aboutsummaryrefslogtreecommitdiffstats
path: root/arduino/libraries/FileSystem/src/littlefs
diff options
context:
space:
mode:
Diffstat (limited to 'arduino/libraries/FileSystem/src/littlefs')
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/DESIGN.md1226
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/LICENSE.md24
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/Makefile69
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/README.md177
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/SPEC.md370
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/lfs.c2583
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/lfs.h494
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/lfs_util.c31
-rwxr-xr-xarduino/libraries/FileSystem/src/littlefs/lfs_util.h195
9 files changed, 5169 insertions, 0 deletions
diff --git a/arduino/libraries/FileSystem/src/littlefs/DESIGN.md b/arduino/libraries/FileSystem/src/littlefs/DESIGN.md
new file mode 100755
index 0000000..3afb0a2
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/DESIGN.md
@@ -0,0 +1,1226 @@
+## The design of the little filesystem
+
+A little fail-safe filesystem designed for embedded systems.
+
+```
+ | | | .---._____
+ .-----. | |
+--|o |---| littlefs |
+--| |---| |
+ '-----' '----------'
+ | | |
+```
+
+For a bit of backstory, the littlefs was developed with the goal of learning
+more about filesystem design by tackling the relative unsolved problem of
+managing a robust filesystem resilient to power loss on devices
+with limited RAM and ROM.
+
+The embedded systems the littlefs is targeting are usually 32 bit
+microcontrollers with around 32KB of RAM and 512KB of ROM. These are
+often paired with SPI NOR flash chips with about 4MB of flash storage.
+
+Flash itself is a very interesting piece of technology with quite a bit of
+nuance. Unlike most other forms of storage, writing to flash requires two
+operations: erasing and programming. The programming operation is relatively
+cheap, and can be very granular. For NOR flash specifically, byte-level
+programs are quite common. Erasing, however, requires an expensive operation
+that forces the state of large blocks of memory to reset in a destructive
+reaction that gives flash its name. The [Wikipedia entry](https://en.wikipedia.org/wiki/Flash_memory)
+has more information if you are interested in how this works.
+
+This leaves us with an interesting set of limitations that can be simplified
+to three strong requirements:
+
+1. **Power-loss resilient** - This is the main goal of the littlefs and the
+ focus of this project.
+
+ Embedded systems are usually designed without a shutdown routine and a
+ notable lack of user interface for recovery, so filesystems targeting
+ embedded systems must be prepared to lose power at any given time.
+
+ Despite this state of things, there are very few embedded filesystems that
+ handle power loss in a reasonable manner, and most can become corrupted if
+ the user is unlucky enough.
+
+2. **Wear leveling** - Due to the destructive nature of flash, most flash
+ chips have a limited number of erase cycles, usually in the order of around
+ 100,000 erases per block for NOR flash. Filesystems that don't take wear
+ into account can easily burn through blocks used to store frequently updated
+ metadata.
+
+ Consider the [FAT filesystem](https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system),
+ which stores a file allocation table (FAT) at a specific offset from the
+ beginning of disk. Every block allocation will update this table, and after
+ 100,000 updates, the block will likely go bad, rendering the filesystem
+ unusable even if there are many more erase cycles available on the storage
+ as a whole.
+
+3. **Bounded RAM/ROM** - Even with the design difficulties presented by the
+ previous two limitations, we have already seen several flash filesystems
+ developed on PCs that handle power loss just fine, such as the
+ logging filesystems. However, these filesystems take advantage of the
+ relatively cheap access to RAM, and use some rather... opportunistic...
+ techniques, such as reconstructing the entire directory structure in RAM.
+ These operations make perfect sense when the filesystem's only concern is
+ erase cycles, but the idea is a bit silly on embedded systems.
+
+ To cater to embedded systems, the littlefs has the simple limitation of
+ using only a bounded amount of RAM and ROM. That is, no matter what is
+ written to the filesystem, and no matter how large the underlying storage
+ is, the littlefs will always use the same amount of RAM and ROM. This
+ presents a very unique challenge, and makes presumably simple operations,
+ such as iterating through the directory tree, surprisingly difficult.
+
+## Existing designs?
+
+There are of course, many different existing filesystem. Here is a very rough
+summary of the general ideas behind some of them.
+
+Most of the existing filesystems fall into the one big category of filesystem
+designed in the early days of spinny magnet disks. While there is a vast amount
+of interesting technology and ideas in this area, the nature of spinny magnet
+disks encourage properties, such as grouping writes near each other, that don't
+make as much sense on recent storage types. For instance, on flash, write
+locality is not important and can actually increase wear.
+
+One of the most popular designs for flash filesystems is called the
+[logging filesystem](https://en.wikipedia.org/wiki/Log-structured_file_system).
+The flash filesystems [jffs](https://en.wikipedia.org/wiki/JFFS)
+and [yaffs](https://en.wikipedia.org/wiki/YAFFS) are good examples. In a
+logging filesystem, data is not stored in a data structure on disk, but instead
+the changes to the files are stored on disk. This has several neat advantages,
+such as the fact that the data is written in a cyclic log format and naturally
+wear levels as a side effect. And, with a bit of error detection, the entire
+filesystem can easily be designed to be resilient to power loss. The
+journaling component of most modern day filesystems is actually a reduced
+form of a logging filesystem. However, logging filesystems have a difficulty
+scaling as the size of storage increases. And most filesystems compensate by
+caching large parts of the filesystem in RAM, a strategy that is inappropriate
+for embedded systems.
+
+Another interesting filesystem design technique is that of [copy-on-write (COW)](https://en.wikipedia.org/wiki/Copy-on-write).
+A good example of this is the [btrfs](https://en.wikipedia.org/wiki/Btrfs)
+filesystem. COW filesystems can easily recover from corrupted blocks and have
+natural protection against power loss. However, if they are not designed with
+wear in mind, a COW filesystem could unintentionally wear down the root block
+where the COW data structures are synchronized.
+
+## Metadata pairs
+
+The core piece of technology that provides the backbone for the littlefs is
+the concept of metadata pairs. The key idea here is that any metadata that
+needs to be updated atomically is stored on a pair of blocks tagged with
+a revision count and checksum. Every update alternates between these two
+pairs, so that at any time there is always a backup containing the previous
+state of the metadata.
+
+Consider a small example where each metadata pair has a revision count,
+a number as data, and the XOR of the block as a quick checksum. If
+we update the data to a value of 9, and then to a value of 5, here is
+what the pair of blocks may look like after each update:
+```
+ block 1 block 2 block 1 block 2 block 1 block 2
+.---------.---------. .---------.---------. .---------.---------.
+| rev: 1 | rev: 0 | | rev: 1 | rev: 2 | | rev: 3 | rev: 2 |
+| data: 3 | data: 0 | -> | data: 3 | data: 9 | -> | data: 5 | data: 9 |
+| xor: 2 | xor: 0 | | xor: 2 | xor: 11 | | xor: 6 | xor: 11 |
+'---------'---------' '---------'---------' '---------'---------'
+ let data = 9 let data = 5
+```
+
+After each update, we can find the most up to date value of data by looking
+at the revision count.
+
+Now consider what the blocks may look like if we suddenly lose power while
+changing the value of data to 5:
+```
+ block 1 block 2 block 1 block 2 block 1 block 2
+.---------.---------. .---------.---------. .---------.---------.
+| rev: 1 | rev: 0 | | rev: 1 | rev: 2 | | rev: 3 | rev: 2 |
+| data: 3 | data: 0 | -> | data: 3 | data: 9 | -x | data: 3 | data: 9 |
+| xor: 2 | xor: 0 | | xor: 2 | xor: 11 | | xor: 2 | xor: 11 |
+'---------'---------' '---------'---------' '---------'---------'
+ let data = 9 let data = 5
+ powerloss!!!
+```
+
+In this case, block 1 was partially written with a new revision count, but
+the littlefs hadn't made it to updating the value of data. However, if we
+check our checksum we notice that block 1 was corrupted. So we fall back to
+block 2 and use the value 9.
+
+Using this concept, the littlefs is able to update metadata blocks atomically.
+There are a few other tweaks, such as using a 32 bit CRC and using sequence
+arithmetic to handle revision count overflow, but the basic concept
+is the same. These metadata pairs define the backbone of the littlefs, and the
+rest of the filesystem is built on top of these atomic updates.
+
+## Non-meta data
+
+Now, the metadata pairs do come with some drawbacks. Most notably, each pair
+requires two blocks for each block of data. I'm sure users would be very
+unhappy if their storage was suddenly cut in half! Instead of storing
+everything in these metadata blocks, the littlefs uses a COW data structure
+for files which is in turn pointed to by a metadata block. When
+we update a file, we create copies of any blocks that are modified until
+the metadata blocks are updated with the new copy. Once the metadata block
+points to the new copy, we deallocate the old blocks that are no longer in use.
+
+Here is what updating a one-block file may look like:
+```
+ block 1 block 2 block 1 block 2 block 1 block 2
+.---------.---------. .---------.---------. .---------.---------.
+| rev: 1 | rev: 0 | | rev: 1 | rev: 0 | | rev: 1 | rev: 2 |
+| file: 4 | file: 0 | -> | file: 4 | file: 0 | -> | file: 4 | file: 5 |
+| xor: 5 | xor: 0 | | xor: 5 | xor: 0 | | xor: 5 | xor: 7 |
+'---------'---------' '---------'---------' '---------'---------'
+ | | |
+ v v v
+ block 4 block 4 block 5 block 4 block 5
+.--------. .--------. .--------. .--------. .--------.
+| old | | old | | new | | old | | new |
+| data | | data | | data | | data | | data |
+| | | | | | | | | |
+'--------' '--------' '--------' '--------' '--------'
+ update data in file update metadata pair
+```
+
+It doesn't matter if we lose power while writing new data to block 5,
+since the old data remains unmodified in block 4. This example also
+highlights how the atomic updates of the metadata blocks provide a
+synchronization barrier for the rest of the littlefs.
+
+At this point, it may look like we are wasting an awfully large amount
+of space on the metadata. Just looking at that example, we are using
+three blocks to represent a file that fits comfortably in one! So instead
+of giving each file a metadata pair, we actually store the metadata for
+all files contained in a single directory in a single metadata block.
+
+Now we could just leave files here, copying the entire file on write
+provides the synchronization without the duplicated memory requirements
+of the metadata blocks. However, we can do a bit better.
+
+## CTZ skip-lists
+
+There are many different data structures for representing the actual
+files in filesystems. Of these, the littlefs uses a rather unique [COW](https://upload.wikimedia.org/wikipedia/commons/0/0c/Cow_female_black_white.jpg)
+data structure that allows the filesystem to reuse unmodified parts of the
+file without additional metadata pairs.
+
+First lets consider storing files in a simple linked-list. What happens when we
+append a block? We have to change the last block in the linked-list to point
+to this new block, which means we have to copy out the last block, and change
+the second-to-last block, and then the third-to-last, and so on until we've
+copied out the entire file.
+
+```
+Exhibit A: A linked-list
+.--------. .--------. .--------. .--------. .--------. .--------.
+| data 0 |->| data 1 |->| data 2 |->| data 4 |->| data 5 |->| data 6 |
+| | | | | | | | | | | |
+| | | | | | | | | | | |
+'--------' '--------' '--------' '--------' '--------' '--------'
+```
+
+To get around this, the littlefs, at its heart, stores files backwards. Each
+block points to its predecessor, with the first block containing no pointers.
+If you think about for a while, it starts to make a bit of sense. Appending
+blocks just point to their predecessor and no other blocks need to be updated.
+If we update a block in the middle, we will need to copy out the blocks that
+follow, but can reuse the blocks before the modified block. Since most file
+operations either reset the file each write or append to files, this design
+avoids copying the file in the most common cases.
+
+```
+Exhibit B: A backwards linked-list
+.--------. .--------. .--------. .--------. .--------. .--------.
+| data 0 |<-| data 1 |<-| data 2 |<-| data 4 |<-| data 5 |<-| data 6 |
+| | | | | | | | | | | |
+| | | | | | | | | | | |
+'--------' '--------' '--------' '--------' '--------' '--------'
+```
+
+However, a backwards linked-list does come with a rather glaring problem.
+Iterating over a file _in order_ has a runtime cost of O(n^2). Gah! A quadratic
+runtime to just _read_ a file? That's awful. Keep in mind reading files is
+usually the most common filesystem operation.
+
+To avoid this problem, the littlefs uses a multilayered linked-list. For
+every nth block where n is divisible by 2^x, the block contains a pointer
+to block n-2^x. So each block contains anywhere from 1 to log2(n) pointers
+that skip to various sections of the preceding list. If you're familiar with
+data-structures, you may have recognized that this is a type of deterministic
+skip-list.
+
+The name comes from the use of the
+[count trailing zeros (CTZ)](https://en.wikipedia.org/wiki/Count_trailing_zeros)
+instruction, which allows us to calculate the power-of-two factors efficiently.
+For a given block n, the block contains ctz(n)+1 pointers.
+
+```
+Exhibit C: A backwards CTZ skip-list
+.--------. .--------. .--------. .--------. .--------. .--------.
+| data 0 |<-| data 1 |<-| data 2 |<-| data 3 |<-| data 4 |<-| data 5 |
+| |<-| |--| |<-| |--| | | |
+| |<-| |--| |--| |--| | | |
+'--------' '--------' '--------' '--------' '--------' '--------'
+```
+
+The additional pointers allow us to navigate the data-structure on disk
+much more efficiently than in a singly linked-list.
+
+Taking exhibit C for example, here is the path from data block 5 to data
+block 1. You can see how data block 3 was completely skipped:
+```
+.--------. .--------. .--------. .--------. .--------. .--------.
+| data 0 | | data 1 |<-| data 2 | | data 3 | | data 4 |<-| data 5 |
+| | | | | |<-| |--| | | |
+| | | | | | | | | | | |
+'--------' '--------' '--------' '--------' '--------' '--------'
+```
+
+The path to data block 0 is even more quick, requiring only two jumps:
+```
+.--------. .--------. .--------. .--------. .--------. .--------.
+| data 0 | | data 1 | | data 2 | | data 3 | | data 4 |<-| data 5 |
+| | | | | | | | | | | |
+| |<-| |--| |--| |--| | | |
+'--------' '--------' '--------' '--------' '--------' '--------'
+```
+
+We can find the runtime complexity by looking at the path to any block from
+the block containing the most pointers. Every step along the path divides
+the search space for the block in half. This gives us a runtime of O(log n).
+To get to the block with the most pointers, we can perform the same steps
+backwards, which puts the runtime at O(2 log n) = O(log n). The interesting
+part about this data structure is that this optimal path occurs naturally
+if we greedily choose the pointer that covers the most distance without passing
+our target block.
+
+So now we have a representation of files that can be appended trivially with
+a runtime of O(1), and can be read with a worst case runtime of O(n log n).
+Given that the the runtime is also divided by the amount of data we can store
+in a block, this is pretty reasonable.
+
+Unfortunately, the CTZ skip-list comes with a few questions that aren't
+straightforward to answer. What is the overhead? How do we handle more
+pointers than we can store in a block? How do we store the skip-list in
+a directory entry?
+
+One way to find the overhead per block is to look at the data structure as
+multiple layers of linked-lists. Each linked-list skips twice as many blocks
+as the previous linked-list. Another way of looking at it is that each
+linked-list uses half as much storage per block as the previous linked-list.
+As we approach infinity, the number of pointers per block forms a geometric
+series. Solving this geometric series gives us an average of only 2 pointers
+per block.
+
+![overhead_per_block](https://latex.codecogs.com/svg.latex?%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%3D0%7D%5E%7Bn%7D%5Cleft%28%5Ctext%7Bctz%7D%28i%29&plus;1%5Cright%29%20%3D%20%5Csum_%7Bi%3D0%7D%5Cfrac%7B1%7D%7B2%5Ei%7D%20%3D%202)
+
+Finding the maximum number of pointers in a block is a bit more complicated,
+but since our file size is limited by the integer width we use to store the
+size, we can solve for it. Setting the overhead of the maximum pointers equal
+to the block size we get the following equation. Note that a smaller block size
+results in more pointers, and a larger word width results in larger pointers.
+
+![maximum overhead](https://latex.codecogs.com/svg.latex?B%20%3D%20%5Cfrac%7Bw%7D%7B8%7D%5Cleft%5Clceil%5Clog_2%5Cleft%28%5Cfrac%7B2%5Ew%7D%7BB-2%5Cfrac%7Bw%7D%7B8%7D%7D%5Cright%29%5Cright%5Crceil)
+
+where:
+B = block size in bytes
+w = word width in bits
+
+Solving the equation for B gives us the minimum block size for various word
+widths:
+32 bit CTZ skip-list = minimum block size of 104 bytes
+64 bit CTZ skip-list = minimum block size of 448 bytes
+
+Since littlefs uses a 32 bit word size, we are limited to a minimum block
+size of 104 bytes. This is a perfectly reasonable minimum block size, with most
+block sizes starting around 512 bytes. So we can avoid additional logic to
+avoid overflowing our block's capacity in the CTZ skip-list.
+
+So, how do we store the skip-list in a directory entry? A naive approach would
+be to store a pointer to the head of the skip-list, the length of the file
+in bytes, the index of the head block in the skip-list, and the offset in the
+head block in bytes. However this is a lot of information, and we can observe
+that a file size maps to only one block index + offset pair. So it should be
+sufficient to store only the pointer and file size.
+
+But there is one problem, calculating the block index + offset pair from a
+file size doesn't have an obvious implementation.
+
+We can start by just writing down an equation. The first idea that comes to
+mind is to just use a for loop to sum together blocks until we reach our
+file size. We can write this equation as a summation:
+
+![summation1](https://latex.codecogs.com/svg.latex?N%20%3D%20%5Csum_i%5En%5Cleft%5BB-%5Cfrac%7Bw%7D%7B8%7D%5Cleft%28%5Ctext%7Bctz%7D%28i%29&plus;1%5Cright%29%5Cright%5D)
+
+where:
+B = block size in bytes
+w = word width in bits
+n = block index in skip-list
+N = file size in bytes
+
+And this works quite well, but is not trivial to calculate. This equation
+requires O(n) to compute, which brings the entire runtime of reading a file
+to O(n^2 log n). Fortunately, the additional O(n) does not need to touch disk,
+so it is not completely unreasonable. But if we could solve this equation into
+a form that is easily computable, we can avoid a big slowdown.
+
+Unfortunately, the summation of the CTZ instruction presents a big challenge.
+How would you even begin to reason about integrating a bitwise instruction?
+Fortunately, there is a powerful tool I've found useful in these situations:
+The [On-Line Encyclopedia of Integer Sequences (OEIS)](https://oeis.org/).
+If we work out the first couple of values in our summation, we find that CTZ
+maps to [A001511](https://oeis.org/A001511), and its partial summation maps
+to [A005187](https://oeis.org/A005187), and surprisingly, both of these
+sequences have relatively trivial equations! This leads us to a rather
+unintuitive property:
+
+![mindblown](https://latex.codecogs.com/svg.latex?%5Csum_i%5En%5Cleft%28%5Ctext%7Bctz%7D%28i%29&plus;1%5Cright%29%20%3D%202n-%5Ctext%7Bpopcount%7D%28n%29)
+
+where:
+ctz(x) = the number of trailing bits that are 0 in x
+popcount(x) = the number of bits that are 1 in x
+
+It's a bit bewildering that these two seemingly unrelated bitwise instructions
+are related by this property. But if we start to dissect this equation we can
+see that it does hold. As n approaches infinity, we do end up with an average
+overhead of 2 pointers as we find earlier. And popcount seems to handle the
+error from this average as it accumulates in the CTZ skip-list.
+
+Now we can substitute into the original equation to get a trivial equation
+for a file size:
+
+![summation2](https://latex.codecogs.com/svg.latex?N%20%3D%20Bn%20-%20%5Cfrac%7Bw%7D%7B8%7D%5Cleft%282n-%5Ctext%7Bpopcount%7D%28n%29%5Cright%29)
+
+Unfortunately, we're not quite done. The popcount function is non-injective,
+so we can only find the file size from the block index, not the other way
+around. However, we can solve for an n' block index that is greater than n
+with an error bounded by the range of the popcount function. We can then
+repeatedly substitute this n' into the original equation until the error
+is smaller than the integer division. As it turns out, we only need to
+perform this substitution once. Now we directly calculate our block index:
+
+![formulaforn](https://latex.codecogs.com/svg.latex?n%20%3D%20%5Cleft%5Clfloor%5Cfrac%7BN-%5Cfrac%7Bw%7D%7B8%7D%5Cleft%28%5Ctext%7Bpopcount%7D%5Cleft%28%5Cfrac%7BN%7D%7BB-2%5Cfrac%7Bw%7D%7B8%7D%7D-1%5Cright%29&plus;2%5Cright%29%7D%7BB-2%5Cfrac%7Bw%7D%7B8%7D%7D%5Cright%5Crfloor)
+
+Now that we have our block index n, we can just plug it back into the above
+equation to find the offset. However, we do need to rearrange the equation
+a bit to avoid integer overflow:
+
+![formulaforoff](https://latex.codecogs.com/svg.latex?%5Cmathit%7Boff%7D%20%3D%20N%20-%20%5Cleft%28B-2%5Cfrac%7Bw%7D%7B8%7D%5Cright%29n%20-%20%5Cfrac%7Bw%7D%7B8%7D%5Ctext%7Bpopcount%7D%28n%29)
+
+The solution involves quite a bit of math, but computers are very good at math.
