aboutsummaryrefslogtreecommitdiffstats
path: root/deps/sol2/include/sol/stack_push.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'deps/sol2/include/sol/stack_push.hpp')
-rw-r--r--deps/sol2/include/sol/stack_push.hpp1210
1 files changed, 1210 insertions, 0 deletions
diff --git a/deps/sol2/include/sol/stack_push.hpp b/deps/sol2/include/sol/stack_push.hpp
new file mode 100644
index 0000000..a895eab
--- /dev/null
+++ b/deps/sol2/include/sol/stack_push.hpp
@@ -0,0 +1,1210 @@
+// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_STACK_PUSH_HPP
+#define SOL_STACK_PUSH_HPP
+
+#include "stack_core.hpp"
+#include "raii.hpp"
+#include "optional.hpp"
+#include "usertype_traits.hpp"
+#include "policies.hpp"
+#include "unicode.hpp"
+
+#include <memory>
+#include <type_traits>
+#include <cassert>
+#include <limits>
+#include <cmath>
+#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
+#include <string_view>
+#include <optional>
+#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
+#include <variant>
+#endif // Can use variant
+#endif // C++17
+
+namespace sol {
+ namespace stack {
+ namespace stack_detail {
+ template <typename T>
+ inline bool integer_value_fits(const T& value) {
+ if constexpr (sizeof(T) < sizeof(lua_Integer) || (std::is_signed_v<T> && sizeof(T) == sizeof(lua_Integer))) {
+ (void)value;
+ return true;
+ }
+ else {
+ auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)());
+ auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)());
+ auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)());
+ auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)());
+ return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max));
+ }
+ }
+
+ template <typename T>
+ int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) {
+ if constexpr (meta::any_same_v<std::underlying_type_t<T>, char/*, char8_t*/, char16_t, char32_t>) {
+ if constexpr (std::is_signed_v<T>) {
+ return stack::push(L, static_cast<std::int_least32_t>(value));
+ }
+ else {
+ return stack::push(L, static_cast<std::uint_least32_t>(value));
+ }
+ }
+ else {
+ return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
+ }
+ }
+
+ template <typename T>
+ int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) {
+ return 0;
+ }
+ }
+
+ inline int push_environment_of(lua_State* L, int index = -1) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_environment);
+#endif // make sure stack doesn't overflow
+#if SOL_LUA_VERSION < 502
+ // Use lua_getfenv
+ lua_getfenv(L, index);
+#else
+ // Use upvalues as explained in Lua 5.2 and beyond's manual
+ if (lua_getupvalue(L, index, 1) == nullptr) {
+ push(L, lua_nil);
+ return 1;
+ }
+#endif
+ return 1;
+ }
+
+ template <typename T>
+ int push_environment_of(const T& target) {
+ target.push();
+ return push_environment_of(target.lua_state(), -1) + 1;
+ }
+
+ template <typename T>
+ struct unqualified_pusher<detail::as_value_tag<T>> {
+ template <typename F, typename... Args>
+ static int push_fx(lua_State* L, F&& f, Args&&... args) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ // Basically, we store all user-data like this:
+ // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
+ // data in the first sizeof(T*) bytes, and then however many bytes it takes to
+ // do the actual object. Things that are std::ref or plain T* are stored as
+ // just the sizeof(T*), and nothing else.
