aboutsummaryrefslogtreecommitdiffstats
path: root/deps/LuaJIT/doc/ext_ffi_tutorial.html
diff options
context:
space:
mode:
Diffstat (limited to 'deps/LuaJIT/doc/ext_ffi_tutorial.html')
-rw-r--r--deps/LuaJIT/doc/ext_ffi_tutorial.html602
1 files changed, 0 insertions, 602 deletions
diff --git a/deps/LuaJIT/doc/ext_ffi_tutorial.html b/deps/LuaJIT/doc/ext_ffi_tutorial.html
deleted file mode 100644
index e0b0821..0000000
--- a/deps/LuaJIT/doc/ext_ffi_tutorial.html
+++ /dev/null
@@ -1,602 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
-<html>
-<head>
-<title>FFI Tutorial</title>
-<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
-<meta name="Copyright" content="Copyright (C) 2005-2018">
-<meta name="Language" content="en">
-<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
-<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
-<style type="text/css">
-table.idiomtable { font-size: 90%; line-height: 1.2; }
-table.idiomtable tt { font-size: 100%; }
-table.idiomtable td { vertical-align: top; }
-tr.idiomhead td { font-weight: bold; }
-td.idiomlua b { font-weight: normal; color: #2142bf; }
-</style>
-</head>
-<body>
-<div id="site">
-<a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
-</div>
-<div id="head">
-<h1>FFI Tutorial</h1>
-</div>
-<div id="nav">
-<ul><li>
-<a href="luajit.html">LuaJIT</a>
-<ul><li>
-<a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
-</li><li>
-<a href="install.html">Installation</a>
-</li><li>
-<a href="running.html">Running</a>
-</li></ul>
-</li><li>
-<a href="extensions.html">Extensions</a>
-<ul><li>
-<a href="ext_ffi.html">FFI Library</a>
-<ul><li>
-<a class="current" href="ext_ffi_tutorial.html">FFI Tutorial</a>
-</li><li>
-<a href="ext_ffi_api.html">ffi.* API</a>
-</li><li>
-<a href="ext_ffi_semantics.html">FFI Semantics</a>
-</li></ul>
-</li><li>
-<a href="ext_jit.html">jit.* Library</a>
-</li><li>
-<a href="ext_c_api.html">Lua/C API</a>
-</li><li>
-<a href="ext_profiler.html">Profiler</a>
-</li></ul>
-</li><li>
-<a href="status.html">Status</a>
-<ul><li>
-<a href="changes.html">Changes</a>
-</li></ul>
-</li><li>
-<a href="faq.html">FAQ</a>
-</li><li>
-<a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
-</li><li>
-<a href="http://wiki.luajit.org/">Wiki <span class="ext">&raquo;</span></a>
-</li><li>
-<a href="http://luajit.org/list.html">Mailing List <span class="ext">&raquo;</span></a>
-</li></ul>
-</div>
-<div id="main">
-<p>
-This page is intended to give you an overview of the features of the FFI
-library by presenting a few use cases and guidelines.
-</p>
-<p>
-This page makes no attempt to explain all of the FFI library, though.
-You'll want to have a look at the <a href="ext_ffi_api.html">ffi.* API
-function reference</a> and the <a href="ext_ffi_semantics.html">FFI
-semantics</a> to learn more.
-</p>
-
-<h2 id="load">Loading the FFI Library</h2>
-<p>
-The FFI library is built into LuaJIT by default, but it's not loaded
-and initialized by default. The suggested way to use the FFI library
-is to add the following to the start of every Lua file that needs one
-of its functions:
-</p>
-<pre class="code">
-local ffi = require("ffi")
-</pre>
-<p>
-Please note this doesn't define an <tt>ffi</tt> variable in the table
-of globals &mdash; you really need to use the local variable. The
-<tt>require</tt> function ensures the library is only loaded once.
-</p>
-<p style="font-size: 8pt;">
-Note: If you want to experiment with the FFI from the interactive prompt
-of the command line executable, omit the <tt>local</tt>, as it doesn't
-preserve local variables across lines.
-</p>
-
-<h2 id="sleep">Accessing Standard System Functions</h2>
-<p>
-The following code explains how to access standard system functions.
