diff options
author | tcsullivan <tullivan99@gmail.com> | 2019-03-10 15:37:07 -0400 |
---|---|---|
committer | tcsullivan <tullivan99@gmail.com> | 2019-03-10 15:37:07 -0400 |
commit | dd33956654589ded6644a75088e50069b1744ef9 (patch) | |
tree | eddd51f1aac130f6c7082a2de53b8e46f0387187 /drivers_nrf/clock | |
parent | 3c3f87b4cab153b49e3cde105dd2f34712e0b790 (diff) |
rtc, keeping time
Diffstat (limited to 'drivers_nrf/clock')
-rw-r--r-- | drivers_nrf/clock/nrf_drv_clock.c | 599 | ||||
-rw-r--r-- | drivers_nrf/clock/nrf_drv_clock.h | 314 |
2 files changed, 913 insertions, 0 deletions
diff --git a/drivers_nrf/clock/nrf_drv_clock.c b/drivers_nrf/clock/nrf_drv_clock.c new file mode 100644 index 0000000..dfc017b --- /dev/null +++ b/drivers_nrf/clock/nrf_drv_clock.c @@ -0,0 +1,599 @@ +/** + * Copyright (c) 2016 - 2017, Nordic Semiconductor ASA + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form, except as embedded into a Nordic + * Semiconductor ASA integrated circuit in a product or a software update for + * such product, must reproduce the above copyright notice, this list of + * conditions and the following disclaimer in the documentation and/or other + * materials provided with the distribution. + * + * 3. Neither the name of Nordic Semiconductor ASA nor the names of its + * contributors may be used to endorse or promote products derived from this + * software without specific prior written permission. + * + * 4. This software, with or without modification, must only be used with a + * Nordic Semiconductor ASA integrated circuit. + * + * 5. Any software provided in binary form under this license must not be reverse + * engineered, decompiled, modified and/or disassembled. + * + * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS + * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE + * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT + * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ +#include "sdk_common.h" +#if NRF_MODULE_ENABLED(CLOCK) + +#include "nrf_drv_clock.h" +#include "nrf_error.h" +#include "app_util_platform.h" +#ifdef SOFTDEVICE_PRESENT +#include "softdevice_handler.h" +#include "nrf_sdm.h" +#include "nrf_soc.h" +#endif + +#define NRF_LOG_MODULE_NAME "CLOCK" + +#if CLOCK_CONFIG_LOG_ENABLED +#define NRF_LOG_LEVEL CLOCK_CONFIG_LOG_LEVEL +#define NRF_LOG_INFO_COLOR CLOCK_CONFIG_INFO_COLOR +#define NRF_LOG_DEBUG_COLOR CLOCK_CONFIG_DEBUG_COLOR +#define EVT_TO_STR(event) (event == NRF_CLOCK_EVENT_HFCLKSTARTED ? "NRF_CLOCK_EVENT_HFCLKSTARTED" : \ + (event == NRF_CLOCK_EVENT_LFCLKSTARTED ? "NRF_CLOCK_EVENT_LFCLKSTARTED" : \ + (event == NRF_CLOCK_EVENT_DONE ? "NRF_CLOCK_EVENT_DONE" : \ + (event == NRF_CLOCK_EVENT_CTTO ? "NRF_CLOCK_EVENT_CTTO" : "UNKNOWN EVENT")))) +#else //CLOCK_CONFIG_LOG_ENABLED +#define EVT_TO_STR(event) "" +#define NRF_LOG_LEVEL 0 +#endif //CLOCK_CONFIG_LOG_ENABLED +#include "nrf_log.h" +#include "nrf_log_ctrl.h" + + +/* Validate configuration */ +INTERRUPT_PRIORITY_VALIDATION(CLOCK_CONFIG_IRQ_PRIORITY); + +/*lint -save -e652 */ +#define NRF_CLOCK_LFCLK_RC CLOCK_LFCLKSRC_SRC_RC +#define NRF_CLOCK_LFCLK_Xtal CLOCK_LFCLKSRC_SRC_Xtal +#define NRF_CLOCK_LFCLK_Synth CLOCK_LFCLKSRC_SRC_Synth +/*lint -restore */ + +#if (CLOCK_CONFIG_LF_SRC == NRF_CLOCK_LFCLK_RC) && !defined(SOFTDEVICE_PRESENT) +#define CALIBRATION_SUPPORT 1 +#else +#define CALIBRATION_SUPPORT 0 +#endif +typedef enum +{ + CAL_STATE_IDLE, + CAL_STATE_CT, + CAL_STATE_HFCLK_REQ, + CAL_STATE_CAL, + CAL_STATE_ABORT, +} nrf_drv_clock_cal_state_t; + +/**@brief CLOCK control block. */ +typedef struct +{ + bool module_initialized; /*< Indicate the state of module */ + volatile bool hfclk_on; /*< High-frequency clock state. */ + volatile bool lfclk_on; /*< Low-frequency clock state. */ + volatile uint32_t hfclk_requests; /*< High-frequency clock request counter. */ + volatile nrf_drv_clock_handler_item_t * p_hf_head; + volatile uint32_t lfclk_requests; /*< Low-frequency clock request