aboutsummaryrefslogtreecommitdiffstats
path: root/deps/sol2/include/sol/stack_core.hpp
blob: 3b37210e4cfb710e38388c87a2cd36c0ea129a07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
// sol3

// The MIT License (MIT)

// Copyright (c) 2013-2019 Rapptz, ThePhD and contributors

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#ifndef SOL_STACK_CORE_HPP
#define SOL_STACK_CORE_HPP

#include "types.hpp"
#include "inheritance.hpp"
#include "error_handler.hpp"
#include "reference.hpp"
#include "stack_reference.hpp"
#include "tuple.hpp"
#include "traits.hpp"
#include "tie.hpp"
#include "stack_guard.hpp"
#include "demangle.hpp"
#include "forward_detail.hpp"

#include <vector>
#include <bitset>
#include <forward_list>
#include <string>
#include <algorithm>
#include <sstream>
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
#include <optional>
#endif // C++17

namespace sol {
	namespace detail {
		struct with_function_tag {};
		struct as_reference_tag {};
		template <typename T>
		struct as_pointer_tag {};
		template <typename T>
		struct as_value_tag {};
		template <typename T>
		struct as_table_tag {};

		using lua_reg_table = luaL_Reg[64];

		using unique_destructor = void (*)(void*);
		using unique_tag = detail::inheritance_unique_cast_function;

		inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) {
			// this handels arbitrary alignments...
			// make this into a power-of-2-only?
			// actually can't: this is a C++14-compatible framework,
			// power of 2 alignment is C++17
			std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr);
			std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment);
			std::uintptr_t padding = (alignment - offby) % alignment;
			required_space += size + padding;
			if (space < required_space) {
				return nullptr;
			}
			ptr = static_cast<void*>(static_cast<char*>(ptr) + padding);
			space -= padding;
			return ptr;
		}

		inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) {
			std::size_t required_space = 0;
			return align(alignment, size, ptr, space, required_space);
		}

		inline void align_one(std::size_t a, std::size_t s, void*& target_alignment) {
			std::size_t space = (std::numeric_limits<std::size_t>::max)();
			target_alignment = align(a, s, target_alignment, space);
			target_alignment = static_cast<void*>(static_cast<char*>(target_alignment) + s);
		}

		template <typename... Args>
		std::size_t aligned_space_for(void* alignment = nullptr) {
			char* start = static_cast<char*>(alignment);
			(void)detail::swallow{ int{}, (align_one(std::alignment_of_v<Args>, sizeof(Args), alignment), int{})... };
			return static_cast<char*>(alignment) - start;
		}

		inline void* align_usertype_pointer(void* ptr) {
			using use_align = std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<void*>::value > 1)
#endif
			     >;
			if (!use_align::value) {
				return ptr;
			}
			std::size_t space = (std::numeric_limits<std::size_t>::max)();
			return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space);
		}

		template <bool pre_aligned = false, bool pre_shifted = false>
		void* align_usertype_unique_destructor(void* ptr) {
			using use_align = std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<unique_destructor>::value > 1)
#endif
			     >;
			if (!pre_aligned) {
				ptr = align_usertype_pointer(ptr);
			}
			if (!pre_shifted) {
				ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
			}
			if (!use_align::value) {
				return static_cast<void*>(static_cast<void**>(ptr) + 1);
			}
			std::size_t space = (std::numeric_limits<std::size_t>::max)();
			return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space);
		}

		template <bool pre_aligned = false, bool pre_shifted = false>
		void* align_usertype_unique_tag(void* ptr) {
			using use_align = std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<unique_tag>::value > 1)
#endif
			     >;
			if (!pre_aligned) {
				ptr = align_usertype_unique_destructor(ptr);
			}
			if (!pre_shifted) {
				ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
			}
			if (!use_align::value) {
				return ptr;
			}
			std::size_t space = (std::numeric_limits<std::size_t>::max)();
			return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space);
		}

		template <typename T, bool pre_aligned = false, bool pre_shifted = false>
		void* align_usertype_unique(void* ptr) {
			typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<T>::value > 1)
#endif
			     >
			     use_align;
			if (!pre_aligned) {
				ptr = align_usertype_unique_tag(ptr);
			}
			if (!pre_shifted) {
				ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag));
			}
			if (!use_align::value) {
				return ptr;
			}
			std::size_t space = (std::numeric_limits<std::size_t>::max)();
			return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
		}