+Now we can solve for both the block index and offset from the file size in O(1).
+
+Here is what it might look like to update a file stored with a CTZ skip-list:
+```
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 0 |
+ | file: 6 | file: 0 |
+ | size: 4 | size: 0 |
+ | xor: 3 | xor: 0 |
+ '---------'---------'
+ |
+ v
+ block 3 block 4 block 5 block 6
+.--------. .--------. .--------. .--------.
+| data 0 |<-| data 1 |<-| data 2 |<-| data 3 |
+| |<-| |--| | | |
+| | | | | | | |
+'--------' '--------' '--------' '--------'
+
+| update data in file
+v
+
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 0 |
+ | file: 6 | file: 0 |
+ | size: 4 | size: 0 |
+ | xor: 3 | xor: 0 |
+ '---------'---------'
+ |
+ v
+ block 3 block 4 block 5 block 6
+.--------. .--------. .--------. .--------.
+| data 0 |<-| data 1 |<-| old |<-| old |
+| |<-| |--| data 2 | | data 3 |
+| | | | | | | |
+'--------' '--------' '--------' '--------'
+ ^ ^ ^
+ | | | block 7 block 8 block 9 block 10
+ | | | .--------. .--------. .--------. .--------.
+ | | '----| new |<-| new |<-| new |<-| new |
+ | '----------------| data 2 |<-| data 3 |--| data 4 | | data 5 |
+ '------------------| |--| |--| | | |
+ '--------' '--------' '--------' '--------'
+
+| update metadata pair
+v
+
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 2 |
+ | file: 6 | file: 10|
+ | size: 4 | size: 6 |
+ | xor: 3 | xor: 14 |
+ '---------'---------'
+ |
+ |
+ block 3 block 4 block 5 block 6 |
+.--------. .--------. .--------. .--------. |
+| data 0 |<-| data 1 |<-| old |<-| old | |
+| |<-| |--| data 2 | | data 3 | |
+| | | | | | | | |
+'--------' '--------' '--------' '--------' |
+ ^ ^ ^ v
+ | | | block 7 block 8 block 9 block 10
+ | | | .--------. .--------. .--------. .--------.
+ | | '----| new |<-| new |<-| new |<-| new |
+ | '----------------| data 2 |<-| data 3 |--| data 4 | | data 5 |
+ '------------------| |--| |--| | | |
+ '--------' '--------' '--------' '--------'
+```
+
+## Block allocation
+
+So those two ideas provide the grounds for the filesystem. The metadata pairs
+give us directories, and the CTZ skip-lists give us files. But this leaves
+one big [elephant](https://upload.wikimedia.org/wikipedia/commons/3/37/African_Bush_Elephant.jpg)
+of a question. How do we get those blocks in the first place?
+
+One common strategy is to store unallocated blocks in a big free list, and
+initially the littlefs was designed with this in mind. By storing a reference
+to the free list in every single metadata pair, additions to the free list
+could be updated atomically at the same time the replacement blocks were
+stored in the metadata pair. During boot, every metadata pair had to be
+scanned to find the most recent free list, but once the list was found the
+state of all free blocks becomes known.
+
+However, this approach had several issues:
+
+- There was a lot of nuanced logic for adding blocks to the free list without
+ modifying the blocks, since the blocks remain active until the metadata is
+ updated.
+- The free list had to support both additions and removals in FIFO order while
+ minimizing block erases.
+- The free list had to handle the case where the file system completely ran
+ out of blocks and may no longer be able to add blocks to the free list.
+- If we used a revision count to track the most recently updated free list,
+ metadata blocks that were left unmodified were ticking time bombs that would
+ cause the system to go haywire if the revision count overflowed.
+- Every single metadata block wasted space to store these free list references.
+
+Actually, to simplify, this approach had one massive glaring issue: complexity.
+
+> Complexity leads to fallibility.
+> Fallibility leads to unmaintainability.
+> Unmaintainability leads to suffering.
+
+Or at least, complexity leads to increased code size, which is a problem
+for embedded systems.
+
+In the end, the littlefs adopted more of a "drop it on the floor" strategy.
+That is, the littlefs doesn't actually store information about which blocks
+are free on the storage. The littlefs already stores which files _are_ in
+use, so to find a free block, the littlefs just takes all of the blocks that
+exist and subtract the blocks that are in use.
+
+Of course, it's not quite that simple. Most filesystems that adopt this "drop
+it on the floor" strategy either rely on some properties inherent to the
+filesystem, such as the cyclic-buffer structure of logging filesystems,
+or use a bitmap or table stored in RAM to track free blocks, which scales
+with the size of storage and is problematic when you have limited RAM. You
+could iterate through every single block in storage and check it against
+every single block in the filesystem on every single allocation, but that
+would have an abhorrent runtime.
+
+So the littlefs compromises. It doesn't store a bitmap the size of the storage,
+but it does store a little bit-vector that contains a fixed set lookahead
+for block allocations. During a block allocation, the lookahead vector is
+checked for any free blocks. If there are none, the lookahead region jumps
+forward and the entire filesystem is scanned for free blocks.
+
+Here's what it might look like to allocate 4 blocks on a decently busy
+filesystem with a 32bit lookahead and a total of
+128 blocks (512Kbytes of storage if blocks are 4Kbyte):
+```
+boot... lookahead:
+ fs blocks: fffff9fffffffffeffffffffffff0000
+scanning... lookahead: fffff9ff
+ fs blocks: fffff9fffffffffeffffffffffff0000
+alloc = 21 lookahead: fffffdff
+ fs blocks: fffffdfffffffffeffffffffffff0000
+alloc = 22 lookahead: ffffffff
+ fs blocks: fffffffffffffffeffffffffffff0000
+scanning... lookahead: fffffffe
+ fs blocks: fffffffffffffffeffffffffffff0000
+alloc = 63 lookahead: ffffffff
+ fs blocks: ffffffffffffffffffffffffffff0000
+scanning... lookahead: ffffffff
+ fs blocks: ffffffffffffffffffffffffffff0000
+scanning... lookahead: ffffffff
+ fs blocks: ffffffffffffffffffffffffffff0000
+scanning... lookahead: ffff0000
+ fs blocks: ffffffffffffffffffffffffffff0000
+alloc = 112 lookahead: ffff8000
+ fs blocks: ffffffffffffffffffffffffffff8000
+```
+
+While this lookahead approach still has an asymptotic runtime of O(n^2) to
+scan all of storage, the lookahead reduces the practical runtime to a
+reasonable amount. Bit-vectors are surprisingly compact, given only 16 bytes,
+the lookahead could track 128 blocks. For a 4Mbyte flash chip with 4Kbyte
+blocks, the littlefs would only need 8 passes to scan the entire storage.
+
+The real benefit of this approach is just how much it simplified the design
+of the littlefs. Deallocating blocks is as simple as simply forgetting they
+exist, and there is absolutely no concern of bugs in the deallocation code
+causing difficult to detect memory leaks.
+
+## Directories
+
+Now we just need directories to store our files. Since we already have
+metadata blocks that store information about files, lets just use these
+metadata blocks as the directories. Maybe turn the directories into linked
+lists of metadata blocks so it isn't limited by the number of files that fit
+in a single block. Add entries that represent other nested directories.
+Drop "." and ".." entries, cause who needs them. Dust off our hands and
+we now have a directory tree.
+
+```
+ .--------.
+ |root dir|
+ | pair 0 |
+ | |
+ '--------'
+ .-' '-------------------------.
+ v v
+ .--------. .--------. .--------.
+ | dir A |------->| dir A | | dir B |
+ | pair 0 | | pair 1 | | pair 0 |
+ | | | | | |
+ '--------' '--------' '--------'
+ .-' '-. | .-' '-.
+ v v v v v
+.--------. .--------. .--------. .--------. .--------.
+| file C | | file D | | file E | | file F | | file G |
+| | | | | | | | | |
+| | | | | | | | | |
+'--------' '--------' '--------' '--------' '--------'
+```
+
+Unfortunately it turns out it's not that simple. See, iterating over a
+directory tree isn't actually all that easy, especially when you're trying
+to fit in a bounded amount of RAM, which rules out any recursive solution.
+And since our block allocator involves iterating over the entire filesystem
+tree, possibly multiple times in a single allocation, iteration needs to be
+efficient.
+
+So, as a solution, the littlefs adopted a sort of threaded tree. Each
+directory not only contains pointers to all of its children, but also a
+pointer to the next directory. These pointers create a linked-list that
+is threaded through all of the directories in the filesystem. Since we
+only use this linked list to check for existence, the order doesn't actually
+matter. As an added plus, we can repurpose the pointer for the individual
+directory linked-lists and avoid using any additional space.
+
+```
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+ .--------| |-'
+ | '--------'
+ | .-' '-------------------------.
+ | v v
+ | .--------. .--------. .--------.
+ '->| dir A |------->| dir A |------->| dir B |
+ | pair 0 | | pair 1 | | pair 0 |
+ | | | | | |
+ '--------' '--------' '--------'
+ .-' '-. | .-' '-.
+ v v v v v
+.--------. .--------. .--------. .--------. .--------.
+| file C | | file D | | file E | | file F | | file G |
+| | | | | | | | | |
+| | | | | | | | | |
+'--------' '--------' '--------' '--------' '--------'
+```
+
+This threaded tree approach does come with a few tradeoffs. Now, anytime we
+want to manipulate the directory tree, we find ourselves having to update two
+pointers instead of one. For anyone familiar with creating atomic data
+structures this should set off a whole bunch of red flags.
+
+But unlike the data structure guys, we can update a whole block atomically! So
+as long as we're really careful (and cheat a little bit), we can still
+manipulate the directory tree in a way that is resilient to power loss.
+
+Consider how we might add a new directory. Since both pointers that reference
+it can come from the same directory, we only need a single atomic update to
+finagle the directory into the filesystem:
+```
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+.--| |-'
+| '--------'
+| |
+| v
+| .--------.
+'->| dir A |
+ | pair 0 |
+ | |
+ '--------'
+
+| create the new directory block
+v
+
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+ .--| |-'
+ | '--------'
+ | |
+ | v
+ | .--------.
+.--------. '->| dir A |
+| dir B |---->| pair 0 |
+| pair 0 | | |
+| | '--------'
+'--------'
+
+| update root to point to directory B
+v
+
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+.--------| |-'
+| '--------'
+| .-' '-.
+| v v
+| .--------. .--------.
+'->| dir B |->| dir A |
+ | pair 0 | | pair 0 |
+ | | | |
+ '--------' '--------'
+```
+
+Note that even though directory B was added after directory A, we insert
+directory B before directory A in the linked-list because it is convenient.
+
+Now how about removal:
+```
+ .--------. .--------.
+ |root dir|------->|root dir|-.
+ | pair 0 | | pair 1 | |
+.--------| |--------| |-'
+| '--------' '--------'
+| .-' '-. |
+| v v v
+| .--------. .--------. .--------.
+'->| dir A |->| dir B |->| dir C |
+ | pair 0 | | pair 0 | | pair 0 |
+ | | | | | |
+ '--------' '--------' '--------'
+
+| update root to no longer contain directory B
+v
+
+ .--------. .--------.
+ |root dir|------------->|root dir|-.
+ | pair 0 | | pair 1 | |
+.--| |--------------| |-'
+| '--------' '--------'
+| | |
+| v v
+| .--------. .--------. .--------.
+'->| dir A |->| dir B |->| dir C |
+ | pair 0 | | pair 0 | | pair 0 |
+ | | | | | |
+ '--------' '--------' '--------'
+
+| remove directory B from the linked-list
+v
+
+ .--------. .--------.
+ |root dir|->|root dir|-.
+ | pair 0 | | pair 1 | |
+.--| |--| |-'
+| '--------' '--------'
+| | |
+| v v
+| .--------. .--------.
+'->| dir A |->| dir C |
+ | pair 0 | | pair 0 |
+ | | | |
+ '--------' '--------'
+```
+
+Wait, wait, wait, that's not atomic at all! If power is lost after removing
+directory B from the root, directory B is still in the linked-list. We've
+just created a memory leak!
+
+And to be honest, I don't have a clever solution for this case. As a
+side-effect of using multiple pointers in the threaded tree, the littlefs
+can end up with orphan blocks that have no parents and should have been
+removed.
+
+To keep these orphan blocks from becoming a problem, the littlefs has a
+deorphan step that simply iterates through every directory in the linked-list
+and checks it against every directory entry in the filesystem to see if it
+has a parent. The deorphan step occurs on the first block allocation after
+boot, so orphans should never cause the littlefs to run out of storage
+prematurely. Note that the deorphan step never needs to run in a read-only
+filesystem.
+
+## The move problem
+
+Now we have a real problem. How do we move things between directories while
+remaining power resilient? Even looking at the problem from a high level,
+it seems impossible. We can update directory blocks atomically, but atomically
+updating two independent directory blocks is not an atomic operation.
+
+Here's the steps the filesystem may go through to move a directory:
+```
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+.--------| |-'
+| '--------'
+| .-' '-.
+| v v
+| .--------. .--------.
+'->| dir A |->| dir B |
+ | pair 0 | | pair 0 |
+ | | | |
+ '--------' '--------'
+
+| update directory B to point to directory A
+v
+
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+.--------| |-'
+| '--------'
+| .-----' '-.
+| | v
+| | .--------.
+| | .->| dir B |
+| | | | pair 0 |
+| | | | |
+| | | '--------'
+| | .-------'
+| v v |
+| .--------. |
+'->| dir A |-'
+ | pair 0 |
+ | |
+ '--------'
+
+| update root to no longer contain directory A
+v
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+.----| |-'
+| '--------'
+| |
+| v
+| .--------.
+| .->| dir B |
+| | | pair 0 |
+| '--| |-.
+| '--------' |
+| | |
+| v |
+| .--------. |
+'--->| dir A |-'
+ | pair 0 |
+ | |
+ '--------'
+```
+
+We can leave any orphans up to the deorphan step to collect, but that doesn't
+help the case where dir A has both dir B and the root dir as parents if we
+lose power inconveniently.
+
+Initially, you might think this is fine. Dir A _might_ end up with two parents,
+but the filesystem will still work as intended. But then this raises the
+question of what do we do when the dir A wears out? For other directory blocks
+we can update the parent pointer, but for a dir with two parents we would need
+work out how to update both parents. And the check for multiple parents would
+need to be carried out for every directory, even if the directory has never
+been moved.
+
+It also presents a bad user-experience, since the condition of ending up with
+two parents is rare, it's unlikely user-level code will be prepared. Just think
+about how a user would recover from a multi-parented directory. They can't just
+remove one directory, since remove would report the directory as "not empty".
+
+Other atomic filesystems simple COW the entire directory tree. But this
+introduces a significant bit of complexity, which leads to code size, along
+with a surprisingly expensive runtime cost during what most users assume is
+a single pointer update.
+
+Another option is to update the directory block we're moving from to point
+to the destination with a sort of predicate that we have moved if the
+destination exists. Unfortunately, the omnipresent concern of wear could
+cause any of these directory entries to change blocks, and changing the
+entry size before a move introduces complications if it spills out of
+the current directory block.
+
+So how do we go about moving a directory atomically?
+
+We rely on the improbableness of power loss.
+
+Power loss during a move is certainly possible, but it's actually relatively
+rare. Unless a device is writing to a filesystem constantly, it's unlikely that
+a power loss will occur during filesystem activity. We still need to handle
+the condition, but runtime during a power loss takes a back seat to the runtime
+during normal operations.
+
+So what littlefs does is inelegantly simple. When littlefs moves a file, it
+marks the file as "moving". This is stored as a single bit in the directory
+entry and doesn't take up much space. Then littlefs moves the directory,
+finishing with the complete remove of the "moving" directory entry.
+
+```
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+.--------| |-'
+| '--------'
+| .-' '-.
+| v v
+| .--------. .--------.
+'->| dir A |->| dir B |
+ | pair 0 | | pair 0 |
+ | | | |
+ '--------' '--------'
+
+| update root directory to mark directory A as moving
+v
+
+ .----------.
+ |root dir |-.
+ | pair 0 | |
+.-------| moving A!|-'
+| '----------'
+| .-' '-.
+| v v
+| .--------. .--------.
+'->| dir A |->| dir B |
+ | pair 0 | | pair 0 |
+ | | | |
+ '--------' '--------'
+
+| update directory B to point to directory A
+v
+
+ .----------.
+ |root dir |-.
+ | pair 0 | |
+.-------| moving A!|-'
+| '----------'
+| .-----' '-.
+| | v
+| | .--------.
+| | .->| dir B |
+| | | | pair 0 |
+| | | | |
+| | | '--------'
+| | .-------'
+| v v |
+| .--------. |
+'->| dir A |-'
+ | pair 0 |
+ | |
+ '--------'
+
+| update root to no longer contain directory A
+v
+ .--------.
+ |root dir|-.
+ | pair 0 | |
+.----| |-'
+| '--------'
+| |
+| v
+| .--------.
+| .->| dir B |
+| | | pair 0 |
+| '--| |-.
+| '--------' |
+| | |
+| v |
+| .--------. |
+'--->| dir A |-'
+ | pair 0 |
+ | |
+ '--------'
+```
+
+Now, if we run into a directory entry that has been marked as "moved", one
+of two things is possible. Either the directory entry exists elsewhere in the
+filesystem, or it doesn't. This is a O(n) operation, but only occurs in the
+unlikely case we lost power during a move.
+
+And we can easily fix the "moved" directory entry. Since we're already scanning
+the filesystem during the deorphan step, we can also check for moved entries.
+If we find one, we either remove the "moved" marking or remove the whole entry
+if it exists elsewhere in the filesystem.
+
+## Wear awareness
+
+So now that we have all of the pieces of a filesystem, we can look at a more
+subtle attribute of embedded storage: The wear down of flash blocks.
+
+The first concern for the littlefs, is that perfectly valid blocks can suddenly
+become unusable. As a nice side-effect of using a COW data-structure for files,
+we can simply move on to a different block when a file write fails. All
+modifications to files are performed in copies, so we will only replace the
+old file when we are sure none of the new file has errors. Directories, on
+the other hand, need a different strategy.
+
+The solution to directory corruption in the littlefs relies on the redundant
+nature of the metadata pairs. If an error is detected during a write to one
+of the metadata pairs, we seek out a new block to take its place. Once we find
+a block without errors, we iterate through the directory tree, updating any
+references to the corrupted metadata pair to point to the new metadata block.
+Just like when we remove directories, we can lose power during this operation
+and end up with a desynchronized metadata pair in our filesystem. And just like
+when we remove directories, we leave the possibility of a desynchronized
+metadata pair up to the deorphan step to clean up.
+
+Here's what encountering a directory error may look like with all of
+the directories and directory pointers fully expanded:
+```
+ root dir
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 0 |--.
+ | | |-.|
+.------| | |-|'
+|.-----| | |-'
+|| '---------'---------'
+|| |||||'--------------------------------------------------.
+|| ||||'-----------------------------------------. |
+|| |||'-----------------------------. | |
+|| ||'--------------------. | | |
+|| |'-------. | | | |
+|| v v v v v v
+|| dir A dir B dir C
+|| block 3 block 4 block 5 block 6 block 7 block 8
+|| .---------.---------. .---------.---------. .---------.---------.
+|'->| rev: 1 | rev: 0 |->| rev: 1 | rev: 0 |->| rev: 1 | rev: 0 |
+'-->| | |->| | |->| | |
+ | | | | | | |
+ | | | | | | | | |
+ '---------'---------' '---------'---------' '---------'---------'
+
+| update directory B
+v
+
+ root dir
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 0 |--.
+ | | |-.|
+.------| | |-|'
+|.-----| | |-'
+|| '---------'---------'
+|| |||||'--------------------------------------------------.
+|| ||||'-----------------------------------------. |
+|| |||'-----------------------------. | |
+|| ||'--------------------. | | |
+|| |'-------. | | | |
+|| v v v v v v
+|| dir A dir B dir C
+|| block 3 block 4 block 5 block 6 block 7 block 8
+|| .---------.---------. .---------.---------. .---------.---------.
+|'->| rev: 1 | rev: 0 |->| rev: 1 | rev: 2 |->| rev: 1 | rev: 0 |
+'-->| | |->| | corrupt!|->| | |
+ | | | | | corrupt!| | | |
+ | | | | | corrupt!| | | |
+ '---------'---------' '---------'---------' '---------'---------'
+
+| oh no! corruption detected
+v allocate a replacement block
+
+ root dir
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 0 |--.
+ | | |-.|
+.------| | |-|'
+|.-----| | |-'
+|| '---------'---------'
+|| |||||'----------------------------------------------------.
+|| ||||'-------------------------------------------. |
+|| |||'-----------------------------. | |
+|| ||'--------------------. | | |
+|| |'-------. | | | |
+|| v v v v v v
+|| dir A dir B dir C
+|| block 3 block 4 block 5 block 6 block 7 block 8
+|| .---------.---------. .---------.---------. .---------.---------.
+|'->| rev: 1 | rev: 0 |->| rev: 1 | rev: 2 |--->| rev: 1 | rev: 0 |
+'-->| | |->| | corrupt!|--->| | |
+ | | | | | corrupt!| .->| | |
+ | | | | | corrupt!| | | | |
+ '---------'---------' '---------'---------' | '---------'---------'
+ block 9 |
+ .---------. |
+ | rev: 2 |-'
+ | |
+ | |
+ | |
+ '---------'
+
+| update root directory to contain block 9
+v
+
+ root dir
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 2 |--.