+ T* obj = detail::usertype_allocate<T>(L);
+ f();
+ std::allocator<T> alloc{};
+ std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...);
+ return 1;
+ }
+
+ template <typename K, typename... Args>
+ static int push_keyed(lua_State* L, K&& k, Args&&... args) {
+ stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<T>);
+ return push_fx(L, fx, std::forward<Args>(args)...);
+ }
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
+ (void)arg;
+ return push_fx(L, std::forward<Args>(args)...);
+ }
+ else {
+ return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ static int push(lua_State* L) {
+ return push_keyed(L, usertype_traits<T>::metatable());
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<detail::as_pointer_tag<T>> {
+ typedef meta::unqualified_t<T> U;
+
+ template <typename F>
+ static int push_fx(lua_State* L, F&& f, T* obj) {
+ if (obj == nullptr)
+ return stack::push(L, lua_nil);
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ T** pref = detail::usertype_allocate_pointer<T>(L);
+ f();
+ *pref = obj;
+ return 1;
+ }
+
+ template <typename K>
+ static int push_keyed(lua_State* L, K&& k, T* obj) {
+ stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<U*>);
+ return push_fx(L, fx, obj);
+ }
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
+ (void)arg;
+ return push_fx(L, std::forward<Args>(args)...);
+ }
+ else {
+ return push_keyed(L, usertype_traits<U*>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<detail::as_reference_tag> {
+ template <typename T>
+ static int push(lua_State* L, T&& obj) {
+ return stack::push(L, detail::ptr(obj));
+ }
+ };
+
+ namespace stack_detail {
+ template <typename T>
+ struct uu_pusher {
+ using u_traits = unique_usertype_traits<T>;
+ using P = typename u_traits::type;
+ using Real = typename u_traits::actual_type;
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_base_of_v<Real, meta::unqualified_t<Arg>>) {
+ if (u_traits::is_null(arg)) {
+ return stack::push(L, lua_nil);
+ }
+ return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else {
+ return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ template <typename... Args>
+ static int push_deep(lua_State* L, Args&&... args) {
+ #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+ #endif // make sure stack doesn't overflow
+ P** pref = nullptr;
+ detail::unique_destructor* fx = nullptr;
+ detail::unique_tag* id = nullptr;
+ Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx, id);
+ if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<std::remove_cv_t<P>>>::metatable()[0]) == 1) {
+ detail::lua_reg_table l{};
+ int index = 0;
+ detail::indexed_insert insert_fx(l, index);
+ detail::insert_default_registrations<P>(insert_fx, detail::property_always_true);
+ l[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() };
+ luaL_setfuncs(L, l, 0);
+ }
+ lua_setmetatable(L, -2);
+ *fx = detail::usertype_unique_alloc_destroy<P, Real>;
+ *id = &detail::inheritance<P>::template type_unique_cast<Real>;
+ detail::default_construct::construct(mem, std::forward<Args>(args)...);
+ *pref = unique_usertype_traits<T>::get(*mem);
+ return 1;
+ }
+ };
+ } // namespace stack_detail
+
+ template <typename T, typename>
+ struct unqualified_pusher {
+ template <typename... Args>
+ static int push(lua_State* L, Args&&... args) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (is_lua_reference_v<Tu>) {
+ using int_arr = int[];
+ int_arr p{ (std::forward<Args>(args).push(L))... };
+ return p[0];
+ }
+ else if constexpr (std::is_same_v<Tu, bool>) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushboolean(L, std::forward<Args>(args)...);
+ return 1;
+ }
+ else if constexpr (std::is_integral_v<Tu> || std::is_same_v<Tu, lua_Integer>) {
+ const Tu& value(std::forward<Args>(args)...);
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_integral);
+#endif // make sure stack doesn't overflow
+#if SOL_LUA_VERSION >= 503
+ if (stack_detail::integer_value_fits<Tu>(value)) {
+ lua_pushinteger(L, static_cast<lua_Integer>(value));
+ return 1;
+ }
+#endif // Lua 5.3 and above
+#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION)
+ if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) {
+#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS
+ // Is this really worth it?