		template <typename T>
		void* align_user(void* ptr) {
			typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<T>::value > 1)
#endif
			     >
			     use_align;
			if (!use_align::value) {
				return ptr;
			}
			std::size_t space = (std::numeric_limits<std::size_t>::max)();
			return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
		}

		template <typename T>
		T** usertype_allocate_pointer(lua_State* L) {
			typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<T*>::value > 1)
#endif
			     >
			     use_align;
			if (!use_align::value) {
				T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
				return pointerpointer;
			}
			static const std::size_t initial_size = aligned_space_for<T*>(nullptr);
			static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1));

			std::size_t allocated_size = initial_size;
			void* unadjusted = lua_newuserdata(L, initial_size);
			void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
			if (adjusted == nullptr) {
				lua_pop(L, 1);
				// what kind of absolute garbage trash allocator are we dealing with?
				// whatever, add some padding in the case of MAXIMAL alignment waste...
				allocated_size = misaligned_size;
				unadjusted = lua_newuserdata(L, allocated_size);
				adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
				if (adjusted == nullptr) {
					// trash allocator can burn in hell
					lua_pop(L, 1);
					// luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a
					// worse job than malloc/realloc and should go read some books, yeah?");
					luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
				}
			}
			return static_cast<T**>(adjusted);
		}

		inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align, std::size_t value_size,
		     std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) {
			void* adjusted = lua_newuserdata(L, allocated_size);
			pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
			if (pointer_adjusted == nullptr) {
				lua_pop(L, 1);
				return false;
			}
			// subtract size of what we're going to allocate there
			allocated_size -= ptr_size;
			adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
			data_adjusted = align(value_align, value_size, adjusted, allocated_size);
			if (data_adjusted == nullptr) {
				lua_pop(L, 1);
				return false;
			}
			return true;
		}

		inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align, std::size_t real_size,
		     std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) {
			void* adjusted = lua_newuserdata(L, allocated_size);
			pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
			if (pointer_adjusted == nullptr) {
				lua_pop(L, 1);
				return false;
			}
			allocated_size -= ptr_size;

			adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
			dx_adjusted = align(std::alignment_of_v<unique_destructor>, sizeof(unique_destructor), adjusted, allocated_size);
			if (dx_adjusted == nullptr) {
				lua_pop(L, 1);
				return false;
			}
			allocated_size -= sizeof(unique_destructor);

			adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));

			id_adjusted = align(std::alignment_of_v<unique_tag>, sizeof(unique_tag), adjusted, allocated_size);
			if (id_adjusted == nullptr) {
				lua_pop(L, 1);
				return false;
			}
			allocated_size -= sizeof(unique_tag);

			adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag));
			data_adjusted = align(real_align, real_size, adjusted, allocated_size);
			if (data_adjusted == nullptr) {
				lua_pop(L, 1);
				return false;
			}
			return true;
		}

		template <typename T>
		T* usertype_allocate(lua_State* L) {
			typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1)
#endif
			     >
			     use_align;
			if (!use_align::value) {
				T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
				T*& pointerreference = *pointerpointer;
				T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
				pointerreference = allocationtarget;
				return allocationtarget;
			}

			/* the assumption is that `lua_newuserdata` -- unless someone
			passes a specific lua_Alloc that gives us bogus, un-aligned pointers
			-- uses malloc, which tends to hand out more or less aligned pointers to memory
			(most of the time, anyhow)

			but it's not guaranteed, so we have to do a post-adjustment check and increase padding

			we do this preliminarily with compile-time stuff, to see
			if we strike lucky with the allocator and alignment values

			otherwise, we have to re-allocate the userdata and
			over-allocate some space for additional padding because
			compilers are optimized for aligned reads/writes
			(and clang will barf UBsan errors on us for not being aligned)
			*/
			static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr);
			static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1));

			void* pointer_adjusted;
			void* data_adjusted;
			bool result
			     = attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), initial_size, pointer_adjusted, data_adjusted);
			if (!result) {
				// we're likely to get something that fails to perform the proper allocation a second time,
				// so we use the suggested_new_size bump to help us out here
				pointer_adjusted = nullptr;
				data_adjusted = nullptr;
				result = attempt_alloc(
				     L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), misaligned_size, pointer_adjusted, data_adjusted);
				if (!result) {
					if (pointer_adjusted == nullptr) {
						luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
					}
					else {
						luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
					}
					return nullptr;
				}
			}