-We slowly print two lines of dots by sleeping for 10&nbsp;milliseconds
-after each dot:
-</p>
-<pre class="code mark">
-<span class="codemark">&nbsp;
-&#9312;
-
-
-
-
-
-&#9313;
-&#9314;
-&#9315;
-
-
-
-&#9316;
-
-
-
-
-
-&#9317;</span>local ffi = require("ffi")
-ffi.cdef[[
-<span style="color:#00a000;">void Sleep(int ms);
-int poll(struct pollfd *fds, unsigned long nfds, int timeout);</span>
-]]
-
-local sleep
-if ffi.os == "Windows" then
- function sleep(s)
- ffi.C.Sleep(s*1000)
- end
-else
- function sleep(s)
- ffi.C.poll(nil, 0, s*1000)
- end
-end
-
-for i=1,160 do
- io.write("."); io.flush()
- sleep(0.01)
-end
-io.write("\n")
-</pre>
-<p>
-Here's the step-by-step explanation:
-</p>
-<p>
-<span class="mark">&#9312;</span> This defines the
-C&nbsp;library functions we're going to use. The part inside the
-double-brackets (in green) is just standard C&nbsp;syntax. You can
-usually get this info from the C&nbsp;header files or the
-documentation provided by each C&nbsp;library or C&nbsp;compiler.
-</p>
-<p>
-<span class="mark">&#9313;</span> The difficulty we're
-facing here, is that there are different standards to choose from.
-Windows has a simple <tt>Sleep()</tt> function. On other systems there
-are a variety of functions available to achieve sub-second sleeps, but
-with no clear consensus. Thankfully <tt>poll()</tt> can be used for
-this task, too, and it's present on most non-Windows systems. The
-check for <tt>ffi.os</tt> makes sure we use the Windows-specific
-function only on Windows systems.
-</p>
-<p>
-<span class="mark">&#9314;</span> Here we're wrapping the
-call to the C&nbsp;function in a Lua function. This isn't strictly
-necessary, but it's helpful to deal with system-specific issues only
-in one part of the code. The way we're wrapping it ensures the check
-for the OS is only done during initialization and not for every call.
-</p>
-<p>
-<span class="mark">&#9315;</span> A more subtle point is
-that we defined our <tt>sleep()</tt> function (for the sake of this
-example) as taking the number of seconds, but accepting fractional
-seconds. Multiplying this by 1000 gets us milliseconds, but that still
-leaves it a Lua number, which is a floating-point value. Alas, the
-<tt>Sleep()</tt> function only accepts an integer value. Luckily for
-us, the FFI library automatically performs the conversion when calling
-the function (truncating the FP value towards zero, like in C).
-</p>
-<p style="font-size: 8pt;">
-Some readers will notice that <tt>Sleep()</tt> is part of
-<tt>KERNEL32.DLL</tt> and is also a <tt>stdcall</tt> function. So how
-can this possibly work? The FFI library provides the <tt>ffi.C</tt>
-default C&nbsp;library namespace, which allows calling functions from
-the default set of libraries, like a C&nbsp;compiler would. Also, the
-FFI library automatically detects <tt>stdcall</tt> functions, so you
-don't need to declare them as such.
-</p>
-<p>
-<span class="mark">&#9316;</span> The <tt>poll()</tt>
-function takes a couple more arguments we're not going to use. You can
-simply use <tt>nil</tt> to pass a <tt>NULL</tt> pointer and <tt>0</tt>
-for the <tt>nfds</tt> parameter. Please note that the
-number&nbsp;<tt>0</tt> <em>does not convert to a pointer value</em>,
-unlike in C++. You really have to pass pointers to pointer arguments
-and numbers to number arguments.
-</p>
-<p style="font-size: 8pt;">
-The page on <a href="ext_ffi_semantics.html">FFI semantics</a> has all
-of the gory details about
-<a href="ext_ffi_semantics.html#convert">conversions between Lua
-objects and C&nbsp;types</a>. For the most part you don't have to deal
-with this, as it's performed automatically and it's carefully designed
-to bridge the semantic differences between Lua and C.
-</p>
-<p>
-<span class="mark">&#9317;</span> Now that we have defined
-our own <tt>sleep()</tt> function, we can just call it from plain Lua
-code. That wasn't so bad, huh? Turning these boring animated dots into
-a fascinating best-selling game is left as an exercise for the reader.
-:-)
-</p>
-
-<h2 id="zlib">Accessing the zlib Compression Library</h2>
-<p>
-The following code shows how to access the <a
-href="http://zlib.net/">zlib</a> compression library from Lua code.
