aboutsummaryrefslogtreecommitdiffstats
path: root/lib/sol2/include/sol/stack_core.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/sol2/include/sol/stack_core.hpp')
-rw-r--r--lib/sol2/include/sol/stack_core.hpp1436
1 files changed, 1436 insertions, 0 deletions
diff --git a/lib/sol2/include/sol/stack_core.hpp b/lib/sol2/include/sol/stack_core.hpp
new file mode 100644
index 0000000..3b37210
--- /dev/null
+++ b/lib/sol2/include/sol/stack_core.hpp
@@ -0,0 +1,1436 @@
+// sol3
+
+// The MIT License (MIT)
+
+// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files (the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software is furnished to do so,
+// subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#ifndef SOL_STACK_CORE_HPP
+#define SOL_STACK_CORE_HPP
+
+#include "types.hpp"
+#include "inheritance.hpp"
+#include "error_handler.hpp"
+#include "reference.hpp"
+#include "stack_reference.hpp"
+#include "tuple.hpp"
+#include "traits.hpp"
+#include "tie.hpp"
+#include "stack_guard.hpp"
+#include "demangle.hpp"
+#include "forward_detail.hpp"
+
+#include <vector>
+#include <bitset>
+#include <forward_list>
+#include <string>
+#include <algorithm>
+#include <sstream>
+#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
+#include <optional>
+#endif // C++17
+
+namespace sol {
+ namespace detail {
+ struct with_function_tag {};
+ struct as_reference_tag {};
+ template <typename T>
+ struct as_pointer_tag {};
+ template <typename T>
+ struct as_value_tag {};
+ template <typename T>
+ struct as_table_tag {};
+
+ using lua_reg_table = luaL_Reg[64];
+
+ using unique_destructor = void (*)(void*);
+ using unique_tag = detail::inheritance_unique_cast_function;
+
+ inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) {
+ // this handels arbitrary alignments...
+ // make this into a power-of-2-only?
+ // actually can't: this is a C++14-compatible framework,
+ // power of 2 alignment is C++17
+ std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr);
+ std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment);
+ std::uintptr_t padding = (alignment - offby) % alignment;
+ required_space += size + padding;
+ if (space < required_space) {
+ return nullptr;
+ }
+ ptr = static_cast<void*>(static_cast<char*>(ptr) + padding);
+ space -= padding;
+ return ptr;
+ }
+
+ inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) {
+ std::size_t required_space = 0;
+ return align(alignment, size, ptr, space, required_space);
+ }
+
+ inline void align_one(std::size_t a, std::size_t s, void*& target_alignment) {
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ target_alignment = align(a, s, target_alignment, space);
+ target_alignment = static_cast<void*>(static_cast<char*>(target_alignment) + s);
+ }
+
+ template <typename... Args>
+ std::size_t aligned_space_for(void* alignment = nullptr) {
+ char* start = static_cast<char*>(alignment);
+ (void)detail::swallow{ int{}, (align_one(std::alignment_of_v<Args>, sizeof(Args), alignment), int{})... };
+ return static_cast<char*>(alignment) - start;
+ }
+
+ inline void* align_usertype_pointer(void* ptr) {
+ using use_align = std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<void*>::value > 1)
+#endif
+ >;
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space);
+ }
+
+ template <bool pre_aligned = false, bool pre_shifted = false>
+ void* align_usertype_unique_destructor(void* ptr) {
+ using use_align = std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<unique_destructor>::value > 1)
+#endif
+ >;
+ if (!pre_aligned) {
+ ptr = align_usertype_pointer(ptr);
+ }
+ if (!pre_shifted) {
+ ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
+ }
+ if (!use_align::value) {
+ return static_cast<void*>(static_cast<void**>(ptr) + 1);
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space);
+ }
+
+ template <bool pre_aligned = false, bool pre_shifted = false>
+ void* align_usertype_unique_tag(void* ptr) {
+ using use_align = std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<unique_tag>::value > 1)
+#endif
+ >;
+ if (!pre_aligned) {
+ ptr = align_usertype_unique_destructor(ptr);
+ }
+ if (!pre_shifted) {
+ ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
+ }
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space);
+ }
+
+ template <typename T, bool pre_aligned = false, bool pre_shifted = false>
+ void* align_usertype_unique(void* ptr) {
+ typedef std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<T>::value > 1)
+#endif
+ >
+ use_align;
+ if (!pre_aligned) {
+ ptr = align_usertype_unique_tag(ptr);
+ }
+ if (!pre_shifted) {
+ ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag));
+ }
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
+ }
+
+ template <typename T>
+ void* align_user(void* ptr) {
+ typedef std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<T>::value > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ return ptr;
+ }
+ std::size_t space = (std::numeric_limits<std::size_t>::max)();
+ return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
+ }
+
+ template <typename T>
+ T** usertype_allocate_pointer(lua_State* L) {
+ typedef std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<T*>::value > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
+ return pointerpointer;
+ }
+ static const std::size_t initial_size = aligned_space_for<T*>(nullptr);
+ static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1));
+
+ std::size_t allocated_size = initial_size;
+ void* unadjusted = lua_newuserdata(L, initial_size);
+ void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
+ if (adjusted == nullptr) {
+ lua_pop(L, 1);
+ // what kind of absolute garbage trash allocator are we dealing with?