			T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
			T*& pointerreference = *pointerpointer;
			T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
			pointerreference = allocationtarget;
			return allocationtarget;
		}

		template <typename T, typename Real>
		Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) {
			typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1
			          || std::alignment_of<Real>::value > 1)
#endif
			     >
			     use_align;
			if (!use_align::value) {
				pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real)));
				dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
				id = static_cast<unique_tag*>(static_cast<void*>(dx + 1));
				Real* mem = static_cast<Real*>(static_cast<void*>(id + 1));
				return mem;
			}

			static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr);
			static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1));

			void* pointer_adjusted;
			void* dx_adjusted;
			void* id_adjusted;
			void* data_adjusted;
			bool result = attempt_alloc_unique(L,
			     std::alignment_of_v<T*>,
			     sizeof(T*),
			     std::alignment_of_v<Real>,
			     sizeof(Real),
			     initial_size,
			     pointer_adjusted,
			     dx_adjusted,
			     id_adjusted,
			     data_adjusted);
			if (!result) {
				// we're likely to get something that fails to perform the proper allocation a second time,
				// so we use the suggested_new_size bump to help us out here
				pointer_adjusted = nullptr;
				dx_adjusted = nullptr;
				id_adjusted = nullptr;
				data_adjusted = nullptr;
				result = attempt_alloc_unique(L,
				     std::alignment_of_v<T*>,
				     sizeof(T*),
				     std::alignment_of_v<Real>,
				     sizeof(Real),
				     misaligned_size,
				     pointer_adjusted,
				     dx_adjusted,
				     id_adjusted,
				     data_adjusted);
				if (!result) {
					if (pointer_adjusted == nullptr) {
						luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
					}
					else if (dx_adjusted == nullptr) {
						luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str());
					}
					else {
						luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
					}
					return nullptr;
				}
			}

			pref = static_cast<T**>(pointer_adjusted);
			dx = static_cast<detail::unique_destructor*>(dx_adjusted);
			id = static_cast<unique_tag*>(id_adjusted);
			Real* mem = static_cast<Real*>(data_adjusted);
			return mem;
		}

		template <typename T>
		T* user_allocate(lua_State* L) {
			typedef std::integral_constant<bool,
#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT
			     false
#else
			     (std::alignment_of<T>::value > 1)
#endif
			     >
			     use_align;
			if (!use_align::value) {
				T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T)));
				return pointer;
			}

			static const std::size_t initial_size = aligned_space_for<T>(nullptr);
			static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1));

			std::size_t allocated_size = initial_size;
			void* unadjusted = lua_newuserdata(L, allocated_size);
			void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
			if (adjusted == nullptr) {
				lua_pop(L, 1);
				// try again, add extra space for alignment padding
				allocated_size = misaligned_size;
				unadjusted = lua_newuserdata(L, allocated_size);
				adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
				if (adjusted == nullptr) {
					lua_pop(L, 1);
					luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
				}
			}
			return static_cast<T*>(adjusted);
		}

		template <typename T>
		int usertype_alloc_destruct(lua_State* L) {
			void* memory = lua_touserdata(L, 1);
			memory = align_usertype_pointer(memory);
			T** pdata = static_cast<T**>(memory);
			T* data = *pdata;
			std::allocator<T> alloc{};
			std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
			return 0;
		}

		template <typename T>
		int unique_destruct(lua_State* L) {
			void* memory = lua_touserdata(L, 1);
			memory = align_usertype_unique_destructor(memory);
			unique_destructor& dx = *static_cast<unique_destructor*>(memory);
			memory = align_usertype_unique_tag<true>(memory);
			(dx)(memory);
			return 0;
		}

		template <typename T>
		int user_alloc_destruct(lua_State* L) {
			void* memory = lua_touserdata(L, 1);
			memory = align_user<T>(memory);
			T* data = static_cast<T*>(memory);
			std::allocator<T> alloc;
			std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
			return 0;
		}

		template <typename T, typename Real>
		void usertype_unique_alloc_destroy(void* memory) {
			memory = align_usertype_unique<Real, true>(memory);
			Real* target = static_cast<Real*>(memory);
			std::allocator<Real> alloc;
			std::allocator_traits<std::allocator<Real>>::destroy(alloc, target);
		}