-We'll define two convenience wrapper functions that take a string and
-compress or uncompress it to another string:
-</p>
-<pre class="code mark">
-<span class="codemark">&nbsp;
-&#9312;
-
-
-
-
-
-
-&#9313;
-
-
-&#9314;
-
-&#9315;
-
-
-&#9316;
-
-
-&#9317;
-
-
-
-
-
-
-
-&#9318;</span>local ffi = require("ffi")
-ffi.cdef[[
-<span style="color:#00a000;">unsigned long compressBound(unsigned long sourceLen);
-int compress2(uint8_t *dest, unsigned long *destLen,
- const uint8_t *source, unsigned long sourceLen, int level);
-int uncompress(uint8_t *dest, unsigned long *destLen,
- const uint8_t *source, unsigned long sourceLen);</span>
-]]
-local zlib = ffi.load(ffi.os == "Windows" and "zlib1" or "z")
-
-local function compress(txt)
- local n = zlib.compressBound(#txt)
- local buf = ffi.new("uint8_t[?]", n)
- local buflen = ffi.new("unsigned long[1]", n)
- local res = zlib.compress2(buf, buflen, txt, #txt, 9)
- assert(res == 0)
- return ffi.string(buf, buflen[0])
-end
-
-local function uncompress(comp, n)
- local buf = ffi.new("uint8_t[?]", n)
- local buflen = ffi.new("unsigned long[1]", n)
- local res = zlib.uncompress(buf, buflen, comp, #comp)
- assert(res == 0)
- return ffi.string(buf, buflen[0])
-end
-
--- Simple test code.
-local txt = string.rep("abcd", 1000)
-print("Uncompressed size: ", #txt)
-local c = compress(txt)
-print("Compressed size: ", #c)
-local txt2 = uncompress(c, #txt)
-assert(txt2 == txt)
-</pre>
-<p>
-Here's the step-by-step explanation:
-</p>
-<p>
-<span class="mark">&#9312;</span> This defines some of the
-C&nbsp;functions provided by zlib. For the sake of this example, some
-type indirections have been reduced and it uses the pre-defined
-fixed-size integer types, while still adhering to the zlib API/ABI.
-</p>
-<p>
-<span class="mark">&#9313;</span> This loads the zlib shared
-library. On POSIX systems it's named <tt>libz.so</tt> and usually
-comes pre-installed. Since <tt>ffi.load()</tt> automatically adds any
-missing standard prefixes/suffixes, we can simply load the
-<tt>"z"</tt> library. On Windows it's named <tt>zlib1.dll</tt> and
-you'll have to download it first from the
-<a href="http://zlib.net/"><span class="ext">&raquo;</span>&nbsp;zlib site</a>. The check for
-<tt>ffi.os</tt> makes sure we pass the right name to
-<tt>ffi.load()</tt>.
-</p>
-<p>
-<span class="mark">&#9314;</span> First, the maximum size of
-the compression buffer is obtained by calling the
-<tt>zlib.compressBound</tt> function with the length of the
-uncompressed string. The next line allocates a byte buffer of this
-size. The <tt>[?]</tt> in the type specification indicates a
-variable-length array (VLA). The actual number of elements of this
-array is given as the 2nd argument to <tt>ffi.new()</tt>.
-</p>
-<p>
-<span class="mark">&#9315;</span> This may look strange at
-first, but have a look at the declaration of the <tt>compress2</tt>
-function from zlib: the destination length is defined as a pointer!
-This is because you pass in the maximum buffer size and get back the
-actual length that was used.
-</p>
-<p>
-In C you'd pass in the address of a local variable
-(<tt>&amp;buflen</tt>). But since there's no address-of operator in
-Lua, we'll just pass in a one-element array. Conveniently it can be
-initialized with the maximum buffer size in one step. Calling the
-actual <tt>zlib.compress2</tt> function is then straightforward.
-</p>
-<p>
-<span class="mark">&#9316;</span> We want to return the
-compressed data as a Lua string, so we'll use <tt>ffi.string()</tt>.
-It needs a pointer to the start of the data and the actual length. The
-length has been returned in the <tt>buflen</tt> array, so we'll just
-get it from there.
-</p>
-<p style="font-size: 8pt;">
-Note that since the function returns now, the <tt>buf</tt> and
-<tt>buflen</tt> variables will eventually be garbage collected. This
-is fine, because <tt>ffi.string()</tt> has copied the contents to a
-newly created (interned) Lua string. If you plan to call this function
-lots of times, consider reusing the buffers and/or handing back the
-results in buffers instead of strings. This will reduce the overhead
-for garbage collection and string interning.