+ | | |-.|
+.-----| | |-|'
+|.----| | |-'
+|| '---------'---------'
+|| .--------'||||'----------------------------------------------.
+|| | |||'-------------------------------------. |
+|| | ||'-----------------------. | |
+|| | |'------------. | | |
+|| | | | | | |
+|| v v v v v v
+|| dir A dir B dir C
+|| block 3 block 4 block 5 block 9 block 7 block 8
+|| .---------.---------. .---------. .---------. .---------.---------.
+|'->| rev: 1 | rev: 0 |-->| rev: 1 |-| rev: 2 |--->| rev: 1 | rev: 0 |
+'-->| | |-. | | | |--->| | |
+ | | | | | | | | .->| | |
+ | | | | | | | | | | | |
+ '---------'---------' | '---------' '---------' | '---------'---------'
+ | block 6 |
+ | .---------. |
+ '------------>| rev: 2 |-'
+ | corrupt!|
+ | corrupt!|
+ | corrupt!|
+ '---------'
+
+| remove corrupted block from linked-list
+v
+
+ root dir
+ block 1 block 2
+ .---------.---------.
+ | rev: 1 | rev: 2 |--.
+ | | |-.|
+.-----| | |-|'
+|.----| | |-'
+|| '---------'---------'
+|| .--------'||||'-----------------------------------------.
+|| | |||'--------------------------------. |
+|| | ||'--------------------. | |
+|| | |'-----------. | | |
+|| | | | | | |
+|| v v v v v v
+|| dir A dir B dir C
+|| block 3 block 4 block 5 block 9 block 7 block 8
+|| .---------.---------. .---------.---------. .---------.---------.
+|'->| rev: 1 | rev: 2 |->| rev: 1 | rev: 2 |->| rev: 1 | rev: 0 |
+'-->| | |->| | |->| | |
+ | | | | | | | | |
+ | | | | | | | | |
+ '---------'---------' '---------'---------' '---------'---------'
+```
+
+Also one question I've been getting is, what about the root directory?
+It can't move so wouldn't the filesystem die as soon as the root blocks
+develop errors? And you would be correct. So instead of storing the root
+in the first few blocks of the storage, the root is actually pointed to
+by the superblock. The superblock contains a few bits of static data, but
+outside of when the filesystem is formatted, it is only updated when the root
+develops errors and needs to be moved.
+
+## Wear leveling
+
+The second concern for the littlefs is that blocks in the filesystem may wear
+unevenly. In this situation, a filesystem may meet an early demise where
+there are no more non-corrupted blocks that aren't in use. It's common to
+have files that were written once and left unmodified, wasting the potential
+erase cycles of the blocks it sits on.
+
+Wear leveling is a term that describes distributing block writes evenly to
+avoid the early termination of a flash part. There are typically two levels
+of wear leveling:
+1. Dynamic wear leveling - Wear is distributed evenly across all **dynamic**
+ blocks. Usually this is accomplished by simply choosing the unused block
+ with the lowest amount of wear. Note this does not solve the problem of
+ static data.
+2. Static wear leveling - Wear is distributed evenly across all **dynamic**
+ and **static** blocks. Unmodified blocks may be evicted for new block
+ writes. This does handle the problem of static data but may lead to
+ wear amplification.
+
+In littlefs's case, it's possible to use the revision count on metadata pairs
+to approximate the wear of a metadata block. And combined with the COW nature
+of files, littlefs could provide your usual implementation of dynamic wear
+leveling.
+
+However, the littlefs does not. This is for a few reasons. Most notably, even
+if the littlefs did implement dynamic wear leveling, this would still not
+handle the case of write-once files, and near the end of the lifetime of a
+flash device, you would likely end up with uneven wear on the blocks anyways.
+
+As a flash device reaches the end of its life, the metadata blocks will
+naturally be the first to go since they are updated most often. In this
+situation, the littlefs is designed to simply move on to another set of
+metadata blocks. This travelling means that at the end of a flash device's
+life, the filesystem will have worn the device down nearly as evenly as the
+usual dynamic wear leveling could. More aggressive wear leveling would come
+with a code-size cost for marginal benefit.
+
+
+One important takeaway to note, if your storage stack uses highly sensitive
+storage such as NAND flash, static wear leveling is the only valid solution.
+In most cases you are going to be better off using a full [flash translation layer (FTL)](https://en.wikipedia.org/wiki/Flash_translation_layer).
+NAND flash already has many limitations that make it poorly suited for an
+embedded system: low erase cycles, very large blocks, errors that can develop
+even during reads, errors that can develop during writes of neighboring blocks.
+Managing sensitive storage such as NAND flash is out of scope for the littlefs.
+The littlefs does have some properties that may be beneficial on top of a FTL,
+such as limiting the number of writes where possible, but if you have the
+storage requirements that necessitate the need of NAND flash, you should have
+the RAM to match and just use an FTL or flash filesystem.
+
+## Summary
+
+So, to summarize:
+
+1. The littlefs is composed of directory blocks
+2. Each directory is a linked-list of metadata pairs
+3. These metadata pairs can be updated atomically by alternating which
+ metadata block is active
+4. Directory blocks contain either references to other directories or files
+5. Files are represented by copy-on-write CTZ skip-lists which support O(1)
+ append and O(n log n) reading
+6. Blocks are allocated by scanning the filesystem for used blocks in a
+ fixed-size lookahead region that is stored in a bit-vector
+7. To facilitate scanning the filesystem, all directories are part of a
+ linked-list that is threaded through the entire filesystem
+8. If a block develops an error, the littlefs allocates a new block, and
+ moves the data and references of the old block to the new.
+9. Any case where an atomic operation is not possible, mistakes are resolved
+ by a deorphan step that occurs on the first allocation after boot
+
+That's the little filesystem. Thanks for reading!
+
diff --git a/arduino/libraries/FileSystem/src/littlefs/LICENSE.md b/arduino/libraries/FileSystem/src/littlefs/LICENSE.md
new file mode 100755
index 0000000..ed69bea
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/LICENSE.md
@@ -0,0 +1,24 @@
+Copyright (c) 2017, Arm Limited. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+- Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+- Redistributions in binary form must reproduce the above copyright notice, this
+ list of conditions and the following disclaimer in the documentation and/or
+ other materials provided with the distribution.
+- Neither the name of ARM nor the names of its contributors may be used to
+ endorse or promote products derived from this software without specific prior
+ written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/arduino/libraries/FileSystem/src/littlefs/Makefile b/arduino/libraries/FileSystem/src/littlefs/Makefile
new file mode 100755
index 0000000..17d3616
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/Makefile
@@ -0,0 +1,69 @@
+TARGET = lfs.a
+ifneq ($(wildcard test.c main.c),)
+override TARGET = lfs
+endif
+
+CC ?= gcc
+AR ?= ar
+SIZE ?= size
+
+SRC += $(wildcard *.c emubd/*.c)
+OBJ := $(SRC:.c=.o)
+DEP := $(SRC:.c=.d)
+ASM := $(SRC:.c=.s)
+
+TEST := $(patsubst tests/%.sh,%,$(wildcard tests/test_*))
+
+SHELL = /bin/bash -o pipefail
+
+ifdef DEBUG
+override CFLAGS += -O0 -g3
+else
+override CFLAGS += -Os
+endif
+ifdef WORD
+override CFLAGS += -m$(WORD)
+endif
+override CFLAGS += -I.
+override CFLAGS += -std=c99 -Wall -pedantic
+override CFLAGS += -Wshadow -Wunused-parameter -Wjump-misses-init -Wsign-compare
+
+
+all: $(TARGET)
+
+asm: $(ASM)
+
+size: $(OBJ)
+ $(SIZE) -t $^
+
+.SUFFIXES:
+test: test_format test_dirs test_files test_seek test_truncate \
+ test_interspersed test_alloc test_paths test_orphan test_move test_corrupt
+ @rm test.c
+test_%: tests/test_%.sh
+
+ifdef QUIET
+ @./$< | sed -n '/^[-=]/p'
+else
+ ./$<
+endif
+
+-include $(DEP)
+
+lfs: $(OBJ)
+ $(CC) $(CFLAGS) $^ $(LFLAGS) -o $@
+
+%.a: $(OBJ)
+ $(AR) rcs $@ $^
+
+%.o: %.c
+ $(CC) -c -MMD $(CFLAGS) $< -o $@
+
+%.s: %.c
+ $(CC) -S $(CFLAGS) $< -o $@
+
+clean:
+ rm -f $(TARGET)
+ rm -f $(OBJ)
+ rm -f $(DEP)
+ rm -f $(ASM)
diff --git a/arduino/libraries/FileSystem/src/littlefs/README.md b/arduino/libraries/FileSystem/src/littlefs/README.md
new file mode 100755
index 0000000..623ba0a
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/README.md
@@ -0,0 +1,177 @@
+## The little filesystem
+
+A little fail-safe filesystem designed for embedded systems.
+
+```
+ | | | .---._____
+ .-----. | |
+--|o |---| littlefs |
+--| |---| |
+ '-----' '----------'
+ | | |
+```
+
+**Bounded RAM/ROM** - The littlefs is designed to work with a limited amount
+of memory. Recursion is avoided and dynamic memory is limited to configurable
+buffers that can be provided statically.
+
+**Power-loss resilient** - The littlefs is designed for systems that may have
+random power failures. The littlefs has strong copy-on-write guarantees and
+storage on disk is always kept in a valid state.
+
+**Wear leveling** - Since the most common form of embedded storage is erodible
+flash memories, littlefs provides a form of dynamic wear leveling for systems
+that can not fit a full flash translation layer.
+
+## Example
+
+Here's a simple example that updates a file named `boot_count` every time
+main runs. The program can be interrupted at any time without losing track
+of how many times it has been booted and without corrupting the filesystem:
+
+``` c
+#include "lfs.h"
+
+// variables used by the filesystem
+lfs_t lfs;
+lfs_file_t file;
+
+// configuration of the filesystem is provided by this struct
+const struct lfs_config cfg = {
+ // block device operations
+ .read = user_provided_block_device_read,
+ .prog = user_provided_block_device_prog,
+ .erase = user_provided_block_device_erase,
+ .sync = user_provided_block_device_sync,
+
+ // block device configuration
+ .read_size = 16,
+ .prog_size = 16,
+ .block_size = 4096,
+ .block_count = 128,
+ .lookahead = 128,
+};
+
+// entry point
+int main(void) {
+ // mount the filesystem
+ int err = lfs_mount(&lfs, &cfg);
+
+ // reformat if we can't mount the filesystem
+ // this should only happen on the first boot
+ if (err) {
+ lfs_format(&lfs, &cfg);
+ lfs_mount(&lfs, &cfg);
+ }
+
+ // read current count
+ uint32_t boot_count = 0;
+ lfs_file_open(&lfs, &file, "boot_count", LFS_O_RDWR | LFS_O_CREAT);
+ lfs_file_read(&lfs, &file, &boot_count, sizeof(boot_count));
+
+ // update boot count
+ boot_count += 1;
+ lfs_file_rewind(&lfs, &file);
+ lfs_file_write(&lfs, &file, &boot_count, sizeof(boot_count));
+
+ // remember the storage is not updated until the file is closed successfully
+ lfs_file_close(&lfs, &file);
+
+ // release any resources we were using
+ lfs_unmount(&lfs);
+
+ // print the boot count
+ printf("boot_count: %d\n", boot_count);
+}
+```
+
+## Usage
+
+Detailed documentation (or at least as much detail as is currently available)
+can be found in the comments in [lfs.h](lfs.h).
+
+As you may have noticed, littlefs takes in a configuration structure that
+defines how the filesystem operates. The configuration struct provides the
+filesystem with the block device operations and dimensions, tweakable
+parameters that tradeoff memory usage for performance, and optional
+static buffers if the user wants to avoid dynamic memory.
+
+The state of the littlefs is stored in the `lfs_t` type which is left up
+to the user to allocate, allowing multiple filesystems to be in use
+simultaneously. With the `lfs_t` and configuration struct, a user can
+format a block device or mount the filesystem.
+
+Once mounted, the littlefs provides a full set of POSIX-like file and
+directory functions, with the deviation that the allocation of filesystem
+structures must be provided by the user.
+
+All POSIX operations, such as remove and rename, are atomic, even in event
+of power-loss. Additionally, no file updates are actually committed to the
+filesystem until sync or close is called on the file.
+
+## Other notes
+
+All littlefs have the potential to return a negative error code. The errors
+can be either one of those found in the `enum lfs_error` in [lfs.h](lfs.h),
+or an error returned by the user's block device operations.
+
+In the configuration struct, the `prog` and `erase` function provided by the
+user may return a `LFS_ERR_CORRUPT` error if the implementation already can
+detect corrupt blocks. However, the wear leveling does not depend on the return
+code of these functions, instead all data is read back and checked for
+integrity.
+
+If your storage caches writes, make sure that the provided `sync` function
+flushes all the data to memory and ensures that the next read fetches the data
+from memory, otherwise data integrity can not be guaranteed. If the `write`
+function does not perform caching, and therefore each `read` or `write` call
+hits the memory, the `sync` function can simply return 0.
+
+## Reference material
+
+[DESIGN.md](DESIGN.md) - DESIGN.md contains a fully detailed dive into how
+littlefs actually works. I would encourage you to read it since the
+solutions and tradeoffs at work here are quite interesting.
+
+[SPEC.md](SPEC.md) - SPEC.md contains the on-disk specification of littlefs
+with all the nitty-gritty details. Can be useful for developing tooling.
+
+## Testing
+
+The littlefs comes with a test suite designed to run on a PC using the
+[emulated block device](emubd/lfs_emubd.h) found in the emubd directory.
+The tests assume a Linux environment and can be started with make:
+
+``` bash
+make test
+```
+
+## License
+
+The littlefs is provided under the [BSD-3-Clause](https://spdx.org/licenses/BSD-3-Clause.html)
+license. See [LICENSE.md](LICENSE.md) for more information. Contributions to
+this project are accepted under the same license.
+
+Individual files contain the following tag instead of the full license text.
+
+ SPDX-License-Identifier: BSD-3-Clause
+
+This enables machine processing of license information based on the SPDX
+License Identifiers that are here available: http://spdx.org/licenses/
+
+## Related projects
+
+[Mbed OS](https://github.com/ARMmbed/mbed-os/tree/master/features/filesystem/littlefs) -
+The easiest way to get started with littlefs is to jump into [Mbed](https://os.mbed.com/),
+which already has block device drivers for most forms of embedded storage. The
+littlefs is available in Mbed OS as the [LittleFileSystem](https://os.mbed.com/docs/latest/reference/littlefilesystem.html)
+class.
+
+[littlefs-fuse](https://github.com/geky/littlefs-fuse) - A [FUSE](https://github.com/libfuse/libfuse)
+wrapper for littlefs. The project allows you to mount littlefs directly on a
+Linux machine. Can be useful for debugging littlefs if you have an SD card
+handy.
+
+[littlefs-js](https://github.com/geky/littlefs-js) - A javascript wrapper for
+littlefs. I'm not sure why you would want this, but it is handy for demos.
+You can see it in action [here](http://littlefs.geky.net/demo.html).
diff --git a/arduino/libraries/FileSystem/src/littlefs/SPEC.md b/arduino/libraries/FileSystem/src/littlefs/SPEC.md
new file mode 100755
index 0000000..2a1f9ec
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/SPEC.md
@@ -0,0 +1,370 @@
+## The little filesystem technical specification
+
+This is the technical specification of the little filesystem. This document
+covers the technical details of how the littlefs is stored on disk for
+introspection and tooling development. This document assumes you are
+familiar with the design of the littlefs, for more info on how littlefs
+works check out [DESIGN.md](DESIGN.md).
+
+```
+ | | | .---._____
+ .-----. | |
+--|o |---| littlefs |
+--| |---| |
+ '-----' '----------'
+ | | |
+```
+
+## Some important details
+
+- The littlefs is a block-based filesystem. This is, the disk is divided into
+ an array of evenly sized blocks that are used as the logical unit of storage
+ in littlefs. Block pointers are stored in 32 bits.
+
+- There is no explicit free-list stored on disk, the littlefs only knows what
+ is in use in the filesystem.
+
+- The littlefs uses the value of 0xffffffff to represent a null block-pointer.
+
+- All values in littlefs are stored in little-endian byte order.
+
+## Directories / Metadata pairs
+
+Metadata pairs form the backbone of the littlefs and provide a system for
+atomic updates. Even the superblock is stored in a metadata pair.
+
+As their name suggests, a metadata pair is stored in two blocks, with one block
+acting as a redundant backup in case the other is corrupted. These two blocks
+could be anywhere in the disk and may not be next to each other, so any
+pointers to directory pairs need to be stored as two block pointers.
+
+Here's the layout of metadata blocks on disk:
+
+| offset | size | description |
+|--------|---------------|----------------|
+| 0x00 | 32 bits | revision count |
+| 0x04 | 32 bits | dir size |
+| 0x08 | 64 bits | tail pointer |
+| 0x10 | size-16 bytes | dir entries |
+| 0x00+s | 32 bits | CRC |
+
+**Revision count** - Incremented every update, only the uncorrupted
+metadata-block with the most recent revision count contains the valid metadata.
+Comparison between revision counts must use sequence comparison since the
+revision counts may overflow.
+
+**Dir size** - Size in bytes of the contents in the current metadata block,
+including the metadata-pair metadata. Additionally, the highest bit of the
+dir size may be set to indicate that the directory's contents continue on the
+next metadata-pair pointed to by the tail pointer.
+
+**Tail pointer** - Pointer to the next metadata-pair in the filesystem.
+A null pair-pointer (0xffffffff, 0xffffffff) indicates the end of the list.
+If the highest bit in the dir size is set, this points to the next
+metadata-pair in the current directory, otherwise it points to an arbitrary
+metadata-pair. Starting with the superblock, the tail-pointers form a
+linked-list containing all metadata-pairs in the filesystem.
+
+**CRC** - 32 bit CRC used to detect corruption from power-lost, from block
+end-of-life, or just from noise on the storage bus. The CRC is appended to
+the end of each metadata-block. The littlefs uses the standard CRC-32, which
+uses a polynomial of 0x04c11db7, initialized with 0xffffffff.
+
+Here's an example of a simple directory stored on disk:
+```
+(32 bits) revision count = 10 (0x0000000a)
+(32 bits) dir size = 154 bytes, end of dir (0x0000009a)
+(64 bits) tail pointer = 37, 36 (0x00000025, 0x00000024)
+(32 bits) CRC = 0xc86e3106
+
+00000000: 0a 00 00 00 9a 00 00 00 25 00 00 00 24 00 00 00 ........%...$...
+00000010: 22 08 00 03 05 00 00 00 04 00 00 00 74 65 61 22 "...........tea"
+00000020: 08 00 06 07 00 00 00 06 00 00 00 63 6f 66 66 65 ...........coffe
+00000030: 65 22 08 00 04 09 00 00 00 08 00 00 00 73 6f 64 e"...........sod
+00000040: 61 22 08 00 05 1d 00 00 00 1c 00 00 00 6d 69 6c a"...........mil
+00000050: 6b 31 22 08 00 05 1f 00 00 00 1e 00 00 00 6d 69 k1"...........mi
+00000060: 6c 6b 32 22 08 00 05 21 00 00 00 20 00 00 00 6d lk2"...!... ...m
+00000070: 69 6c 6b 33 22 08 00 05 23 00 00 00 22 00 00 00 ilk3"...#..."...
+00000080: 6d 69 6c 6b 34 22 08 00 05 25 00 00 00 24 00 00 milk4"...%...$..
+00000090: 00 6d 69 6c 6b 35 06 31 6e c8 .milk5.1n.
+```
+
+A note about the tail pointer linked-list: Normally, this linked-list is
+threaded through the entire filesystem. However, after power-loss this
+linked-list may become out of sync with the rest of the filesystem.
+- The linked-list may contain a directory that has actually been removed
+- The linked-list may contain a metadata pair that has not been updated after
+ a block in the pair has gone bad.
+
+The threaded linked-list must be checked for these errors before it can be
+used reliably. Fortunately, the threaded linked-list can simply be ignored
+if littlefs is mounted read-only.
+
+## Entries
+
+Each metadata block contains a series of entries that follow a standard
+layout. An entry contains the type of the entry, along with a section for
+entry-specific data, attributes, and a name.
+
+Here's the layout of entries on disk:
+
+| offset | size | description |
+|---------|------------------------|----------------------------|
+| 0x0 | 8 bits | entry type |
+| 0x1 | 8 bits | entry length |
+| 0x2 | 8 bits | attribute length |
+| 0x3 | 8 bits | name length |
+| 0x4 | entry length bytes | entry-specific data |
+| 0x4+e | attribute length bytes | system-specific attributes |
+| 0x4+e+a | name length bytes | entry name |
+
+**Entry type** - Type of the entry, currently this is limited to the following:
+- 0x11 - file entry
+- 0x22 - directory entry
+- 0x2e - superblock entry
+
+Additionally, the type is broken into two 4 bit nibbles, with the upper nibble
+specifying the type's data structure used when scanning the filesystem. The
+lower nibble clarifies the type further when multiple entries share the same
+data structure.