+ // whatever, add some padding in the case of MAXIMAL alignment waste...
+ allocated_size = misaligned_size;
+ unadjusted = lua_newuserdata(L, allocated_size);
+ adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
+ if (adjusted == nullptr) {
+ // trash allocator can burn in hell
+ lua_pop(L, 1);
+ // luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a
+ // worse job than malloc/realloc and should go read some books, yeah?");
+ luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
+ }
+ }
+ return static_cast<T**>(adjusted);
+ }
+
+ inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align, std::size_t value_size,
+ std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) {
+ void* adjusted = lua_newuserdata(L, allocated_size);
+ pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
+ if (pointer_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ // subtract size of what we're going to allocate there
+ allocated_size -= ptr_size;
+ adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
+ data_adjusted = align(value_align, value_size, adjusted, allocated_size);
+ if (data_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ return true;
+ }
+
+ inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align, std::size_t real_size,
+ std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) {
+ void* adjusted = lua_newuserdata(L, allocated_size);
+ pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
+ if (pointer_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ allocated_size -= ptr_size;
+
+ adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
+ dx_adjusted = align(std::alignment_of_v<unique_destructor>, sizeof(unique_destructor), adjusted, allocated_size);
+ if (dx_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ allocated_size -= sizeof(unique_destructor);
+
+ adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
+
+ id_adjusted = align(std::alignment_of_v<unique_tag>, sizeof(unique_tag), adjusted, allocated_size);
+ if (id_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ allocated_size -= sizeof(unique_tag);
+
+ adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag));
+ data_adjusted = align(real_align, real_size, adjusted, allocated_size);
+ if (data_adjusted == nullptr) {
+ lua_pop(L, 1);
+ return false;
+ }
+ return true;
+ }
+
+ template <typename T>
+ T* usertype_allocate(lua_State* L) {
+ typedef std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
+ T*& pointerreference = *pointerpointer;
+ T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
+ pointerreference = allocationtarget;
+ return allocationtarget;
+ }
+
+ /* the assumption is that `lua_newuserdata` -- unless someone
+ passes a specific lua_Alloc that gives us bogus, un-aligned pointers
+ -- uses malloc, which tends to hand out more or less aligned pointers to memory
+ (most of the time, anyhow)
+
+ but it's not guaranteed, so we have to do a post-adjustment check and increase padding
+
+ we do this preliminarily with compile-time stuff, to see
+ if we strike lucky with the allocator and alignment values
+
+ otherwise, we have to re-allocate the userdata and
+ over-allocate some space for additional padding because
+ compilers are optimized for aligned reads/writes
+ (and clang will barf UBsan errors on us for not being aligned)
+ */
+ static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr);
+ static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1));
+
+ void* pointer_adjusted;
+ void* data_adjusted;
+ bool result
+ = attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), initial_size, pointer_adjusted, data_adjusted);
+ if (!result) {
+ // we're likely to get something that fails to perform the proper allocation a second time,
+ // so we use the suggested_new_size bump to help us out here
+ pointer_adjusted = nullptr;
+ data_adjusted = nullptr;
+ result = attempt_alloc(
+ L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), misaligned_size, pointer_adjusted, data_adjusted);
+ if (!result) {
+ if (pointer_adjusted == nullptr) {
+ luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ else {
+ luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ return nullptr;