-</p>
-<p>
-<span class="mark">&#9317;</span> The <tt>uncompress</tt>
-functions does the exact opposite of the <tt>compress</tt> function.
-The compressed data doesn't include the size of the original string,
-so this needs to be passed in. Otherwise no surprises here.
-</p>
-<p>
-<span class="mark">&#9318;</span> The code, that makes use
-of the functions we just defined, is just plain Lua code. It doesn't
-need to know anything about the LuaJIT FFI &mdash; the convenience
-wrapper functions completely hide it.
-</p>
-<p>
-One major advantage of the LuaJIT FFI is that you are now able to
-write those wrappers <em>in Lua</em>. And at a fraction of the time it
-would cost you to create an extra C&nbsp;module using the Lua/C API.
-Many of the simpler C&nbsp;functions can probably be used directly
-from your Lua code, without any wrappers.
-</p>
-<p style="font-size: 8pt;">
-Side note: the zlib API uses the <tt>long</tt> type for passing
-lengths and sizes around. But all those zlib functions actually only
-deal with 32&nbsp;bit values. This is an unfortunate choice for a
-public API, but may be explained by zlib's history &mdash; we'll just
-have to deal with it.
-</p>
-<p style="font-size: 8pt;">
-First, you should know that a <tt>long</tt> is a 64&nbsp;bit type e.g.
-on POSIX/x64 systems, but a 32&nbsp;bit type on Windows/x64 and on
-32&nbsp;bit systems. Thus a <tt>long</tt> result can be either a plain
-Lua number or a boxed 64&nbsp;bit integer cdata object, depending on
-the target system.
-</p>
-<p style="font-size: 8pt;">
-Ok, so the <tt>ffi.*</tt> functions generally accept cdata objects
-wherever you'd want to use a number. That's why we get a away with
-passing <tt>n</tt> to <tt>ffi.string()</tt> above. But other Lua
-library functions or modules don't know how to deal with this. So for
-maximum portability one needs to use <tt>tonumber()</tt> on returned
-<tt>long</tt> results before passing them on. Otherwise the
-application might work on some systems, but would fail in a POSIX/x64
-environment.
-</p>
-
-<h2 id="metatype">Defining Metamethods for a C&nbsp;Type</h2>
-<p>
-The following code explains how to define metamethods for a C type.
-We define a simple point type and add some operations to it:
-</p>
-<pre class="code mark">
-<span class="codemark">&nbsp;
-&#9312;
-
-
-
-&#9313;
-
-&#9314;
-
-&#9315;
-
-
-
-&#9316;
-
-&#9317;</span>local ffi = require("ffi")
-ffi.cdef[[
-<span style="color:#00a000;">typedef struct { double x, y; } point_t;</span>
-]]
-
-local point
-local mt = {
- __add = function(a, b) return point(a.x+b.x, a.y+b.y) end,
- __len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
- __index = {
- area = function(a) return a.x*a.x + a.y*a.y end,
- },
-}
-point = ffi.metatype("point_t", mt)
-
-local a = point(3, 4)
-print(a.x, a.y) --> 3 4
-print(#a) --> 5
-print(a:area()) --> 25
-local b = a + point(0.5, 8)
-print(#b) --> 12.5
-</pre>
-<p>
-Here's the step-by-step explanation:
-</p>
-<p>
-<span class="mark">&#9312;</span> This defines the C&nbsp;type for a
-two-dimensional point object.
-</p>
-<p>
-<span class="mark">&#9313;</span> We have to declare the variable
-holding the point constructor first, because it's used inside of a
-metamethod.
-</p>
-<p>
-<span class="mark">&#9314;</span> Let's define an <tt>__add</tt>
-metamethod which adds the coordinates of two points and creates a new
-point object. For simplicity, this function assumes that both arguments
-are points. But it could be any mix of objects, if at least one operand
-is of the required type (e.g. adding a point plus a number or vice
-versa). Our <tt>__len</tt> metamethod returns the distance of a point to
-the origin.
-</p>
-<p>
-<span class="mark">&#9315;</span> If we run out of operators, we can
-define named methods, too. Here the <tt>__index</tt> table defines an
-<tt>area</tt> function. For custom indexing needs, one might want to
-define <tt>__index</tt> and <tt>__newindex</tt> <em>functions</em> instead.
