted to an -<tt>uint64_t</tt> and an unsigned comparison is performed. Otherwise -both sides are converted to an <tt>int64_t</tt> and a signed -comparison is performed.<br> - -If one of the operands is an <tt>enum</tt> and the other operand is a -string, the string is converted to the value of a matching <tt>enum</tt> -constant before the above conversion.<br> - -<li><b>Comparisons for equality/inequality</b> never raise an error. -Even incompatible pointers can be compared for equality by address. Any -other incompatible comparison (also with non-cdata objects) treats the -two sides as unequal.</li> - -</ul> - -<h3 id="cdata_key">cdata objects as table keys</h3> -<p> -Lua tables may be indexed by cdata objects, but this doesn't provide -any useful semantics — <b>cdata objects are unsuitable as table -keys!</b> -</p> -<p> -A cdata object is treated like any other garbage-collected object and -is hashed and compared by its address for table indexing. Since -there's no interning for cdata value types, the same value may be -boxed in different cdata objects with different addresses. Thus -<tt>t[1LL+1LL]</tt> and <tt>t[2LL]</tt> usually <b>do not</b> point to -the same hash slot and they certainly <b>do not</b> point to the same -hash slot as <tt>t[2]</tt>. -</p> -<p> -It would seriously drive up implementation complexity and slow down -the common case, if one were to add extra handling for by-value -hashing and comparisons to Lua tables. Given the ubiquity of their use -inside the VM, this is not acceptable. -</p> -<p> -There are three viable alternatives, if you really need to use cdata -objects as keys: -</p> -<ul> - -<li>If you can get by with the precision of Lua numbers -(52 bits), then use <tt>tonumber()</tt> on a cdata number or -combine multiple fields of a cdata aggregate to a Lua number. Then use -the resulting Lua number as a key when indexing tables.<br> -One obvious benefit: <tt>t[tonumber(2LL)]</tt> <b>does</b> point to -the same slot as <tt>t[2]</tt>.</li> - -<li>Otherwise use either <tt>tostring()</tt> on 64 bit integers -or complex numbers or combine multiple fields of a cdata aggregate to -a Lua string (e.g. with -<a href="ext_ffi_api.html#ffi_string"><tt>ffi.string()</tt></a>). Then -use the resulting Lua string as a key when indexing tables.</li> - -<li>Create your own specialized hash table implementation using the -C types provided by the FFI library, just like you would in -C code. Ultimately this may give much better performance than the -other alternatives or what a generic by-value hash table could -possibly provide.</li> - -</ul> - -<h2 id="param">Parameterized Types</h2> -<p> -To facilitate some abstractions, the two functions -<a href="ext_ffi_api.html#ffi_typeof"><tt>ffi.typeof</tt></a> and -<a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> support -parameterized types in C declarations. Note: none of the other API -functions taking a cdecl allow this. -</p> -<p> -Any place you can write a <b><tt>typedef</tt> name</b>, an -<b>identifier</b> or a <b>number</b> in a declaration, you can write -<tt>$</tt> (the dollar sign) instead. These placeholders are replaced in -order of appearance with the arguments following the cdecl string: -</p> -<pre class="code"> --- Declare a struct with a parameterized field type and name: -ffi.cdef([[ -typedef struct { $ $; } foo_t; -]], type1, name1) - --- Anonymous struct with dynamic names: -local bar_t = ffi.typeof("struct { int $, $; }", name1, name2) --- Derived pointer type: -local bar_ptr_t = ffi.typeof("$ *", bar_t) - --- Parameterized dimensions work even where a VLA won't work: -local matrix_t = ffi.typeof("uint8_t[$][$]", width, height) -</pre> -<p> -Caveat: this is <em>not</em> simple text substitution! A passed ctype or -cdata object is treated like the underlying type, a passed string is -considered an identifier and a number is considered a number. You must -not mix this up: e.g. passing <tt>"int"</tt> as a string doesn't work in -place of a type, you'd need to use <tt>ffi.typeof("int")</tt> instead. -</p> -<p> -The main use for parameterized types are libraries implementing abstract -data types -(<a href="https://www.freelists.org/post/luajit/ffi-type-of-pointer-to,8">example</a>), -similar to what can be achieved with C++ template metaprogramming. -Another use case are derived types of anonymous structs, which avoids -pollution of the global struct namespace. -</p> -<p> -Please note that parameterized types are a nice tool and indispensable -for certain use cases. But you'll want to use them sparingly in regular -code, e.g. when all types are actually fixed. -</p> - -<h2 id="gc">Garbage Collection of cdata Objects</h2> -<p> -All explicitly (<tt>ffi.new()</tt>, <tt>ffi.cast()</tt> etc.) or -implicitly (accessors) created cdata objects are garbage collected. -You need to ensure to retain valid references to cdata objects -somewhere on a Lua stack, an upvalue or in a Lua table while they are -still in use. Once the last reference to a cdata object is gone, the -garbage collector will automatically free the memory used by it (at -the end of the next GC cycle). -</p> -<p> -Please note that pointers themselves are cdata objects, however they -are <b>not</b> followed by the garbage collector. So e.g. if you -assign a cdata array to a pointer, you must keep the cdata object -holding the array alive as long as the pointer is still in use: -</p> -<pre class="code"> -ffi.cdef[[ -typedef struct { int *a; } foo_t; -]] - -local s = ffi.new("foo_t", ffi.new("int[10]")) -- <span style="color:#c00000;">WRONG!