		template <typename T>
		int cannot_destruct(lua_State* L) {
			return luaL_error(L,
			     "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= "
			     "delete' and thusly this type is being destroyed without properly destructing, invoking undefined "
			     "behavior: please bind a usertype and specify a custom destructor to define the behavior properly",
			     detail::demangle<T>().data());
		}

		template <typename T>
		void reserve(T&, std::size_t) {
		}

		template <typename T, typename Al>
		void reserve(std::vector<T, Al>& vec, std::size_t hint) {
			vec.reserve(hint);
		}

		template <typename T, typename Tr, typename Al>
		void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) {
			str.reserve(hint);
		}

		inline bool property_always_true(meta_function) {
			return true;
		}

		struct properties_enrollment_allowed {
			int& times_through;
			std::bitset<64>& properties;
			automagic_enrollments& enrollments;

			properties_enrollment_allowed(int& times, std::bitset<64>& props, automagic_enrollments& enroll) : times_through(times), properties(props), enrollments(enroll) {
			}

			bool operator()(meta_function mf) const {
				bool p = properties[static_cast<int>(mf)];
				if (times_through > 0) {
					return p;
				}
				switch (mf) {
				case meta_function::length:
					return enrollments.length_operator && !p;
				case meta_function::pairs:
					return enrollments.pairs_operator && !p;
				case meta_function::call:
					return enrollments.call_operator && !p;
				case meta_function::less_than:
					return enrollments.less_than_operator && !p;
				case meta_function::less_than_or_equal_to:
					return enrollments.less_than_or_equal_to_operator && !p;
				case meta_function::equal_to:
					return enrollments.equal_to_operator && !p;
				default:
					break;
				}
				return !p;
			}
		};

		struct indexed_insert {
			lua_reg_table& l;
			int& index;

			indexed_insert(lua_reg_table& cont, int& idx) : l(cont), index(idx) {
			}
			void operator()(meta_function mf, lua_CFunction f) {
				l[index] = luaL_Reg{ to_string(mf).c_str(), f };
				++index;
			}
		};
	} // namespace detail

	namespace stack {

		template <typename T, bool global = false, bool raw = false, typename = void>
		struct field_getter;
		template <typename T, typename P, bool global = false, bool raw = false, typename = void>
		struct probe_field_getter;

		template <typename T, bool global = false, bool raw = false, typename = void>
		struct field_setter;

		template <typename T, typename = void>
		struct unqualified_getter;
		template <typename T, typename = void>
		struct qualified_getter;

		template <typename T, typename = void>
		struct qualified_interop_getter;
		template <typename T, typename = void>
		struct unqualified_interop_getter;

		template <typename T, typename = void>
		struct popper;

		template <typename T, typename = void>
		struct unqualified_pusher;

		template <typename T, type t, typename = void>
		struct unqualified_checker;
		template <typename T, type t, typename = void>
		struct qualified_checker;

		template <typename T, typename = void>
		struct unqualified_check_getter;
		template <typename T, typename = void>
		struct qualified_check_getter;

		struct probe {
			bool success;
			int levels;

			probe(bool s, int l) : success(s), levels(l) {
			}

			operator bool() const {
				return success;
			};
		};

		struct record {
			int last;
			int used;

			record() : last(), used() {
			}
			void use(int count) {
				last = count;
				used += count;
			}
		};

	} // namespace stack

	namespace meta { namespace meta_detail {

		template <typename T>
		using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>()));

		template <typename T>
		using adl_sol_lua_interop_get_test_t
			= decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>()));

		template <typename T>
		using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));

		template <typename T>
		using adl_sol_lua_interop_check_test_t
			= decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, no_panic, std::declval<stack::record&>()));

		template <typename T>
		using adl_sol_lua_check_get_test_t
			= decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));

		template <typename... Args>
		using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...));

		template <typename T, typename... Args>
		using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...));

		template <typename T>
		inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>;

		template <typename T>
		inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>;

		template <typename T>
		inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>;

		template <typename T>
		inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>;

		template <typename T>
		inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>;

		template <typename... Args>
		inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>;

		template <typename T, typename... Args>
		inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>;
	}} // namespace meta::meta_detail