counter. */ + volatile nrf_drv_clock_handler_item_t * p_lf_head; +#if CALIBRATION_SUPPORT + nrf_drv_clock_handler_item_t cal_hfclk_started_handler_item; + nrf_drv_clock_event_handler_t cal_done_handler; + volatile nrf_drv_clock_cal_state_t cal_state; +#endif // CALIBRATION_SUPPORT +} nrf_drv_clock_cb_t; + +static nrf_drv_clock_cb_t m_clock_cb; + + +/**@brief Function for starting LFCLK. This function will return immediately without waiting for start. + */ +static void lfclk_start(void) +{ + nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED); + nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK); + nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART); +} + +/**@brief Function for stopping LFCLK and calibration (if it was set up). + */ +static void lfclk_stop(void) +{ +#if CALIBRATION_SUPPORT + (void)nrf_drv_clock_calibration_abort(); +#endif + +#ifdef SOFTDEVICE_PRESENT + // If LFCLK is requested to stop while SD is still enabled, + // it indicates an error in the application. + // Enabling SD should increment the LFCLK request. + ASSERT(!softdevice_handler_is_enabled()); +#endif // SOFTDEVICE_PRESENT + + nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTOP); + while (nrf_clock_lf_is_running()) + {} + m_clock_cb.lfclk_on = false; +} + +static void hfclk_start(void) +{ +#ifdef SOFTDEVICE_PRESENT + if (softdevice_handler_is_enabled()) + { + (void)sd_clock_hfclk_request(); + return; + } +#endif // SOFTDEVICE_PRESENT + + nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED); + nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK); + nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART); +} + +static void hfclk_stop(void) +{ +#ifdef SOFTDEVICE_PRESENT + if (softdevice_handler_is_enabled()) + { + (void)sd_clock_hfclk_release(); + return; + } +#endif // SOFTDEVICE_PRESENT + + nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTOP); + while (nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY)) + {} + m_clock_cb.hfclk_on = false; +} + +bool nrf_drv_clock_init_check(void) +{ + return m_clock_cb.module_initialized; +} + +ret_code_t nrf_drv_clock_init(void) +{ + ret_code_t err_code = NRF_SUCCESS; + if (m_clock_cb.module_initialized) + { + err_code = NRF_ERROR_MODULE_ALREADY_INITIALIZED; + } + else + { + m_clock_cb.p_hf_head = NULL; + m_clock_cb.hfclk_requests = 0; + m_clock_cb.p_lf_head = NULL; + m_clock_cb.lfclk_requests = 0; + nrf_drv_common_power_clock_irq_init(); +#ifdef SOFTDEVICE_PRESENT + if (!softdevice_handler_is_enabled()) +#endif + { + nrf_clock_lf_src_set((nrf_clock_lfclk_t)CLOCK_CONFIG_LF_SRC); + } + +#if CALIBRATION_SUPPORT + m_clock_cb.cal_state = CAL_STATE_IDLE; +#endif + + m_clock_cb.module_initialized = true; + } + + NRF_LOG_INFO("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +} + +void nrf_drv_clock_uninit(void) +{ + ASSERT(m_clock_cb.module_initialized); + nrf_drv_common_clock_irq_disable(); + nrf_clock_int_disable(0xFFFFFFFF); + + lfclk_stop(); + hfclk_stop(); + m_clock_cb.module_initialized = false; + NRF_LOG_INFO("Uninitialized.\r\n"); +} + +static void item_enqueue(nrf_drv_clock_handler_item_t ** p_head, + nrf_drv_clock_handler_item_t * p_item) +{ + nrf_drv_clock_handler_item_t * p_next = *p_head; + while(p_next) + { + if(p_next == p_item) + { + return; + } + p_next = p_next->p_next; + } + + p_item->p_next = (*p_head ? *p_head : NULL); + *p_head = p_item; +} + +static nrf_drv_clock_handler_item_t * item_dequeue(nrf_drv_clock_handler_item_t ** p_head) +{ + nrf_drv_clock_handler_item_t * p_item = *p_head; + if (p_item) + { + *p_head = p_item->p_next; + } + return p_item; +} + +void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item) +{ + ASSERT(m_clock_cb.module_initialized); + + if (m_clock_cb.lfclk_on) + { + if (p_handler_item) + { + p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_LFCLK_STARTED); + } + CRITICAL_REGION_ENTER(); + ++(m_clock_cb.lfclk_requests); + CRITICAL_REGION_EXIT(); + } + else + { + CRITICAL_REGION_ENTER(); + if (p_handler_item) + { + item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head, + p_handler_item); + } + if (m_clock_cb.lfclk_requests == 0) + { + lfclk_start(); + } + ++(m_clock_cb.lfclk_requests); + CRITICAL_REGION_EXIT(); + } + + ASSERT(m_clock_cb.lfclk_requests > 0); +} + +void nrf_drv_clock_lfclk_release(void) +{ + ASSERT(m_clock_cb.module_initialized); + ASSERT(m_clock_cb.lfclk_requests > 0); + + CRITICAL_REGION_ENTER(); + --(m_clock_cb.lfclk_requests); + if (m_clock_cb.lfclk_requests == 0) + { + lfclk_stop(); + } + CRITICAL_REGION_EXIT(); +} + +bool nrf_drv_clock_lfclk_is_running(void) +{ + ASSERT(m_clock_cb.module_initialized); + +#ifdef SOFTDEVICE_PRESENT + if (softdevice_handler_is_enabled()) + { + return true; + } +#endif // SOFTDEVICE_PRESENT + + return nrf_clock_lf_is_running(); +} + +void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item) +{ + ASSERT(m_clock_cb.module_initialized); + + if (m_clock_cb.hfclk_on) + { + if (p_handler_item) + { + p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); + } + CRITICAL_REGION_ENTER(); + ++(m_clock_cb.hfclk_requests); + CRITICAL_REGION_EXIT(); + } + else + { + CRITICAL_REGION_ENTER(); + if (p_handler_item) + { + item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head, + p_handler_item); + } + if (m_clock_cb.hfclk_requests == 0) + { + hfclk_start(); + } + ++(m_clock_cb.hfclk_requests); + CRITICAL_REGION_EXIT(); + } + + ASSERT(m_clock_cb.hfclk_requests > 0); +} + +void nrf_drv_clock_hfclk_release(void) +{ + ASSERT(m_clock_cb.module_initialized); + ASSERT(m_clock_cb.hfclk_requests > 0); + + CRITICAL_REGION_ENTER(); + --(m_clock_cb.hfclk_requests); + if (m_clock_cb.hfclk_requests == 0) + { + hfclk_stop(); + } + CRITICAL_REGION_EXIT(); +} + +bool nrf_drv_clock_hfclk_is_running(void) +{ + ASSERT(m_clock_cb.module_initialized); + +#ifdef SOFTDEVICE_PRESENT + if (softdevice_handler_is_enabled()) + { + uint32_t is_running; + UNUSED_VARIABLE(sd_clock_hfclk_is_running(&is_running)); + return (is_running ? true : false); + } +#endif // SOFTDEVICE_PRESENT + + return nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY); +} + +#if CALIBRATION_SUPPORT +static void clock_calibration_hf_started(nrf_drv_clock_evt_type_t event) +{ + if (m_clock_cb.cal_state == CAL_STATE_ABORT) + { + nrf_drv_clock_hfclk_release(); + m_clock_cb.cal_state = CAL_STATE_IDLE; + if (m_clock_cb.cal_done_handler) + { + m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED); + } + } + else + { + nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE); + nrf_clock_int_enable(NRF_CLOCK_INT_DONE_MASK); + m_clock_cb.cal_state = CAL_STATE_CAL; + nrf_clock_task_trigger(NRF_CLOCK_TASK_CAL); + } +} +#endif // CALIBRATION_SUPPORT + +ret_code_t nrf_drv_clock_calibration_start(uint8_t interval, nrf_drv_clock_event_handler_t handler) +{ + ret_code_t err_code = NRF_SUCCESS; +#if CALIBRATION_SUPPORT + ASSERT(m_clock_cb.cal_state == CAL_STATE_IDLE); + if (m_clock_cb.lfclk_on == false) + { + err_code = NRF_ERROR_INVALID_STATE; + } + else if (m_clock_cb.cal_state == CAL_STATE_IDLE) + { + m_clock_cb.cal_done_handler = handler; + m_clock_cb.cal_hfclk_started_handler_item.event_handler = clock_calibration_hf_started; + if (interval == 0) + { + m_clock_cb.cal_state = CAL_STATE_HFCLK_REQ; + nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item); + } + else + { + m_clock_cb.cal_state = CAL_STATE_CT; + nrf_clock_cal_timer_timeout_set(interval); + nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO); + nrf_clock_int_enable(NRF_CLOCK_INT_CTTO_MASK); + nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTART); + } + } + else + { + err_code = NRF_ERROR_BUSY; + } + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +#else + err_code = NRF_ERROR_FORBIDDEN; + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +#endif // CALIBRATION_SUPPORT +} + +ret_code_t nrf_drv_clock_calibration_abort(void) +{ + ret_code_t err_code = NRF_SUCCESS; +#if