+ assert(false && "integer value will be misrepresented in lua");
+ lua_pushnumber(L, static_cast<lua_Number>(std::forward<Args>(args)...));
+ return 1;
+#else
+ throw error(detail::direct_error, "integer value will be misrepresented in lua");
+#endif // No Exceptions
+ }
+#endif // Safe Numerics and Number Precision Check
+ lua_pushnumber(L, static_cast<lua_Number>(value));
+ return 1;
+ }
+ else if constexpr (std::is_floating_point_v<Tu> || std::is_same_v<Tu, lua_Number>) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_floating);
+#endif // make sure stack doesn't overflow
+ lua_pushnumber(L, std::forward<Args>(args)...);
+ return 1;
+ }
+ else if constexpr (std::is_enum_v<Tu>) {
+ return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward<Args>(args)...);
+ }
+ else if constexpr (std::is_pointer_v<Tu>) {
+ return stack::push<detail::as_pointer_tag<std::remove_pointer_t<T>>>(L, std::forward<Args>(args)...);
+ }
+ else if constexpr (is_unique_usertype_v<Tu>) {
+ stack_detail::uu_pusher<T> p;
+ (void)p;
+ return p.push(L, std::forward<Args>(args)...);
+ }
+ else {
+ return stack::push<detail::as_value_tag<T>>(L, std::forward<Args>(args)...);
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<std::reference_wrapper<T>> {
+ static int push(lua_State* L, const std::reference_wrapper<T>& t) {
+ return stack::push(L, std::addressof(detail::deref(t.get())));
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<detail::as_table_tag<T>> {
+ using has_kvp = meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>;
+
+ static int push(lua_State* L, const T& tablecont) {
+ return push(has_kvp(), std::false_type(), L, tablecont);
+ }
+
+ static int push(lua_State* L, const T& tablecont, nested_tag_t) {
+ return push(has_kvp(), std::true_type(), L, tablecont);
+ }
+
+ static int push(std::true_type, lua_State* L, const T& tablecont) {
+ return push(has_kvp(), std::true_type(), L, tablecont);
+ }
+
+ static int push(std::false_type, lua_State* L, const T& tablecont) {
+ return push(has_kvp(), std::false_type(), L, tablecont);
+ }
+
+ template <bool is_nested>
+ static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
+ auto& cont = detail::deref(detail::unwrap(tablecont));
+ lua_createtable(L, static_cast<int>(cont.size()), 0);
+ int tableindex = lua_gettop(L);
+ for (const auto& pair : cont) {
+ if (is_nested) {
+ set_field(L, pair.first, as_nested_ref(pair.second), tableindex);
+ }
+ else {
+ set_field(L, pair.first, pair.second, tableindex);
+ }
+ }
+ return 1;
+ }
+
+ template <bool is_nested>
+ static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
+ auto& cont = detail::deref(detail::unwrap(tablecont));
+ lua_createtable(L, stack_detail::get_size_hint(cont), 0);
+ int tableindex = lua_gettop(L);
+ std::size_t index = 1;
+ for (const auto& i : cont) {
+#if SOL_LUA_VERSION >= 503
+ int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
+ for (int pi = 0; pi < p; ++pi) {
+ lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
+ }
+#else
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushinteger(L, static_cast<lua_Integer>(index));
+ int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
+ if (p == 1) {
+ ++index;
+ lua_settable(L, tableindex);
+ }
+ else {
+ int firstindex = tableindex + 1 + 1;
+ for (int pi = 0; pi < p; ++pi) {
+ stack::push(L, index);
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, firstindex);
+ lua_settable(L, tableindex);
+ ++index;
+ ++firstindex;
+ }
+ lua_pop(L, 1 + p);
+ }
+#endif // Lua Version 5.3 and others
+ }
+ // TODO: figure out a better way to do this...?
+ // set_field(L, -1, cont.size());
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<as_table_t<T>> {
+ static int push(lua_State* L, const T& v) {
+ using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>;
+ if constexpr (is_container_v<inner_t>) {
+ return stack::push<detail::as_table_tag<T>>(L, v);
+ }
+ else {
+ return stack::push(L, v);
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<nested<T>> {
+ static int push(lua_State* L, const T& tablecont) {
+ using Tu = meta::unwrap_unqualified_t<T>;
+ using inner_t = std::remove_pointer_t<Tu>;
+ if constexpr (is_container_v<inner_t>) {
+ return stack::push<detail::as_table_tag<T>>(L, tablecont, nested_tag);
+ }
+ else {
+ return stack::push<Tu>(L, tablecont);
+ }
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<std::initializer_list<T>> {
+ static int push(lua_State* L, const std::initializer_list<T>& il) {
+ unqualified_pusher<detail::as_table_tag<std::initializer_list<T>>> p{};
+ // silence annoying VC++ warning
+ (void)p;
+ return p.push(L, il);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<lua_nil_t> {
+ static int push(lua_State* L, lua_nil_t) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushnil(L);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<stack_count> {