	namespace stack {
		namespace stack_detail {
			constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
			constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
			constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
			constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
			constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
			constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata";
			constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
			constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";

			template <typename T>
			struct strip {
				typedef T type;
			};
			template <typename T>
			struct strip<std::reference_wrapper<T>> {
				typedef T& type;
			};
			template <typename T>
			struct strip<user<T>> {
				typedef T& type;
			};
			template <typename T>
			struct strip<non_null<T>> {
				typedef T type;
			};
			template <typename T>
			using strip_t = typename strip<T>::type;

			template <typename C>
			static int get_size_hint(C& c) {
				return static_cast<int>(c.size());
			}

			template <typename V, typename Al>
			static int get_size_hint(const std::forward_list<V, Al>&) {
				// forward_list makes me sad
				return static_cast<int>(32);
			}

			template <typename T>
			decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) {
				using Tu = meta::unqualified_t<T>;
				if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) {
					return sol_lua_get(types<Tu>(), L, index, tracking);
				}
				else {
					unqualified_getter<Tu> g{};
					(void)g;
					return g.get(L, index, tracking);
				}
			}

			template <typename T>
			decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
				if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) {
					return sol_lua_get(types<T>(), L, index, tracking);
				}
				else {
					qualified_getter<T> g{};
					(void)g;
					return g.get(L, index, tracking);
				}
			}

			template <typename T>
			decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
				using Tu = meta::unqualified_t<T>;
				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) {
					return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking);
				}
				else {
					(void)L;
					(void)index;
					(void)unadjusted_pointer;
					(void)tracking;
					using Ti = stack_detail::strip_t<Tu>;
					return std::pair<bool, Ti*>{ false, nullptr };
				}
			}

			template <typename T>
			decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) {
					return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking);
				}
				else {
					return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking);
				}
			}

			template <typename T, typename Handler>
			bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
				using Tu = meta::unqualified_t<T>;
				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) {
					return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking);
				}
				else {
					(void)L;
					(void)index;
					(void)index_type;
					(void)handler;
					(void)tracking;
					return false;
				}
			}

			template <typename T, typename Handler>
			bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) {
					return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking);
				}
				else {
					return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
				}
			}

			using undefined_method_func = void (*)(stack_reference);

			struct undefined_metatable {
				lua_State* L;
				const char* key;
				undefined_method_func on_new_table;

				undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) {
				}

				void operator()() const {
					if (luaL_newmetatable(L, key) == 1) {
						on_new_table(stack_reference(L, -1));
					}
					lua_setmetatable(L, -2);
				}
			};
		} // namespace stack_detail

		inline bool maybe_indexable(lua_State* L, int index = -1) {
			type t = type_of(L, index);
			return t == type::userdata || t == type::table;
		}

		inline int top(lua_State* L) {
			return lua_gettop(L);
		}

		inline bool is_main_thread(lua_State* L) {
			int ismainthread = lua_pushthread(L);
			lua_pop(L, 1);
			return ismainthread == 1;
		}

		inline void coroutine_create_guard(lua_State* L) {
			if (is_main_thread(L)) {
				return;
			}
			int stacksize = lua_gettop(L);
			if (stacksize < 1) {
				return;
			}
			if (type_of(L, 1) != type::function) {
				return;
			}
			// well now we're screwed...
			// we can clean the stack and pray it doesn't destroy anything?
			lua_pop(L, stacksize);
		}

		inline void clear(lua_State* L, int table_index) {
			lua_pushnil(L);
			while (lua_next(L, table_index) != 0) {
				// remove value
				lua_pop(L, 1);
				// duplicate key to protect form rawset
				lua_pushvalue(L, -1);
				// push new value
				lua_pushnil(L);
				// table_index%[key] = nil
				lua_rawset(L, table_index);
			}
		}

		inline void clear(reference& r) {
			auto pp = push_pop<false>(r);
			int stack_index = pp.index_of(r);
			clear(r.lua_state(), stack_index);
		}

		inline void clear(stack_reference& r) {
			clear(r.lua_state(), r.stack_index());
		}

		template <typename T, typename... Args>
		int push(lua_State* L, T&& t, Args&&... args) {
			using Tu = meta::unqualified_t<T>;
			if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) {
				return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...);
			}
			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) {
				return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...);
			}
			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) {
				return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...);
			}
			else {
				unqualified_pusher<Tu> p{};
				(void)p;
				return p.push(L, std::forward<T>(t), std::forward<Args>(args)...);
			}
		}