+
+The highest bit is reserved for marking the entry as "moved". If an entry
+is marked as "moved", the entry may also exist somewhere else in the
+filesystem. If the entry exists elsewhere, this entry must be treated as
+though it does not exist.
+
+**Entry length** - Length in bytes of the entry-specific data. This does
+not include the entry type size, attributes, or name. The full size in bytes
+of the entry is 4 + entry length + attribute length + name length.
+
+**Attribute length** - Length of system-specific attributes in bytes. Since
+attributes are system specific, there is not much guarantee on the values in
+this section, and systems are expected to work even when it is empty. See the
+[attributes](#entry-attributes) section for more details.
+
+**Name length** - Length of the entry name. Entry names are stored as UTF8,
+although most systems will probably only support ASCII. Entry names can not
+contain '/' and can not be '.' or '..' as these are a part of the syntax of
+filesystem paths.
+
+Here's an example of a simple entry stored on disk:
+```
+(8 bits) entry type = file (0x11)
+(8 bits) entry length = 8 bytes (0x08)
+(8 bits) attribute length = 0 bytes (0x00)
+(8 bits) name length = 12 bytes (0x0c)
+(8 bytes) entry data = 05 00 00 00 20 00 00 00
+(12 bytes) entry name = smallavacado
+
+00000000: 11 08 00 0c 05 00 00 00 20 00 00 00 73 6d 61 6c ........ ...smal
+00000010: 6c 61 76 61 63 61 64 6f lavacado
+```
+
+## Superblock
+
+The superblock is the anchor for the littlefs. The superblock is stored as
+a metadata pair containing a single superblock entry. It is through the
+superblock that littlefs can access the rest of the filesystem.
+
+The superblock can always be found in blocks 0 and 1, however fetching the
+superblock requires knowing the block size. The block size can be guessed by
+searching the beginning of disk for the string "littlefs", although currently
+the filesystems relies on the user providing the correct block size.
+
+The superblock is the most valuable block in the filesystem. It is updated
+very rarely, only during format or when the root directory must be moved. It
+is encouraged to always write out both superblock pairs even though it is not
+required.
+
+Here's the layout of the superblock entry:
+
+| offset | size | description |
+|--------|------------------------|----------------------------------------|
+| 0x00 | 8 bits | entry type (0x2e for superblock entry) |
+| 0x01 | 8 bits | entry length (20 bytes) |
+| 0x02 | 8 bits | attribute length |
+| 0x03 | 8 bits | name length (8 bytes) |
+| 0x04 | 64 bits | root directory |
+| 0x0c | 32 bits | block size |
+| 0x10 | 32 bits | block count |
+| 0x14 | 32 bits | version |
+| 0x18 | attribute length bytes | system-specific attributes |
+| 0x18+a | 8 bytes | magic string ("littlefs") |
+
+**Root directory** - Pointer to the root directory's metadata pair.
+
+**Block size** - Size of the logical block size used by the filesystem.
+
+**Block count** - Number of blocks in the filesystem.
+
+**Version** - The littlefs version encoded as a 32 bit value. The upper 16 bits
+encodes the major version, which is incremented when a breaking-change is
+introduced in the filesystem specification. The lower 16 bits encodes the
+minor version, which is incremented when a backwards-compatible change is
+introduced. Non-standard Attribute changes do not change the version. This
+specification describes version 1.1 (0x00010001), which is the first version
+of littlefs.
+
+**Magic string** - The magic string "littlefs" takes the place of an entry
+name.
+
+Here's an example of a complete superblock:
+```
+(32 bits) revision count = 3 (0x00000003)
+(32 bits) dir size = 52 bytes, end of dir (0x00000034)
+(64 bits) tail pointer = 3, 2 (0x00000003, 0x00000002)
+(8 bits) entry type = superblock (0x2e)
+(8 bits) entry length = 20 bytes (0x14)
+(8 bits) attribute length = 0 bytes (0x00)
+(8 bits) name length = 8 bytes (0x08)
+(64 bits) root directory = 3, 2 (0x00000003, 0x00000002)
+(32 bits) block size = 512 bytes (0x00000200)
+(32 bits) block count = 1024 blocks (0x00000400)
+(32 bits) version = 1.1 (0x00010001)
+(8 bytes) magic string = littlefs
+(32 bits) CRC = 0xc50b74fa
+
+00000000: 03 00 00 00 34 00 00 00 03 00 00 00 02 00 00 00 ....4...........
+00000010: 2e 14 00 08 03 00 00 00 02 00 00 00 00 02 00 00 ................
+00000020: 00 04 00 00 01 00 01 00 6c 69 74 74 6c 65 66 73 ........littlefs
+00000030: fa 74 0b c5 .t..
+```
+
+## Directory entries
+
+Directories are stored in entries with a pointer to the first metadata pair
+in the directory. Keep in mind that a directory may be composed of multiple
+metadata pairs connected by the tail pointer when the highest bit in the dir
+size is set.
+
+Here's the layout of a directory entry:
+
+| offset | size | description |
+|--------|------------------------|-----------------------------------------|
+| 0x0 | 8 bits | entry type (0x22 for directory entries) |
+| 0x1 | 8 bits | entry length (8 bytes) |
+| 0x2 | 8 bits | attribute length |
+| 0x3 | 8 bits | name length |
+| 0x4 | 64 bits | directory pointer |
+| 0xc | attribute length bytes | system-specific attributes |
+| 0xc+a | name length bytes | directory name |
+
+**Directory pointer** - Pointer to the first metadata pair in the directory.
+
+Here's an example of a directory entry:
+```
+(8 bits) entry type = directory (0x22)
+(8 bits) entry length = 8 bytes (0x08)
+(8 bits) attribute length = 0 bytes (0x00)
+(8 bits) name length = 3 bytes (0x03)
+(64 bits) directory pointer = 5, 4 (0x00000005, 0x00000004)
+(3 bytes) name = tea
+
+00000000: 22 08 00 03 05 00 00 00 04 00 00 00 74 65 61 "...........tea
+```
+
+## File entries
+
+Files are stored in entries with a pointer to the head of the file and the
+size of the file. This is enough information to determine the state of the
+CTZ skip-list that is being referenced.
+
+How files are actually stored on disk is a bit complicated. The full
+explanation of CTZ skip-lists can be found in [DESIGN.md](DESIGN.md#ctz-skip-lists).
+
+A terribly quick summary: For every nth block where n is divisible by 2^x,
+the block contains a pointer to block n-2^x. These pointers are stored in
+increasing order of x in each block of the file preceding the data in the
+block.
+
+The maximum number of pointers in a block is bounded by the maximum file size
+divided by the block size. With 32 bits for file size, this results in a
+minimum block size of 104 bytes.
+
+Here's the layout of a file entry:
+
+| offset | size | description |
+|--------|------------------------|------------------------------------|
+| 0x0 | 8 bits | entry type (0x11 for file entries) |
+| 0x1 | 8 bits | entry length (8 bytes) |
+| 0x2 | 8 bits | attribute length |
+| 0x3 | 8 bits | name length |
+| 0x4 | 32 bits | file head |
+| 0x8 | 32 bits | file size |
+| 0xc | attribute length bytes | system-specific attributes |
+| 0xc+a | name length bytes | directory name |
+
+**File head** - Pointer to the block that is the head of the file's CTZ
+skip-list.
+
+**File size** - Size of file in bytes.
+
+Here's an example of a file entry:
+```
+(8 bits) entry type = file (0x11)
+(8 bits) entry length = 8 bytes (0x08)
+(8 bits) attribute length = 0 bytes (0x00)
+(8 bits) name length = 12 bytes (0x03)
+(32 bits) file head = 543 (0x0000021f)
+(32 bits) file size = 256 KB (0x00040000)
+(12 bytes) name = largeavacado
+
+00000000: 11 08 00 0c 1f 02 00 00 00 00 04 00 6c 61 72 67 ............larg
+00000010: 65 61 76 61 63 61 64 6f eavacado
+```
+
+## Entry attributes
+
+Each dir entry can have up to 256 bytes of system-specific attributes. Since
+these attributes are system-specific, they may not be portable between
+different systems. For this reason, all attributes must be optional. A minimal
+littlefs driver must be able to get away with supporting no attributes at all.
+
+For some level of portability, littlefs has a simple scheme for attributes.
+Each attribute is prefixes with an 8-bit type that indicates what the attribute
+is. The length of attributes may also be determined from this type. Attributes
+in an entry should be sorted based on portability, since attribute parsing
+will end when it hits the first attribute it does not understand.
+
+Each system should choose a 4-bit value to prefix all attribute types with to
+avoid conflicts with other systems. Additionally, littlefs drivers that support
+attributes should provide a "ignore attributes" flag to users in case attribute
+conflicts do occur.
+
+Attribute types prefixes with 0x0 and 0xf are currently reserved for future
+standard attributes. Standard attributes will be added to this document in
+that case.
+
+Here's an example of non-standard time attribute:
+```
+(8 bits) attribute type = time (0xc1)
+(72 bits) time in seconds = 1506286115 (0x0059c81a23)
+
+00000000: c1 23 1a c8 59 00 .#..Y.
+```
+
+Here's an example of non-standard permissions attribute:
+```
+(8 bits) attribute type = permissions (0xc2)
+(16 bits) permission bits = rw-rw-r-- (0x01b4)
+
+00000000: c2 b4 01 ...
+```
+
+Here's what a dir entry may look like with these attributes:
+```
+(8 bits) entry type = file (0x11)
+(8 bits) entry length = 8 bytes (0x08)
+(8 bits) attribute length = 9 bytes (0x09)
+(8 bits) name length = 12 bytes (0x0c)
+(8 bytes) entry data = 05 00 00 00 20 00 00 00
+(8 bits) attribute type = time (0xc1)
+(72 bits) time in seconds = 1506286115 (0x0059c81a23)
+(8 bits) attribute type = permissions (0xc2)
+(16 bits) permission bits = rw-rw-r-- (0x01b4)
+(12 bytes) entry name = smallavacado
+
+00000000: 11 08 09 0c 05 00 00 00 20 00 00 00 c1 23 1a c8 ........ ....#..
+00000010: 59 00 c2 b4 01 73 6d 61 6c 6c 61 76 61 63 61 64 Y....smallavacad
+00000020: 6f o
+```
diff --git a/arduino/libraries/FileSystem/src/littlefs/lfs.c b/arduino/libraries/FileSystem/src/littlefs/lfs.c
new file mode 100755
index 0000000..daba214
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/lfs.c
@@ -0,0 +1,2583 @@
+/*
+ * The little filesystem
+ *
+ * Copyright (c) 2017, Arm Limited. All rights reserved.
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+#include "lfs.h"
+#include "lfs_util.h"
+
+#include <inttypes.h>
+
+
+/// Caching block device operations ///
+static int lfs_cache_read(lfs_t *lfs, lfs_cache_t *rcache,
+ const lfs_cache_t *pcache, lfs_block_t block,
+ lfs_off_t off, void *buffer, lfs_size_t size) {
+ uint8_t *data = buffer;
+ LFS_ASSERT(block < lfs->cfg->block_count);
+
+ while (size > 0) {
+ if (pcache && block == pcache->block && off >= pcache->off &&
+ off < pcache->off + lfs->cfg->prog_size) {
+ // is already in pcache?
+ lfs_size_t diff = lfs_min(size,
+ lfs->cfg->prog_size - (off-pcache->off));
+ memcpy(data, &pcache->buffer[off-pcache->off], diff);
+
+ data += diff;
+ off += diff;
+ size -= diff;
+ continue;
+ }
+
+ if (block == rcache->block && off >= rcache->off &&
+ off < rcache->off + lfs->cfg->read_size) {
+ // is already in rcache?
+ lfs_size_t diff = lfs_min(size,
+ lfs->cfg->read_size - (off-rcache->off));
+ memcpy(data, &rcache->buffer[off-rcache->off], diff);
+
+ data += diff;
+ off += diff;
+ size -= diff;
+ continue;
+ }
+
+ if (off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) {
+ // bypass cache?
+ lfs_size_t diff = size - (size % lfs->cfg->read_size);
+ int err = lfs->cfg->read(lfs->cfg, block, off, data, diff);
+ if (err) {
+ return err;
+ }
+
+ data += diff;
+ off += diff;
+ size -= diff;
+ continue;
+ }
+
+ // load to cache, first condition can no longer fail
+ rcache->block = block;
+ rcache->off = off - (off % lfs->cfg->read_size);
+ int err = lfs->cfg->read(lfs->cfg, rcache->block,
+ rcache->off, rcache->buffer, lfs->cfg->read_size);
+ if (err) {
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+static int lfs_cache_cmp(lfs_t *lfs, lfs_cache_t *rcache,
+ const lfs_cache_t *pcache, lfs_block_t block,
+ lfs_off_t off, const void *buffer, lfs_size_t size) {
+ const uint8_t *data = buffer;
+
+ for (lfs_off_t i = 0; i < size; i++) {
+ uint8_t c;
+ int err = lfs_cache_read(lfs, rcache, pcache,
+ block, off+i, &c, 1);
+ if (err) {
+ return err;
+ }
+
+ if (c != data[i]) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static int lfs_cache_crc(lfs_t *lfs, lfs_cache_t *rcache,
+ const lfs_cache_t *pcache, lfs_block_t block,
+ lfs_off_t off, lfs_size_t size, uint32_t *crc) {
+ for (lfs_off_t i = 0; i < size; i++) {
+ uint8_t c;
+ int err = lfs_cache_read(lfs, rcache, pcache,
+ block, off+i, &c, 1);
+ if (err) {
+ return err;
+ }
+
+ lfs_crc(crc, &c, 1);
+ }
+
+ return 0;
+}
+
+static inline void lfs_cache_drop(lfs_t *lfs, lfs_cache_t *rcache) {
+ // do not zero, cheaper if cache is readonly or only going to be
+ // written with identical data (during relocates)
+ (void)lfs;
+ rcache->block = 0xffffffff;
+}
+
+static inline void lfs_cache_zero(lfs_t *lfs, lfs_cache_t *pcache) {
+ // zero to avoid information leak
+ memset(pcache->buffer, 0xff, lfs->cfg->prog_size);
+ pcache->block = 0xffffffff;
+}
+
+static int lfs_cache_flush(lfs_t *lfs,
+ lfs_cache_t *pcache, lfs_cache_t *rcache) {
+ if (pcache->block != 0xffffffff) {
+ int err = lfs->cfg->prog(lfs->cfg, pcache->block,
+ pcache->off, pcache->buffer, lfs->cfg->prog_size);
+ if (err) {
+ return err;
+ }
+
+ if (rcache) {
+ int res = lfs_cache_cmp(lfs, rcache, NULL, pcache->block,
+ pcache->off, pcache->buffer, lfs->cfg->prog_size);
+ if (res < 0) {
+ return res;
+ }
+
+ if (!res) {
+ return LFS_ERR_CORRUPT;
+ }
+ }
+
+ lfs_cache_zero(lfs, pcache);
+ }
+
+ return 0;
+}
+
+static int lfs_cache_prog(lfs_t *lfs, lfs_cache_t *pcache,
+ lfs_cache_t *rcache, lfs_block_t block,
+ lfs_off_t off, const void *buffer, lfs_size_t size) {
+ const uint8_t *data = buffer;
+ LFS_ASSERT(block < lfs->cfg->block_count);
+
+ while (size > 0) {
+ if (block == pcache->block && off >= pcache->off &&
+ off < pcache->off + lfs->cfg->prog_size) {
+ // is already in pcache?
+ lfs_size_t diff = lfs_min(size,
+ lfs->cfg->prog_size - (off-pcache->off));
+ memcpy(&pcache->buffer[off-pcache->off], data, diff);
+
+ data += diff;
+ off += diff;
+ size -= diff;
+
+ if (off % lfs->cfg->prog_size == 0) {
+ // eagerly flush out pcache if we fill up
+ int err = lfs_cache_flush(lfs, pcache, rcache);
+ if (err) {
+ return err;
+ }
+ }
+
+ continue;
+ }
+
+ // pcache must have been flushed, either by programming and
+ // entire block or manually flushing the pcache
+ LFS_ASSERT(pcache->block == 0xffffffff);
+
+ if (off % lfs->cfg->prog_size == 0 &&
+ size >= lfs->cfg->prog_size) {
+ // bypass pcache?