+ static int push(lua_State*, stack_count st) {
+ return st.count;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<metatable_key_t> {
+ static int push(lua_State* L, metatable_key_t) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, "__mt", 4);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<std::remove_pointer_t<lua_CFunction>> {
+ static int push(lua_State* L, lua_CFunction func, int n = 0) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<lua_CFunction> {
+ static int push(lua_State* L, lua_CFunction func, int n = 0) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE
+ template <>
+ struct unqualified_pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> {
+ static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<detail::lua_CFunction_noexcept> {
+ static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, func, n);
+ return 1;
+ }
+ };
+#endif // noexcept function type
+
+ template <>
+ struct unqualified_pusher<c_closure> {
+ static int push(lua_State* L, c_closure cc) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushcclosure(L, cc.c_function, cc.upvalues);
+ return 1;
+ }
+ };
+
+ template <typename Arg, typename... Args>
+ struct unqualified_pusher<closure<Arg, Args...>> {
+ template <std::size_t... I, typename T>
+ static int push(std::index_sequence<I...>, lua_State* L, T&& c) {
+ using f_tuple = decltype(std::forward<T>(c).upvalues);
+ int pushcount = multi_push(L, std::get<I>(std::forward<f_tuple>(std::forward<T>(c).upvalues))...);
+ return stack::push(L, c_closure(c.c_function, pushcount));
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& c) {
+ return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<void*> {
+ static int push(lua_State* L, void* userdata) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, userdata);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const void*> {
+ static int push(lua_State* L, const void* userdata) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, const_cast<void*>(userdata));
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<lightuserdata_value> {
+ static int push(lua_State* L, lightuserdata_value userdata) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, userdata);
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<light<T>> {
+ static int push(lua_State* L, light<T> l) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushlightuserdata(L, static_cast<void*>(l.value));
+ return 1;
+ }
+ };
+
+ template <typename T>
+ struct unqualified_pusher<user<T>> {
+ template <bool with_meta = true, typename Key, typename... Args>
+ static int push_with(lua_State* L, Key&& name, Args&&... args) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ // A dumb pusher
+ T* data = detail::user_allocate<T>(L);
+ if (with_meta) {
+ // Make sure we have a plain GC set for this data
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ if (luaL_newmetatable(L, name) != 0) {
+ lua_CFunction cdel = detail::user_alloc_destruct<T>;
+ lua_pushcclosure(L, cdel, 0);
+ lua_setfield(L, -2, "__gc");
+ }
+ lua_setmetatable(L, -2);
+ }
+ std::allocator<T> alloc{};
+ std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...);
+ return 1;
+ }
+
+ template <typename Arg, typename... Args>
+ static int push(lua_State* L, Arg&& arg, Args&&... args) {
+ if constexpr (std::is_same_v<meta::unqualified_t<Arg>, metatable_key_t>) {
+ const auto name = &arg[0];
+ return push_with<true>(L, name, std::forward<Args>(args)...);
+ }
+ else if constexpr (std::is_same_v<meta::unqualified_t<Arg>, no_metatable_t>) {
+ (void)arg;
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, std::forward<Args>(args)...);
+ }
+ else {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ static int push(lua_State* L, const user<T>& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, u.value);
+ }
+
+ static int push(lua_State* L, user<T>&& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with(L, name, std::move(u.value));
+ }
+
+ static int push(lua_State* L, no_metatable_t, const user<T>& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, u.value);
+ }
+
+ static int push(lua_State* L, no_metatable_t, user<T>&& u) {
+ const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
+ return push_with<false>(L, name, std::move(u.value));
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<userdata_value> {
+ static int push(lua_State* L, userdata_value data) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
+#endif // make sure stack doesn't overflow
+ void** ud = detail::usertype_allocate_pointer<void>(L);
+ *ud = data.value;
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const char*> {
+ static int push_sized(lua_State* L, const char* str, std::size_t len) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str, len);
+ return 1;
+ }
+