CALIBRATION_SUPPORT + CRITICAL_REGION_ENTER(); + switch (m_clock_cb.cal_state) + { + case CAL_STATE_CT: + nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK); + nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTOP); + m_clock_cb.cal_state = CAL_STATE_IDLE; + if (m_clock_cb.cal_done_handler) + { + m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED); + } + break; + case CAL_STATE_HFCLK_REQ: + /* fall through. */ + case CAL_STATE_CAL: + m_clock_cb.cal_state = CAL_STATE_ABORT; + break; + default: + break; + } + CRITICAL_REGION_EXIT(); + + NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +#else + err_code = NRF_ERROR_FORBIDDEN; + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +#endif // CALIBRATION_SUPPORT +} + +ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating) +{ + ret_code_t err_code = NRF_SUCCESS; +#if CALIBRATION_SUPPORT + ASSERT(m_clock_cb.module_initialized); + *p_is_calibrating = (m_clock_cb.cal_state != CAL_STATE_IDLE); + NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +#else + err_code = NRF_ERROR_FORBIDDEN; + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +#endif // CALIBRATION_SUPPORT +} + +__STATIC_INLINE void clock_clk_started_notify(nrf_drv_clock_evt_type_t evt_type) +{ + nrf_drv_clock_handler_item_t **p_head; + if (evt_type == NRF_DRV_CLOCK_EVT_HFCLK_STARTED) + { + p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head; + } + else + { + p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head; + } + + while (1) + { + nrf_drv_clock_handler_item_t * p_item = item_dequeue(p_head); + if (!p_item) + { + break; + } + + p_item->event_handler(evt_type); + } +} + +#if NRF_DRV_COMMON_POWER_CLOCK_ISR +void nrf_drv_clock_onIRQ(void) +#else +void POWER_CLOCK_IRQHandler(void) +#endif +{ + if (nrf_clock_event_check(NRF_CLOCK_EVENT_HFCLKSTARTED)) + { + nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED); + NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_HFCLKSTARTED)); + nrf_clock_int_disable(NRF_CLOCK_INT_HF_STARTED_MASK); + m_clock_cb.hfclk_on = true; + clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); + } + if (nrf_clock_event_check(NRF_CLOCK_EVENT_LFCLKSTARTED)) + { + nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED); + NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_LFCLKSTARTED)); + nrf_clock_int_disable(NRF_CLOCK_INT_LF_STARTED_MASK); + m_clock_cb.lfclk_on = true; + clock_clk_started_notify(NRF_DRV_CLOCK_EVT_LFCLK_STARTED); + } +#if CALIBRATION_SUPPORT + if (nrf_clock_event_check(NRF_CLOCK_EVENT_CTTO)) + { + nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO); + NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_CTTO)); + nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK); + nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item); + } + + if (nrf_clock_event_check(NRF_CLOCK_EVENT_DONE)) + { + nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE); + NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_DONE)); + nrf_clock_int_disable(NRF_CLOCK_INT_DONE_MASK); + nrf_drv_clock_hfclk_release(); + bool aborted = (m_clock_cb.cal_state == CAL_STATE_ABORT); + m_clock_cb.cal_state = CAL_STATE_IDLE; + if (m_clock_cb.cal_done_handler) + { + m_clock_cb.cal_done_handler(aborted ? + NRF_DRV_CLOCK_EVT_CAL_ABORTED : NRF_DRV_CLOCK_EVT_CAL_DONE); + } + } +#endif // CALIBRATION_SUPPORT +} + +#ifdef SOFTDEVICE_PRESENT + +void nrf_drv_clock_on_soc_event(uint32_t evt_id) +{ + if (evt_id == NRF_EVT_HFCLKSTARTED) + { + clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); + } +} + +void nrf_drv_clock_on_sd_enable(void) +{ + CRITICAL_REGION_ENTER(); + /* Make sure that nrf_drv_clock module is initialized */ + if (!m_clock_cb.module_initialized) + { + (void)nrf_drv_clock_init(); + } + /* SD is one of the LFCLK requesters, but it will enable it by itself. */ + ++(m_clock_cb.lfclk_requests); + m_clock_cb.lfclk_on = true; + CRITICAL_REGION_EXIT(); +} + +void nrf_drv_clock_on_sd_disable(void) +{ + /* Reinit