+ lfs_size_t diff = size - (size % lfs->cfg->prog_size);
+ int err = lfs->cfg->prog(lfs->cfg, block, off, data, diff);
+ if (err) {
+ return err;
+ }
+
+ if (rcache) {
+ int res = lfs_cache_cmp(lfs, rcache, NULL,
+ block, off, data, diff);
+ if (res < 0) {
+ return res;
+ }
+
+ if (!res) {
+ return LFS_ERR_CORRUPT;
+ }
+ }
+
+ data += diff;
+ off += diff;
+ size -= diff;
+ continue;
+ }
+
+ // prepare pcache, first condition can no longer fail
+ pcache->block = block;
+ pcache->off = off - (off % lfs->cfg->prog_size);
+ }
+
+ return 0;
+}
+
+
+/// General lfs block device operations ///
+static int lfs_bd_read(lfs_t *lfs, lfs_block_t block,
+ lfs_off_t off, void *buffer, lfs_size_t size) {
+ // if we ever do more than writes to alternating pairs,
+ // this may need to consider pcache
+ return lfs_cache_read(lfs, &lfs->rcache, NULL,
+ block, off, buffer, size);
+}
+
+static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block,
+ lfs_off_t off, const void *buffer, lfs_size_t size) {
+ return lfs_cache_prog(lfs, &lfs->pcache, NULL,
+ block, off, buffer, size);
+}
+
+static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block,
+ lfs_off_t off, const void *buffer, lfs_size_t size) {
+ return lfs_cache_cmp(lfs, &lfs->rcache, NULL, block, off, buffer, size);
+}
+
+static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block,
+ lfs_off_t off, lfs_size_t size, uint32_t *crc) {
+ return lfs_cache_crc(lfs, &lfs->rcache, NULL, block, off, size, crc);
+}
+
+static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) {
+ return lfs->cfg->erase(lfs->cfg, block);
+}
+
+static int lfs_bd_sync(lfs_t *lfs) {
+ lfs_cache_drop(lfs, &lfs->rcache);
+
+ int err = lfs_cache_flush(lfs, &lfs->pcache, NULL);
+ if (err) {
+ return err;
+ }
+
+ return lfs->cfg->sync(lfs->cfg);
+}
+
+
+/// Internal operations predeclared here ///
+int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
+static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir);
+static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2],
+ lfs_dir_t *parent, lfs_entry_t *entry);
+static int lfs_moved(lfs_t *lfs, const void *e);
+static int lfs_relocate(lfs_t *lfs,
+ const lfs_block_t oldpair[2], const lfs_block_t newpair[2]);
+int lfs_deorphan(lfs_t *lfs);
+
+
+/// Block allocator ///
+static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
+ lfs_t *lfs = p;
+
+ lfs_block_t off = ((block - lfs->free.off)
+ + lfs->cfg->block_count) % lfs->cfg->block_count;
+
+ if (off < lfs->free.size) {
+ lfs->free.buffer[off / 32] |= 1U << (off % 32);
+ }
+
+ return 0;
+}
+
+static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
+ while (true) {
+ while (lfs->free.i != lfs->free.size) {
+ lfs_block_t off = lfs->free.i;
+ lfs->free.i += 1;
+ lfs->free.ack -= 1;
+
+ if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) {
+ // found a free block
+ *block = (lfs->free.off + off) % lfs->cfg->block_count;
+
+ // eagerly find next off so an alloc ack can
+ // discredit old lookahead blocks
+ while (lfs->free.i != lfs->free.size &&
+ (lfs->free.buffer[lfs->free.i / 32]
+ & (1U << (lfs->free.i % 32)))) {
+ lfs->free.i += 1;
+ lfs->free.ack -= 1;
+ }
+
+ return 0;
+ }
+ }
+
+ // check if we have looked at all blocks since last ack
+ if (lfs->free.ack == 0) {
+ LFS_WARN("No more free space %" PRIu32,
+ lfs->free.i + lfs->free.off);
+ return LFS_ERR_NOSPC;
+ }
+
+ lfs->free.off = (lfs->free.off + lfs->free.size)
+ % lfs->cfg->block_count;
+ lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack);
+ lfs->free.i = 0;
+
+ // find mask of free blocks from tree
+ memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
+ int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs);
+ if (err) {
+ return err;
+ }
+ }
+}
+
+static void lfs_alloc_ack(lfs_t *lfs) {
+ lfs->free.ack = lfs->cfg->block_count;
+}
+
+
+/// Endian swapping functions ///
+static void lfs_dir_fromle32(struct lfs_disk_dir *d) {
+ d->rev = lfs_fromle32(d->rev);
+ d->size = lfs_fromle32(d->size);
+ d->tail[0] = lfs_fromle32(d->tail[0]);
+ d->tail[1] = lfs_fromle32(d->tail[1]);
+}
+
+static void lfs_dir_tole32(struct lfs_disk_dir *d) {
+ d->rev = lfs_tole32(d->rev);
+ d->size = lfs_tole32(d->size);
+ d->tail[0] = lfs_tole32(d->tail[0]);
+ d->tail[1] = lfs_tole32(d->tail[1]);
+}
+
+static void lfs_entry_fromle32(struct lfs_disk_entry *d) {
+ d->u.dir[0] = lfs_fromle32(d->u.dir[0]);
+ d->u.dir[1] = lfs_fromle32(d->u.dir[1]);
+}
+
+static void lfs_entry_tole32(struct lfs_disk_entry *d) {
+ d->u.dir[0] = lfs_tole32(d->u.dir[0]);
+ d->u.dir[1] = lfs_tole32(d->u.dir[1]);
+}
+
+static void lfs_superblock_fromle32(struct lfs_disk_superblock *d) {
+ d->root[0] = lfs_fromle32(d->root[0]);
+ d->root[1] = lfs_fromle32(d->root[1]);
+ d->block_size = lfs_fromle32(d->block_size);
+ d->block_count = lfs_fromle32(d->block_count);
+ d->version = lfs_fromle32(d->version);
+}
+
+static void lfs_superblock_tole32(struct lfs_disk_superblock *d) {
+ d->root[0] = lfs_tole32(d->root[0]);
+ d->root[1] = lfs_tole32(d->root[1]);
+ d->block_size = lfs_tole32(d->block_size);
+ d->block_count = lfs_tole32(d->block_count);
+ d->version = lfs_tole32(d->version);
+}
+
+
+/// Metadata pair and directory operations ///
+static inline void lfs_pairswap(lfs_block_t pair[2]) {
+ lfs_block_t t = pair[0];
+ pair[0] = pair[1];
+ pair[1] = t;
+}
+
+static inline bool lfs_pairisnull(const lfs_block_t pair[2]) {
+ return pair[0] == 0xffffffff || pair[1] == 0xffffffff;
+}
+
+static inline int lfs_paircmp(
+ const lfs_block_t paira[2],
+ const lfs_block_t pairb[2]) {
+ return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
+ paira[0] == pairb[1] || paira[1] == pairb[0]);
+}
+
+static inline bool lfs_pairsync(
+ const lfs_block_t paira[2],
+ const lfs_block_t pairb[2]) {
+ return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
+ (paira[0] == pairb[1] && paira[1] == pairb[0]);
+}
+
+static inline lfs_size_t lfs_entry_size(const lfs_entry_t *entry) {
+ return 4 + entry->d.elen + entry->d.alen + entry->d.nlen;
+}
+
+static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir) {
+ // allocate pair of dir blocks
+ for (int i = 0; i < 2; i++) {
+ int err = lfs_alloc(lfs, &dir->pair[i]);
+ if (err) {
+ return err;
+ }
+ }
+
+ // rather than clobbering one of the blocks we just pretend
+ // the revision may be valid
+ int err = lfs_bd_read(lfs, dir->pair[0], 0, &dir->d.rev, 4);
+ if (err && err != LFS_ERR_CORRUPT) {
+ return err;
+ }
+
+ if (err != LFS_ERR_CORRUPT) {
+ dir->d.rev = lfs_fromle32(dir->d.rev);
+ }
+
+ // set defaults
+ dir->d.rev += 1;
+ dir->d.size = sizeof(dir->d)+4;
+ dir->d.tail[0] = 0xffffffff;
+ dir->d.tail[1] = 0xffffffff;
+ dir->off = sizeof(dir->d);
+
+ // don't write out yet, let caller take care of that
+ return 0;
+}
+
+static int lfs_dir_fetch(lfs_t *lfs,
+ lfs_dir_t *dir, const lfs_block_t pair[2]) {
+ // copy out pair, otherwise may be aliasing dir
+ const lfs_block_t tpair[2] = {pair[0], pair[1]};
+ bool valid = false;
+
+ // check both blocks for the most recent revision
+ for (int i = 0; i < 2; i++) {
+ struct lfs_disk_dir test;
+ int err = lfs_bd_read(lfs, tpair[i], 0, &test, sizeof(test));
+ lfs_dir_fromle32(&test);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ continue;
+ }
+ return err;
+ }
+
+ if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) {
+ continue;
+ }
+
+ if ((0x7fffffff & test.size) < sizeof(test)+4 ||
+ (0x7fffffff & test.size) > lfs->cfg->block_size) {
+ continue;
+ }
+
+ uint32_t crc = 0xffffffff;
+ lfs_dir_tole32(&test);
+ lfs_crc(&crc, &test, sizeof(test));
+ lfs_dir_fromle32(&test);
+ err = lfs_bd_crc(lfs, tpair[i], sizeof(test),
+ (0x7fffffff & test.size) - sizeof(test), &crc);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ continue;
+ }
+ return err;
+ }
+
+ if (crc != 0) {
+ continue;
+ }
+
+ valid = true;
+
+ // setup dir in case it's valid
+ dir->pair[0] = tpair[(i+0) % 2];
+ dir->pair[1] = tpair[(i+1) % 2];
+ dir->off = sizeof(dir->d);
+ dir->d = test;
+ }
+
+ if (!valid) {
+ LFS_ERROR("Corrupted dir pair at %" PRIu32 " %" PRIu32 ,
+ tpair[0], tpair[1]);
+ return LFS_ERR_CORRUPT;
+ }
+
+ return 0;
+}
+
+struct lfs_region {
+ lfs_off_t oldoff;
+ lfs_size_t oldlen;
+ const void *newdata;
+ lfs_size_t newlen;
+};
+
+static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir,
+ const struct lfs_region *regions, int count) {
+ // increment revision count
+ dir->d.rev += 1;
+
+ // keep pairs in order such that pair[0] is most recent
+ lfs_pairswap(dir->pair);
+ for (int i = 0; i < count; i++) {
+ dir->d.size += regions[i].newlen - regions[i].oldlen;
+ }
+
+ const lfs_block_t oldpair[2] = {dir->pair[0], dir->pair[1]};
+ bool relocated = false;
+
+ while (true) {
+ if (true) {
+ int err = lfs_bd_erase(lfs, dir->pair[0]);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ uint32_t crc = 0xffffffff;
+ lfs_dir_tole32(&dir->d);
+ lfs_crc(&crc, &dir->d, sizeof(dir->d));
+ err = lfs_bd_prog(lfs, dir->pair[0], 0, &dir->d, sizeof(dir->d));
+ lfs_dir_fromle32(&dir->d);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ int i = 0;
+ lfs_off_t oldoff = sizeof(dir->d);
+ lfs_off_t newoff = sizeof(dir->d);
+ while (newoff < (0x7fffffff & dir->d.size)-4) {
+ if (i < count && regions[i].oldoff == oldoff) {
+ lfs_crc(&crc, regions[i].newdata, regions[i].newlen);
+ err = lfs_bd_prog(lfs, dir->pair[0],
+ newoff, regions[i].newdata, regions[i].newlen);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ oldoff += regions[i].oldlen;
+ newoff += regions[i].newlen;
+ i += 1;
+ } else {
+ uint8_t data;
+ err = lfs_bd_read(lfs, oldpair[1], oldoff, &data, 1);
+ if (err) {
+ return err;
+ }
+
+ lfs_crc(&crc, &data, 1);
+ err = lfs_bd_prog(lfs, dir->pair[0], newoff, &data, 1);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ oldoff += 1;
+ newoff += 1;
+ }
+ }
+
+ crc = lfs_tole32(crc);
+ err = lfs_bd_prog(lfs, dir->pair[0], newoff, &crc, 4);
+ crc = lfs_fromle32(crc);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ err = lfs_bd_sync(lfs);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ // successful commit, check checksum to make sure
+ uint32_t ncrc = 0xffffffff;
+ err = lfs_bd_crc(lfs, dir->pair[0], 0,
+ (0x7fffffff & dir->d.size)-4, &ncrc);
+ if (err) {
+ return err;
+ }
+
+ if (ncrc != crc) {
+ goto relocate;
+ }
+ }
+
+ break;
+relocate:
+ //commit was corrupted
+ LFS_DEBUG("Bad block at %" PRIu32, dir->pair[0]);
+
+ // drop caches and prepare to relocate block
+ relocated = true;
+ lfs_cache_drop(lfs, &lfs->pcache);
+
+ // can't relocate superblock, filesystem is now frozen
+ if (lfs_paircmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) {
+ LFS_WARN("Superblock %" PRIu32 " has become unwritable",
+ oldpair[0]);
+ return LFS_ERR_CORRUPT;
+ }
+
+ // relocate half of pair
+ int err = lfs_alloc(lfs, &dir->pair[0]);
+ if (err) {
+ return err;
+ }
+ }
+
+ if (relocated) {
+ // update references if we relocated
+ LFS_DEBUG("Relocating %" PRIu32 " %" PRIu32 " to %" PRIu32 " %" PRIu32,
+ oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]);
+ int err = lfs_relocate(lfs, oldpair, dir->pair);
+ if (err) {
+ return err;
+ }
+ }
+
+ // shift over any directories that are affected
+ for (lfs_dir_t *d = lfs->dirs; d; d = d->next) {
+ if (lfs_paircmp(d->pair, dir->pair) == 0) {
+ d->pair[0] = dir->pair[0];
+ d->pair[1] = dir->pair[1];
+ }
+ }
+
+ return 0;
+}
+
+static int lfs_dir_update(lfs_t *lfs, lfs_dir_t *dir,
+ lfs_entry_t *entry, const void *data) {
+ lfs_entry_tole32(&entry->d);
+ int err = lfs_dir_commit(lfs, dir, (struct lfs_region[]){
+ {entry->off, sizeof(entry->d), &entry->d, sizeof(entry->d)},
+ {entry->off+sizeof(entry->d), entry->d.nlen, data, entry->d.nlen}
+ }, data ? 2 : 1);
+ lfs_entry_fromle32(&entry->d);
+ return err;
+}
+
+static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir,
+ lfs_entry_t *entry, const void *data) {
+ // check if we fit, if top bit is set we do not and move on
+ while (true) {
+ if (dir->d.size + lfs_entry_size(entry) <= lfs->cfg->block_size) {
+ entry->off = dir->d.size - 4;
+
+ lfs_entry_tole32(&entry->d);
+ int err = lfs_dir_commit(lfs, dir, (struct lfs_region[]){
+ {entry->off, 0, &entry->d, sizeof(entry->d)},
+ {entry->off, 0, data, entry->d.nlen}
+ }, 2);
+ lfs_entry_fromle32(&entry->d);
+ return err;
+ }
+
+ // we need to allocate a new dir block
+ if (!(0x80000000 & dir->d.size)) {
+ lfs_dir_t olddir = *dir;
+ int err = lfs_dir_alloc(lfs, dir);
+ if (err) {
+ return err;
+ }
+
+ dir->d.tail[0] = olddir.d.tail[0];
+ dir->d.tail[1] = olddir.d.tail[1];
+ entry->off = dir->d.size - 4;
+ lfs_entry_tole32(&entry->d);
+ err = lfs_dir_commit(lfs, dir, (struct lfs_region[]){
+ {entry->off, 0, &entry->d, sizeof(entry->d)},
+ {entry->off, 0, data, entry->d.nlen}
+ }, 2);
+ lfs_entry_fromle32(&entry->d);
+ if (err) {
+ return err;
+ }
+
+ olddir.d.size |= 0x80000000;
+ olddir.d.tail[0] = dir->pair[0];
+ olddir.d.tail[1] = dir->pair[1];
+ return lfs_dir_commit(lfs, &olddir, NULL, 0);
+ }
+
+ int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
+ if (err) {
+ return err;
+ }
+ }
+}
+
+static int lfs_dir_remove(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
+ // check if we should just drop the directory block
+ if ((dir->d.size & 0x7fffffff) == sizeof(dir->d)+4
+ + lfs_entry_size(entry)) {
+ lfs_dir_t pdir;
+ int res = lfs_pred(lfs, dir->pair, &pdir);
+ if (res < 0) {
+ return res;
+ }
+
+ if (pdir.d.size & 0x80000000) {
+ pdir.d.size &= dir->d.size | 0x7fffffff;
+ pdir.d.tail[0] = dir->d.tail[0];
+ pdir.d.tail[1] = dir->d.tail[1];
+ return lfs_dir_commit(lfs, &pdir, NULL, 0);
+ }
+ }
+
+ // shift out the entry
+ int err = lfs_dir_commit(lfs, dir, (struct lfs_region[]){
+ {entry->off, lfs_entry_size(entry), NULL, 0},
+ }, 1);
+ if (err) {
+ return err;
+ }
+
+ // shift over any files/directories that are affected
+ for (lfs_file_t *f = lfs->files; f; f = f->next) {
+ if (lfs_paircmp(f->pair, dir->pair) == 0) {
+ if (f->poff == entry->off) {
+ f->pair[0] = 0xffffffff;
+ f->pair[1] = 0xffffffff;
+ } else if (f->poff > entry->off) {
+ f->poff -= lfs_entry_size(entry);
+ }
+ }
+ }
+
+ for (lfs_dir_t *d = lfs->dirs; d; d = d->next) {
+ if (lfs_paircmp(d->pair, dir->pair) == 0) {
+ if (d->off > entry->off) {
+ d->off -= lfs_entry_size(entry);
+ d->pos -= lfs_entry_size(entry);
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
+ while (dir->off + sizeof(entry->d) > (0x7fffffff & dir->d.size)-4) {
+ if (!(0x80000000 & dir->d.size)) {
+ entry->off = dir->off;
+ return LFS_ERR_NOENT;
+ }
+
+ int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
+ if (err) {
+ return err;
+ }
+
+ dir->off = sizeof(dir->d);
+ dir->pos += sizeof(dir->d) + 4;
+ }
+
+ int err = lfs_bd_read(lfs, dir->pair[0], dir->off,
+ &entry->d, sizeof(entry->d));
+ lfs_entry_fromle32(&entry->d);
+ if (err) {
+ return err;
+ }
+
+ entry->off = dir->off;
+ dir->off += lfs_entry_size(entry);
+ dir->pos += lfs_entry_size(entry);
+ return 0;
+}
+
+static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
+ lfs_entry_t *entry, const char **path) {
+ const char *pathname = *path;
+ size_t pathlen;
+ entry->d.type = LFS_TYPE_DIR;
+ entry->d.elen = sizeof(entry->d) - 4;
+ entry->d.alen = 0;
+ entry->d.nlen = 0;
+ entry->d.u.dir[0] = lfs->root[0];
+ entry->d.u.dir[1] = lfs->root[1];
+
+ while (true) {
+nextname:
+ // skip slashes
+ pathname += strspn(pathname, "/");
+ pathlen = strcspn(pathname, "/");
+
+ // skip '.' and root '..'
+ if ((pathlen == 1 && memcmp(pathname, ".", 1) == 0) ||
+ (pathlen == 2 && memcmp(pathname, "..", 2) == 0)) {
+ pathname += pathlen;
+ goto nextname;
+ }
+
+ // skip if matched by '..' in name
+ const char *suffix = pathname + pathlen;
+ size_t sufflen;
+ int depth = 1;
+ while (true) {
+ suffix += strspn(suffix, "/");
+ sufflen = strcspn(suffix, "/");
+ if (sufflen == 0) {
+ break;
+ }
+
+ if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
+ depth -= 1;
+ if (depth == 0) {
+ pathname = suffix + sufflen;
+ goto nextname;
+ }
+ } else {
+ depth += 1;
+ }
+
+ suffix += sufflen;
+ }
+
+ // found path
+ if (pathname[0] == '\0') {
+ return 0;
+ }
+
+ // update what we've found
+ *path = pathname;
+
+ // continue on if we hit a directory
+ if (entry->d.type != LFS_TYPE_DIR) {
+ return LFS_ERR_NOTDIR;
+ }
+
+ int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir);
+ if (err) {
+ return err;
+ }
+
+ // find entry matching name
+ while (true) {
+ err = lfs_dir_next(lfs, dir, entry);
+ if (err) {
+ return err;
+ }
+
+ if (((0x7f & entry->d.type) != LFS_TYPE_REG &&
+ (0x7f & entry->d.type) != LFS_TYPE_DIR) ||
+ entry->d.nlen != pathlen) {
+ continue;
+ }
+
+ int res = lfs_bd_cmp(lfs, dir->pair[0],
+ entry->off + 4+entry->d.elen+entry->d.alen,
+ pathname, pathlen);
+ if (res < 0) {
+ return res;
+ }
+
+ // found match
+ if (res) {
+ break;
+ }
+ }
+
+ // check that entry has not been moved
+ if (entry->d.type & 0x80) {
+ int moved = lfs_moved(lfs, &entry->d.u);
+ if (moved < 0 || moved) {
+ return (moved < 0) ? moved : LFS_ERR_NOENT;
+ }
+
+ entry->d.type &= ~0x80;
+ }
+
+ // to next name
+ pathname += pathlen;
+ }
+}
+
+
+/// Top level directory operations ///
+int lfs_mkdir(lfs_t *lfs, const char *path) {
+ // deorphan if we haven't yet, needed at most once after poweron
+ if (!lfs->deorphaned) {
+ int err = lfs_deorphan(lfs);
+ if (err) {
+ return err;
+ }
+ }
+
+ // fetch parent directory
+ lfs_dir_t cwd;
+ lfs_entry_t entry;
+ int err = lfs_dir_find(lfs, &cwd, &entry, &path);
+ if (err != LFS_ERR_NOENT || strchr(path, '/') != NULL) {
+ return err ? err : LFS_ERR_EXIST;
+ }
+
+ // build up new directory
+ lfs_alloc_ack(lfs);
+
+ lfs_dir_t dir;
+ err = lfs_dir_alloc(lfs, &dir);
+ if (err) {
+ return err;
+ }
+ dir.d.tail[0] = cwd.d.tail[0];
+ dir.d.tail[1] = cwd.d.tail[1];
+
+ err = lfs_dir_commit(lfs, &dir, NULL, 0);
+ if (err) {
+ return err;
+ }
+
+ entry.d.type = LFS_TYPE_DIR;
+ entry.d.elen = sizeof(entry.d) - 4;
+ entry.d.alen = 0;
+ entry.d.nlen = strlen(path);
+ entry.d.u.dir[0] = dir.pair[0];
+ entry.d.u.dir[1] = dir.pair[1];
+
+ cwd.d.tail[0] = dir.pair[0];
+ cwd.d.tail[1] = dir.pair[1];
+
+ err = lfs_dir_append(lfs, &cwd, &entry, path);
+ if (err) {
+ return err;
+ }
+
+ lfs_alloc_ack(lfs);
+ return 0;
+}
+
+int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
+ dir->pair[0] = lfs->root[0];
+ dir->pair[1] = lfs->root[1];
+
+ lfs_entry_t entry;
+ int err = lfs_dir_find(lfs, dir, &entry, &path);
+ if (err) {
+ return err;
+ } else if (entry.d.type != LFS_TYPE_DIR) {
+ return LFS_ERR_NOTDIR;
+ }
+
+ err = lfs_dir_fetch(lfs, dir, entry.d.u.dir);
+ if (err) {
+ return err;
+ }
+
+ // setup head dir
+ // special offset for '.' and '..'
+ dir->head[0] = dir->pair[0];
+ dir->head[1] = dir->pair[1];
+ dir->pos = sizeof(dir->d) - 2;
+ dir->off = sizeof(dir->d);
+
+ // add to list of directories
+ dir->next = lfs->dirs;
+ lfs->dirs = dir;
+
+ return 0;
+}
+
+int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
+ // remove from list of directories
+ for (lfs_dir_t **p = &lfs->dirs; *p; p = &(*p)->next) {
+ if (*p == dir) {
+ *p = dir->next;
+ break;
+ }
+ }
+
+ return 0;
+}
+
+int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
+ memset(info, 0, sizeof(*info));
+
+ // special offset for '.' and '..'