+ static int push(lua_State* L, const char* str) {
+ if (str == nullptr)
+ return stack::push(L, lua_nil);
+ return push_sized(L, str, std::char_traits<char>::length(str));
+ }
+
+ static int push(lua_State* L, const char* strb, const char* stre) {
+ return push_sized(L, strb, stre - strb);
+ }
+
+ static int push(lua_State* L, const char* str, std::size_t len) {
+ return push_sized(L, str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char*> {
+ static int push_sized(lua_State* L, const char* str, std::size_t len) {
+ unqualified_pusher<const char*> p{};
+ (void)p;
+ return p.push_sized(L, str, len);
+ }
+
+ static int push(lua_State* L, const char* str) {
+ unqualified_pusher<const char*> p{};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const char* strb, const char* stre) {
+ unqualified_pusher<const char*> p{};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const char* str, std::size_t len) {
+ unqualified_pusher<const char*> p{};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<char[N]> {
+ static int push(lua_State* L, const char (&str)[N]) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str, std::char_traits<char>::length(str));
+ return 1;
+ }
+
+ static int push(lua_State* L, const char (&str)[N], std::size_t sz) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str, sz);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char> {
+ static int push(lua_State* L, char c) {
+ const char str[2] = { c, '\0' };
+ return stack::push(L, str, 1);
+ }
+ };
+
+ template <typename Ch, typename Traits, typename Al>
+ struct unqualified_pusher<std::basic_string<Ch, Traits, Al>> {
+ static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str) {
+ if constexpr (!std::is_same_v<Ch, char>) {
+ return stack::push(L, str.data(), str.size());
+ }
+ else {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str.c_str(), str.size());
+ return 1;
+ }
+ }
+
+ static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str, std::size_t sz) {
+ if constexpr (!std::is_same_v<Ch, char>) {
+ return stack::push(L, str.data(), sz);
+ }
+ else {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
+#endif // make sure stack doesn't overflow
+ lua_pushlstring(L, str.c_str(), sz);
+ return 1;
+ }
+ }
+ };
+
+ template <typename Ch, typename Traits>
+ struct unqualified_pusher<basic_string_view<Ch, Traits>> {
+ static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) {
+ return stack::push(L, sv.data(), sv.length());
+ }
+
+ static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) {
+ return stack::push(L, sv.data(), n);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<meta_function> {
+ static int push(lua_State* L, meta_function m) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name);
+#endif // make sure stack doesn't overflow
+ const std::string& str = to_string(m);
+ lua_pushlstring(L, str.c_str(), str.size());
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<absolute_index> {
+ static int push(lua_State* L, absolute_index ai) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, ai);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<raw_index> {
+ static int push(lua_State* L, raw_index ri) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_pushvalue(L, ri);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<ref_index> {
+ static int push(lua_State* L, ref_index ri) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ lua_rawgeti(L, LUA_REGISTRYINDEX, ri);
+ return 1;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const wchar_t*> {
+ static int push(lua_State* L, const wchar_t* wstr) {
+ return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
+ }
+
+ static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) {
+ return push(L, wstr, wstr + sz);
+ }
+
+ static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
+ if constexpr (sizeof(wchar_t) == 2) {
+ const char16_t* sb = reinterpret_cast<const char16_t*>(strb);
+ const char16_t* se = reinterpret_cast<const char16_t*>(stre);
+ return stack::push(L, sb, se);
+ }
+ else {
+ const char32_t* sb = reinterpret_cast<const char32_t*>(strb);
+ const char32_t* se = reinterpret_cast<const char32_t*>(stre);
+ return stack::push(L, sb, se);
+ }
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<wchar_t*> {
+ static int push(lua_State* L, const wchar_t* str) {
+ unqualified_pusher<const wchar_t*> p{};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
+ unqualified_pusher<const wchar_t*> p{};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const wchar_t* str, std::size_t len) {
+ unqualified_pusher<const wchar_t*> p{};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const char16_t*> {
+ static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) {
+ char* target = start;
+ char32_t cp = 0;
+ for (const char16_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf16_to_code_point(strtarget, stre);