interrupts */ + ASSERT(m_clock_cb.module_initialized); + nrf_drv_common_irq_enable(POWER_CLOCK_IRQn, CLOCK_CONFIG_IRQ_PRIORITY); + + /* SD leaves LFCLK enabled - disable it if it is no longer required. */ + nrf_drv_clock_lfclk_release(); +} + +#endif // SOFTDEVICE_PRESENT + +#undef NRF_CLOCK_LFCLK_RC +#undef NRF_CLOCK_LFCLK_Xtal +#undef NRF_CLOCK_LFCLK_Synth + +#endif // NRF_MODULE_ENABLED(CLOCK) diff --git a/drivers_nrf/clock/nrf_drv_clock.h b/drivers_nrf/clock/nrf_drv_clock.h new file mode 100644 index 0000000..ba9520d --- /dev/null +++ b/drivers_nrf/clock/nrf_drv_clock.h @@ -0,0 +1,314 @@ +/** + * Copyright (c) 2016 - 2017, Nordic Semiconductor ASA + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form, except as embedded into a Nordic + * Semiconductor ASA integrated circuit in a product or a software update for + * such product, must reproduce the above copyright notice, this list of + * conditions and the following disclaimer in the documentation and/or other + * materials provided with the distribution. + * + * 3. Neither the name of Nordic Semiconductor ASA nor the names of its + * contributors may be used to endorse or promote products derived from this + * software without specific prior written permission. + * + * 4. This software, with or without modification, must only be used with a + * Nordic Semiconductor ASA integrated circuit. + * + * 5. Any software provided in binary form under this license must not be reverse + * engineered, decompiled, modified and/or disassembled. + * + * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS + * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE + * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT + * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ +#ifndef NRF_DRV_CLOCK_H__ +#define NRF_DRV_CLOCK_H__ + +#include <stdbool.h> +#include <stdint.h> +#include "sdk_errors.h" +#include "nrf_assert.h" +#include "nrf_clock.h" +#include "sdk_config.h" +#include "nrf_drv_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** + * + * @addtogroup nrf_clock Clock HAL and driver + * @ingroup nrf_drivers + * @brief Clock APIs. + * @details The clock HAL provides basic APIs for accessing the registers of the clock. + * The clock driver provides APIs on a higher level. + * + * @defgroup nrf_drv_clock Clock driver + * @{ + * @ingroup nrf_clock + * @brief Driver for managing the low-frequency clock (LFCLK) and the high-frequency clock (HFCLK). + */ + +/** + * @brief Clock events. + */ +typedef enum +{ + NRF_DRV_CLOCK_EVT_HFCLK_STARTED, ///< HFCLK has been started. + NRF_DRV_CLOCK_EVT_LFCLK_STARTED, ///< LFCLK has been started. + NRF_DRV_CLOCK_EVT_CAL_DONE, ///< Calibration is done. + NRF_DRV_CLOCK_EVT_CAL_ABORTED, ///< Calibration has been aborted. +} nrf_drv_clock_evt_type_t; + +/** + * @brief Clock event handler. + * + * @param[in] event Event. + */ +typedef void (*nrf_drv_clock_event_handler_t)(nrf_drv_clock_evt_type_t event); + +// Forward declaration of the nrf_drv_clock_handler_item_t type. +typedef struct nrf_drv_clock_handler_item_s nrf_drv_clock_handler_item_t; + +struct nrf_drv_clock_handler_item_s +{ + nrf_drv_clock_handler_item_t * p_next; ///< A pointer to the next handler that should be called when the clock is started. + nrf_drv_clock_event_handler_t event_handler; ///< Function to be called when the clock is started. +}; + +/** + * @brief Function for checking if driver is already initialized + * + * This function is used to check whatever common POWER_CLOCK common interrupt + * should be disabled or not if @ref nrf_drv_power tries to disable the interrupt. + * + * @retval true Driver is initialized + * @retval false Driver is uninitialized + */ +bool nrf_drv_clock_init_check(void); + +/** + * @brief Function for initializing the nrf_drv_clock module. + * + * After initialization, the module is in power off state (clocks are not requested). + * + * @retval NRF_SUCCESS If the procedure was successful. + * @retval