diff options
Diffstat (limited to 'deps/sol2/include/sol/stack_push.hpp')
-rw-r--r-- | deps/sol2/include/sol/stack_push.hpp | 1210 |
1 files changed, 1210 insertions, 0 deletions
diff --git a/deps/sol2/include/sol/stack_push.hpp b/deps/sol2/include/sol/stack_push.hpp new file mode 100644 index 0000000..a895eab --- /dev/null +++ b/deps/sol2/include/sol/stack_push.hpp @@ -0,0 +1,1210 @@ +// sol3 + +// The MIT License (MIT) + +// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#ifndef SOL_STACK_PUSH_HPP +#define SOL_STACK_PUSH_HPP + +#include "stack_core.hpp" +#include "raii.hpp" +#include "optional.hpp" +#include "usertype_traits.hpp" +#include "policies.hpp" +#include "unicode.hpp" + +#include <memory> +#include <type_traits> +#include <cassert> +#include <limits> +#include <cmath> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <string_view> +#include <optional> +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#include <variant> +#endif // Can use variant +#endif // C++17 + +namespace sol { + namespace stack { + namespace stack_detail { + template <typename T> + inline bool integer_value_fits(const T& value) { + if constexpr (sizeof(T) < sizeof(lua_Integer) || (std::is_signed_v<T> && sizeof(T) == sizeof(lua_Integer))) { + (void)value; + return true; + } + else { + auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)()); + auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)()); + auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)()); + auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)()); + return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max)); + } + } + + template <typename T> + int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) { + if constexpr (meta::any_same_v<std::underlying_type_t<T>, char/*, char8_t*/, char16_t, char32_t>) { + if constexpr (std::is_signed_v<T>) { + return stack::push(L, static_cast<std::int_least32_t>(value)); + } + else { + return stack::push(L, static_cast<std::uint_least32_t>(value)); + } + } + else { + return stack::push(L, static_cast<std::underlying_type_t<T>>(value)); + } + } + + template <typename T> + int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) { + return 0; + } + } + + inline int push_environment_of(lua_State* L, int index = -1) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_environment); +#endif // make sure stack doesn't overflow +#if SOL_LUA_VERSION < 502 + // Use lua_getfenv + lua_getfenv(L, index); +#else + // Use upvalues as explained in Lua 5.2 and beyond's manual + if (lua_getupvalue(L, index, 1) == nullptr) { + push(L, lua_nil); + return 1; + } +#endif + return 1; + } + + template <typename T> + int push_environment_of(const T& target) { + target.push(); + return push_environment_of(target.lua_state(), -1) + 1; + } + + template <typename T> + struct unqualified_pusher<detail::as_value_tag<T>> { + template <typename F, typename... Args> + static int push_fx(lua_State* L, F&& f, Args&&... args) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + // Basically, we store all user-data like this: + // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new + // data in the first sizeof(T*) bytes, and then however many bytes it takes to + // do the actual object. Things that are std::ref or plain T* are stored as + // just the sizeof(T*), and nothing else. + T* obj = detail::usertype_allocate<T>(L); + f(); + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...); + return 1; + } + + template <typename K, typename... Args> + static int push_keyed(lua_State* L, K&& k, Args&&... args) { + stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<T>); + return push_fx(L, fx, std::forward<Args>(args)...); + } + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) { + (void)arg; + return push_fx(L, std::forward<Args>(args)...); + } + else { + return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + + static int push(lua_State* L) { + return push_keyed(L, usertype_traits<T>::metatable()); + } + }; + + template <typename T> + struct unqualified_pusher<detail::as_pointer_tag<T>> { + typedef meta::unqualified_t<T> U; + + template <typename F> + static int push_fx(lua_State* L, F&& f, T* obj) { + if (obj == nullptr) + return stack::push(L, lua_nil); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + T** pref = detail::usertype_allocate_pointer<T>(L); + f(); + *pref = obj; + return 1; + } + + template <typename K> + static int push_keyed(lua_State* L, K&& k, T* obj) { + stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<U*>); + return