You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

327 lines
10 KiB
C++

#include <random>
inline double randomN()
{
static std::uniform_real_distribution<double> distribution (0.0, 1.0);
static std::mt19937 generator;
return distribution(generator);
}
#include "color.h"
#include "ray.h"
#include "renderer.h"
#include "vec3.h"
#include "imgui.h"
#include "imgui_impl_sdl2.h"
#include "imgui_impl_sdlrenderer2.h"
#include <SDL2/SDL.h>
#include <algorithm>
#include <chrono>
#include <cstring>
#include <iostream>
#include <memory>
#include <optional>
#include <ranges>
#include <thread>
#include <tuple>
#include <vector>
constexpr unsigned Width = 1000;
constexpr double Aspect = 16.0 / 9.0;
constexpr unsigned Height = Width / Aspect;
constexpr unsigned Threads = 8;
enum class Material : int {
Lambertian,
Metal,
Dielectric
};
struct View
{
static constexpr auto lookat = point3(0, 0, -1); // Point camera is looking at
static constexpr auto vup = vec3(0, 1, 0); // Camera-relative "up" direction
float fieldOfView = 90.f;
float focalLength;
float viewportHeight;
float viewportWidth;
point3 camera;
vec3 viewportX;
vec3 viewportY;
vec3 pixelDX;
vec3 pixelDY;
vec3 viewportUL;
vec3 pixelUL;
View() {
recalculate();
}
void recalculate() {
focalLength = (camera - lookat).length();
viewportHeight = 2 * std::tan(fieldOfView * 3.14159265 / 180.0 / 2.0) * focalLength;
viewportWidth = viewportHeight * Aspect;
const auto w = (camera - lookat).normalize();
const auto u = cross(vup, w).normalize();
const auto v = cross(w, u);
viewportX = viewportWidth * u;
viewportY = -viewportHeight * v;
pixelDX = viewportX / Width;
pixelDY = viewportY / Height;
viewportUL = camera - focalLength * w - viewportX / 2 - viewportY / 2;
pixelUL = viewportUL + 0.5 * (pixelDX + pixelDY);
}
ray getRay(int x, int y, bool addRandom = false) const {
double X = x;
double Y = y;
if (addRandom) {
X += randomN() - 0.5;
Y += randomN() - 0.5;
}
auto pixel = pixelUL + X * pixelDX + Y * pixelDY;
return ray(camera, pixel - camera);
}
};
struct Sphere
{
point3 center;
double radius;
Material M;
color tint;
std::pair<color, ray> scatter(const ray& r, double root) const {
const auto p = r.at(root);
auto normal = (p - center) / radius;
if (M == Material::Lambertian) {
return {tint, ray(p, normal + randomUnitSphere())};
} else if (M == Material::Metal) {
return {tint, ray(p, r.direction().reflect(normal))};
} else if (M == Material::Dielectric) {
constexpr auto index = 1.0 / 1.33;
const bool front = r.direction().dot(normal) < 0;
const auto ri = front ? 1.0 / index : index;
if (!front)
normal *= -1;
const auto dir = r.direction().normalize();
const double costh = std::fmin((-dir).dot(normal), 1);
const double sinth = std::sqrt(1 - costh * costh);
if (ri * sinth > 1)
return {color(1, 1, 1), ray(p, dir.reflect(normal))};
else
return {color(1, 1, 1), ray(p, dir.refract(normal, ri))};
} else {
return {};
}
}
std::optional<double> hit(const ray& r, double tmin, double tmax) const {
const vec3 oc = center - r.origin();
const auto a = r.direction().length_squared();
const auto h = r.direction().dot(oc);
const auto c = oc.length_squared() - radius * radius;
const auto discriminant = h * h - a * c;
if (discriminant < 0) {
return {}; // No hit
} else {
const auto sqrtd = sqrt(discriminant);
// Find the nearest root that lies in the acceptable range.
auto root = (h - sqrtd) / a;
if (root <= tmin || tmax <= root) {
root = (h + sqrtd) / a;
if (root <= tmin || tmax <= root)
return {};
}
return root;
}
}
};
struct World
{
std::vector<Sphere> objects;
void add(auto&&... args) {
objects.emplace_back(args...);
}
std::optional<std::pair<double, Sphere>> hit(const ray& r) const {
double closest = std::numeric_limits<double>::infinity();
Sphere sphere;
for (const auto& o : objects) {
if (auto t = o.hit(r, 0.001, closest); t) {
closest = *t;
sphere = o;
}
}
if (closest != std::numeric_limits<double>::infinity())
return std::pair {closest, sphere};
else
return {};
}
};
static World world;
static color ray_color(const ray& r, int depth = 50)
{
if (depth <= 0)
return {};
if (auto hit = world.hit(r); hit) {
const auto& [closest, sphere] = *hit;
const auto [atten, scat] = sphere.scatter(r, closest);
return atten * ray_color(scat, depth - 1);
} else {
const auto unitDir = r.direction().normalize();
const auto a = 0.5 * (unitDir.y() + 1.0);
return (1.0 - a) * color(1.0, 1.0, 1.0) + a * color(0.5, 0.7, 1.0);
}
}
static View Camera;