NRF_ERROR_MODULE_ALREADY_INITIALIZED If the driver was already initialized. + */ +ret_code_t nrf_drv_clock_init(void); + +/** + * @brief Function for uninitializing the clock module. + * + */ +void nrf_drv_clock_uninit(void); + +/** + * @brief Function for requesting the LFCLK. + * + * The low-frequency clock can be requested by different modules + * or contexts. The driver ensures that the clock will be started only when it is requested + * the first time. If the clock is not ready but it was already started, the handler item that is + * provided as an input parameter is added to the list of handlers that will be notified + * when the clock is started. If the clock is already enabled, user callback is called from the + * current context. + * + * The first request will start the selected LFCLK source. If an event handler is + * provided, it will be called once the LFCLK is started. If the LFCLK was already started at this + * time, the event handler will be called from the context of this function. Additionally, + * the @ref nrf_drv_clock_lfclk_is_running function can be polled to check if the clock has started. + * + * @note When a SoftDevice is enabled, the LFCLK is always running and the driver cannot control it. + * + * @note The handler item provided by the user cannot be an automatic variable. + * + * @param[in] p_handler_item A pointer to the event handler structure. + */ +void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item); + +/** + * @brief Function for releasing the LFCLK. + * + * If there are no more requests, the LFCLK source will be stopped. + * + * @note When a SoftDevice is enabled, the LFCLK is always running. + */ +void nrf_drv_clock_lfclk_release(void); + +/** + * @brief Function for checking the LFCLK state. + * + * @retval true If the LFCLK is running. + * @retval false If the LFCLK is not running. + */ +bool nrf_drv_clock_lfclk_is_running(void); + +/** + * @brief Function for requesting the high-accuracy source HFCLK. + * + * The high-accuracy source + * can be requested by different modules or contexts. The driver ensures that the high-accuracy + * clock will be started only when it is requested the first time. If the clock is not ready + * but it was already started, the handler item that is provided as an input parameter is added + * to the list of handlers that will be notified when the clock is started. + * + * If an event handler is provided, it will be called once the clock is started. If the clock was already + * started at this time, the event handler will be called from the context of this function. Additionally, + * the @ref nrf_drv_clock_hfclk_is_running function can be polled to check if the clock has started. + * + * @note If a SoftDevice is running, the clock is managed by the SoftDevice and all requests are handled by + * the SoftDevice. This function cannot be called from all interrupt priority levels in that case. + * @note The handler item provided by the user cannot be an automatic variable. + * + * @param[in] p_handler_item A pointer to the event handler structure. + */ +void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item); + +/** + * @brief Function for releasing the high-accuracy source HFCLK. + * + * If there are no more requests, the high-accuracy source will be released. + */ +void nrf_drv_clock_hfclk_release(void); + +/** + * @brief Function for checking the HFCLK state. + * + * @retval true If the HFCLK is running (for \nRFXX XTAL source). + * @retval false If the HFCLK is not running. + */ +bool nrf_drv_clock_hfclk_is_running(void); + +/** + * @brief Function for starting a single calibration process. + * + * This function can also delay the start of calibration by a user-specified value. The delay will use + * a low-power timer that is part of the CLOCK module. @ref nrf_drv_clock_is_calibrating can be called to + * check if calibration is still in progress. If a handler is provided, the user can be notified