push_fx(L, fx, obj); + } + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) { + (void)arg; + return push_fx(L, std::forward<Args>(args)...); + } + else { + return push_keyed(L, usertype_traits<U*>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + }; + + template <> + struct unqualified_pusher<detail::as_reference_tag> { + template <typename T> + static int push(lua_State* L, T&& obj) { + return stack::push(L, detail::ptr(obj)); + } + }; + + namespace stack_detail { + template <typename T> + struct uu_pusher { + using u_traits = unique_usertype_traits<T>; + using P = typename u_traits::type; + using Real = typename u_traits::actual_type; + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_base_of_v<Real, meta::unqualified_t<Arg>>) { + if (u_traits::is_null(arg)) { + return stack::push(L, lua_nil); + } + return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + else { + return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + + template <typename... Args> + static int push_deep(lua_State* L, Args&&... args) { + #if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); + #endif // make sure stack doesn't overflow + P** pref = nullptr; + detail::unique_destructor* fx = nullptr; + detail::unique_tag* id = nullptr; + Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx, id); + if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<std::remove_cv_t<P>>>::metatable()[0]) == 1) { + detail::lua_reg_table l{}; + int index = 0; + detail::indexed_insert insert_fx(l, index); + detail::insert_default_registrations<P>(insert_fx, detail::property_always_true); + l[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() }; + luaL_setfuncs(L, l, 0); + } + lua_setmetatable(L, -2); + *fx = detail::usertype_unique_alloc_destroy<P, Real>; + *id = &detail::inheritance<P>::template type_unique_cast<Real>; + detail::default_construct::construct(mem, std::forward<Args>(args)...); + *pref = unique_usertype_traits<T>::get(*mem); + return 1; + } + }; + } // namespace stack_detail + + template <typename T, typename> + struct unqualified_pusher { + template <typename... Args> + static int push(lua_State* L, Args&&... args) { + using Tu = meta::unqualified_t<T>; + if constexpr (is_lua_reference_v<Tu>) { + using int_arr = int[]; + int_arr p{ (std::forward<Args>(args).push(L))... }; + return p[0]; + } + else if constexpr (std::is_same_v<Tu, bool>) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushboolean(L, std::forward<Args>(args)...); + return 1; + } + else if constexpr (std::is_integral_v<Tu> || std::is_same_v<Tu, lua_Integer>) { + const Tu& value(std::forward<Args>(args)...); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_integral); +#endif // make sure stack doesn't overflow +#if SOL_LUA_VERSION >= 503 + if (stack_detail::integer_value_fits<Tu>(value)) { + lua_pushinteger(L, static_cast<lua_Integer>(value)); + return 1; + } +#endif // Lua 5.3 and above +#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) { +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + // Is this really worth it? + assert(false && "integer value will be misrepresented in lua"); + lua_pushnumber(L, static_cast<lua_Number>(std::forward<Args>(args)...)); + return 1; +#else + throw error(detail::direct_error, "integer value will be misrepresented in lua"); +#endif // No Exceptions + } +#endif // Safe Numerics and Number Precision Check + lua_pushnumber(L, static_cast<lua_Number>(value)); + return 1; + } + else if constexpr (std::is_floating_point_v<Tu> || std::is_same_v<Tu, lua_Number>) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_floating); +#endif // make sure stack doesn't overflow + lua_pushnumber(L, std::forward<Args>(args)...); + return 1; + } + else if constexpr (std::is_enum_v<Tu>) { + return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward<Args>(args)...); + } + else if constexpr (std::is_pointer_v<Tu>) { + return stack::push<detail::as_pointer_tag<std::remove_pointer_t<T>>>(L, std::forward<Args>(args)...); + } + else if constexpr (is_unique_usertype_v<Tu>) { + stack_detail::uu_pusher<T> p; + (void)p; + return p.push(L, std::forward<Args>(args)...); + } + else { + return stack::push<detail::as_value_tag<T>>(L, std::forward<Args>(args)...); + } + } + }; + + template <typename T> + struct unqualified_pusher<std::reference_wrapper<T>> { + static int push(lua_State* L, const std::reference_wrapper<T>& t) { + return stack::push(L, std::addressof(detail::deref(t.get()))); + } + }; + + template <typename T> + struct unqualified_pusher<detail::as_table_tag<T>> { + using has_kvp = meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>; + + static int push(lua_State* L, const T& tablecont) { + return push(has_kvp(), std::false_type(), L, tablecont); + } + + static int push(lua_State* L, const T& tablecont, nested_tag_t) { + return push(has_kvp(), std::true_type(), L, tablecont); + } + + static int push(std::true_type, lua_State* L, const T& tablecont) { + return push(has_kvp(), std::true_type(), L, tablecont); + } + + static int push(std::false_type, lua_State* L, const T& tablecont) { + return push(has_kvp(), std::false_type(), L, tablecont); + } + + template <bool is_nested> + static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { + auto& cont = detail::deref(detail::unwrap(tablecont)); + lua_createtable(L, static_cast<int>(cont.size()), 0); + int tableindex = lua_gettop(L); + for (const auto& pair : cont) { + if (is_nested) { + set_field(L, pair.first, as_nested_ref(pair.second), tableindex); + } + else { + set_field(L, pair.first, pair.second, tableindex); + } + } + return 1; + } + + template <bool is_nested> + static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { + auto& cont = detail::deref(detail::unwrap(tablecont)); + lua_createtable(L, stack_detail::get_size_hint(cont), 0); + int tableindex = lua_gettop(L); + std::size_t index = 1; + for (const auto& i : cont) { +#if SOL_LUA_VERSION >= 503 + int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); + for (int pi = 0; pi < p; ++pi) { + lua_seti(L, tableindex, static_cast<lua_Integer>(index++)); + } +#else +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushinteger(L, static_cast<lua_Integer>(index)); + int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); + if (p == 1) { + ++index; + lua_settable(L, tableindex); + } + else { + int firstindex = tableindex + 1 + 1; + for (int pi = 0; pi < p; ++pi) { + stack::push(L, index); +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, firstindex); + lua_settable(L, tableindex); + ++index; + ++firstindex; + } + lua_pop(L, 1 + p); + } +#endif // Lua Version 5.3 and others + } + // TODO: figure out a better way to do this...? + // set_field(L, -1, cont.size()); + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<as_table_t<T>> { + static int push(lua_State* L, const T& v) { + using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>; + if constexpr (is_container_v<inner_t>) { + return stack::push<detail::as_table_tag<T>>(L, v); + } + else { + return stack::push(L, v); + } + } + }; + + template <typename T> + struct unqualified_pusher<nested<T>> { + static int push(lua_State* L, const T& tablecont) { + using Tu = meta::unwrap_unqualified_t<T>; + using inner_t = std::remove_pointer_t<Tu>; + if constexpr (is_container_v<inner_t>) { + return stack::push<detail::as_table_tag<T>>(L, tablecont, nested_tag); + } + else { + return stack::push<Tu>(L, tablecont); + } + } + }; + + template <typename T> + struct unqualified_pusher<std::initializer_list<T>> { + static int push(lua_State* L, const std::initializer_list<T>& il) { + unqualified_pusher<detail::as_table_tag<std::initializer_list<T>>> p{}; + // silence annoying VC++ warning + (void)p; + return p.push(L, il); + } + }; + + template <> + struct unqualified_pusher<lua_nil_t> { + static int push(lua_State* L, lua_nil_t) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushnil(L); + return 1; + } + }; + + template <> + struct unqualified_pusher<stack_count> { + static int push(lua_State*, stack_count st) { + return st.count; + } + }; + + template <> + struct unqualified_pusher<metatable_key_t> { + static int push(lua_State* L, metatable_key_t) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, "__mt", 4); + return 1; + } + }; + + template <> + struct unqualified_pusher<std::remove_pointer_t<lua_CFunction>> { + static int push(lua_State* L, lua_CFunction func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; + + template <> + struct unqualified_pusher<lua_CFunction> { + static int push(lua_State* L, lua_CFunction func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + template <> + struct unqualified_pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> { + static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; + + template <> + struct unqualified_pusher<detail::lua_CFunction_noexcept> { + static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, func, n); + return 1; + } + }; +#endif // noexcept function type + + template <> + struct unqualified_pusher<c_closure> { + static int push(lua_State* L, c_closure cc) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushcclosure(L, cc.c_function, cc.upvalues); + return 1; + } + }; + + template <typename Arg, typename... Args> + struct unqualified_pusher<closure<Arg, Args...