+ if (dr.error != unicode::error_code::ok) {
+ cp = unicode::unicode_detail::replacement;
+ }
+ else {
+ cp = dr.codepoint;
+ }
+ auto er = unicode::code_point_to_utf8(cp);
+ const char* utf8data = er.code_units.data();
+ std::memcpy(target, utf8data, er.code_units_size);
+ target += er.code_units_size;
+ strtarget = dr.next;
+ }
+
+ return stack::push(L, start, target);
+ }
+
+ static int push(lua_State* L, const char16_t* u16str) {
+ return push(L, u16str, std::char_traits<char16_t>::length(u16str));
+ }
+
+ static int push(lua_State* L, const char16_t* u16str, std::size_t sz) {
+ return push(L, u16str, u16str + sz);
+ }
+
+ static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
+ char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE];
+ // if our max string space is small enough, use SBO
+ // right off the bat
+ std::size_t max_possible_code_units = (stre - strb) * 4;
+ if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) {
+ return convert_into(L, sbo, max_possible_code_units, strb, stre);
+ }
+ // otherwise, we must manually count/check size
+ std::size_t needed_size = 0;
+ for (const char16_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf16_to_code_point(strtarget, stre);
+ auto er = unicode::code_point_to_utf8(dr.codepoint);
+ needed_size += er.code_units_size;
+ strtarget = dr.next;
+ }
+ if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) {
+ return convert_into(L, sbo, needed_size, strb, stre);
+ }
+ std::string u8str("", 0);
+ u8str.resize(needed_size);
+ char* target = &u8str[0];
+ return convert_into(L, target, needed_size, strb, stre);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char16_t*> {
+ static int push(lua_State* L, const char16_t* str) {
+ unqualified_pusher<const char16_t*> p{};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
+ unqualified_pusher<const char16_t*> p{};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const char16_t* str, std::size_t len) {
+ unqualified_pusher<const char16_t*> p{};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<const char32_t*> {
+ static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) {
+ char* target = start;
+ char32_t cp = 0;
+ for (const char32_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf32_to_code_point(strtarget, stre);
+ if (dr.error != unicode::error_code::ok) {
+ cp = unicode::unicode_detail::replacement;
+ }
+ else {
+ cp = dr.codepoint;
+ }
+ auto er = unicode::code_point_to_utf8(cp);
+ const char* data = er.code_units.data();
+ std::memcpy(target, data, er.code_units_size);
+ target += er.code_units_size;
+ strtarget = dr.next;
+ }
+ return stack::push(L, start, target);
+ }
+
+ static int push(lua_State* L, const char32_t* u32str) {
+ return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
+ }
+
+ static int push(lua_State* L, const char32_t* u32str, std::size_t sz) {
+ return push(L, u32str, u32str + sz);
+ }
+
+ static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
+ char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE];
+ // if our max string space is small enough, use SBO
+ // right off the bat
+ std::size_t max_possible_code_units = (stre - strb) * 4;
+ if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) {
+ return convert_into(L, sbo, max_possible_code_units, strb, stre);
+ }
+ // otherwise, we must manually count/check size
+ std::size_t needed_size = 0;
+ for (const char32_t* strtarget = strb; strtarget < stre;) {
+ auto dr = unicode::utf32_to_code_point(strtarget, stre);
+ auto er = unicode::code_point_to_utf8(dr.codepoint);
+ needed_size += er.code_units_size;
+ strtarget = dr.next;
+ }
+ if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) {
+ return convert_into(L, sbo, needed_size, strb, stre);
+ }
+ std::string u8str("", 0);
+ u8str.resize(needed_size);
+ char* target = &u8str[0];
+ return convert_into(L, target, needed_size, strb, stre);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char32_t*> {
+ static int push(lua_State* L, const char32_t* str) {
+ unqualified_pusher<const char32_t*> p{};
+ (void)p;
+ return p.push(L, str);
+ }
+
+ static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
+ unqualified_pusher<const char32_t*> p{};
+ (void)p;
+ return p.push(L, strb, stre);
+ }
+
+ static int push(lua_State* L, const char32_t* str, std::size_t len) {
+ unqualified_pusher<const char32_t*> p{};
+ (void)p;
+ return p.push(L, str, len);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<wchar_t[N]> {
+ static int push(lua_State* L, const wchar_t (&str)[N]) {
+ return push(L, str, std::char_traits<wchar_t>::length(str));
+ }
+
+ static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) {
+ return stack::push<const wchar_t*>(L, str, str + sz);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<char16_t[N]> {