+ if (dir->pos == sizeof(dir->d) - 2) {
+ info->type = LFS_TYPE_DIR;
+ strcpy(info->name, ".");
+ dir->pos += 1;
+ return 1;
+ } else if (dir->pos == sizeof(dir->d) - 1) {
+ info->type = LFS_TYPE_DIR;
+ strcpy(info->name, "..");
+ dir->pos += 1;
+ return 1;
+ }
+
+ lfs_entry_t entry;
+ while (true) {
+ int err = lfs_dir_next(lfs, dir, &entry);
+ if (err) {
+ return (err == LFS_ERR_NOENT) ? 0 : err;
+ }
+
+ if ((0x7f & entry.d.type) != LFS_TYPE_REG &&
+ (0x7f & entry.d.type) != LFS_TYPE_DIR) {
+ continue;
+ }
+
+ // check that entry has not been moved
+ if (entry.d.type & 0x80) {
+ int moved = lfs_moved(lfs, &entry.d.u);
+ if (moved < 0) {
+ return moved;
+ }
+
+ if (moved) {
+ continue;
+ }
+
+ entry.d.type &= ~0x80;
+ }
+
+ break;
+ }
+
+ info->type = entry.d.type;
+ if (info->type == LFS_TYPE_REG) {
+ info->size = entry.d.u.file.size;
+ }
+
+ int err = lfs_bd_read(lfs, dir->pair[0],
+ entry.off + 4+entry.d.elen+entry.d.alen,
+ info->name, entry.d.nlen);
+ if (err) {
+ return err;
+ }
+
+ return 1;
+}
+
+int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
+ // simply walk from head dir
+ int err = lfs_dir_rewind(lfs, dir);
+ if (err) {
+ return err;
+ }
+ dir->pos = off;
+
+ while (off > (0x7fffffff & dir->d.size)) {
+ off -= 0x7fffffff & dir->d.size;
+ if (!(0x80000000 & dir->d.size)) {
+ return LFS_ERR_INVAL;
+ }
+
+ err = lfs_dir_fetch(lfs, dir, dir->d.tail);
+ if (err) {
+ return err;
+ }
+ }
+
+ dir->off = off;
+ return 0;
+}
+
+lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
+ (void)lfs;
+ return dir->pos;
+}
+
+int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
+ // reload the head dir
+ int err = lfs_dir_fetch(lfs, dir, dir->head);
+ if (err) {
+ return err;
+ }
+
+ dir->pair[0] = dir->head[0];
+ dir->pair[1] = dir->head[1];
+ dir->pos = sizeof(dir->d) - 2;
+ dir->off = sizeof(dir->d);
+ return 0;
+}
+
+
+/// File index list operations ///
+static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) {
+ lfs_off_t size = *off;
+ lfs_off_t b = lfs->cfg->block_size - 2*4;
+ lfs_off_t i = size / b;
+ if (i == 0) {
+ return 0;
+ }
+
+ i = (size - 4*(lfs_popc(i-1)+2)) / b;
+ *off = size - b*i - 4*lfs_popc(i);
+ return i;
+}
+
+static int lfs_ctz_find(lfs_t *lfs,
+ lfs_cache_t *rcache, const lfs_cache_t *pcache,
+ lfs_block_t head, lfs_size_t size,
+ lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) {
+ if (size == 0) {
+ *block = 0xffffffff;
+ *off = 0;
+ return 0;
+ }
+
+ lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
+ lfs_off_t target = lfs_ctz_index(lfs, &pos);
+
+ while (current > target) {
+ lfs_size_t skip = lfs_min(
+ lfs_npw2(current-target+1) - 1,
+ lfs_ctz(current));
+
+ int err = lfs_cache_read(lfs, rcache, pcache, head, 4*skip, &head, 4);
+ head = lfs_fromle32(head);
+ if (err) {
+ return err;
+ }
+
+ LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
+ current -= 1 << skip;
+ }
+
+ *block = head;
+ *off = pos;
+ return 0;
+}
+
+static int lfs_ctz_extend(lfs_t *lfs,
+ lfs_cache_t *rcache, lfs_cache_t *pcache,
+ lfs_block_t head, lfs_size_t size,
+ lfs_block_t *block, lfs_off_t *off) {
+ while (true) {
+ // go ahead and grab a block
+ lfs_block_t nblock;
+ int err = lfs_alloc(lfs, &nblock);
+ if (err) {
+ return err;
+ }
+ LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count);
+
+ if (true) {
+ err = lfs_bd_erase(lfs, nblock);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ if (size == 0) {
+ *block = nblock;
+ *off = 0;
+ return 0;
+ }
+
+ size -= 1;
+ lfs_off_t index = lfs_ctz_index(lfs, &size);
+ size += 1;
+
+ // just copy out the last block if it is incomplete
+ if (size != lfs->cfg->block_size) {
+ for (lfs_off_t i = 0; i < size; i++) {
+ uint8_t data;
+ err = lfs_cache_read(lfs, rcache, NULL,
+ head, i, &data, 1);
+ if (err) {
+ return err;
+ }
+
+ err = lfs_cache_prog(lfs, pcache, rcache,
+ nblock, i, &data, 1);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+ }
+
+ *block = nblock;
+ *off = size;
+ return 0;
+ }
+
+ // append block
+ index += 1;
+ lfs_size_t skips = lfs_ctz(index) + 1;
+
+ for (lfs_off_t i = 0; i < skips; i++) {
+ head = lfs_tole32(head);
+ err = lfs_cache_prog(lfs, pcache, rcache,
+ nblock, 4*i, &head, 4);
+ head = lfs_fromle32(head);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ if (i != skips-1) {
+ err = lfs_cache_read(lfs, rcache, NULL,
+ head, 4*i, &head, 4);
+ head = lfs_fromle32(head);
+ if (err) {
+ return err;
+ }
+ }
+
+ LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count);
+ }
+
+ *block = nblock;
+ *off = 4*skips;
+ return 0;
+ }
+
+relocate:
+ LFS_DEBUG("Bad block at %" PRIu32, nblock);
+
+ // just clear cache and try a new block
+ lfs_cache_drop(lfs, &lfs->pcache);
+ }
+}
+
+static int lfs_ctz_traverse(lfs_t *lfs,
+ lfs_cache_t *rcache, const lfs_cache_t *pcache,
+ lfs_block_t head, lfs_size_t size,
+ int (*cb)(void*, lfs_block_t), void *data) {
+ if (size == 0) {
+ return 0;
+ }
+
+ lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
+
+ while (true) {
+ int err = cb(data, head);
+ if (err) {
+ return err;
+ }
+
+ if (index == 0) {
+ return 0;
+ }
+
+ lfs_block_t heads[2];
+ int count = 2 - (index & 1);
+ err = lfs_cache_read(lfs, rcache, pcache, head, 0, &heads, count*4);
+ heads[0] = lfs_fromle32(heads[0]);
+ heads[1] = lfs_fromle32(heads[1]);
+ if (err) {
+ return err;
+ }
+
+ for (int i = 0; i < count-1; i++) {
+ err = cb(data, heads[i]);
+ if (err) {
+ return err;
+ }
+ }
+
+ head = heads[count-1];
+ index -= count;
+ }
+}
+
+
+/// Top level file operations ///
+int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
+ const char *path, int flags,
+ const struct lfs_file_config *cfg) {
+ // deorphan if we haven't yet, needed at most once after poweron
+ if ((flags & 3) != LFS_O_RDONLY && !lfs->deorphaned) {
+ int err = lfs_deorphan(lfs);
+ if (err) {
+ return err;
+ }
+ }
+
+ // allocate entry for file if it doesn't exist
+ lfs_dir_t cwd;
+ lfs_entry_t entry;
+ int err = lfs_dir_find(lfs, &cwd, &entry, &path);
+ if (err && (err != LFS_ERR_NOENT || strchr(path, '/') != NULL)) {
+ return err;
+ }
+
+ if (err == LFS_ERR_NOENT) {
+ if (!(flags & LFS_O_CREAT)) {
+ return LFS_ERR_NOENT;
+ }
+
+ // create entry to remember name
+ entry.d.type = LFS_TYPE_REG;
+ entry.d.elen = sizeof(entry.d) - 4;
+ entry.d.alen = 0;
+ entry.d.nlen = strlen(path);
+ entry.d.u.file.head = 0xffffffff;
+ entry.d.u.file.size = 0;
+ err = lfs_dir_append(lfs, &cwd, &entry, path);
+ if (err) {
+ return err;
+ }
+ } else if (entry.d.type == LFS_TYPE_DIR) {
+ return LFS_ERR_ISDIR;
+ } else if (flags & LFS_O_EXCL) {
+ return LFS_ERR_EXIST;
+ }
+
+ // setup file struct
+ file->cfg = cfg;
+ file->pair[0] = cwd.pair[0];
+ file->pair[1] = cwd.pair[1];
+ file->poff = entry.off;
+ file->head = entry.d.u.file.head;
+ file->size = entry.d.u.file.size;
+ file->flags = flags;
+ file->pos = 0;
+
+ if (flags & LFS_O_TRUNC) {
+ if (file->size != 0) {
+ file->flags |= LFS_F_DIRTY;
+ }
+ file->head = 0xffffffff;
+ file->size = 0;
+ }
+
+ // allocate buffer if needed
+ file->cache.block = 0xffffffff;
+ if (file->cfg && file->cfg->buffer) {
+ file->cache.buffer = file->cfg->buffer;
+ } else if (lfs->cfg->file_buffer) {
+ if (lfs->files) {
+ // already in use
+ return LFS_ERR_NOMEM;
+ }
+ file->cache.buffer = lfs->cfg->file_buffer;
+ } else if ((file->flags & 3) == LFS_O_RDONLY) {
+ file->cache.buffer = lfs_malloc(lfs->cfg->read_size);
+ if (!file->cache.buffer) {
+ return LFS_ERR_NOMEM;
+ }
+ } else {
+ file->cache.buffer = lfs_malloc(lfs->cfg->prog_size);
+ if (!file->cache.buffer) {
+ return LFS_ERR_NOMEM;
+ }
+ }
+
+ // zero to avoid information leak
+ lfs_cache_drop(lfs, &file->cache);
+ if ((file->flags & 3) != LFS_O_RDONLY) {
+ lfs_cache_zero(lfs, &file->cache);
+ }
+
+ // add to list of files
+ file->next = lfs->files;
+ lfs->files = file;
+
+ return 0;
+}
+
+int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
+ const char *path, int flags) {
+ return lfs_file_opencfg(lfs, file, path, flags, NULL);
+}
+
+int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
+ int err = lfs_file_sync(lfs, file);
+
+ // remove from list of files
+ for (lfs_file_t **p = &lfs->files; *p; p = &(*p)->next) {
+ if (*p == file) {
+ *p = file->next;
+ break;
+ }
+ }
+
+ // clean up memory
+ if (!(file->cfg && file->cfg->buffer) && !lfs->cfg->file_buffer) {
+ lfs_free(file->cache.buffer);
+ }
+
+ return err;
+}
+
+static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) {
+relocate:
+ LFS_DEBUG("Bad block at %" PRIu32, file->block);
+
+ // just relocate what exists into new block
+ lfs_block_t nblock;
+ int err = lfs_alloc(lfs, &nblock);
+ if (err) {
+ return err;
+ }
+
+ err = lfs_bd_erase(lfs, nblock);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ // either read from dirty cache or disk
+ for (lfs_off_t i = 0; i < file->off; i++) {
+ uint8_t data;
+ err = lfs_cache_read(lfs, &lfs->rcache, &file->cache,
+ file->block, i, &data, 1);
+ if (err) {
+ return err;
+ }
+
+ err = lfs_cache_prog(lfs, &lfs->pcache, &lfs->rcache,
+ nblock, i, &data, 1);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+ }
+
+ // copy over new state of file
+ memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->prog_size);
+ file->cache.block = lfs->pcache.block;
+ file->cache.off = lfs->pcache.off;
+ lfs_cache_zero(lfs, &lfs->pcache);
+
+ file->block = nblock;
+ return 0;
+}
+
+static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) {
+ if (file->flags & LFS_F_READING) {
+ // just drop read cache
+ lfs_cache_drop(lfs, &file->cache);
+ file->flags &= ~LFS_F_READING;
+ }
+
+ if (file->flags & LFS_F_WRITING) {
+ lfs_off_t pos = file->pos;
+
+ // copy over anything after current branch
+ lfs_file_t orig = {
+ .head = file->head,
+ .size = file->size,
+ .flags = LFS_O_RDONLY,
+ .pos = file->pos,
+ .cache = lfs->rcache,
+ };
+ lfs_cache_drop(lfs, &lfs->rcache);
+
+ while (file->pos < file->size) {
+ // copy over a byte at a time, leave it up to caching
+ // to make this efficient
+ uint8_t data;
+ lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1);
+ if (res < 0) {
+ return res;
+ }
+
+ res = lfs_file_write(lfs, file, &data, 1);
+ if (res < 0) {
+ return res;
+ }
+
+ // keep our reference to the rcache in sync
+ if (lfs->rcache.block != 0xffffffff) {
+ lfs_cache_drop(lfs, &orig.cache);
+ lfs_cache_drop(lfs, &lfs->rcache);
+ }
+ }
+
+ // write out what we have
+ while (true) {
+ int err = lfs_cache_flush(lfs, &file->cache, &lfs->rcache);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ return err;
+ }
+
+ break;
+relocate:
+ err = lfs_file_relocate(lfs, file);
+ if (err) {
+ return err;
+ }
+ }
+
+ // actual file updates
+ file->head = file->block;
+ file->size = file->pos;
+ file->flags &= ~LFS_F_WRITING;
+ file->flags |= LFS_F_DIRTY;
+
+ file->pos = pos;
+ }
+
+ return 0;
+}
+
+int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) {
+ int err = lfs_file_flush(lfs, file);
+ if (err) {
+ return err;
+ }
+
+ if ((file->flags & LFS_F_DIRTY) &&
+ !(file->flags & LFS_F_ERRED) &&
+ !lfs_pairisnull(file->pair)) {
+ // update dir entry
+ lfs_dir_t cwd;
+ err = lfs_dir_fetch(lfs, &cwd, file->pair);
+ if (err) {
+ return err;
+ }
+
+ lfs_entry_t entry = {.off = file->poff};
+ err = lfs_bd_read(lfs, cwd.pair[0], entry.off,
+ &entry.d, sizeof(entry.d));
+ lfs_entry_fromle32(&entry.d);
+ if (err) {
+ return err;
+ }
+
+ LFS_ASSERT(entry.d.type == LFS_TYPE_REG);
+ entry.d.u.file.head = file->head;
+ entry.d.u.file.size = file->size;
+
+ err = lfs_dir_update(lfs, &cwd, &entry, NULL);
+ if (err) {
+ return err;
+ }
+
+ file->flags &= ~LFS_F_DIRTY;
+ }
+
+ return 0;
+}
+
+lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
+ void *buffer, lfs_size_t size) {
+ uint8_t *data = buffer;
+ lfs_size_t nsize = size;
+
+ if ((file->flags & 3) == LFS_O_WRONLY) {
+ return LFS_ERR_BADF;
+ }
+
+ if (file->flags & LFS_F_WRITING) {
+ // flush out any writes
+ int err = lfs_file_flush(lfs, file);
+ if (err) {
+ return err;
+ }
+ }
+
+ if (file->pos >= file->size) {
+ // eof if past end
+ return 0;
+ }
+
+ size = lfs_min(size, file->size - file->pos);
+ nsize = size;
+
+ while (nsize > 0) {
+ // check if we need a new block
+ if (!(file->flags & LFS_F_READING) ||
+ file->off == lfs->cfg->block_size) {
+ int err = lfs_ctz_find(lfs, &file->cache, NULL,
+ file->head, file->size,
+ file->pos, &file->block, &file->off);
+ if (err) {
+ return err;
+ }
+
+ file->flags |= LFS_F_READING;
+ }
+
+ // read as much as we can in current block
+ lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
+ int err = lfs_cache_read(lfs, &file->cache, NULL,
+ file->block, file->off, data, diff);
+ if (err) {
+ return err;
+ }
+
+ file->pos += diff;
+ file->off += diff;
+ data += diff;
+ nsize -= diff;
+ }
+
+ return size;
+}
+
+lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
+ const void *buffer, lfs_size_t size) {
+ const uint8_t *data = buffer;
+ lfs_size_t nsize = size;
+
+ if ((file->flags & 3) == LFS_O_RDONLY) {
+ return LFS_ERR_BADF;
+ }
+
+ if (file->flags & LFS_F_READING) {
+ // drop any reads
+ int err = lfs_file_flush(lfs, file);
+ if (err) {
+ return err;
+ }
+ }
+
+ if ((file->flags & LFS_O_APPEND) && file->pos < file->size) {
+ file->pos = file->size;
+ }
+
+ if (!(file->flags & LFS_F_WRITING) && file->pos > file->size) {
+ // fill with zeros
+ lfs_off_t pos = file->pos;
+ file->pos = file->size;
+
+ while (file->pos < pos) {
+ lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
+ if (res < 0) {
+ return res;
+ }
+ }
+ }
+
+ while (nsize > 0) {
+ // check if we need a new block
+ if (!(file->flags & LFS_F_WRITING) ||
+ file->off == lfs->cfg->block_size) {
+ if (!(file->flags & LFS_F_WRITING) && file->pos > 0) {
+ // find out which block we're extending from
+ int err = lfs_ctz_find(lfs, &file->cache, NULL,
+ file->head, file->size,
+ file->pos-1, &file->block, &file->off);
+ if (err) {
+ file->flags |= LFS_F_ERRED;
+ return err;
+ }
+
+ // mark cache as dirty since we may have read data into it
+ lfs_cache_zero(lfs, &file->cache);
+ }
+
+ // extend file with new blocks
+ lfs_alloc_ack(lfs);
+ int err = lfs_ctz_extend(lfs, &lfs->rcache, &file->cache,
+ file->block, file->pos,
+ &file->block, &file->off);
+ if (err) {
+ file->flags |= LFS_F_ERRED;
+ return err;
+ }
+
+ file->flags |= LFS_F_WRITING;
+ }
+
+ // program as much as we can in current block
+ lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
+ while (true) {
+ int err = lfs_cache_prog(lfs, &file->cache, &lfs->rcache,
+ file->block, file->off, data, diff);
+ if (err) {
+ if (err == LFS_ERR_CORRUPT) {
+ goto relocate;
+ }
+ file->flags |= LFS_F_ERRED;
+ return err;
+ }
+
+ break;
+relocate:
+ err = lfs_file_relocate(lfs, file);
+ if (err) {
+ file->flags |= LFS_F_ERRED;
+ return err;
+ }
+ }
+
+ file->pos += diff;
+ file->off += diff;
+ data += diff;
+ nsize -= diff;
+
+ lfs_alloc_ack(lfs);
+ }
+
+ file->flags &= ~LFS_F_ERRED;
+ return size;
+}
+
+lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
+ lfs_soff_t off, int whence) {
+ // write out everything beforehand, may be noop if rdonly
+ int err = lfs_file_flush(lfs, file);
+ if (err) {
+ return err;
+ }
+
+ // update pos
+ if (whence == LFS_SEEK_SET) {
+ file->pos = off;
+ } else if (whence == LFS_SEEK_CUR) {
+ if (off < 0 && (lfs_off_t)-off > file->pos) {
+ return LFS_ERR_INVAL;
+ }
+
+ file->pos = file->pos + off;
+ } else if (whence == LFS_SEEK_END) {
+ if (off < 0 && (lfs_off_t)-off > file->size) {
+ return LFS_ERR_INVAL;
+ }
+
+ file->pos = file->size + off;
+ }
+
+ return file->pos;
+}
+
+int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
+ if ((file->flags & 3) == LFS_O_RDONLY) {
+ return LFS_ERR_BADF;
+ }
+
+ lfs_off_t oldsize = lfs_file_size(lfs, file);
+ if (size < oldsize) {
+ // need to flush since directly changing metadata
+ int err = lfs_file_flush(lfs, file);
+ if (err) {
+ return err;
+ }
+
+ // lookup new head in ctz skip list
+ err = lfs_ctz_find(lfs, &file->cache, NULL,
+ file->head, file->size,
+ size, &file->head, &(lfs_off_t){0});
+ if (err) {
+ return err;
+ }
+
+ file->size = size;
+ file->flags |= LFS_F_DIRTY;
+ } else if (size > oldsize) {
+ lfs_off_t pos = file->pos;
+
+ // flush+seek if not already at end
+ if (file->pos != oldsize) {
+ int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END);
+ if (err < 0) {
+ return err;
+ }
+ }
+
+ // fill with zeros
+ while (file->pos < size) {
+ lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1);
+ if (res < 0) {
+ return res;
+ }
+ }
+
+ // restore pos
+ int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET);
+ if (err < 0) {
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) {
+ (void)lfs;
+ return file->pos;
+}
+
+int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) {
+ lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET);
+ if (res < 0) {
+ return res;
+ }
+