-</p>
-<p>
-<span class="mark">&#9316;</span> This associates the metamethods with
-our C&nbsp;type. This only needs to be done once. For convenience, a
-constructor is returned by
-<a href="ext_ffi_api.html#ffi_metatype"><tt>ffi.metatype()</tt></a>.
-We're not required to use it, though. The original C&nbsp;type can still
-be used e.g. to create an array of points. The metamethods automatically
-apply to any and all uses of this type.
-</p>
-<p>
-Please note that the association with a metatable is permanent and
-<b>the metatable must not be modified afterwards!</b> Ditto for the
-<tt>__index</tt> table.
-</p>
-<p>
-<span class="mark">&#9317;</span> Here are some simple usage examples
-for the point type and their expected results. The pre-defined
-operations (such as <tt>a.x</tt>) can be freely mixed with the newly
-defined metamethods. Note that <tt>area</tt> is a method and must be
-called with the Lua syntax for methods: <tt>a:area()</tt>, not
-<tt>a.area()</tt>.
-</p>
-<p>
-The C&nbsp;type metamethod mechanism is most useful when used in
-conjunction with C&nbsp;libraries that are written in an object-oriented
-style. Creators return a pointer to a new instance and methods take an
-instance pointer as the first argument. Sometimes you can just point
-<tt>__index</tt> to the library namespace and <tt>__gc</tt> to the
-destructor and you're done. But often enough you'll want to add
-convenience wrappers, e.g. to return actual Lua strings or when
-returning multiple values.
-</p>
-<p>
-Some C libraries only declare instance pointers as an opaque
-<tt>void&nbsp;*</tt> type. In this case you can use a fake type for all
-declarations, e.g. a pointer to a named (incomplete) struct will do:
-<tt>typedef struct foo_type *foo_handle</tt>. The C&nbsp;side doesn't
-know what you declare with the LuaJIT FFI, but as long as the underlying
-types are compatible, everything still works.
-</p>
-
-<h2 id="idioms">Translating C&nbsp;Idioms</h2>
-<p>
-Here's a list of common C&nbsp;idioms and their translation to the
-LuaJIT FFI:
-</p>
-<table class="idiomtable">
-<tr class="idiomhead">
-<td class="idiomdesc">Idiom</td>
-<td class="idiomc">C&nbsp;code</td>
-<td class="idiomlua">Lua code</td>
-</tr>
-<tr class="odd separate">
-<td class="idiomdesc">Pointer dereference<br><tt>int *p;</tt></td><td class="idiomc"><tt>x = *p;<br>*p = y;</tt></td><td class="idiomlua"><tt>x = <b>p[0]</b><br><b>p[0]</b> = y</tt></td></tr>
-<tr class="even">
-<td class="idiomdesc">Pointer indexing<br><tt>int i, *p;</tt></td><td class="idiomc"><tt>x = p[i];<br>p[i+1] = y;</tt></td><td class="idiomlua"><tt>x = p[i]<br>p[i+1] = y</tt></td></tr>
-<tr class="odd">
-<td class="idiomdesc">Array indexing<br><tt>int i, a[];</tt></td><td class="idiomc"><tt>x = a[i];<br>a[i+1] = y;</tt></td><td class="idiomlua"><tt>x = a[i]<br>a[i+1] = y</tt></td></tr>
-<tr class="even separate">
-<td class="idiomdesc"><tt>struct</tt>/<tt>union</tt> dereference<br><tt>struct foo s;</tt></td><td class="idiomc"><tt>x = s.field;<br>s.field = y;</tt></td><td class="idiomlua"><tt>x = s.field<br>s.field = y</tt></td></tr>
-<tr class="odd">
-<td class="idiomdesc"><tt>struct</tt>/<tt>union</tt> pointer deref.<br><tt>struct foo *sp;</tt></td><td class="idiomc"><tt>x = sp->field;<br>sp->field = y;</tt></td><td class="idiomlua"><tt>x = <b>s.field</b><br><b>s.field</b> = y</tt></td></tr>
-<tr class="even separate">
-<td class="idiomdesc">Pointer arithmetic<br><tt>int i, *p;</tt></td><td class="idiomc"><tt>x = p + i;<br>y = p - i;</tt></td><td class="idiomlua"><tt>x = p + i<br>y = p - i</tt></td></tr>