+ static int push(lua_State* L, const char16_t (&str)[N]) {
+ return push(L, str, std::char_traits<char16_t>::length(str));
+ }
+
+ static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) {
+ return stack::push<const char16_t*>(L, str, str + sz);
+ }
+ };
+
+ template <size_t N>
+ struct unqualified_pusher<char32_t[N]> {
+ static int push(lua_State* L, const char32_t (&str)[N]) {
+ return push(L, str, std::char_traits<char32_t>::length(str));
+ }
+
+ static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) {
+ return stack::push<const char32_t*>(L, str, str + sz);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<wchar_t> {
+ static int push(lua_State* L, wchar_t c) {
+ const wchar_t str[2] = { c, '\0' };
+ return stack::push(L, &str[0], 1);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char16_t> {
+ static int push(lua_State* L, char16_t c) {
+ const char16_t str[2] = { c, '\0' };
+ return stack::push(L, &str[0], 1);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<char32_t> {
+ static int push(lua_State* L, char32_t c) {
+ const char32_t str[2] = { c, '\0' };
+ return stack::push(L, &str[0], 1);
+ }
+ };
+
+ template <typename... Args>
+ struct unqualified_pusher<std::tuple<Args...>> {
+ template <std::size_t... I, typename T>
+ static int push(std::index_sequence<I...>, lua_State* L, T&& t) {
+#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK
+ luaL_checkstack(L, static_cast<int>(sizeof...(I)), detail::not_enough_stack_space_generic);
+#endif // make sure stack doesn't overflow
+ int pushcount = 0;
+ (void)detail::swallow{ 0, (pushcount += stack::push(L, std::get<I>(std::forward<T>(t))), 0)... };
+ return pushcount;
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
+ }
+ };
+
+ template <typename A, typename B>
+ struct unqualified_pusher<std::pair<A, B>> {
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ int pushcount = stack::push(L, std::get<0>(std::forward<T>(t)));
+ pushcount += stack::push(L, std::get<1>(std::forward<T>(t)));
+ return pushcount;
+ }
+ };
+
+ template <typename O>
+ struct unqualified_pusher<optional<O>> {
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ if (t == nullopt) {
+ return stack::push(L, nullopt);
+ }
+ return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value()));
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<nullopt_t> {
+ static int push(lua_State* L, nullopt_t) {
+ return stack::push(L, lua_nil);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<std::nullptr_t> {
+ static int push(lua_State* L, std::nullptr_t) {
+ return stack::push(L, lua_nil);
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<this_state> {
+ static int push(lua_State*, const this_state&) {
+ return 0;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<this_main_state> {
+ static int push(lua_State*, const this_main_state&) {
+ return 0;
+ }
+ };
+
+ template <>
+ struct unqualified_pusher<new_table> {
+ static int push(lua_State* L, const new_table& nt) {
+ lua_createtable(L, nt.sequence_hint, nt.map_hint);
+ return 1;
+ }
+ };
+
+ template <typename Allocator>
+ struct unqualified_pusher<basic_bytecode<Allocator>> {
+ template <typename T>
+ static int push(lua_State* L, T&& bc, const char* bytecode_name) {
+ const auto first = bc.data();
+ const auto bcsize = bc.size();
+ // pushes either the function, or an error
+ // if it errors, shit goes south, and people can test that upstream
+ (void)luaL_loadbuffer(L, reinterpret_cast<const char*>(first), static_cast<std::size_t>(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name);
+ return 1;
+ }
+
+ template <typename T>
+ static int push(lua_State* L, T&& bc) {
+ return push(L, std::forward<bc>(bc), "bytecode");
+ }
+ };
+
+#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
+ template <typename O>
+ struct unqualified_pusher<std::optional<O>> {
+ template <typename T>
+ static int push(lua_State* L, T&& t) {
+ if (t == std::nullopt) {
+ return stack::push(L, nullopt);
+ }
+ return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value()));
+ }
+ };
+
+#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT
+ namespace stack_detail {
+
+ struct push_function {
+ lua_State* L;
+
+ push_function(lua_State* L) : L(L) {
+ }
+
+ template <typename T>
+ int operator()(T&& value) const {
+ return stack::push<T>(L, std::forward<T>(value));
+ }
+ };
+
+ } // namespace stack_detail
+
+ template <typename... Tn>
+ struct unqualified_pusher<std::variant<Tn...>> {
+ static int push(lua_State* L, const std::variant<Tn...>& v) {
+ return std::visit(stack_detail::push_function(L), v);
+ }
+
+ static int push(lua_State* L, std::variant<Tn...>&& v) {
+ return std::visit(stack_detail::push_function(L), std::move(v));
+ }
+ };
+#endif // Variant because Clang is terrible
+#endif // C++17 Support
+ }
+} // namespace sol::stack
+
+#endif // SOL_STACK_PUSH_HPP