+ }
+ }
+
+ T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
+ T*& pointerreference = *pointerpointer;
+ T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
+ pointerreference = allocationtarget;
+ return allocationtarget;
+ }
+
+ template <typename T, typename Real>
+ Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) {
+ typedef std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1
+ || std::alignment_of<Real>::value > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real)));
+ dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
+ id = static_cast<unique_tag*>(static_cast<void*>(dx + 1));
+ Real* mem = static_cast<Real*>(static_cast<void*>(id + 1));
+ return mem;
+ }
+
+ static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr);
+ static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1));
+
+ void* pointer_adjusted;
+ void* dx_adjusted;
+ void* id_adjusted;
+ void* data_adjusted;
+ bool result = attempt_alloc_unique(L,
+ std::alignment_of_v<T*>,
+ sizeof(T*),
+ std::alignment_of_v<Real>,
+ sizeof(Real),
+ initial_size,
+ pointer_adjusted,
+ dx_adjusted,
+ id_adjusted,
+ data_adjusted);
+ if (!result) {
+ // we're likely to get something that fails to perform the proper allocation a second time,
+ // so we use the suggested_new_size bump to help us out here
+ pointer_adjusted = nullptr;
+ dx_adjusted = nullptr;
+ id_adjusted = nullptr;
+ data_adjusted = nullptr;
+ result = attempt_alloc_unique(L,
+ std::alignment_of_v<T*>,
+ sizeof(T*),
+ std::alignment_of_v<Real>,
+ sizeof(Real),
+ misaligned_size,
+ pointer_adjusted,
+ dx_adjusted,
+ id_adjusted,
+ data_adjusted);
+ if (!result) {
+ if (pointer_adjusted == nullptr) {
+ luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ else if (dx_adjusted == nullptr) {
+ luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ else {
+ luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
+ }
+ return nullptr;
+ }
+ }
+
+ pref = static_cast<T**>(pointer_adjusted);
+ dx = static_cast<detail::unique_destructor*>(dx_adjusted);
+ id = static_cast<unique_tag*>(id_adjusted);
+ Real* mem = static_cast<Real*>(data_adjusted);
+ return mem;
+ }
+
+ template <typename T>
+ T* user_allocate(lua_State* L) {
+ typedef std::integral_constant<bool,
+#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
+ false
+#else
+ (std::alignment_of<T>::value > 1)
+#endif
+ >
+ use_align;
+ if (!use_align::value) {
+ T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T)));
+ return pointer;
+ }
+
+ static const std::size_t initial_size = aligned_space_for<T>(nullptr);
+ static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1));
+
+ std::size_t allocated_size = initial_size;
+ void* unadjusted = lua_newuserdata(L, allocated_size);
+ void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
+ if (adjusted == nullptr) {
+ lua_pop(L, 1);
+ // try again, add extra space for alignment padding
+ allocated_size = misaligned_size;
+ unadjusted = lua_newuserdata(L, allocated_size);
+ adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
+ if (adjusted == nullptr) {
+ lua_pop(L, 1);
+ luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
+ }
+ }
+ return static_cast<T*>(adjusted);
+ }
+
+ template <typename T>
+ int usertype_alloc_destruct(lua_State* L) {
+ void* memory = lua_touserdata(L, 1);
+ memory = align_usertype_pointer(memory);
+ T** pdata = static_cast<T**>(memory);
+ T* data = *pdata;
+ std::allocator<T> alloc{};
+ std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
+ return 0;
+ }
+
+ template <typename T>
+ int unique_destruct(lua_State* L) {
+ void* memory = lua_touserdata(L, 1);
+ memory = align_usertype_unique_destructor(memory);
+ unique_destructor& dx = *static_cast<unique_destructor*>(memory);
+ memory = align_usertype_unique_tag<true>(memory);
+ (dx)(memory);
+ return 0;
+ }
+
+ template <typename T>
+ int user_alloc_destruct(lua_State* L) {
+ void* memory = lua_touserdata(L, 1);
+ memory = align_user<T>(memory);
+ T* data = static_cast<T*>(memory);
+ std::allocator<T> alloc;
+ std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
+ return 0;
+ }
+
+ template <typename T, typename Real>
+ void usertype_unique_alloc_destroy(void* memory) {