</span> - -local a = ffi.new("int[10]") -- <span style="color:#00a000;">OK</span> -local s = ffi.new("foo_t", a) --- Now do something with 's', but keep 'a' alive until you're done. -</pre> -<p> -Similar rules apply for Lua strings which are implicitly converted to -<tt>"const char *"</tt>: the string object itself must be -referenced somewhere or it'll be garbage collected eventually. The -pointer will then point to stale data, which may have already been -overwritten. Note that <em>string literals</em> are automatically kept -alive as long as the function containing it (actually its prototype) -is not garbage collected. -</p> -<p> -Objects which are passed as an argument to an external C function -are kept alive until the call returns. So it's generally safe to -create temporary cdata objects in argument lists. This is a common -idiom for <a href="#convert_vararg">passing specific C types to -vararg functions</a>. -</p> -<p> -Memory areas returned by C functions (e.g. from <tt>malloc()</tt>) -must be manually managed, of course (or use -<a href="ext_ffi_api.html#ffi_gc"><tt>ffi.gc()</tt></a>). Pointers to -cdata objects are indistinguishable from pointers returned by C -functions (which is one of the reasons why the GC cannot follow them). -</p> - -<h2 id="callback">Callbacks</h2> -<p> -The LuaJIT FFI automatically generates special callback functions -whenever a Lua function is converted to a C function pointer. This -associates the generated callback function pointer with the C type -of the function pointer and the Lua function object (closure). -</p> -<p> -This can happen implicitly due to the usual conversions, e.g. when -passing a Lua function to a function pointer argument. Or you can use -<tt>ffi.cast()</tt> to explicitly cast a Lua function to a -C function pointer. -</p> -<p> -Currently only certain C function types can be used as callback -functions. Neither C vararg functions nor functions with -pass-by-value aggregate argument or result types are supported. There -are no restrictions for the kind of Lua functions that can be called -from the callback — no checks for the proper number of arguments -are made. The return value of the Lua function will be converted to the -result type and an error will be thrown for invalid conversions. -</p> -<p> -It's allowed to throw errors across a callback invocation, but it's not -advisable in general. Do this only if you know the C function, that -called the callback, copes with the forced stack unwinding and doesn't -leak resources. -</p> -<p> -One thing that's not allowed, is to let an FFI call into a C function -get JIT-compiled, which in turn calls a callback, calling into Lua again. -Usually this attempt is caught by the interpreter first and the -C function is blacklisted for compilation. -</p> -<p> -However, this heuristic may fail under specific circumstances: e.g. a -message polling function might not run Lua callbacks right away and the call -gets JIT-compiled. If it later happens to call back into Lua (e.g. a rarely -invoked error callback), you'll get a VM PANIC with the message -<tt>"bad callback"</tt>. Then you'll need to manually turn off -JIT-compilation with -<a href="ext_jit.html#jit_onoff_func"><tt>jit.off()</tt></a> for the -surrounding Lua function that invokes such a message polling function (or -similar). -</p> - -<h3 id="callback_resources">Callback resource handling</h3> -<p> -Callbacks take up resources — you can only have a limited number -of them at the same time (500 - 1000, depending on the -architecture). The associated Lua functions are anchored to prevent -garbage collection, too. -</p> -<p> -<b>Callbacks due to implicit conversions are permanent!</b> There is no -way to guess their lifetime, since the C side might store the -function pointer for later use (typical for GUI toolkits). The associated -resources cannot be reclaimed until termination: -</p> -<pre class="code"> -ffi.cdef[[ -typedef int (__stdcall *WNDENUMPROC)(void *hwnd, intptr_t l); -int EnumWindows(WNDENUMPROC func, intptr_t l); -]] - --- Implicit conversion to a callback via function pointer argument. -local count = 0 -ffi.C.EnumWindows(function(hwnd, l) - count = count + 1 - return true -end, 0) --- The callback is permanent and its resources cannot be reclaimed! --- Ok, so this may not be a problem, if you do this only once. -</pre> -<p> -Note: this example shows that you <em>must</em> properly declare -<tt>__stdcall</tt> callbacks on Windows/x86 systems. The calling -convention cannot be automatically detected, unlike for -<tt>__stdcall</tt> calls <em>to</em> Windows functions. -</p> -<p> -For some use cases it's necessary to free up the resources