static int SamplesPerPixel = 20;
static std::unique_ptr<Renderer<Threads>> renderer;
static std::chrono::time_point<std::chrono::high_resolution_clock> renderStart;
static std::chrono::duration<double> renderTime;
void initiateRender(SDL_Surface *canvas)
{
renderStart = std::chrono::high_resolution_clock::now();
renderTime = std::chrono::duration<double>::zero();
auto func = [format = canvas->format](auto x, auto y, auto pbuf) {
auto col = std::ranges::fold_left(std::views::iota(0, SamplesPerPixel), color(),
[y, x](color c, int i) { return c + ray_color(Camera.getRay(x, y, true)); });
col = col / SamplesPerPixel * 255;
pbuf[y * Width + x] = SDL_MapRGBA(format, col.x(), col.y(), col.z(), 255);
};
Camera.recalculate();
renderer.reset(new Renderer<Threads>(func, Width, Height, (uint32_t *)canvas->pixels));
}
int main()
{
SDL_Init(SDL_INIT_VIDEO);
auto window = SDL_CreateWindow("raytrace", SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED, Width, Height, SDL_WINDOW_RESIZABLE);
auto canvas = SDL_CreateRGBSurfaceWithFormat(0, Width, Height, 32, SDL_PIXELFORMAT_RGBA8888);
auto painter = SDL_CreateRenderer(window, -1, SDL_RENDERER_PRESENTVSYNC /*| SDL_RENDERER_ACCELERATED*/);
ImGui::CreateContext();
ImGui_ImplSDL2_InitForSDLRenderer(window, painter);
ImGui_ImplSDLRenderer2_Init(painter);
world.add(point3( 0.00, -100.50, -1.0), 100.0, Material::Lambertian, color(0.5, 1.0, 0.5));
world.add(point3(-0.50, 0.00, -1.2), 0.5, Material::Dielectric, color(1.0, 0.8, 0.8));
world.add(point3( 0.50, 0.00, -1.0), 0.5, Material::Metal, color(0.5, 0.5, 0.5));
world.add(point3(-0.05, -0.35, -0.7), 0.1, Material::Metal, color(0.8, 0.6, 0.0));
std::cout << "Spawning threads..." << std::endl;
initiateRender(canvas);
std::cout << "Entering render..." << std::endl;
bool run = true;
for (SDL_Event event; run;) {
while (SDL_PollEvent(&event)) {
ImGui_ImplSDL2_ProcessEvent(&event);
if (event.type == SDL_QUIT) {
renderer->stop();
run = false;
}
}
ImGui_ImplSDLRenderer2_NewFrame();
ImGui_ImplSDL2_NewFrame();
ImGui::NewFrame();
ImGui::Begin("settings", nullptr, ImGuiWindowFlags_AlwaysAutoResize);
ImGui::SliderFloat("fov", &Camera.fieldOfView, 10, 160);
ImGui::SetNextItemWidth(100); ImGui::InputDouble("X", &Camera.camera.x(), 0.1, 0.05, "%.2lf");
ImGui::SameLine(); ImGui::SetNextItemWidth(100); ImGui::InputDouble("Y", &Camera.camera.y(), 0.1, 0.05, "%.2lf");
ImGui::SameLine(); ImGui::SetNextItemWidth(100); ImGui::InputDouble("Z", &Camera.camera.z(), 0.1, 0.05, "%.2lf");
ImGui::SliderInt("samples", &SamplesPerPixel, 1, 200);
if (ImGui::Button("recalculate")) {
initiateRender(canvas);
}
ImGui::SameLine();
if (ImGui::Button("exit")) {
renderer->stop();
run = false;
}
if (*renderer) {
ImGui::SameLine();
if (ImGui::Button("stop")) {
renderer->stop();
}
ImGui::Text("wait... %u%%", renderer->progress());
} else if (renderTime == std::chrono::duration<double>::zero()) {
renderTime = std::chrono::high_resolution_clock::now() - renderStart;
} else {
ImGui::Text("%0.6lfs", renderTime.count());
}
ImGui::End();
ImGui::Begin("balls", nullptr, ImGuiWindowFlags_AlwaysAutoResize); {
char radius[] = "radius 0";
char mat[] = "mat 0";
char xpos[] = "x 0";
char ypos[] = "y 0";
char zpos[] = "z 0";
for (auto& o : std::views::drop(world.objects, 1)) {
ImGui::Combo(mat, reinterpret_cast<int *>(&o.M), "Lambertian\0Metal\0Dielectric\0");
ImGui::SameLine(); ImGui::SetNextItemWidth(100); ImGui::InputDouble(radius, &o.radius, 0.1, 0.05, "%.2lf");
ImGui::SetNextItemWidth(100); ImGui::InputDouble(xpos, &o.center.x(), 0.05, 0.05, "%.2lf");
ImGui::SameLine(); ImGui::SetNextItemWidth(100); ImGui::InputDouble(ypos, &o.center.y(), 0.1, 0.05, "%.2lf");
ImGui::SameLine(); ImGui::SetNextItemWidth(100); ImGui::InputDouble(zpos, &o.center.z(), 0.1, 0.05, "%.2lf");
radius[7]++;
mat[4]++;
xpos[2]++;
ypos[2]++;
zpos[2]++;
}
} ImGui::End();
ImGui::Render();
//SDL_RenderSetScale(painter, io.DisplayFramebufferScale.x, io.DisplayFramebufferScale.y);
SDL_RenderClear(painter);
auto tex = SDL_CreateTextureFromSurface(painter, canvas);
SDL_RenderCopy(painter, tex, nullptr, nullptr);
ImGui_ImplSDLRenderer2_RenderDrawData(ImGui::GetDrawData());
SDL_RenderPresent(painter);
SDL_DestroyTexture(tex);
std::this_thread::sleep_for(std::chrono::milliseconds(30));
}
ImGui_ImplSDLRenderer2_Shutdown();
ImGui_ImplSDL2_Shutdown();
ImGui::DestroyContext();
SDL_FreeSurface(canvas);
SDL_DestroyRenderer(painter);
SDL_DestroyWindow(window);
SDL_Quit();
}