+ memory = align_usertype_unique<Real, true>(memory);
+ Real* target = static_cast<Real*>(memory);
+ std::allocator<Real> alloc;
+ std::allocator_traits<std::allocator<Real>>::destroy(alloc, target);
+ }
+
+ template <typename T>
+ int cannot_destruct(lua_State* L) {
+ return luaL_error(L,
+ "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= "
+ "delete' and thusly this type is being destroyed without properly destructing, invoking undefined "
+ "behavior: please bind a usertype and specify a custom destructor to define the behavior properly",
+ detail::demangle<T>().data());
+ }
+
+ template <typename T>
+ void reserve(T&, std::size_t) {
+ }
+
+ template <typename T, typename Al>
+ void reserve(std::vector<T, Al>& vec, std::size_t hint) {
+ vec.reserve(hint);
+ }
+
+ template <typename T, typename Tr, typename Al>
+ void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) {
+ str.reserve(hint);
+ }
+
+ inline bool property_always_true(meta_function) {
+ return true;
+ }
+
+ struct properties_enrollment_allowed {
+ int& times_through;
+ std::bitset<64>& properties;
+ automagic_enrollments& enrollments;
+
+ properties_enrollment_allowed(int& times, std::bitset<64>& props, automagic_enrollments& enroll) : times_through(times), properties(props), enrollments(enroll) {
+ }
+
+ bool operator()(meta_function mf) const {
+ bool p = properties[static_cast<int>(mf)];
+ if (times_through > 0) {
+ return p;
+ }
+ switch (mf) {
+ case meta_function::length:
+ return enrollments.length_operator && !p;
+ case meta_function::pairs:
+ return enrollments.pairs_operator && !p;
+ case meta_function::call:
+ return enrollments.call_operator && !p;
+ case meta_function::less_than:
+ return enrollments.less_than_operator && !p;
+ case meta_function::less_than_or_equal_to:
+ return enrollments.less_than_or_equal_to_operator && !p;
+ case meta_function::equal_to:
+ return enrollments.equal_to_operator && !p;
+ default:
+ break;
+ }
+ return !p;
+ }
+ };
+
+ struct indexed_insert {
+ lua_reg_table& l;
+ int& index;
+
+ indexed_insert(lua_reg_table& cont, int& idx) : l(cont), index(idx) {
+ }
+ void operator()(meta_function mf, lua_CFunction f) {
+ l[index] = luaL_Reg{ to_string(mf).c_str(), f };
+ ++index;
+ }
+ };
+ } // namespace detail
+
+ namespace stack {
+
+ template <typename T, bool global = false, bool raw = false, typename = void>
+ struct field_getter;
+ template <typename T, typename P, bool global = false, bool raw = false, typename = void>
+ struct probe_field_getter;
+
+ template <typename T, bool global = false, bool raw = false, typename = void>
+ struct field_setter;
+
+ template <typename T, typename = void>
+ struct unqualified_getter;
+ template <typename T, typename = void>
+ struct qualified_getter;
+
+ template <typename T, typename = void>
+ struct qualified_interop_getter;
+ template <typename T, typename = void>
+ struct unqualified_interop_getter;
+
+ template <typename T, typename = void>
+ struct popper;
+
+ template <typename T, typename = void>
+ struct unqualified_pusher;
+
+ template <typename T, type t, typename = void>
+ struct unqualified_checker;
+ template <typename T, type t, typename = void>
+ struct qualified_checker;
+
+ template <typename T, typename = void>
+ struct unqualified_check_getter;
+ template <typename T, typename = void>
+ struct qualified_check_getter;
+
+ struct probe {
+ bool success;
+ int levels;
+
+ probe(bool s, int l) : success(s), levels(l) {
+ }
+
+ operator bool() const {
+ return success;
+ };
+ };
+
+ struct record {
+ int last;
+ int used;
+
+ record() : last(), used() {
+ }
+ void use(int count) {
+ last = count;
+ used += count;
+ }
+ };
+
+ } // namespace stack
+
+ namespace meta { namespace meta_detail {
+
+ template <typename T>
+ using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_interop_get_test_t
+ = decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_interop_check_test_t
+ = decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, no_panic, std::declval<stack::record&>()));
+
+ template <typename T>
+ using adl_sol_lua_check_get_test_t
+ = decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));
+