		// overload allows to use a pusher of a specific type, but pass in any kind of args
		template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
		int push(lua_State* L, Arg&& arg, Args&&... args) {
			using Tu = meta::unqualified_t<T>;
			if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) {
				return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
			}
			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) {
				return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
			}
			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...>) {
				return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
			}
			else {
				unqualified_pusher<Tu> p{};
				(void)p;
				return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
			}
		}

		namespace stack_detail {

			template <typename T, typename Arg, typename... Args>
			int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
				using use_reference_tag = meta::all<std::is_lvalue_reference<T>,
				     meta::neg<std::is_const<T>>,
				     meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
				     meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>;
				using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>;
				return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
			}

		} // namespace stack_detail

		template <typename T, typename... Args>
		int push_reference(lua_State* L, T&& t, Args&&... args) {
			return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
		}

		template <typename T, typename Arg, typename... Args>
		int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
			return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
		}

		inline int multi_push(lua_State*) {
			// do nothing
			return 0;
		}

		template <typename T, typename... Args>
		int multi_push(lua_State* L, T&& t, Args&&... args) {
			int pushcount = push(L, std::forward<T>(t));
			void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
			return pushcount;
		}

		inline int multi_push_reference(lua_State*) {
			// do nothing
			return 0;
		}

		template <typename T, typename... Args>
		int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
			int pushcount = push_reference(L, std::forward<T>(t));
			void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
			return pushcount;
		}

		template <typename T, typename Handler>
		bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) {
			using Tu = meta::unqualified_t<T>;
			if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) {
				return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
			}
			else {
				unqualified_checker<Tu, lua_type_of_v<Tu>> c;
				// VC++ has a bad warning here: shut it up
				(void)c;
				return c.check(L, index, std::forward<Handler>(handler), tracking);
			}
		}

		template <typename T, typename Handler>
		bool unqualified_check(lua_State* L, int index, Handler&& handler) {
			record tracking{};
			return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking);
		}

		template <typename T>
		bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			auto handler = no_panic;
			return unqualified_check<T>(L, index, handler);
		}

		template <typename T, typename Handler>
		bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
			if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) {
				return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking);
			}
			else {
				using Tu = meta::unqualified_t<T>;
				qualified_checker<T, lua_type_of_v<Tu>> c;
				// VC++ has a bad warning here: shut it up
				(void)c;
				return c.check(L, index, std::forward<Handler>(handler), tracking);
			}
		}

		template <typename T, typename Handler>
		bool check(lua_State* L, int index, Handler&& handler) {
			record tracking{};
			return check<T>(L, index, std::forward<Handler>(handler), tracking);
		}

		template <typename T>
		bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			auto handler = no_panic;
			return check<T>(L, index, handler);
		}

		template <typename T, typename Handler>
		bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) {
			using Tu = meta::unqualified_t<T>;
			using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
			return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
		}

		template <typename T, typename Handler>
		bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
			using Tu = meta::unqualified_t<T>;
			using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
			return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
		}

		template <typename T, typename Handler>
		bool check_usertype(lua_State* L, int index, Handler&& handler) {
			record tracking{};
			return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
		}

		template <typename T>
		bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			auto handler = no_panic;
			return check_usertype<T>(L, index, handler);
		}

		template <typename T, typename Handler>
		decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
			using Tu = meta::unqualified_t<T>;
			if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
				return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
			}
			else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) {
				return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
			}
			else {
				unqualified_check_getter<Tu> cg{};
				(void)cg;
				return cg.get(L, index, std::forward<Handler>(handler), tracking);
			}
		}

		template <typename T, typename Handler>
		decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) {
			record tracking{};
			return unqualified_check_get<T>(L, index, handler, tracking);
		}

		template <typename T>
		decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			auto handler = no_panic;
			return unqualified_check_get<T>(L, index, handler);
		}

		template <typename T, typename Handler>
		decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
			if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
				return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
			}
			else {
				qualified_check_getter<T> cg{};
				(void)cg;
				return cg.get(L, index, std::forward<Handler>(handler), tracking);
			}
		}

		template <typename T, typename Handler>
		decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
			record tracking{};
			return check_get<T>(L, index, handler, tracking);
		}

		template <typename T>
		decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			auto handler = no_panic;
			return check_get<T>(L, index, handler);
		}

		namespace stack_detail {

			template <typename Handler>
			bool check_types(lua_State*, int, Handler&&, record&) {
				return true;
			}

			template <typename T, typename... Args, typename Handler>
			bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) {
				if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
					return false;
				return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking);
			}

			template <typename... Args, typename Handler>
			bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) {
				return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
			}

