1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/*
* ESP32 Second-Order Sections IIR Filter implementation
*
* (c)2019 Ivan Kostoski
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef SOS_IIR_FILTER_H
#define SOS_IIR_FILTER_H
#include <algorithm>
#include <array>
#include <cstdint>
#include <ranges>
#include <utility>
extern "C" {
#include <qfplib-m0-full.h>
#include "qfplib-port.h"
}
class sos_t
{
float v;
public:
constexpr sos_t(float v_ = 0.f): v(v_) {}
sos_t operator+(auto x) const noexcept {
return qfp_fadd_asm(v, x);
}
sos_t operator-(const sos_t& o) const noexcept {
return qfp_fsub(v, o.v);
}
sos_t operator*(auto x) const noexcept {
return qfp_fmul_asm(v, x);
}
sos_t operator/(auto x) const noexcept {
return qfp_fdiv(v, x);
}
sos_t& operator+=(const sos_t& o) noexcept {
return (*this = *this + o);
}
operator float() const noexcept {
return v;
}
};
struct SOS_Coefficients {
sos_t b1;
sos_t b2;
sos_t a1;
sos_t a2;
};
struct SOS_Delay_State {
sos_t w0;
sos_t w1;
};
/**
* Envelops above asm functions into C++ class
*/
template<std::size_t N>
struct SOS_IIR_Filter {
const sos_t gain;
std::array<SOS_Coefficients, N> sos;
std::array<SOS_Delay_State, N> w;
// Template constructor for const filter declaration
constexpr SOS_IIR_Filter(const sos_t gain, const SOS_Coefficients (&_sos)[N]):
gain(gain)
{
std::copy(_sos, _sos + N, sos.begin());
}
void filter(auto samples, std::size_t n = N) {
for (auto [coeffs, ww] : std::views::zip(sos, w) | std::views::take(n)) {
// Assumes a0 and b0 coefficients are one (1.0)
for (auto& s : samples) {
auto f6 = s + coeffs.a1 * ww.w0 + coeffs.a2 * ww.w1;
s = f6 + coeffs.b1 * ww.w0 + coeffs.b2 * ww.w1;
ww.w1 = std::exchange(ww.w0, f6);
}
}
}
sos_t filter_sum_sqr(auto samples) {
const auto& coeffs = sos.back();
auto& ww = w.back();
sos_t sum_sqr (0.f);
filter(samples, N - 1);
// Assumes a0 and b0 coefficients are one (1.0)
for (auto& s : samples) {
auto f6 = s + coeffs.a1 * ww.w0 + coeffs.a2 * ww.w1;
s = f6 + coeffs.b1 * ww.w0 + coeffs.b2 * ww.w1;
ww.w1 = std::exchange(ww.w0, f6);
sum_sqr += s * gain * s * gain;
}
return sum_sqr;
}
};
#endif // SOS_IIR_FILTER_H
// Knowles SPH0645LM4H-B, rev. B
// https://cdn-shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF
// B ~= [1.001234, -1.991352, 0.990149]
// A ~= [1.0, -1.993853, 0.993863]
// With additional DC blocking component
SOS_IIR_Filter SPH0645LM4H_B_RB = {
/* gain: */ sos_t(1.00123377961525f),
/* sos: */ { // Second-Order Sections {b1, b2, -a1, -a2}
{ sos_t(-1.0f), sos_t(0.0f),
sos_t(+0.9992f), sos_t(0.0f) }, // DC blocker, a1 = -0.9992
{ sos_t(-1.988897663539382f), sos_t(+0.988928479008099f),
sos_t(+1.993853376183491f), sos_t(-0.993862821429572f) } }
};
//
// A-weighting IIR Filter, Fs = 48KHz
// (By Dr. Matt L., Source: https://dsp.stackexchange.com/a/36122)
// B = [0.169994948147430, 0.280415310498794, -1.120574766348363, 0.131562559965936, 0.974153561246036, -0.282740857326553, -0.152810756202003]
// A = [1.0, -2.12979364760736134, 0.42996125885751674, 1.62132698199721426, -0.96669962900852902, 0.00121015844426781, 0.04400300696788968]
SOS_IIR_Filter A_weighting = {
/* gain: */ sos_t(0.169994948147430f),
/* sos: */ { // Second-Order Sections {b1, b2, -a1, -a2}
{ sos_t(-2.00026996133106f), sos_t(+1.00027056142719f),
sos_t(-1.060868438509278f), sos_t(-0.163987445885926f) },
{ sos_t(+4.35912384203144f), sos_t(+3.09120265783884f),
sos_t(+1.208419926363593f), sos_t(-0.273166998428332f) },
{ sos_t(-0.70930303489759f), sos_t(-0.29071868393580f),
sos_t(+1.982242159753048f), sos_t(-0.982298594928989f) } }
};
////
//// C-weighting IIR Filter, Fs = 48KHz
//// Designed by invfreqz curve-fitting, see respective .m file
//// B = [-0.49164716933714026, 0.14844753846498662, 0.74117815661529129, -0.03281878334039314, -0.29709276192593875, -0.06442545322197900, -0.00364152725482682]
//// A = [1.0, -1.0325358998928318, -0.9524000181023488, 0.8936404694728326 0.2256286147169398 -0.1499917107550188, 0.0156718181681081]
//SOS_IIR_Filter C_weighting = {
// gain: -0.491647169337140,
// sos: {
// { +1.4604385758204708, +0.5275070373815286, +1.9946144559930252, -0.9946217070140883 },
// { +0.2376222404939509, +0.0140411206016894, -1.3396585608422749, -0.4421457807694559 },
// { -2.0000000000000000, +1.0000000000000000, +0.3775800047420818, -0.0356365756680430 } }
//};
|