+ template <typename... Args>
+ using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...));
+
+ template <typename T, typename... Args>
+ using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...));
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>;
+
+ template <typename T>
+ inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>;
+
+ template <typename... Args>
+ inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>;
+
+ template <typename T, typename... Args>
+ inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>;
+ }} // namespace meta::meta_detail
+
+
+ namespace stack {
+ namespace stack_detail {
+ constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
+ constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
+ constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
+ constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
+ constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
+ constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata";
+ constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
+ constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
+
+ template <typename T>
+ struct strip {
+ typedef T type;
+ };
+ template <typename T>
+ struct strip<std::reference_wrapper<T>> {
+ typedef T& type;
+ };
+ template <typename T>
+ struct strip<user<T>> {
+ typedef T& type;
+ };
+ template <typename T>
+ struct strip<non_null<T>> {
+ typedef T type;
+ };
+ template <typename T>
+ using strip_t = typename strip<T>::type;
+
+ template <typename C>
+ static int get_size_hint(C& c) {
+ return static_cast<int>(c.size());
+ }
+
+ template <typename V, typename Al>
+ static int get_size_hint(const std::forward_list<V, Al>&) {
+ // forward_list makes me sad
+ return static_cast<int>(32);
+ }
+
+ template <typename T>
+ decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) {
+ return sol_lua_get(types<Tu>(), L, index, tracking);
+ }
+ else {
+ unqualified_getter<Tu> g{};
+ (void)g;
+ return g.get(L, index, tracking);
+ }
+ }
+
+ template <typename T>
+ decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) {
+ return sol_lua_get(types<T>(), L, index, tracking);
+ }
+ else {
+ qualified_getter<T> g{};
+ (void)g;
+ return g.get(L, index, tracking);
+ }
+ }
+
+ template <typename T>
+ decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) {
+ return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking);
+ }
+ else {
+ (void)L;
+ (void)index;
+ (void)unadjusted_pointer;
+ (void)tracking;
+ using Ti = stack_detail::strip_t<Tu>;
+ return std::pair<bool, Ti*>{ false, nullptr };
+ }
+ }
+
+ template <typename T>
+ decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) {
+ return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking);
+ }
+ else {
+ return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) {
+ return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ (void)L;
+ (void)index;
+ (void)index_type;
+ (void)handler;
+ (void)tracking;
+ return false;
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) {
+ return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ using undefined_method_func = void (*)(stack_reference);
+
+ struct undefined_metatable {
+ lua_State* L;
+ const char* key;
+ undefined_method_func on_new_table;
+
+ undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) {
+ }
+
+ void operator()() const {
+ if (luaL_newmetatable(L, key) == 1) {
+ on_new_table(stack_reference(L, -1));
+ }
+ lua_setmetatable(L, -2);
+ }
+ };
+ } // namespace stack_detail
+
+ inline bool maybe_indexable(lua_State* L, int index = -1) {
+ type t = type_of(L, index);
+ return t == type::userdata || t == type::table;
+ }
+
+ inline int top(lua_State* L) {
+ return lua_gettop(L);
+ }
+
+ inline bool is_main_thread(lua_State* L) {
+ int ismainthread = lua_pushthread(L);
+ lua_pop(L, 1);
+ return ismainthread == 1;
+ }
+
+ inline void coroutine_create_guard(lua_State* L) {
+ if (is_main_thread(L)) {
+ return;
+ }
+ int stacksize = lua_gettop(L);
+ if (stacksize < 1) {
+ return;
+ }
+ if (type_of(L, 1) != type::function) {
+ return;
+ }
+ // well now we're screwed...
+ // we can clean the stack and pray it doesn't destroy anything?