or to -dynamically redirect callbacks. Use an explicit cast to a -C function pointer and keep the resulting cdata object. Then use -the <a href="ext_ffi_api.html#callback_free"><tt>cb:free()</tt></a> -or <a href="ext_ffi_api.html#callback_set"><tt>cb:set()</tt></a> methods -on the cdata object: -</p> -<pre class="code"> --- Explicitly convert to a callback via cast. -local count = 0 -local cb = ffi.cast("WNDENUMPROC", function(hwnd, l) - count = count + 1 - return true -end) - --- Pass it to a C function. -ffi.C.EnumWindows(cb, 0) --- EnumWindows doesn't need the callback after it returns, so free it. - -cb:free() --- The callback function pointer is no longer valid and its resources --- will be reclaimed. The created Lua closure will be garbage collected. -</pre> - -<h3 id="callback_performance">Callback performance</h3> -<p> -<b>Callbacks are slow!</b> First, the C to Lua transition itself -has an unavoidable cost, similar to a <tt>lua_call()</tt> or -<tt>lua_pcall()</tt>. Argument and result marshalling add to that cost. -And finally, neither the C compiler nor LuaJIT can inline or -optimize across the language barrier and hoist repeated computations out -of a callback function. -</p> -<p> -Do not use callbacks for performance-sensitive work: e.g. consider a -numerical integration routine which takes a user-defined function to -integrate over. It's a bad idea to call a user-defined Lua function from -C code millions of times. The callback overhead will be absolutely -detrimental for performance. -</p> -<p> -It's considerably faster to write the numerical integration routine -itself in Lua — the JIT compiler will be able to inline the -user-defined function and optimize it together with its calling context, -with very competitive performance. -</p> -<p> -As a general guideline: <b>use callbacks only when you must</b>, because -of existing C APIs. E.g. callback performance is irrelevant for a -GUI application, which waits for user input most of the time, anyway. -</p> -<p> -For new designs <b>avoid push-style APIs</b>: a C function repeatedly -calling a callback for each result. Instead <b>use pull-style APIs</b>: -call a C function repeatedly to get a new result. Calls from Lua -to C via the FFI are much faster than the other way round. Most well-designed -libraries already use pull-style APIs (read/write, get/put). -</p> - -<h2 id="clib">C Library Namespaces</h2> -<p> -A C library namespace is a special kind of object which allows -access to the symbols contained in shared libraries or the default -symbol namespace. The default -<a href="ext_ffi_api.html#ffi_C"><tt>ffi.C</tt></a> namespace is -automatically created when the FFI library is loaded. C library -namespaces for specific shared libraries may be created with the -<a href="ext_ffi_api.html#ffi_load"><tt>ffi.load()</tt></a> API -function. -</p> -<p> -Indexing a C library namespace object with a symbol name (a Lua -string) automatically binds it to the library. First the symbol type -is resolved — it must have been declared with -<a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a>. Then the -symbol address is resolved by searching for the symbol name in the -associated shared libraries or the default symbol namespace. Finally, -the resulting binding between the symbol name, the symbol type and its -address is cached. Missing symbol declarations or nonexistent symbol -names cause an error. -</p> -<p> -This is what happens on a <b>read access</b> for the different kinds of -symbols: -</p> -<ul> - -<li>External functions: a cdata object with the type of the function -and its address is returned.</li> - -<li>External variables: the symbol address is dereferenced and the -loaded value is <a href="#convert_tolua">converted to a Lua object</a> -and returned.</li> - -<li>Constant values (<tt>static const</tt> or <tt>enum</tt> -constants): the constant is <a href="#convert_tolua">converted to a -Lua object</a> and returned.</li> - -</ul> -<p> -This is what happens on a <b>write access</b>: -</p> -<ul> - -<li>External variables: the value to be written is -<a href="#convert_fromlua">converted to the C type</a> of the -variable and then stored at the symbol address.</li> - -<li>Writing to constant variables or to any other symbol type causes -an error, like any other attempted write to a constant location.</li> - -</ul> -<p> -C library namespaces themselves are garbage collected objects. If -the last reference to the namespace object is gone, the garbage -collector will eventually release the shared library reference and -remove all memory associated with the namespace. Since this may -trigger the removal of the shared library from the memory of the -running process, it's generally <em>not safe</em> to use function -cdata objects obtained from a library if the namespace object may be -unreferenced. -</p> -<p> -Performance notice: the JIT compiler specializes to the identity of -namespace objects and to the strings used to index it. This -effectively turns function cdata objects into constants. It's not -useful and actually counter-productive to explicitly cache these -function objects, e.g. <tt>local strlen = ffi.C.strlen</tt>. OTOH it -<em>is</em> useful to cache the namespace itself, e.g. <tt>local C = -ffi.C</tt>. -</p> - -<h2 id="policy">No Hand-holding!