-<tr class="odd">
-<td class="idiomdesc">Pointer difference<br><tt>int *p1, *p2;</tt></td><td class="idiomc"><tt>x = p1 - p2;</tt></td><td class="idiomlua"><tt>x = p1 - p2</tt></td></tr>
-<tr class="even">
-<td class="idiomdesc">Array element pointer<br><tt>int i, a[];</tt></td><td class="idiomc"><tt>x = &amp;a[i];</tt></td><td class="idiomlua"><tt>x = <b>a+i</b></tt></td></tr>
-<tr class="odd">
-<td class="idiomdesc">Cast pointer to address<br><tt>int *p;</tt></td><td class="idiomc"><tt>x = (intptr_t)p;</tt></td><td class="idiomlua"><tt>x = <b>tonumber(<br>&nbsp;ffi.cast("intptr_t",<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;p))</b></tt></td></tr>
-<tr class="even separate">
-<td class="idiomdesc">Functions with outargs<br><tt>void foo(int *inoutlen);</tt></td><td class="idiomc"><tt>int len = x;<br>foo(&amp;len);<br>y = len;</tt></td><td class="idiomlua"><tt><b>local len =<br>&nbsp;&nbsp;ffi.new("int[1]", x)<br>foo(len)<br>y = len[0]</b></tt></td></tr>
-<tr class="odd">
-<td class="idiomdesc"><a href="ext_ffi_semantics.html#convert_vararg">Vararg conversions</a><br><tt>int printf(char *fmt, ...);</tt></td><td class="idiomc"><tt>printf("%g", 1.0);<br>printf("%d", 1);<br>&nbsp;</tt></td><td class="idiomlua"><tt>printf("%g", 1);<br>printf("%d",<br>&nbsp;&nbsp;<b>ffi.new("int", 1)</b>)</tt></td></tr>
-</table>
-
-<h2 id="cache">To Cache or Not to Cache</h2>
-<p>
-It's a common Lua idiom to cache library functions in local variables
-or upvalues, e.g.:
-</p>
-<pre class="code">
-local byte, char = string.byte, string.char
-local function foo(x)
- return char(byte(x)+1)
-end
-</pre>
-<p>
-This replaces several hash-table lookups with a (faster) direct use of
-a local or an upvalue. This is less important with LuaJIT, since the
-JIT compiler optimizes hash-table lookups a lot and is even able to
-hoist most of them out of the inner loops. It can't eliminate
-<em>all</em> of them, though, and it saves some typing for often-used
-functions. So there's still a place for this, even with LuaJIT.
-</p>
-<p>
-The situation is a bit different with C&nbsp;function calls via the
-FFI library. The JIT compiler has special logic to eliminate <em>all
-of the lookup overhead</em> for functions resolved from a
-<a href="ext_ffi_semantics.html#clib">C&nbsp;library namespace</a>!
-Thus it's not helpful and actually counter-productive to cache
-individual C&nbsp;functions like this:
-</p>
-<pre class="code">
-local <b>funca</b>, <b>funcb</b> = ffi.C.funca, ffi.C.funcb -- <span style="color:#c00000;">Not helpful!</span>
-local function foo(x, n)
- for i=1,n do <b>funcb</b>(<b>funca</b>(x, i), 1) end
-end
-</pre>
-<p>
-This turns them into indirect calls and generates bigger and slower
-machine code. Instead you'll want to cache the namespace itself and
-rely on the JIT compiler to eliminate the lookups:
-</p>
-<pre class="code">
-local <b>C</b> = ffi.C -- <span style="color:#00a000;">Instead use this!</span>
-local function foo(x, n)
- for i=1,n do <b>C.funcb</b>(<b>C.funca</b>(x, i), 1) end
-end
-</pre>
-<p>
-This generates both shorter and faster code. So <b>don't cache
-C&nbsp;functions</b>, but <b>do</b> cache namespaces! Most often the
-namespace is already in a local variable at an outer scope, e.g. from
-<tt>local&nbsp;lib&nbsp;=&nbsp;ffi.load(...)</tt>. Note that copying
-it to a local variable in the function scope is unnecessary.
-</p>
-<br class="flush">
-</div>
-<div id="foot">
-<hr class="hide">
-Copyright &copy; 2005-2018
-<span class="noprint">
-&middot;
-<a href="contact.html">Contact</a>
-</span>
-</div>
-</body>
-</html>