		} // namespace stack_detail

		template <typename... Args, typename Handler>
		bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
			return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
		}

		template <typename... Args, typename Handler>
		bool multi_check(lua_State* L, int index, Handler&& handler) {
			record tracking{};
			return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
		}

		template <typename... Args>
		bool multi_check(lua_State* L, int index) {
			return multi_check<Args...>(L, index);
		}

		template <typename T>
		auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) {
#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
			static constexpr bool is_op = meta::is_specialization_of_v<T, optional>
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
			     || meta::is_specialization_of_v<T, std::optional>
#endif
			     ;
			if constexpr (is_op) {
				return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
			}
			else {
				if (is_lua_reference<T>::value) {
					return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
				}
				auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking);
				return *std::move(op);
			}
#else
			return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
#endif
		}

		template <typename T>
		decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			record tracking{};
			return unqualified_get<T>(L, index, tracking);
		}

		template <typename T>
		auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER
			static constexpr bool is_op = meta::is_specialization_of_v<T, optional>
#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES
			     || meta::is_specialization_of_v<T, std::optional>
#endif
			     ;
			if constexpr (is_op) {
				return stack_detail::unchecked_get<T>(L, index, tracking);
			}
			else {
				if (is_lua_reference<T>::value) {
					return stack_detail::unchecked_get<T>(L, index, tracking);
				}
				auto op = check_get<T>(L, index, type_panic_c_str, tracking);
				return *std::move(op);
			}
#else
			return stack_detail::unchecked_get<T>(L, index, tracking);
#endif
		}

		template <typename T>
		decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			record tracking{};
			return get<T>(L, index, tracking);
		}

		template <typename T>
		decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
			using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>;
			return get<UT>(L, index, tracking);
		}

		template <typename T>
		decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
			record tracking{};
			return get_usertype<T>(L, index, tracking);
		}

		template <typename T>
		decltype(auto) pop(lua_State* L) {
			return popper<meta::unqualified_t<T>>{}.pop(L);
		}

		template <bool global = false, bool raw = false, typename Key>
		void get_field(lua_State* L, Key&& key) {
			field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
		}

		template <bool global = false, bool raw = false, typename Key>
		void get_field(lua_State* L, Key&& key, int tableindex) {
			field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
		}

		template <bool global = false, typename Key>
		void raw_get_field(lua_State* L, Key&& key) {
			get_field<global, true>(L, std::forward<Key>(key));
		}

		template <bool global = false, typename Key>
		void raw_get_field(lua_State* L, Key&& key, int tableindex) {
			get_field<global, true>(L, std::forward<Key>(key), tableindex);
		}

		template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
		probe probe_get_field(lua_State* L, Key&& key) {
			return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key));
		}

		template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
		probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
			return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
		}

		template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
		probe probe_raw_get_field(lua_State* L, Key&& key) {
			return probe_get_field<global, true, C>(L, std::forward<Key>(key));
		}

		template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
		probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
			return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex);
		}

		template <bool global = false, bool raw = false, typename Key, typename Value>
		void set_field(lua_State* L, Key&& key, Value&& value) {
			field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
		}

		template <bool global = false, bool raw = false, typename Key, typename Value>
		void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
			field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
		}

		template <bool global = false, typename Key, typename Value>
		void raw_set_field(lua_State* L, Key&& key, Value&& value) {
			set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
		}

		template <bool global = false, typename Key, typename Value>
		void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
			set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
		}

		template <typename T, typename F>
		void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
			using u_traits = unique_usertype_traits<T>;
			void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
			void* ptr_memory = detail::align_usertype_pointer(raw);
			void* uu_memory = detail::align_usertype_unique<T>(raw);
			T& uu = *static_cast<T*>(uu_memory);
			f(uu);
			*static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu));
		}

		template <typename F>
		void modify_unique_usertype(const stack_reference& obj, F&& f) {
			using bt = meta::bind_traits<meta::unqualified_t<F>>;
			using T = typename bt::template arg_at<0>;
			using Tu = meta::unqualified_t<T>;
			modify_unique_usertype_as<Tu>(obj, std::forward<F>(f));
		}