</h2> -<p> -The FFI library has been designed as <b>a low-level library</b>. The -goal is to interface with C code and C data types with a -minimum of overhead. This means <b>you can do anything you can do -from C</b>: access all memory, overwrite anything in memory, call -machine code at any memory address and so on. -</p> -<p> -The FFI library provides <b>no memory safety</b>, unlike regular Lua -code. It will happily allow you to dereference a <tt>NULL</tt> -pointer, to access arrays out of bounds or to misdeclare -C functions. If you make a mistake, your application might crash, -just like equivalent C code would. -</p> -<p> -This behavior is inevitable, since the goal is to provide full -interoperability with C code. Adding extra safety measures, like -bounds checks, would be futile. There's no way to detect -misdeclarations of C functions, since shared libraries only -provide symbol names, but no type information. Likewise there's no way -to infer the valid range of indexes for a returned pointer. -</p> -<p> -Again: the FFI library is a low-level library. This implies it needs -to be used with care, but it's flexibility and performance often -outweigh this concern. If you're a C or C++ developer, it'll be easy -to apply your existing knowledge. OTOH writing code for the FFI -library is not for the faint of heart and probably shouldn't be the -first exercise for someone with little experience in Lua, C or C++. -</p> -<p> -As a corollary of the above, the FFI library is <b>not safe for use by -untrusted Lua code</b>. If you're sandboxing untrusted Lua code, you -definitely don't want to give this code access to the FFI library or -to <em>any</em> cdata object (except 64 bit integers or complex -numbers). Any properly engineered Lua sandbox needs to provide safety -wrappers for many of the standard Lua library functions — -similar wrappers need to be written for high-level operations on FFI -data types, too. -</p> - -<h2 id="status">Current Status</h2> -<p> -The initial release of the FFI library has some limitations and is -missing some features. Most of these will be fixed in future releases. -</p> -<p> -<a href="#clang">C language support</a> is -currently incomplete: -</p> -<ul> -<li>C declarations are not passed through a C pre-processor, -yet.</li> -<li>The C parser is able to evaluate most constant expressions -commonly found in C header files. However it doesn't handle the -full range of C expression semantics and may fail for some -obscure constructs.</li> -<li><tt>static const</tt> declarations only work for integer types -up to 32 bits. Neither declaring string constants nor -floating-point constants is supported.</li> -<li>Packed <tt>struct</tt> bitfields that cross container boundaries -are not implemented.</li> -<li>Native vector types may be defined with the GCC <tt>mode</tt> or -<tt>vector_size</tt> attribute. But no operations other than loading, -storing and initializing them are supported, yet.</li> -<li>The <tt>volatile</tt> type qualifier is currently ignored by -compiled code.</li> -<li><a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> silently -ignores most re-declarations. Note: avoid re-declarations which do not -conform to C99. The implementation will eventually be changed to -perform strict checks.</li> -</ul> -<p> -The JIT compiler already handles a large subset of all FFI operations. -It automatically falls back to the interpreter for unimplemented -operations (you can check for this with the -<a href="running.html#opt_j"><tt>-jv</tt></a> command line option). -The following operations are currently not compiled and may exhibit -suboptimal performance, especially when used in inner loops: -</p> -<ul> -<li>Vector operations.</li> -<li>Table initializers.</li> -<li>Initialization of nested <tt>struct</tt>/<tt>union</tt> types.</li> -<li>Non-default initialization of VLA/VLS or large C types -(> 128 bytes or > 16 array elements.</li> -<li>Bitfield initializations.</li> -<li>Pointer differences for element sizes that are not a power of -two.</li> -<li>Calls to C functions with aggregates passed or returned by -value.</li> -<li>Calls to ctype metamethods which are not plain functions.</li> -<li>ctype <tt>__newindex</tt> tables and non-string lookups in ctype -<tt>__index</tt> tables.</li> -<li><tt>tostring()</tt> for cdata types.</li> -<li>Calls to <tt>ffi.cdef()</tt>, <tt>ffi.load()</tt> and -<tt>ffi.metatype()</tt>.</li> -</ul> -<p> -Other missing features: -</p> -<ul> -<li>Arithmetic for <tt>complex</tt> numbers.</li> -<li>Passing structs by value to vararg C functions.</li> -<li><a href="extensions.html#exceptions">C++ exception interoperability</a> -does not extend to C functions called via the FFI, if the call is -compiled.</li> -</ul> -<br class="flush"> -</div> -<div id="foot"> -<hr class="hide"> -Copyright © 2005-2018 -<span class="noprint"> -· -<a href="contact.html">Contact</a> -</span> -</div> -</body> -</html> |