+ return 0;
+}
+
+lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) {
+ (void)lfs;
+ if (file->flags & LFS_F_WRITING) {
+ return lfs_max(file->pos, file->size);
+ } else {
+ return file->size;
+ }
+}
+
+
+/// General fs operations ///
+int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
+ lfs_dir_t cwd;
+ lfs_entry_t entry;
+ int err = lfs_dir_find(lfs, &cwd, &entry, &path);
+ if (err) {
+ return err;
+ }
+
+ memset(info, 0, sizeof(*info));
+ info->type = entry.d.type;
+ if (info->type == LFS_TYPE_REG) {
+ info->size = entry.d.u.file.size;
+ }
+
+ if (lfs_paircmp(entry.d.u.dir, lfs->root) == 0) {
+ strcpy(info->name, "/");
+ } else {
+ err = lfs_bd_read(lfs, cwd.pair[0],
+ entry.off + 4+entry.d.elen+entry.d.alen,
+ info->name, entry.d.nlen);
+ if (err) {
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+int lfs_remove(lfs_t *lfs, const char *path) {
+ // deorphan if we haven't yet, needed at most once after poweron
+ if (!lfs->deorphaned) {
+ int err = lfs_deorphan(lfs);
+ if (err) {
+ return err;
+ }
+ }
+
+ lfs_dir_t cwd;
+ lfs_entry_t entry;
+ int err = lfs_dir_find(lfs, &cwd, &entry, &path);
+ if (err) {
+ return err;
+ }
+
+ lfs_dir_t dir;
+ if (entry.d.type == LFS_TYPE_DIR) {
+ // must be empty before removal, checking size
+ // without masking top bit checks for any case where
+ // dir is not empty
+ err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir);
+ if (err) {
+ return err;
+ } /* else if (dir.d.size != sizeof(dir.d)+4) {
+ return LFS_ERR_NOTEMPTY;
+ } adafruit: allow to remove non-empty folder,
+ According to below issue, comment these 2 line won't corrupt filesystem
+ https://github.com/ARMmbed/littlefs/issues/43 */
+ }
+
+ // remove the entry
+ err = lfs_dir_remove(lfs, &cwd, &entry);
+ if (err) {
+ return err;
+ }
+
+ // if we were a directory, find pred, replace tail
+ if (entry.d.type == LFS_TYPE_DIR) {
+ int res = lfs_pred(lfs, dir.pair, &cwd);
+ if (res < 0) {
+ return res;
+ }
+
+ LFS_ASSERT(res); // must have pred
+ cwd.d.tail[0] = dir.d.tail[0];
+ cwd.d.tail[1] = dir.d.tail[1];
+
+ err = lfs_dir_commit(lfs, &cwd, NULL, 0);
+ if (err) {
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
+ // deorphan if we haven't yet, needed at most once after poweron
+ if (!lfs->deorphaned) {
+ int err = lfs_deorphan(lfs);
+ if (err) {
+ return err;
+ }
+ }
+
+ // find old entry
+ lfs_dir_t oldcwd;
+ lfs_entry_t oldentry;
+ int err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath);
+ if (err) {
+ return err;
+ }
+
+ // allocate new entry
+ lfs_dir_t newcwd;
+ lfs_entry_t preventry;
+ err = lfs_dir_find(lfs, &newcwd, &preventry, &newpath);
+ if (err && (err != LFS_ERR_NOENT || strchr(newpath, '/') != NULL)) {
+ return err;
+ }
+
+ bool prevexists = (err != LFS_ERR_NOENT);
+ bool samepair = (lfs_paircmp(oldcwd.pair, newcwd.pair) == 0);
+
+ // must have same type
+ if (prevexists && preventry.d.type != oldentry.d.type) {
+ return LFS_ERR_ISDIR;
+ }
+
+ lfs_dir_t dir;
+ if (prevexists && preventry.d.type == LFS_TYPE_DIR) {
+ // must be empty before removal, checking size
+ // without masking top bit checks for any case where
+ // dir is not empty
+ err = lfs_dir_fetch(lfs, &dir, preventry.d.u.dir);
+ if (err) {
+ return err;
+ } else if (dir.d.size != sizeof(dir.d)+4) {
+ return LFS_ERR_NOTEMPTY;
+ }
+ }
+
+ // mark as moving
+ oldentry.d.type |= 0x80;
+ err = lfs_dir_update(lfs, &oldcwd, &oldentry, NULL);
+ if (err) {
+ return err;
+ }
+
+ // update pair if newcwd == oldcwd
+ if (samepair) {
+ newcwd = oldcwd;
+ }
+
+ // move to new location
+ lfs_entry_t newentry = preventry;
+ newentry.d = oldentry.d;
+ newentry.d.type &= ~0x80;
+ newentry.d.nlen = strlen(newpath);
+
+ if (prevexists) {
+ err = lfs_dir_update(lfs, &newcwd, &newentry, newpath);
+ if (err) {
+ return err;
+ }
+ } else {
+ err = lfs_dir_append(lfs, &newcwd, &newentry, newpath);
+ if (err) {
+ return err;
+ }
+ }
+
+ // update pair if newcwd == oldcwd
+ if (samepair) {
+ oldcwd = newcwd;
+ }
+
+ // remove old entry
+ err = lfs_dir_remove(lfs, &oldcwd, &oldentry);
+ if (err) {
+ return err;
+ }
+
+ // if we were a directory, find pred, replace tail
+ if (prevexists && preventry.d.type == LFS_TYPE_DIR) {
+ int res = lfs_pred(lfs, dir.pair, &newcwd);
+ if (res < 0) {
+ return res;
+ }
+
+ LFS_ASSERT(res); // must have pred
+ newcwd.d.tail[0] = dir.d.tail[0];
+ newcwd.d.tail[1] = dir.d.tail[1];
+
+ err = lfs_dir_commit(lfs, &newcwd, NULL, 0);
+ if (err) {
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+
+/// Filesystem operations ///
+static void lfs_deinit(lfs_t *lfs) {
+ // free allocated memory
+ if (!lfs->cfg->read_buffer) {
+ lfs_free(lfs->rcache.buffer);
+ }
+
+ if (!lfs->cfg->prog_buffer) {
+ lfs_free(lfs->pcache.buffer);
+ }
+
+ if (!lfs->cfg->lookahead_buffer) {
+ lfs_free(lfs->free.buffer);
+ }
+}
+
+static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) {
+ lfs->cfg = cfg;
+
+ // setup read cache
+ if (lfs->cfg->read_buffer) {
+ lfs->rcache.buffer = lfs->cfg->read_buffer;
+ } else {
+ lfs->rcache.buffer = lfs_malloc(lfs->cfg->read_size);
+ if (!lfs->rcache.buffer) {
+ goto cleanup;
+ }
+ }
+
+ // setup program cache
+ if (lfs->cfg->prog_buffer) {
+ lfs->pcache.buffer = lfs->cfg->prog_buffer;
+ } else {
+ lfs->pcache.buffer = lfs_malloc(lfs->cfg->prog_size);
+ if (!lfs->pcache.buffer) {
+ goto cleanup;
+ }
+ }
+
+ // zero to avoid information leaks
+ lfs_cache_zero(lfs, &lfs->pcache);
+ lfs_cache_drop(lfs, &lfs->rcache);
+
+ // setup lookahead, round down to nearest 32-bits
+ LFS_ASSERT(lfs->cfg->lookahead % 32 == 0);
+ LFS_ASSERT(lfs->cfg->lookahead > 0);
+ if (lfs->cfg->lookahead_buffer) {
+ lfs->free.buffer = lfs->cfg->lookahead_buffer;
+ } else {
+ lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8);
+ if (!lfs->free.buffer) {
+ goto cleanup;
+ }
+ }
+
+ // check that program and read sizes are multiples of the block size
+ LFS_ASSERT(lfs->cfg->prog_size % lfs->cfg->read_size == 0);
+ LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->prog_size == 0);
+
+ // check that the block size is large enough to fit ctz pointers
+ LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4))
+ <= lfs->cfg->block_size);
+
+ // setup default state
+ lfs->root[0] = 0xffffffff;
+ lfs->root[1] = 0xffffffff;
+ lfs->files = NULL;
+ lfs->dirs = NULL;
+ lfs->deorphaned = false;
+
+ return 0;
+
+cleanup:
+ lfs_deinit(lfs);
+ return LFS_ERR_NOMEM;
+}
+
+int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
+ int err = 0;
+ if (true) {
+ err = lfs_init(lfs, cfg);
+ if (err) {
+ return err;
+ }
+
+ // create free lookahead
+ memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8);
+ lfs->free.off = 0;
+ lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count);
+ lfs->free.i = 0;
+ lfs_alloc_ack(lfs);
+
+ // create superblock dir
+ lfs_dir_t superdir;
+ err = lfs_dir_alloc(lfs, &superdir);
+ if (err) {
+ goto cleanup;
+ }
+
+ // write root directory
+ lfs_dir_t root;
+ err = lfs_dir_alloc(lfs, &root);
+ if (err) {
+ goto cleanup;
+ }
+
+ err = lfs_dir_commit(lfs, &root, NULL, 0);
+ if (err) {
+ goto cleanup;
+ }
+
+ lfs->root[0] = root.pair[0];
+ lfs->root[1] = root.pair[1];
+
+ // write superblocks
+ lfs_superblock_t superblock = {
+ .off = sizeof(superdir.d),
+ .d.type = LFS_TYPE_SUPERBLOCK,
+ .d.elen = sizeof(superblock.d) - sizeof(superblock.d.magic) - 4,
+ .d.nlen = sizeof(superblock.d.magic),
+ .d.version = LFS_DISK_VERSION,
+ .d.magic = {"littlefs"},
+ .d.block_size = lfs->cfg->block_size,
+ .d.block_count = lfs->cfg->block_count,
+ .d.root = {lfs->root[0], lfs->root[1]},
+ };
+ superdir.d.tail[0] = root.pair[0];
+ superdir.d.tail[1] = root.pair[1];
+ superdir.d.size = sizeof(superdir.d) + sizeof(superblock.d) + 4;
+
+ // write both pairs to be safe
+ lfs_superblock_tole32(&superblock.d);
+ bool valid = false;
+ for (int i = 0; i < 2; i++) {
+ err = lfs_dir_commit(lfs, &superdir, (struct lfs_region[]){
+ {sizeof(superdir.d), sizeof(superblock.d),
+ &superblock.d, sizeof(superblock.d)}
+ }, 1);
+ if (err && err != LFS_ERR_CORRUPT) {
+ goto cleanup;
+ }
+
+ valid = valid || !err;
+ }
+
+ if (!valid) {
+ err = LFS_ERR_CORRUPT;
+ goto cleanup;
+ }
+
+ // sanity check that fetch works
+ err = lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1});
+ if (err) {
+ goto cleanup;
+ }
+
+ lfs_alloc_ack(lfs);
+ }
+
+cleanup:
+ lfs_deinit(lfs);
+ return err;
+}
+
+int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
+ int err = 0;
+ if (true) {
+ err = lfs_init(lfs, cfg);
+ if (err) {
+ return err;
+ }
+
+ // setup free lookahead
+ lfs->free.off = 0;
+ lfs->free.size = 0;
+ lfs->free.i = 0;
+ lfs_alloc_ack(lfs);
+
+ // load superblock
+ lfs_dir_t dir;
+ lfs_superblock_t superblock;
+ err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
+ if (err && err != LFS_ERR_CORRUPT) {
+ goto cleanup;
+ }
+
+ if (!err) {
+ err = lfs_bd_read(lfs, dir.pair[0], sizeof(dir.d),
+ &superblock.d, sizeof(superblock.d));
+ lfs_superblock_fromle32(&superblock.d);
+ if (err) {
+ goto cleanup;
+ }
+
+ lfs->root[0] = superblock.d.root[0];
+ lfs->root[1] = superblock.d.root[1];
+ }
+
+ if (err || memcmp(superblock.d.magic, "littlefs", 8) != 0) {
+ LFS_ERROR("Invalid superblock at %d %d", 0, 1);
+ err = LFS_ERR_CORRUPT;
+ goto cleanup;
+ }
+
+ uint16_t major_version = (0xffff & (superblock.d.version >> 16));
+ uint16_t minor_version = (0xffff & (superblock.d.version >> 0));
+ if ((major_version != LFS_DISK_VERSION_MAJOR ||
+ minor_version > LFS_DISK_VERSION_MINOR)) {
+ LFS_ERROR("Invalid version %d.%d", major_version, minor_version);
+ err = LFS_ERR_INVAL;
+ goto cleanup;
+ }
+
+ return 0;
+ }
+
+cleanup:
+
+ lfs_deinit(lfs);
+ return err;
+}
+
+int lfs_unmount(lfs_t *lfs) {
+ lfs_deinit(lfs);
+ return 0;
+}
+
+
+/// Littlefs specific operations ///
+int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
+ if (lfs_pairisnull(lfs->root)) {
+ return 0;
+ }
+
+ // iterate over metadata pairs
+ lfs_dir_t dir;
+ lfs_entry_t entry;
+ lfs_block_t cwd[2] = {0, 1};
+
+ while (true) {
+ for (int i = 0; i < 2; i++) {
+ int err = cb(data, cwd[i]);
+ if (err) {
+ return err;
+ }
+ }
+
+ int err = lfs_dir_fetch(lfs, &dir, cwd);
+ if (err) {
+ return err;
+ }
+
+ // iterate over contents
+ while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) {
+ err = lfs_bd_read(lfs, dir.pair[0], dir.off,
+ &entry.d, sizeof(entry.d));
+ lfs_entry_fromle32(&entry.d);
+ if (err) {
+ return err;
+ }
+
+ dir.off += lfs_entry_size(&entry);
+ if ((0x70 & entry.d.type) == (0x70 & LFS_TYPE_REG)) {
+ err = lfs_ctz_traverse(lfs, &lfs->rcache, NULL,
+ entry.d.u.file.head, entry.d.u.file.size, cb, data);
+ if (err) {
+ return err;
+ }
+ }
+ }
+
+ cwd[0] = dir.d.tail[0];
+ cwd[1] = dir.d.tail[1];
+
+ if (lfs_pairisnull(cwd)) {
+ break;
+ }
+ }
+
+ // iterate over any open files
+ for (lfs_file_t *f = lfs->files; f; f = f->next) {
+ if (f->flags & LFS_F_DIRTY) {
+ int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
+ f->head, f->size, cb, data);
+ if (err) {
+ return err;
+ }
+ }
+
+ if (f->flags & LFS_F_WRITING) {
+ int err = lfs_ctz_traverse(lfs, &lfs->rcache, &f->cache,
+ f->block, f->pos, cb, data);
+ if (err) {
+ return err;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int lfs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_dir_t *pdir) {
+ if (lfs_pairisnull(lfs->root)) {
+ return 0;
+ }
+
+ // iterate over all directory directory entries
+ int err = lfs_dir_fetch(lfs, pdir, (const lfs_block_t[2]){0, 1});
+ if (err) {
+ return err;
+ }
+
+ while (!lfs_pairisnull(pdir->d.tail)) {
+ if (lfs_paircmp(pdir->d.tail, dir) == 0) {
+ return true;
+ }
+
+ err = lfs_dir_fetch(lfs, pdir, pdir->d.tail);
+ if (err) {
+ return err;
+ }
+ }
+
+ return false;
+}
+
+static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2],
+ lfs_dir_t *parent, lfs_entry_t *entry) {
+ if (lfs_pairisnull(lfs->root)) {
+ return 0;
+ }
+
+ parent->d.tail[0] = 0;
+ parent->d.tail[1] = 1;
+
+ // iterate over all directory directory entries
+ while (!lfs_pairisnull(parent->d.tail)) {
+ int err = lfs_dir_fetch(lfs, parent, parent->d.tail);
+ if (err) {
+ return err;
+ }
+
+ while (true) {
+ err = lfs_dir_next(lfs, parent, entry);
+ if (err && err != LFS_ERR_NOENT) {
+ return err;
+ }
+
+ if (err == LFS_ERR_NOENT) {
+ break;
+ }
+
+ if (((0x70 & entry->d.type) == (0x70 & LFS_TYPE_DIR)) &&
+ lfs_paircmp(entry->d.u.dir, dir) == 0) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+static int lfs_moved(lfs_t *lfs, const void *e) {
+ if (lfs_pairisnull(lfs->root)) {
+ return 0;
+ }
+
+ // skip superblock
+ lfs_dir_t cwd;
+ int err = lfs_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1});
+ if (err) {
+ return err;
+ }
+
+ // iterate over all directory directory entries
+ lfs_entry_t entry;
+ while (!lfs_pairisnull(cwd.d.tail)) {
+ err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail);
+ if (err) {
+ return err;
+ }
+
+ while (true) {
+ err = lfs_dir_next(lfs, &cwd, &entry);
+ if (err && err != LFS_ERR_NOENT) {
+ return err;
+ }
+
+ if (err == LFS_ERR_NOENT) {
+ break;
+ }
+
+ if (!(0x80 & entry.d.type) &&
+ memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+static int lfs_relocate(lfs_t *lfs,
+ const lfs_block_t oldpair[2], const lfs_block_t newpair[2]) {
+ // find parent
+ lfs_dir_t parent;
+ lfs_entry_t entry;
+ int res = lfs_parent(lfs, oldpair, &parent, &entry);
+ if (res < 0) {
+ return res;
+ }
+
+ if (res) {
+ // update disk, this creates a desync
+ entry.d.u.dir[0] = newpair[0];
+ entry.d.u.dir[1] = newpair[1];
+
+ int err = lfs_dir_update(lfs, &parent, &entry, NULL);
+ if (err) {
+ return err;
+ }
+
+ // update internal root
+ if (lfs_paircmp(oldpair, lfs->root) == 0) {
+ LFS_DEBUG("Relocating root %" PRIu32 " %" PRIu32,
+ newpair[0], newpair[1]);
+ lfs->root[0] = newpair[0];
+ lfs->root[1] = newpair[1];
+ }
+
+ // clean up bad block, which should now be a desync
+ return lfs_deorphan(lfs);
+ }
+
+ // find pred
+ res = lfs_pred(lfs, oldpair, &parent);
+ if (res < 0) {
+ return res;
+ }
+
+ if (res) {
+ // just replace bad pair, no desync can occur
+ parent.d.tail[0] = newpair[0];
+ parent.d.tail[1] = newpair[1];
+
+ return lfs_dir_commit(lfs, &parent, NULL, 0);
+ }
+
+ // couldn't find dir, must be new
+ return 0;
+}
+
+int lfs_deorphan(lfs_t *lfs) {
+ lfs->deorphaned = true;
+
+ if (lfs_pairisnull(lfs->root)) {
+ return 0;
+ }
+
+ lfs_dir_t pdir = {.d.size = 0x80000000};
+ lfs_dir_t cwd = {.d.tail[0] = 0, .d.tail[1] = 1};
+
+ // iterate over all directory directory entries
+ for (lfs_size_t i = 0; i < lfs->cfg->block_count; i++) {
+ if (lfs_pairisnull(cwd.d.tail)) {
+ return 0;
+ }
+
+ int err = lfs_dir_fetch(lfs, &cwd, cwd.d.tail);
+ if (err) {
+ return err;
+ }
+
+ // check head blocks for orphans
+ if (!(0x80000000 & pdir.d.size)) {
+ // check if we have a parent
+ lfs_dir_t parent;
+ lfs_entry_t entry;
+ int res = lfs_parent(lfs, pdir.d.tail, &parent, &entry);
+ if (res < 0) {
+ return res;
+ }
+
+ if (!res) {
+ // we are an orphan
+ LFS_DEBUG("Found orphan %" PRIu32 " %" PRIu32,
+ pdir.d.tail[0], pdir.d.tail[1]);
+
+ pdir.d.tail[0] = cwd.d.tail[0];
+ pdir.d.tail[1] = cwd.d.tail[1];
+
+ err = lfs_dir_commit(lfs, &pdir, NULL, 0);
+ if (err) {
+ return err;
+ }
+
+ return 0;
+ }
+
+ if (!lfs_pairsync(entry.d.u.dir, pdir.d.tail)) {
+ // we have desynced
+ LFS_DEBUG("Found desync %" PRIu32 " %" PRIu32,
+ entry.d.u.dir[0], entry.d.u.dir[1]);
+
+ pdir.d.tail[0] = entry.d.u.dir[0];
+ pdir.d.tail[1] = entry.d.u.dir[1];
+
+ err = lfs_dir_commit(lfs, &pdir, NULL, 0);
+ if (err) {
+ return err;
+ }
+
+ return 0;
+ }
+ }
+
+ // check entries for moves
+ lfs_entry_t entry;
+ while (true) {
+ err = lfs_dir_next(lfs, &cwd, &entry);
+ if (err && err != LFS_ERR_NOENT) {
+ return err;
+ }
+
+ if (err == LFS_ERR_NOENT) {
+ break;
+ }
+
+ // found moved entry
+ if (entry.d.type & 0x80) {
+ int moved = lfs_moved(lfs, &entry.d.u);
+ if (moved < 0) {
+ return moved;
+ }
+
+ if (moved) {
+ LFS_DEBUG("Found move %" PRIu32 " %" PRIu32,
+ entry.d.u.dir[0], entry.d.u.dir[1]);
+ err = lfs_dir_remove(lfs, &cwd, &entry);
+ if (err) {
+ return err;
+ }
+ } else {
+ LFS_DEBUG("Found partial move %" PRIu32 " %" PRIu32,
+ entry.d.u.dir[0], entry.d.u.dir[1]);
+ entry.d.type &= ~0x80;
+ err = lfs_dir_update(lfs, &cwd, &entry, NULL);
+ if (err) {
+ return err;
+ }
+ }
+ }
+ }
+
+ memcpy(&pdir, &cwd, sizeof(pdir));
+ }
+
+ // If we reached here, we have more directory pairs than blocks in the
+ // filesystem... So something must be horribly wrong
+ return LFS_ERR_CORRUPT;
+}
diff --git a/arduino/libraries/FileSystem/src/littlefs/lfs.h b/arduino/libraries/FileSystem/src/littlefs/lfs.h
new file mode 100755
index 0000000..7dd3604
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/lfs.h
@@ -0,0 +1,494 @@
+/*
+ * The little filesystem
+ *
+ * Copyright (c) 2017, Arm Limited. All rights reserved.