when + * calibration is completed. The ext calibration can be started from the handler context. + * + * The calibration process consists of three phases: + * - Delay (optional) + * - Requesting the high-accuracy HFCLK + * - Hardware-supported calibration + * + * @param[in] delay Time after which the calibration will be started (in 0.25 s units). + * @param[in] handler NULL or user function to be called when calibration is completed or aborted. + * + * @retval NRF_SUCCESS If the procedure was successful. + * @retval NRF_ERROR_FORBIDDEN If a SoftDevice is present or the selected LFCLK source is not an RC oscillator. + * @retval NRF_ERROR_INVALID_STATE If the low-frequency clock is off. + * @retval NRF_ERROR_BUSY If calibration is in progress. + */ +ret_code_t nrf_drv_clock_calibration_start(uint8_t delay, nrf_drv_clock_event_handler_t handler); + +/** + * @brief Function for aborting calibration. + * + * This function aborts on-going calibration. If calibration was started, it cannot be stopped. If a handler + * was provided by @ref nrf_drv_clock_calibration_start, this handler will be called once + * aborted calibration is completed. @ref nrf_drv_clock_is_calibrating can also be used to check + * if the system is calibrating. + * + * @retval NRF_SUCCESS If the procedure was successful. + * @retval NRF_ERROR_FORBIDDEN If a SoftDevice is present or the selected LFCLK source is not an RC oscillator. + */ +ret_code_t nrf_drv_clock_calibration_abort(void); + +/** + * @brief Function for checking if calibration is in progress. + * + * This function indicates that the system is + * in calibration if it is in any of the calibration process phases (see @ref nrf_drv_clock_calibration_start). + * + * @param[out] p_is_calibrating True if calibration is in progress, false if not. + * + * @retval NRF_SUCCESS If the procedure was successful. + * @retval NRF_ERROR_FORBIDDEN If a SoftDevice is present or the selected LFCLK source is not an RC oscillator. + */ +ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating); + +/**@brief Function for returning a requested task address for the clock driver module. + * + * @param[in] task One of the peripheral tasks. + * + * @return Task address. + */ +__STATIC_INLINE uint32_t nrf_drv_clock_ppi_task_addr(nrf_clock_task_t task); + +/**@brief Function for returning a requested event address for the clock driver module. + * + * @param[in] event One of the peripheral events. + * + * @return Event address. + */ +__STATIC_INLINE uint32_t nrf_drv_clock_ppi_event_addr(nrf_clock_event_t event); + + +#ifdef SOFTDEVICE_PRESENT +/** + * @brief Function called by the SoftDevice handler if an @ref nrf_soc event is received from the SoftDevice. + * + * @param[in] evt_id One of NRF_SOC_EVTS values. + */ +void nrf_drv_clock_on_soc_event(uint32_t evt_id); + +/** + * @brief Function called by the SoftDevice handler when the SoftDevice has been enabled. + * + * This function is called just after the SoftDevice has been properly enabled. + * Its main purpose is to mark that LFCLK has been requested by SD. + */ +void nrf_drv_clock_on_sd_enable(void); + +/** + * @brief Function called by the SoftDevice handler when the SoftDevice has been disabled. + * + * This function is called just after the SoftDevice has been properly disabled. + * It has two purposes: + * 1. Releases the LFCLK from the SD. + * 2. Reinitializes an interrupt after the SD releases POWER_CLOCK_IRQ. + */ +void nrf_drv_clock_on_sd_disable(void); + +#endif +/** + *@} + **/ + +#ifndef SUPPRESS_INLINE_IMPLEMENTATION +__STATIC_INLINE uint32_t nrf_drv_clock_ppi_task_addr(nrf_clock_task_t task) +{ + return nrf_clock_task_address_get(task); +} + +__STATIC_INLINE uint32_t nrf_drv_clock_ppi_event_addr(nrf_clock_event_t event) +{ + return nrf_clock_event_address_get(event); +} +#endif //SUPPRESS_INLINE_IMPLEMENTATION + +/*lint --flb "Leave library region" */ + +#ifdef __cplusplus +} +#endif + +#endif // NRF_CLOCK_H__ |