	} // namespace stack

	namespace detail {

		template <typename T>
		lua_CFunction make_destructor(std::true_type) {
			if constexpr (is_unique_usertype_v<T>) {
				return &unique_destruct<T>;
			}
			else if constexpr (!std::is_pointer_v<T>) {
				return &usertype_alloc_destruct<T>;
			}
			else {
				return &cannot_destruct<T>;
			}
		}

		template <typename T>
		lua_CFunction make_destructor(std::false_type) {
			return &cannot_destruct<T>;
		}

		template <typename T>
		lua_CFunction make_destructor() {
			return make_destructor<T>(std::is_destructible<T>());
		}

		struct no_comp {
			template <typename A, typename B>
			bool operator()(A&&, B&&) const {
				return false;
			}
		};

		template <typename T>
		int is_check(lua_State* L) {
			return stack::push(L, stack::check<T>(L, 1, &no_panic));
		}

		template <typename T>
		int member_default_to_string(std::true_type, lua_State* L) {
			decltype(auto) ts = stack::get<T>(L, 1).to_string();
			return stack::push(L, std::forward<decltype(ts)>(ts));
		}

		template <typename T>
		int member_default_to_string(std::false_type, lua_State* L) {
			return luaL_error(L,
			     "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member "
			     "function, or operator<<(ostream&, ...) present",
			     detail::demangle<T>().data());
		}

		template <typename T>
		int adl_default_to_string(std::true_type, lua_State* L) {
			using namespace std;
			decltype(auto) ts = to_string(stack::get<T>(L, 1));
			return stack::push(L, std::forward<decltype(ts)>(ts));
		}

		template <typename T>
		int adl_default_to_string(std::false_type, lua_State* L) {
			return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
		}

		template <typename T>
		int oss_default_to_string(std::true_type, lua_State* L) {
			std::ostringstream oss;
			oss << stack::unqualified_get<T>(L, 1);
			return stack::push(L, oss.str());
		}

		template <typename T>
		int oss_default_to_string(std::false_type, lua_State* L) {
			return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
		}

		template <typename T>
		int default_to_string(lua_State* L) {
			return oss_default_to_string<T>(meta::supports_ostream_op<T>(), L);
		}

		template <typename T>
		int default_size(lua_State* L) {
			decltype(auto) self = stack::unqualified_get<T>(L, 1);
			return stack::push(L, self.size());
		}

		template <typename T, typename Op>
		int comparsion_operator_wrap(lua_State* L) {
			if constexpr (std::is_void_v<T>) {
				return stack::push(L, false);
			}
			else {
				auto maybel = stack::unqualified_check_get<T>(L, 1);
				if (!maybel) {
					return stack::push(L, false);
				}
				auto mayber = stack::unqualified_check_get<T>(L, 2);
				if (!mayber) {
					return stack::push(L, false);
				}
				decltype(auto) l = *maybel;
				decltype(auto) r = *mayber;
				if constexpr (std::is_same_v<no_comp, Op>) {
					std::equal_to<> op;
					return stack::push(L, op(detail::ptr(l), detail::ptr(r)));
				}
				else {
					if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack
					     || std::is_same_v<std::less_equal<>, Op>     //
					     || std::is_same_v<std::less_equal<>, Op>) {  //
						if (detail::ptr(l) == detail::ptr(r)) {
							return stack::push(L, true);
						}
					}
					Op op;
					return stack::push(L, op(detail::deref(l), detail::deref(r)));
				}
			}
		}

		template <typename T, typename IFx, typename Fx>
		void insert_default_registrations(IFx&& ifx, Fx&& fx);

		template <typename T, bool, bool>
		struct get_is_primitive : is_lua_primitive<T> {};

		template <typename T>
		struct get_is_primitive<T, true, false>
		: meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> {};

		template <typename T>
		struct get_is_primitive<T, false, true>
		: meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> {};

		template <typename T>
		struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> {};

	} // namespace detail

	template <typename T>
	struct is_proxy_primitive
	: detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> {};

} // namespace sol

#endif // SOL_STACK_CORE_HPP