>> { + template <std::size_t... I, typename T> + static int push(std::index_sequence<I...>, lua_State* L, T&& c) { + using f_tuple = decltype(std::forward<T>(c).upvalues); + int pushcount = multi_push(L, std::get<I>(std::forward<f_tuple>(std::forward<T>(c).upvalues))...); + return stack::push(L, c_closure(c.c_function, pushcount)); + } + + template <typename T> + static int push(lua_State* L, T&& c) { + return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c)); + } + }; + + template <> + struct unqualified_pusher<void*> { + static int push(lua_State* L, void* userdata) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, userdata); + return 1; + } + }; + + template <> + struct unqualified_pusher<const void*> { + static int push(lua_State* L, const void* userdata) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, const_cast<void*>(userdata)); + return 1; + } + }; + + template <> + struct unqualified_pusher<lightuserdata_value> { + static int push(lua_State* L, lightuserdata_value userdata) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, userdata); + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<light<T>> { + static int push(lua_State* L, light<T> l) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushlightuserdata(L, static_cast<void*>(l.value)); + return 1; + } + }; + + template <typename T> + struct unqualified_pusher<user<T>> { + template <bool with_meta = true, typename Key, typename... Args> + static int push_with(lua_State* L, Key&& name, Args&&... args) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + // A dumb pusher + T* data = detail::user_allocate<T>(L); + if (with_meta) { + // Make sure we have a plain GC set for this data +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + if (luaL_newmetatable(L, name) != 0) { + lua_CFunction cdel = detail::user_alloc_destruct<T>; + lua_pushcclosure(L, cdel, 0); + lua_setfield(L, -2, "__gc"); + } + lua_setmetatable(L, -2); + } + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...); + return 1; + } + + template <typename Arg, typename... Args> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + if constexpr (std::is_same_v<meta::unqualified_t<Arg>, metatable_key_t>) { + const auto name = &arg[0]; + return push_with<true>(L, name, std::forward<Args>(args)...); + } + else if constexpr (std::is_same_v<meta::unqualified_t<Arg>, no_metatable_t>) { + (void)arg; + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, std::forward<Args>(args)...); + } + else { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + } + + static int push(lua_State* L, const user<T>& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, u.value); + } + + static int push(lua_State* L, user<T>&& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, std::move(u.value)); + } + + static int push(lua_State* L, no_metatable_t, const user<T>& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, u.value); + } + + static int push(lua_State* L, no_metatable_t, user<T>&& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, std::move(u.value)); + } + }; + + template <> + struct unqualified_pusher<userdata_value> { + static int push(lua_State* L, userdata_value data) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata); +#endif // make sure stack doesn't overflow + void** ud = detail::usertype_allocate_pointer<void>(L); + *ud = data.value; + return 1; + } + }; + + template <> + struct unqualified_pusher<const char*> { + static int push_sized(lua_State* L, const char* str, std::size_t len) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str, len); + return 1; + } + + static int push(lua_State* L, const char* str) { + if (str == nullptr) + return stack::push(L, lua_nil); + return push_sized(L, str, std::char_traits<char>::length(str)); + } + + static int push(lua_State* L, const char* strb, const char* stre) { + return push_sized(L, strb, stre - strb); + } + + static int push(lua_State* L, const char* str, std::size_t len) { + return push_sized(L, str, len); + } + }; + + template <> + struct unqualified_pusher<char*> { + static int push_sized(lua_State* L, const char* str, std::size_t len) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push_sized(L, str, len); + } + + static int push(lua_State* L, const char* str) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char* strb, const char* stre) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char* str, std::size_t len) { + unqualified_pusher<const char*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <size_t N> + struct unqualified_pusher<char[N]> { + static int push(lua_State* L, const char (&str)[N]) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str, std::char_traits<char>::length(str)); + return 1; + } + + static int push(lua_State* L, const char (&str)[N], std::size_t sz) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str, sz); + return 1; + } + }; + + template <> + struct unqualified_pusher<char> { + static int push(lua_State* L, char c) { + const char str[2] = { c, '\0' }; + return stack::push(L, str, 1); + } + }; + + template <typename Ch, typename Traits, typename Al> + struct unqualified_pusher<std::basic_string<Ch, Traits, Al>> { + static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str) { + if constexpr (!std::is_same_v<Ch, char>) { + return stack::push(L, str.data(), str.size()); + } + else { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str.c_str(), str.size()); + return 1; + } + } + + static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str, std::size_t sz) { + if constexpr (!std::is_same_v<Ch, char>) { + return stack::push(L, str.data(), sz); + } + else { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_string); +#endif // make sure stack doesn't overflow + lua_pushlstring(L, str.c_str(), sz); + return 1; + } + } + }; + + template <typename Ch, typename Traits> + struct unqualified_pusher<basic_string_view<Ch, Traits>> { + static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) { + return stack::push(L, sv.data(), sv.length()); + } + + static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) { + return stack::push(L, sv.data(), n); + } + }; + + template <> + struct unqualified_pusher<meta_function> { + static int push(lua_State* L, meta_function m) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name); +#endif // make sure stack doesn't overflow + const std::string& str = to_string(m); + lua_pushlstring(L, str.c_str(), str.size()); + return 1; + } + }; + + template <> + struct unqualified_pusher<absolute_index> { + static int push(lua_State* L, absolute_index ai) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, ai); + return 1; + } + }; + + template <> + struct unqualified_pusher<raw_index> { + static int push(lua_State* L, raw_index ri) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_pushvalue(L, ri); + return 1; + } + }; + + template <> + struct unqualified_pusher<ref_index> { + static int push(lua_State* L, ref_index ri) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, 1, detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + lua_rawgeti(L, LUA_REGISTRYINDEX, ri); + return 1; + } + }; + + template <> + struct unqualified_pusher<const wchar_t*> { + static int push(lua_State* L, const wchar_t* wstr) { + return push(L, wstr, std::char_traits<wchar_t>::length(wstr)); + } + + static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) { + return push(L, wstr, wstr + sz); + } + + static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { + if constexpr (sizeof(wchar_t) == 2) { + const char16_t* sb = reinterpret_cast<const char16_t*>(strb); + const char16_t* se = reinterpret_cast<const char16_t*>(stre); + return stack::push(L, sb, se); + } + else { + const char32_t* sb = reinterpret_cast<const char32_t*>(strb); + const char32_t* se = reinterpret_cast<const char32_t*>(stre); + return stack::push(L, sb, se); + } + } + }; + + template <> + struct unqualified_pusher<wchar_t*> { + static int push(lua_State* L, const wchar_t* str) { + unqualified_pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { + unqualified_pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const wchar_t* str, std::size_t len) { + unqualified_pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <> + struct unqualified_pusher<const char16_t*> { + static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) { + char* target = start; + char32_t cp = 0; + for (const char16_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf16_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf8(cp); + const char* utf8data = er.code_units.data(); + std::memcpy(target, utf8data, er.code_units_size); + target += er.code_units_size; + strtarget = dr.next; + } + + return stack::push(L, start, target); + } + + static int push(lua_State* L, const char16_t* u16str) { + return push(L, u16str, std::char_traits<char16_t>::length(u16str)); + } + + static int push(lua_State* L, const char16_t* u16str, std::size_t sz) { + return push(L, u16str, u16str + sz); + } + + static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { + char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; + // if our max string space is small enough, use SBO + // right off the bat + std::size_t max_possible_code_units = (stre - strb) * 4; + if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, max_possible_code_units, strb, stre); + } + // otherwise, we must manually count/check size + std::size_t needed_size = 0; + for (const char16_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf16_to_code_point(strtarget, stre); + auto er = unicode::code_point_to_utf8(dr.codepoint); + needed_size += er.code_units_size; + strtarget = dr.next; + } + if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, needed_size, strb, stre); + } + std::string u8str("", 0); + u8str.resize(needed_size); + char* target = &u8str[0]; + return convert_into(L, target, needed_size, strb, stre); + } + }; + + template <> + struct unqualified_pusher<char16_t*> { + static int push(lua_State* L, const char16_t* str) { + unqualified_pusher<const char16_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { + unqualified_pusher<const char16_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char16_t* str, std::size_t len) { + unqualified_pusher<const char16_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <> + struct unqualified_pusher<const char32_t*> { + static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) { + char* target = start; + char32_t cp = 0; + for (const char32_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf32_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf8(cp); + const char* data = er.code_units.data(); + std::memcpy(target, data, er.code_units_size); + target += er.code_units_size; + strtarget = dr.next; + } + return stack::push(L, start, target); + } + + static int push(lua_State* L, const char32_t* u32str) { + return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str)); + } + + static int push(lua_State* L, const char32_t* u32str, std::size_t sz) { + return push(L, u32str, u32str + sz); + } + + static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { + char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; + // if our max string space is small enough, use SBO + // right off the bat + std::size_t max_possible_code_units = (stre - strb) * 4; + if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, max_possible_code_units, strb, stre); + } + // otherwise, we must manually count/check size + std::size_t needed_size = 0; + for (const char32_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf32_to_code_point(strtarget, stre); + auto er = unicode::code_point_to_utf8(dr.codepoint); + needed_size += er.code_units_size; + strtarget = dr.next; + } + if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, needed_size, strb, stre); + } + std::string u8str("", 0); + u8str.resize(needed_size); + char* target = &u8str[0]; + return convert_into(L, target, needed_size, strb, stre); + } + }; + + template <> + struct unqualified_pusher<char32_t*> { + static int push(lua_State* L, const char32_t* str) { + unqualified_pusher<const char32_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { + unqualified_pusher<const char32_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char32_t* str, std::size_t len) { + unqualified_pusher<const char32_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <size_t N> + struct unqualified_pusher<wchar_t[N]> { + static int push(lua_State* L, const wchar_t (&str)[N]) { + return push(L, str, std::char_traits<wchar_t>::length(str)); + } + + static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) { + return stack::push<const wchar_t*>(L, str, str + sz); + } + }; + + template <size_t N> + struct unqualified_pusher<char16_t[N]> { + static int push(lua_State* L, const char16_t (&str)[N]) { + return push(L, str, std::char_traits<char16_t>::length(str)); + } + + static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) { + return stack::push<const char16_t*>(L, str, str + sz); + } + }; + + template <size_t N> + struct unqualified_pusher<char32_t[N]> { + static int push(lua_State* L, const char32_t (&str)[N]) { + return push(L, str, std::char_traits<char32_t>::length(str)); + } + + static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) { + return stack::push<const char32_t*>(L, str, str + sz); + } + }; + + template <> + struct unqualified_pusher<wchar_t> { + static int push(lua_State* L, wchar_t c) { + const wchar_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <> + struct unqualified_pusher<char16_t> { + static int push(lua_State* L, char16_t c) { + const char16_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <> + struct unqualified_pusher<char32_t> { + static int push(lua_State* L, char32_t c) { + const char32_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <typename... Args> + struct unqualified_pusher<std::tuple<Args...>> { + template <std::size_t... I, typename T> + static int push(std::index_sequence<I...>, lua_State* L, T&& t) { +#if defined(SOL_SAFE_STACK_CHECK) && SOL_SAFE_STACK_CHECK + luaL_checkstack(L, static_cast<int>(sizeof...(I)), detail::not_enough_stack_space_generic); +#endif // make sure stack doesn't overflow + int pushcount = 0; + (void)detail::swallow{ 0, (pushcount += stack::push(L, std::get<I>(std::forward<T>(t))), 0)... }; + return pushcount; + } + + template <typename T> + static int push(lua_State* L, T&& t) { + return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t)); + } + }; + + template <typename A, typename B> + struct unqualified_pusher<std::pair<A, B>> { + template <typename T> + static int push(lua_State* L, T&& t) { + int pushcount = stack::push(L, std::get<0>(std::forward<T>(t))); + pushcount += stack::push(L, std::get<1>(std::forward<T>(t))); + return pushcount; + } + }; + + template <typename O> + struct unqualified_pusher<optional<O>> { + template <typename T> + static int push(lua_State* L, T&& t) { + if (t == nullopt) { + return stack::push(L, nullopt); + } + return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); + } + }; + + template <> + struct unqualified_pusher<nullopt_t> { + static int push(lua_State* L, nullopt_t) { + return stack::push(L, lua_nil); + } + }; + + template <> + struct unqualified_pusher<std::nullptr_t> { + static int push(lua_State* L, std::nullptr_t) { + return stack::push(L, lua_nil); + } + }; + + template <> + struct unqualified_pusher<this_state> { + static int push(lua_State*, const this_state&) { + return 0; + } + }; + + template <> + struct unqualified_pusher<this_main_state> { + static int push(lua_State*, const this_main_state&) { + return 0; + } + }; + + template <> + struct unqualified_pusher<new_table> { + static int push(lua_State* L, const new_table& nt) { + lua_createtable(L, nt.sequence_hint, nt.map_hint); + return 1; + } + }; + + template <typename Allocator> + struct unqualified_pusher<basic_bytecode<Allocator>> { + template <typename T> + static int push(lua_State* L, T&& bc, const char* bytecode_name) { + const auto first = bc.data(); + const auto bcsize = bc.size(); + // pushes either the function, or an error + // if it errors, shit goes south, and people can test that upstream + (void)luaL_loadbuffer(L, reinterpret_cast<const char*>(first), static_cast<std::size_t>(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name); + return 1; + } + + template <typename T> + static int push(lua_State* L, T&& bc) { + return push(L, std::forward<bc>(bc), "bytecode"); + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename O> + struct unqualified_pusher<std::optional<O>> { + template <typename T> + static int push(lua_State* L, T&& t) { + if (t == std::nullopt) { + return stack::push(L, nullopt); + } + return stack::push(L, static_cast<meta::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); + } + }; + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + namespace stack_detail { + + struct push_function { + lua_State* L; + + push_function(lua_State* L) : L(L) { + } + + template <typename T> + int operator()(T&& value) const { + return stack::push<T>(L, std::forward<T>(value)); + } + }; + + } // namespace stack_detail + + template <typename... Tn> + struct unqualified_pusher<std::variant<Tn...>> { + static int push(lua_State* L, const std::variant<Tn...>& v) { + return std::visit(stack_detail::push_function(L), v); + } + + static int push(lua_State* L, std::variant<Tn...>&& v) { + return std::visit(stack_detail::push_function(L), std::move(v)); + } + }; +#endif // Variant because Clang is terrible +#endif // C++17 Support + } +} // namespace sol::stack + +#endif // SOL_STACK_PUSH_HPP |