+ lua_pop(L, stacksize);
+ }
+
+ inline void clear(lua_State* L, int table_index) {
+ lua_pushnil(L);
+ while (lua_next(L, table_index) != 0) {
+ // remove value
+ lua_pop(L, 1);
+ // duplicate key to protect form rawset
+ lua_pushvalue(L, -1);
+ // push new value
+ lua_pushnil(L);
+ // table_index%[key] = nil
+ lua_rawset(L, table_index);
+ }
+ }
+
+ inline void clear(reference& r) {
+ auto pp = push_pop<false>(r);
+ int stack_index = pp.index_of(r);
+ clear(r.lua_state(), stack_index);
+ }
+
+ inline void clear(stack_reference& r) {
+ clear(r.lua_state(), r.stack_index());
+ }
+
+ template <typename T, typename... Args>
+ int push(lua_State* L, T&& t, Args&&... args) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) {
+ return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) {
+ return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) {
+ return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ else {
+ unqualified_pusher<Tu> p{};
+ (void)p;
+ return p.push(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+ }
+
+ // overload allows to use a pusher of a specific type, but pass in any kind of args
+ template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
+ int push(lua_State* L, Arg&& arg, Args&&... args) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) {
+ return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) {
+ return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...>) {
+ return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ else {
+ unqualified_pusher<Tu> p{};
+ (void)p;
+ return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+ }
+
+ namespace stack_detail {
+
+ template <typename T, typename Arg, typename... Args>
+ int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
+ using use_reference_tag = meta::all<std::is_lvalue_reference<T>,
+ meta::neg<std::is_const<T>>,
+ meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
+ meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>;
+ using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>;
+ return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+
+ } // namespace stack_detail
+
+ template <typename T, typename... Args>
+ int push_reference(lua_State* L, T&& t, Args&&... args) {
+ return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
+ }
+
+ template <typename T, typename Arg, typename... Args>
+ int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
+ return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
+ }
+
+ inline int multi_push(lua_State*) {
+ // do nothing
+ return 0;
+ }
+
+ template <typename T, typename... Args>
+ int multi_push(lua_State* L, T&& t, Args&&... args) {
+ int pushcount = push(L, std::forward<T>(t));
+ void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
+ return pushcount;
+ }
+
+ inline int multi_push_reference(lua_State*) {
+ // do nothing
+ return 0;
+ }
+
+ template <typename T, typename... Args>
+ int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
+ int pushcount = push_reference(L, std::forward<T>(t));
+ void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
+ return pushcount;
+ }
+
+ template <typename T, typename Handler>
+ bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) {
+ return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ unqualified_checker<Tu, lua_type_of_v<Tu>> c;
+ // VC++ has a bad warning here: shut it up
+ (void)c;
+ return c.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool unqualified_check(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T>
+ bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = no_panic;
+ return unqualified_check<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) {
+ return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ using Tu = meta::unqualified_t<T>;
+ qualified_checker<T, lua_type_of_v<Tu>> c;
+ // VC++ has a bad warning here: shut it up
+ (void)c;
+ return c.check(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ bool check(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return check<T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T>
+ bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = no_panic;
+ return check<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
+ return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T, typename Handler>
+ bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
+ return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T, typename Handler>
+ bool check_usertype(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename T>
+ bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = no_panic;
+ return check_usertype<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ using Tu = meta::unqualified_t<T>;
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
+ return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) {
+ return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ unqualified_check_getter<Tu> cg{};
+ (void)cg;
+ return cg.get(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return unqualified_check_get<T>(L, index, handler, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = no_panic;