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+#ifndef LFS_H
+#define LFS_H
+
+#include <stdint.h>
+#include <stdbool.h>
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/// Version info ///
+
+// Software library version
+// Major (top-nibble), incremented on backwards incompatible changes
+// Minor (bottom-nibble), incremented on feature additions
+#define LFS_VERSION 0x00010006
+#define LFS_VERSION_MAJOR (0xffff & (LFS_VERSION >> 16))
+#define LFS_VERSION_MINOR (0xffff & (LFS_VERSION >> 0))
+
+// Version of On-disk data structures
+// Major (top-nibble), incremented on backwards incompatible changes
+// Minor (bottom-nibble), incremented on feature additions
+#define LFS_DISK_VERSION 0x00010001
+#define LFS_DISK_VERSION_MAJOR (0xffff & (LFS_DISK_VERSION >> 16))
+#define LFS_DISK_VERSION_MINOR (0xffff & (LFS_DISK_VERSION >> 0))
+
+
+/// Definitions ///
+
+// Type definitions
+typedef uint32_t lfs_size_t;
+typedef uint32_t lfs_off_t;
+
+typedef int32_t lfs_ssize_t;
+typedef int32_t lfs_soff_t;
+
+typedef uint32_t lfs_block_t;
+
+// Max name size in bytes
+#ifndef LFS_NAME_MAX
+#define LFS_NAME_MAX 255
+#endif
+
+// Possible error codes, these are negative to allow
+// valid positive return values
+enum lfs_error {
+ LFS_ERR_OK = 0, // No error
+ LFS_ERR_IO = -5, // Error during device operation
+ LFS_ERR_CORRUPT = -52, // Corrupted
+ LFS_ERR_NOENT = -2, // No directory entry
+ LFS_ERR_EXIST = -17, // Entry already exists
+ LFS_ERR_NOTDIR = -20, // Entry is not a dir
+ LFS_ERR_ISDIR = -21, // Entry is a dir
+ LFS_ERR_NOTEMPTY = -39, // Dir is not empty
+ LFS_ERR_BADF = -9, // Bad file number
+ LFS_ERR_INVAL = -22, // Invalid parameter
+ LFS_ERR_NOSPC = -28, // No space left on device
+ LFS_ERR_NOMEM = -12, // No more memory available
+};
+
+// File types
+enum lfs_type {
+ LFS_TYPE_REG = 0x11,
+ LFS_TYPE_DIR = 0x22,
+ LFS_TYPE_SUPERBLOCK = 0x2e,
+};
+
+// File open flags
+enum lfs_open_flags {
+ // open flags
+ LFS_O_RDONLY = 1, // Open a file as read only
+ LFS_O_WRONLY = 2, // Open a file as write only
+ LFS_O_RDWR = 3, // Open a file as read and write
+ LFS_O_CREAT = 0x0100, // Create a file if it does not exist
+ LFS_O_EXCL = 0x0200, // Fail if a file already exists
+ LFS_O_TRUNC = 0x0400, // Truncate the existing file to zero size
+ LFS_O_APPEND = 0x0800, // Move to end of file on every write
+
+ // internally used flags
+ LFS_F_DIRTY = 0x10000, // File does not match storage
+ LFS_F_WRITING = 0x20000, // File has been written since last flush
+ LFS_F_READING = 0x40000, // File has been read since last flush
+ LFS_F_ERRED = 0x80000, // An error occured during write
+};
+
+// File seek flags
+enum lfs_whence_flags {
+ LFS_SEEK_SET = 0, // Seek relative to an absolute position
+ LFS_SEEK_CUR = 1, // Seek relative to the current file position
+ LFS_SEEK_END = 2, // Seek relative to the end of the file
+};
+
+
+// Configuration provided during initialization of the littlefs
+struct lfs_config {
+ // Opaque user provided context that can be used to pass
+ // information to the block device operations
+ void *context;
+
+ // Read a region in a block. Negative error codes are propogated
+ // to the user.
+ int (*read)(const struct lfs_config *c, lfs_block_t block,
+ lfs_off_t off, void *buffer, lfs_size_t size);
+
+ // Program a region in a block. The block must have previously
+ // been erased. Negative error codes are propogated to the user.
+ // May return LFS_ERR_CORRUPT if the block should be considered bad.
+ int (*prog)(const struct lfs_config *c, lfs_block_t block,
+ lfs_off_t off, const void *buffer, lfs_size_t size);
+
+ // Erase a block. A block must be erased before being programmed.
+ // The state of an erased block is undefined. Negative error codes
+ // are propogated to the user.
+ // May return LFS_ERR_CORRUPT if the block should be considered bad.
+ int (*erase)(const struct lfs_config *c, lfs_block_t block);
+
+ // Sync the state of the underlying block device. Negative error codes
+ // are propogated to the user.
+ int (*sync)(const struct lfs_config *c);
+
+ // Minimum size of a block read. This determines the size of read buffers.
+ // This may be larger than the physical read size to improve performance
+ // by caching more of the block device.
+ lfs_size_t read_size;
+
+ // Minimum size of a block program. This determines the size of program
+ // buffers. This may be larger than the physical program size to improve
+ // performance by caching more of the block device.
+ // Must be a multiple of the read size.
+ lfs_size_t prog_size;
+
+ // Size of an erasable block. This does not impact ram consumption and
+ // may be larger than the physical erase size. However, this should be
+ // kept small as each file currently takes up an entire block.
+ // Must be a multiple of the program size.
+ lfs_size_t block_size;
+
+ // Number of erasable blocks on the device.
+ lfs_size_t block_count;
+
+ // Number of blocks to lookahead during block allocation. A larger
+ // lookahead reduces the number of passes required to allocate a block.
+ // The lookahead buffer requires only 1 bit per block so it can be quite
+ // large with little ram impact. Should be a multiple of 32.
+ lfs_size_t lookahead;
+
+ // Optional, statically allocated read buffer. Must be read sized.
+ void *read_buffer;
+
+ // Optional, statically allocated program buffer. Must be program sized.
+ void *prog_buffer;
+
+ // Optional, statically allocated lookahead buffer. Must be 1 bit per
+ // lookahead block.
+ void *lookahead_buffer;
+
+ // Optional, statically allocated buffer for files. Must be program sized.
+ // If enabled, only one file may be opened at a time.
+ void *file_buffer;
+};
+
+// Optional configuration provided during lfs_file_opencfg
+struct lfs_file_config {
+ // Optional, statically allocated buffer for files. Must be program sized.
+ // If NULL, malloc will be used by default.
+ void *buffer;
+};
+
+// File info structure
+struct lfs_info {
+ // Type of the file, either LFS_TYPE_REG or LFS_TYPE_DIR
+ uint8_t type;
+
+ // Size of the file, only valid for REG files
+ lfs_size_t size;
+
+ // Name of the file stored as a null-terminated string
+ char name[LFS_NAME_MAX+1];
+};
+
+
+/// littlefs data structures ///
+typedef struct lfs_entry {
+ lfs_off_t off;
+
+ struct lfs_disk_entry {
+ uint8_t type;
+ uint8_t elen;
+ uint8_t alen;
+ uint8_t nlen;
+ union {
+ struct {
+ lfs_block_t head;
+ lfs_size_t size;
+ } file;
+ lfs_block_t dir[2];
+ } u;
+ } d;
+} lfs_entry_t;
+
+typedef struct lfs_cache {
+ lfs_block_t block;
+ lfs_off_t off;
+ uint8_t *buffer;
+} lfs_cache_t;
+
+typedef struct lfs_file {
+ struct lfs_file *next;
+ lfs_block_t pair[2];
+ lfs_off_t poff;
+
+ lfs_block_t head;
+ lfs_size_t size;
+
+ const struct lfs_file_config *cfg;
+ uint32_t flags;
+ lfs_off_t pos;
+ lfs_block_t block;
+ lfs_off_t off;
+ lfs_cache_t cache;
+} lfs_file_t;
+
+typedef struct lfs_dir {
+ struct lfs_dir *next;
+ lfs_block_t pair[2];
+ lfs_off_t off;
+
+ lfs_block_t head[2];
+ lfs_off_t pos;
+
+ struct lfs_disk_dir {
+ uint32_t rev;
+ lfs_size_t size;
+ lfs_block_t tail[2];
+ } d;
+} lfs_dir_t;
+
+typedef struct lfs_superblock {
+ lfs_off_t off;
+
+ struct lfs_disk_superblock {
+ uint8_t type;
+ uint8_t elen;
+ uint8_t alen;
+ uint8_t nlen;
+ lfs_block_t root[2];
+ uint32_t block_size;
+ uint32_t block_count;
+ uint32_t version;
+ char magic[8];
+ } d;
+} lfs_superblock_t;
+
+typedef struct lfs_free {
+ lfs_block_t off;
+ lfs_block_t size;
+ lfs_block_t i;
+ lfs_block_t ack;
+ uint32_t *buffer;
+} lfs_free_t;
+
+// The littlefs type
+typedef struct lfs {
+ const struct lfs_config *cfg;
+
+ lfs_block_t root[2];
+ lfs_file_t *files;
+ lfs_dir_t *dirs;
+
+ lfs_cache_t rcache;
+ lfs_cache_t pcache;
+
+ lfs_free_t free;
+ bool deorphaned;
+} lfs_t;
+
+
+/// Filesystem functions ///
+
+// Format a block device with the littlefs
+//
+// Requires a littlefs object and config struct. This clobbers the littlefs
+// object, and does not leave the filesystem mounted. The config struct must
+// be zeroed for defaults and backwards compatibility.
+//
+// Returns a negative error code on failure.
+int lfs_format(lfs_t *lfs, const struct lfs_config *config);
+
+// Mounts a littlefs
+//
+// Requires a littlefs object and config struct. Multiple filesystems
+// may be mounted simultaneously with multiple littlefs objects. Both
+// lfs and config must be allocated while mounted. The config struct must
+// be zeroed for defaults and backwards compatibility.
+//
+// Returns a negative error code on failure.
+int lfs_mount(lfs_t *lfs, const struct lfs_config *config);
+
+// Unmounts a littlefs
+//
+// Does nothing besides releasing any allocated resources.
+// Returns a negative error code on failure.
+int lfs_unmount(lfs_t *lfs);
+
+/// General operations ///
+
+// Removes a file or directory
+//
+// If removing a directory, the directory must be empty.
+// Returns a negative error code on failure.
+int lfs_remove(lfs_t *lfs, const char *path);
+
+// Rename or move a file or directory
+//
+// If the destination exists, it must match the source in type.
+// If the destination is a directory, the directory must be empty.
+//
+// Returns a negative error code on failure.
+int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath);
+
+// Find info about a file or directory
+//
+// Fills out the info structure, based on the specified file or directory.
+// Returns a negative error code on failure.
+int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info);
+
+
+/// File operations ///
+
+// Open a file
+//
+// The mode that the file is opened in is determined by the flags, which
+// are values from the enum lfs_open_flags that are bitwise-ored together.
+//
+// Returns a negative error code on failure.
+int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
+ const char *path, int flags);
+
+// Open a file with extra configuration
+//
+// The mode that the file is opened in is determined by the flags, which
+// are values from the enum lfs_open_flags that are bitwise-ored together.
+//
+// The config struct provides additional config options per file as described
+// above. The config struct must be allocated while the file is open, and the
+// config struct must be zeroed for defaults and backwards compatibility.
+//
+// Returns a negative error code on failure.
+int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
+ const char *path, int flags,
+ const struct lfs_file_config *config);
+
+// Close a file
+//
+// Any pending writes are written out to storage as though
+// sync had been called and releases any allocated resources.
+//
+// Returns a negative error code on failure.
+int lfs_file_close(lfs_t *lfs, lfs_file_t *file);
+
+// Synchronize a file on storage
+//
+// Any pending writes are written out to storage.
+// Returns a negative error code on failure.
+int lfs_file_sync(lfs_t *lfs, lfs_file_t *file);
+
+// Read data from file
+//
+// Takes a buffer and size indicating where to store the read data.
+// Returns the number of bytes read, or a negative error code on failure.
+lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
+ void *buffer, lfs_size_t size);
+
+// Write data to file
+//
+// Takes a buffer and size indicating the data to write. The file will not
+// actually be updated on the storage until either sync or close is called.
+//
+// Returns the number of bytes written, or a negative error code on failure.
+lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
+ const void *buffer, lfs_size_t size);
+
+// Change the position of the file
+//
+// The change in position is determined by the offset and whence flag.
+// Returns the old position of the file, or a negative error code on failure.
+lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
+ lfs_soff_t off, int whence);
+
+// Truncates the size of the file to the specified size
+//
+// Returns a negative error code on failure.
+int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size);
+
+// Return the position of the file
+//
+// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
+// Returns the position of the file, or a negative error code on failure.
+lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file);
+
+// Change the position of the file to the beginning of the file
+//
+// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
+// Returns a negative error code on failure.
+int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file);
+
+// Return the size of the file
+//
+// Similar to lfs_file_seek(lfs, file, 0, LFS_SEEK_END)
+// Returns the size of the file, or a negative error code on failure.
+lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file);
+
+
+/// Directory operations ///
+
+// Create a directory
+//
+// Returns a negative error code on failure.
+int lfs_mkdir(lfs_t *lfs, const char *path);
+
+// Open a directory
+//
+// Once open a directory can be used with read to iterate over files.
+// Returns a negative error code on failure.
+int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path);
+
+// Close a directory
+//
+// Releases any allocated resources.
+// Returns a negative error code on failure.
+int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir);
+
+// Read an entry in the directory
+//
+// Fills out the info structure, based on the specified file or directory.
+// Returns a negative error code on failure.
+int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info);
+
+// Change the position of the directory
+//
+// The new off must be a value previous returned from tell and specifies
+// an absolute offset in the directory seek.
+//
+// Returns a negative error code on failure.
+int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off);
+
+// Return the position of the directory
+//
+// The returned offset is only meant to be consumed by seek and may not make
+// sense, but does indicate the current position in the directory iteration.
+//
+// Returns the position of the directory, or a negative error code on failure.
+lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir);
+
+// Change the position of the directory to the beginning of the directory
+//
+// Returns a negative error code on failure.
+int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir);
+
+
+/// Miscellaneous littlefs specific operations ///
+
+// Traverse through all blocks in use by the filesystem
+//
+// The provided callback will be called with each block address that is
+// currently in use by the filesystem. This can be used to determine which
+// blocks are in use or how much of the storage is available.
+//
+// Returns a negative error code on failure.
+int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
+
+// Prunes any recoverable errors that may have occured in the filesystem
+//
+// Not needed to be called by user unless an operation is interrupted
+// but the filesystem is still mounted. This is already called on first
+// allocation.
+//
+// Returns a negative error code on failure.
+int lfs_deorphan(lfs_t *lfs);
+
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif
diff --git a/arduino/libraries/FileSystem/src/littlefs/lfs_util.c b/arduino/libraries/FileSystem/src/littlefs/lfs_util.c
new file mode 100755
index 0000000..9ca0756
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/lfs_util.c
@@ -0,0 +1,31 @@
+/*
+ * lfs util functions
+ *
+ * Copyright (c) 2017, Arm Limited. All rights reserved.
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+#include "lfs_util.h"
+
+// Only compile if user does not provide custom config
+#ifndef LFS_CONFIG
+
+
+// Software CRC implementation with small lookup table
+void lfs_crc(uint32_t *restrict crc, const void *buffer, size_t size) {
+ static const uint32_t rtable[16] = {
+ 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
+ 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
+ 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
+ 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c,
+ };
+
+ const uint8_t *data = buffer;
+
+ for (size_t i = 0; i < size; i++) {
+ *crc = (*crc >> 4) ^ rtable[(*crc ^ (data[i] >> 0)) & 0xf];
+ *crc = (*crc >> 4) ^ rtable[(*crc ^ (data[i] >> 4)) & 0xf];
+ }
+}
+
+
+#endif
diff --git a/arduino/libraries/FileSystem/src/littlefs/lfs_util.h b/arduino/libraries/FileSystem/src/littlefs/lfs_util.h
new file mode 100755
index 0000000..7f74de3
--- /dev/null
+++ b/arduino/libraries/FileSystem/src/littlefs/lfs_util.h
@@ -0,0 +1,195 @@
+/*
+ * lfs utility functions
+ *
+ * Copyright (c) 2017, Arm Limited. All rights reserved.
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+#ifndef LFS_UTIL_H
+#define LFS_UTIL_H
+
+// Users can override lfs_util.h with their own configuration by defining
+// LFS_CONFIG as a header file to include (-DLFS_CONFIG=lfs_config.h).
+//
+// If LFS_CONFIG is used, none of the default utils will be emitted and must be
+// provided by the config file. To start I would suggest copying lfs_util.h and
+// modifying as needed.
+#ifdef LFS_CONFIG
+#define LFS_STRINGIZE(x) LFS_STRINGIZE2(x)
+#define LFS_STRINGIZE2(x) #x
+#include LFS_STRINGIZE(LFS_CONFIG)
+#else
+
+// System includes
+#include <stdint.h>
+#include <stdbool.h>
+#include <string.h>
+
+#include "FreeRTOS.h"
+
+#ifndef LFS_NO_MALLOC
+#include <stdlib.h>
+#endif
+#ifndef LFS_NO_ASSERT
+#include <assert.h>
+#endif
+
+#if !CFG_DEBUG
+#define LFS_NO_DEBUG
+#define LFS_NO_WARN
+#define LFS_NO_ERROR
+#endif
+
+#if !defined(LFS_NO_DEBUG) || !defined(LFS_NO_WARN) || !defined(LFS_NO_ERROR)
+#include <stdio.h>
+#endif
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+// Macros, may be replaced by system specific wrappers. Arguments to these
+// macros must not have side-effects as the macros can be removed for a smaller
+// code footprint
+
+// Logging functions
+#ifndef LFS_NO_DEBUG
+#define LFS_DEBUG(fmt, ...) \
+ printf("lfs debug:%d: " fmt "\n", __LINE__, __VA_ARGS__)
+#else
+#define LFS_DEBUG(fmt, ...)
+#endif
+
+#ifndef LFS_NO_WARN
+#define LFS_WARN(fmt, ...) \
+ printf("lfs warn:%d: " fmt "\n", __LINE__, __VA_ARGS__)
+#else
+#define LFS_WARN(fmt, ...)
+#endif
+
+#ifndef LFS_NO_ERROR
+#define LFS_ERROR(fmt, ...) \
+ printf("lfs error:%d: " fmt "\n", __LINE__, __VA_ARGS__)
+#else
+#define LFS_ERROR(fmt, ...)
+#endif
+
+// Runtime assertions
+#ifndef LFS_NO_ASSERT
+#define LFS_ASSERT(test) assert(test)
+#else
+#define LFS_ASSERT(test)
+#endif
+
+
+// Builtin functions, these may be replaced by more efficient
+// toolchain-specific implementations. LFS_NO_INTRINSICS falls back to a more
+// expensive basic C implementation for debugging purposes
+
+// Min/max functions for unsigned 32-bit numbers
+static inline uint32_t lfs_max(uint32_t a, uint32_t b) {
+ return (a > b) ? a : b;
+}
+
+static inline uint32_t lfs_min(uint32_t a, uint32_t b) {
+ return (a < b) ? a : b;
+}
+
+// Find the next smallest power of 2 less than or equal to a
+static inline uint32_t lfs_npw2(uint32_t a) {
+#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
+ return 32 - __builtin_clz(a-1);
+#else
+ uint32_t r = 0;
+ uint32_t s;
+ a -= 1;
+ s = (a > 0xffff) << 4; a >>= s; r |= s;
+ s = (a > 0xff ) << 3; a >>= s; r |= s;
+ s = (a > 0xf ) << 2; a >>= s; r |= s;
+ s = (a > 0x3 ) << 1; a >>= s; r |= s;
+ return (r | (a >> 1)) + 1;
+#endif
+}
+
+// Count the number of trailing binary zeros in a
+// lfs_ctz(0) may be undefined
+static inline uint32_t lfs_ctz(uint32_t a) {
+#if !defined(LFS_NO_INTRINSICS) && defined(__GNUC__)
+ return __builtin_ctz(a);
+#else
+ return lfs_npw2((a & -a) + 1) - 1;
+#endif
+}
+
+// Count the number of binary ones in a
+static inline uint32_t lfs_popc(uint32_t a) {
+#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
+ return __builtin_popcount(a);
+#else
+ a = a - ((a >> 1) & 0x55555555);
+ a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
+ return (((a + (a >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
+#endif
+}
+
+// Find the sequence comparison of a and b, this is the distance
+// between a and b ignoring overflow
+static inline int lfs_scmp(uint32_t a, uint32_t b) {
+ return (int)(unsigned)(a - b);
+}
+
+// Convert from 32-bit little-endian to native order
+static inline uint32_t lfs_fromle32(uint32_t a) {
+#if !defined(LFS_NO_INTRINSICS) && ( \
+ (defined( BYTE_ORDER ) && BYTE_ORDER == ORDER_LITTLE_ENDIAN ) || \
+ (defined(__BYTE_ORDER ) && __BYTE_ORDER == __ORDER_LITTLE_ENDIAN ) || \
+ (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
+ return a;
+#elif !defined(LFS_NO_INTRINSICS) && ( \
+ (defined( BYTE_ORDER ) && BYTE_ORDER == ORDER_BIG_ENDIAN ) || \
+ (defined(__BYTE_ORDER ) && __BYTE_ORDER == __ORDER_BIG_ENDIAN ) || \
+ (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
+ return __builtin_bswap32(a);
+#else
+ return (((uint8_t*)&a)[0] << 0) |
+ (((uint8_t*)&a)[1] << 8) |
+ (((uint8_t*)&a)[2] << 16) |
+ (((uint8_t*)&a)[3] << 24);
+#endif
+}
+
+// Convert to 32-bit little-endian from native order
+static inline uint32_t lfs_tole32(uint32_t a) {
+ return lfs_fromle32(a);
+}
+
+// Calculate CRC-32 with polynomial = 0x04c11db7
+void lfs_crc(uint32_t *crc, const void *buffer, size_t size);
+
+// Allocate memory, only used if buffers are not provided to littlefs
+static inline void *lfs_malloc(size_t size) {
+#ifndef LFS_NO_MALLOC
+ return pvPortMalloc(size);
+#else
+ (void)size;
+ return NULL;
+#endif
+}
+
+// Deallocate memory, only used if buffers are not provided to littlefs
+static inline void lfs_free(void *p) {
+#ifndef LFS_NO_MALLOC
+ vPortFree(p);
+#else
+ (void)p;
+#endif
+}
+
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif
+#endif