+ return unqualified_check_get<T>(L, index, handler);
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
+ if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
+ return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
+ }
+ else {
+ qualified_check_getter<T> cg{};
+ (void)cg;
+ return cg.get(L, index, std::forward<Handler>(handler), tracking);
+ }
+ }
+
+ template <typename T, typename Handler>
+ decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return check_get<T>(L, index, handler, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ auto handler = no_panic;
+ return check_get<T>(L, index, handler);
+ }
+
+ namespace stack_detail {
+
+ template <typename Handler>
+ bool check_types(lua_State*, int, Handler&&, record&) {
+ return true;
+ }
+
+ template <typename T, typename... Args, typename Handler>
+ bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) {
+ if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
+ return false;
+ return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename... Args, typename Handler>
+ bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) {
+ return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ } // namespace stack_detail
+
+ template <typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
+ return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename... Args, typename Handler>
+ bool multi_check(lua_State* L, int index, Handler&& handler) {
+ record tracking{};
+ return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
+ }
+
+ template <typename... Args>
+ bool multi_check(lua_State* L, int index) {
+ return multi_check<Args...>(L, index);
+ }
+
+ template <typename T>
+ auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) {
+#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
+ static constexpr bool is_op = meta::is_specialization_of_v<T, optional>
+#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
+ || meta::is_specialization_of_v<T, std::optional>
+#endif
+ ;
+ if constexpr (is_op) {
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+ }
+ else {
+ if (is_lua_reference<T>::value) {
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+ }
+ auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking);
+ return *std::move(op);
+ }
+#else
+ return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
+#endif
+ }
+
+ template <typename T>
+ decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ record tracking{};
+ return unqualified_get<T>(L, index, tracking);
+ }
+
+ template <typename T>
+ auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
+#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
+ static constexpr bool is_op = meta::is_specialization_of_v<T, optional>
+#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
+ || meta::is_specialization_of_v<T, std::optional>
+#endif
+ ;
+ if constexpr (is_op) {
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+ }
+ else {
+ if (is_lua_reference<T>::value) {
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+ }
+ auto op = check_get<T>(L, index, type_panic_c_str, tracking);
+ return *std::move(op);
+ }
+#else
+ return stack_detail::unchecked_get<T>(L, index, tracking);
+#endif
+ }
+
+ template <typename T>
+ decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ record tracking{};
+ return get<T>(L, index, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
+ using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>;
+ return get<UT>(L, index, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
+ record tracking{};
+ return get_usertype<T>(L, index, tracking);
+ }
+
+ template <typename T>
+ decltype(auto) pop(lua_State* L) {
+ return popper<meta::unqualified_t<T>>{}.pop(L);
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ void get_field(lua_State* L, Key&& key) {
+ field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, bool raw = false, typename Key>
+ void get_field(lua_State* L, Key&& key, int tableindex) {
+ field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, typename Key>
+ void raw_get_field(lua_State* L, Key&& key) {
+ get_field<global, true>(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, typename Key>
+ void raw_get_field(lua_State* L, Key&& key, int tableindex) {
+ get_field<global, true>(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_get_field(lua_State* L, Key&& key) {
+ return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
+ return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_raw_get_field(lua_State* L, Key&& key) {
+ return probe_get_field<global, true, C>(L, std::forward<Key>(key));
+ }
+
+ template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
+ probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
+ return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex);
+ }
+
+ template <bool global = false, bool raw = false, typename Key, typename Value>
+ void set_field(lua_State* L, Key&& key, Value&& value) {
+ field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <bool global = false, bool raw = false, typename Key, typename Value>
+ void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
+ field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
+ }
+
+ template <bool global = false, typename Key, typename Value>
+ void raw_set_field(lua_State* L, Key&& key, Value&& value) {
+ set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
+ }
+
+ template <bool global = false, typename Key, typename Value>
+ void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
+ set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
+ }
+
+ template <typename T, typename F>
+ void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
+ using u_traits = unique_usertype_traits<T>;
+ void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
+ void* ptr_memory = detail::align_usertype_pointer(raw);
+ void* uu_memory = detail::align_usertype_unique<T>(raw);
+ T& uu = *static_cast<T*>(uu_memory);
+ f(uu);
+ *static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu));
+ }
+
+ template <typename F>
+ void modify_unique_usertype(const stack_reference& obj, F&& f) {
+ using bt = meta::bind_traits<meta::unqualified_t<F>>;
+ using T = typename bt::template arg_at<0>;
+ using Tu = meta::unqualified_t<T>;
+ modify_unique_usertype_as<Tu>(obj, std::forward<F>(f));
+ }
+
+ } // namespace stack
+
+ namespace detail {
+
+ template <typename T>
+ lua_CFunction make_destructor(std::true_type) {
+ if constexpr (is_unique_usertype_v<T>) {
+ return &unique_destruct<T>;
+ }
+ else if constexpr (!std::is_pointer_v<T>) {
+ return &usertype_alloc_destruct<T>;
+ }
+ else {
+ return &cannot_destruct<T>;
+ }
+ }
+
+ template <typename T>
+ lua_CFunction make_destructor(std::false_type) {
+ return &cannot_destruct<T>;
+ }
+
+ template <typename T>
+ lua_CFunction make_destructor() {
+ return make_destructor<T>(std::is_destructible<T>());
+ }
+
+ struct no_comp {
+ template <typename A, typename B>
+ bool operator()(A&&, B&&) const {
+ return false;
+ }
+ };
+
+ template <typename T>
+ int is_check(lua_State* L) {
+ return stack::push(L, stack::check<T>(L, 1, &no_panic));
+ }
+
+ template <typename T>
+ int member_default_to_string(std::true_type, lua_State* L) {
+ decltype(auto) ts = stack::get<T>(L, 1).to_string();
+ return stack::push(L, std::forward<decltype(ts)>(ts));
+ }
+
+ template <typename T>
+ int member_default_to_string(std::false_type, lua_State* L) {
+ return luaL_error(L,
+ "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member "
+ "function, or operator<<(ostream&, ...) present",
+ detail::demangle<T>().data());
+ }
+
+ template <typename T>
+ int adl_default_to_string(std::true_type, lua_State* L) {
+ using namespace std;
+ decltype(auto) ts = to_string(stack::get<T>(L, 1));
+ return stack::push(L, std::forward<decltype(ts)>(ts));
+ }
+
+ template <typename T>
+ int adl_default_to_string(std::false_type, lua_State* L) {
+ return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
+ }
+
+ template <typename T>
+ int oss_default_to_string(std::true_type, lua_State* L) {
+ std::ostringstream oss;
+ oss << stack::unqualified_get<T>(L, 1);
+ return stack::push(L, oss.str());
+ }
+
+ template <typename T>
+ int oss_default_to_string(std::false_type, lua_State* L) {
+ return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
+ }
+
+ template <typename T>
+ int default_to_string(lua_State* L) {
+ return oss_default_to_string<T>(meta::supports_ostream_op<T>(), L);
+ }
+
+ template <typename T>
+ int default_size(lua_State* L) {
+ decltype(auto) self = stack::unqualified_get<T>(L, 1);
+ return stack::push(L, self.size());
+ }
+
+ template <typename T, typename Op>
+ int comparsion_operator_wrap(lua_State* L) {
+ if constexpr (std::is_void_v<T>) {
+ return stack::push(L, false);
+ }
+ else {
+ auto maybel = stack::unqualified_check_get<T>(L, 1);
+ if (!maybel) {
+ return stack::push(L, false);
+ }
+ auto mayber = stack::unqualified_check_get<T>(L, 2);
+ if (!mayber) {
+ return stack::push(L, false);
+ }
+ decltype(auto) l = *maybel;
+ decltype(auto) r = *mayber;
+ if constexpr (std::is_same_v<no_comp, Op>) {
+ std::equal_to<> op;
+ return stack::push(L, op(detail::ptr(l), detail::ptr(r)));
+ }
+ else {
+ if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack
+ || std::is_same_v<std::less_equal<>, Op> //
+ || std::is_same_v<std::less_equal<>, Op>) { //
+ if (detail::ptr(l) == detail::ptr(r)) {
+ return stack::push(L, true);
+ }
+ }
+ Op op;
+ return stack::push(L, op(detail::deref(l), detail::deref(r)));
+ }
+ }
+ }
+
+ template <typename T, typename IFx, typename Fx>
+ void insert_default_registrations(IFx&& ifx, Fx&& fx);
+
+ template <typename T, bool, bool>
+ struct get_is_primitive : is_lua_primitive<T> {};
+
+ template <typename T>
+ struct get_is_primitive<T, true, false>
+ : meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> {};
+
+ template <typename T>
+ struct get_is_primitive<T, false, true>
+ : meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> {};
+
+ template <typename T>
+ struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> {};
+
+ } // namespace detail
+
+ template <typename T>
+ struct is_proxy_primitive
+ : detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> {};
+
+} // namespace sol
+
+#endif // SOL_STACK_CORE_HPP