aboutsummaryrefslogtreecommitdiffstats
path: root/drivers_nrf/saadc
diff options
context:
space:
mode:
Diffstat (limited to 'drivers_nrf/saadc')
-rw-r--r--drivers_nrf/saadc/nrf_drv_saadc.c647
-rw-r--r--drivers_nrf/saadc/nrf_drv_saadc.h326
2 files changed, 973 insertions, 0 deletions
diff --git a/drivers_nrf/saadc/nrf_drv_saadc.c b/drivers_nrf/saadc/nrf_drv_saadc.c
new file mode 100644
index 0000000..d9d96b8
--- /dev/null
+++ b/drivers_nrf/saadc/nrf_drv_saadc.c
@@ -0,0 +1,647 @@
+/**
+ * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form, except as embedded into a Nordic
+ * Semiconductor ASA integrated circuit in a product or a software update for
+ * such product, must reproduce the above copyright notice, this list of
+ * conditions and the following disclaimer in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * 4. This software, with or without modification, must only be used with a
+ * Nordic Semiconductor ASA integrated circuit.
+ *
+ * 5. Any software provided in binary form under this license must not be reverse
+ * engineered, decompiled, modified and/or disassembled.
+ *
+ * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
+ * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+ * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+#include "sdk_common.h"
+#if NRF_MODULE_ENABLED(SAADC)
+#include "nrf_drv_saadc.h"
+#include "nrf_assert.h"
+#include "nrf_drv_common.h"
+#include "app_util_platform.h"
+
+#define NRF_LOG_MODULE_NAME "SAADC"
+
+#if SAADC_CONFIG_LOG_ENABLED
+#define NRF_LOG_LEVEL SAADC_CONFIG_LOG_LEVEL
+#define NRF_LOG_INFO_COLOR SAADC_CONFIG_INFO_COLOR
+#define NRF_LOG_DEBUG_COLOR SAADC_CONFIG_DEBUG_COLOR
+#define EVT_TO_STR(event) (event == NRF_SAADC_EVENT_STARTED ? "NRF_SAADC_EVENT_STARTED" : \
+ (event == NRF_SAADC_EVENT_END ? "NRF_SAADC_EVENT_END" : \
+ (event == NRF_SAADC_EVENT_DONE ? "NRF_SAADC_EVENT_DONE" : \
+ (event == NRF_SAADC_EVENT_RESULTDONE ? "NRF_SAADC_EVENT_RESULTDONE" : \
+ (event == NRF_SAADC_EVENT_CALIBRATEDONE ? "NRF_SAADC_EVENT_CALIBRATEDONE" : \
+ (event == NRF_SAADC_EVENT_STOPPED ? "NRF_SAADC_EVENT_STOPPED" : "UNKNOWN EVENT"))))))
+#define EVT_TO_STR_LIMIT(event) (event == NRF_SAADC_LIMIT_LOW ? "NRF_SAADC_LIMIT_LOW" : \
+ (event == NRF_SAADC_LIMIT_HIGH ? "NRF_SAADC_LIMIT_HIGH" : "UNKNOWN EVENT"))
+#else //SAADC_CONFIG_LOG_ENABLED
+#define EVT_TO_STR(event) ""
+#define NRF_LOG_LEVEL 0
+#endif //SAADC_CONFIG_LOG_ENABLED
+#include "nrf_log.h"
+#include "nrf_log_ctrl.h"
+
+
+typedef enum
+{
+ NRF_SAADC_STATE_IDLE = 0,
+ NRF_SAADC_STATE_BUSY = 1,
+ NRF_SAADC_STATE_CALIBRATION = 2
+} nrf_saadc_state_t;
+
+
+typedef struct
+{
+ nrf_saadc_input_t pselp;
+ nrf_saadc_input_t pseln;
+} nrf_saadc_psel_buffer;
+
+static const nrf_drv_saadc_config_t m_default_config = NRF_DRV_SAADC_DEFAULT_CONFIG;
+
+/** @brief SAADC control block.*/
+typedef struct
+{
+ nrf_drv_saadc_event_handler_t event_handler; ///< Event handler function pointer.
+ volatile nrf_saadc_value_t * p_buffer; ///< Sample buffer.
+ volatile uint16_t buffer_size; ///< Size of the sample buffer.
+ volatile nrf_saadc_value_t * p_secondary_buffer; ///< Secondary sample buffer.
+ volatile nrf_saadc_state_t adc_state; ///< State of the SAADC.
+ uint32_t limits_enabled_flags; ///< Enabled limits flags.
+ uint16_t secondary_buffer_size; ///< Size of the secondary buffer.
+ uint16_t buffer_size_left; ///< When low power mode is active indicates how many samples left to convert on current buffer.
+ nrf_saadc_psel_buffer psel[NRF_SAADC_CHANNEL_COUNT]; ///< Pin configurations of SAADC channels.
+ nrf_drv_state_t state; ///< Driver initialization state.
+ uint8_t active_channels; ///< Number of enabled SAADC channels.
+ bool low_power_mode; ///< Indicates if low power mode is active.
+ bool conversions_end; ///< When low power mode is active indicates end of conversions on current buffer.
+} nrf_drv_saadc_cb_t;
+
+static nrf_drv_saadc_cb_t m_cb;
+
+#define LOW_LIMIT_TO_FLAG(channel) ((2 * channel + 1))
+#define HIGH_LIMIT_TO_FLAG(channel) ((2 * channel))
+#define FLAG_IDX_TO_EVENT(idx) ((nrf_saadc_event_t)((uint32_t)NRF_SAADC_EVENT_CH0_LIMITH + \
+ 4 * idx))
+#define LIMIT_EVENT_TO_CHANNEL(event) (uint8_t)(((uint32_t)event - \
+ (uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) / 8)
+#define LIMIT_EVENT_TO_LIMIT_TYPE(event)((((uint32_t)event - (uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) & 4) \
+ ? NRF_SAADC_LIMIT_LOW : NRF_SAADC_LIMIT_HIGH)
+#define HW_TIMEOUT 10000
+
+void SAADC_IRQHandler(void)
+{
+ if (nrf_saadc_event_check(NRF_SAADC_EVENT_END))
+ {
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
+ NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_END));
+
+ if (!m_cb.low_power_mode || m_cb.conversions_end)
+ {
+ nrf_drv_saadc_evt_t evt;
+ evt.type = NRF_DRV_SAADC_EVT_DONE;
+ evt.data.done.p_buffer = (nrf_saadc_value_t *)m_cb.p_buffer;
+ evt.data.done.size = m_cb.buffer_size;
+
+ if (m_cb.p_secondary_buffer == NULL)
+ {
+ m_cb.adc_state = NRF_SAADC_STATE_IDLE;
+ }
+ else
+ {
+ m_cb.buffer_size_left = m_cb.secondary_buffer_size;
+ m_cb.p_buffer = m_cb.p_secondary_buffer;
+ m_cb.buffer_size = m_cb.secondary_buffer_size;
+ m_cb.p_secondary_buffer = NULL;
+ if (!m_cb.low_power_mode)
+ {
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
+ }
+ }
+ m_cb.event_handler(&evt);
+ m_cb.conversions_end = false;
+ }
+ }
+ if (m_cb.low_power_mode && nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED))
+ {
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
+ NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_STARTED));
+
+ if (m_cb.buffer_size_left > m_cb.active_channels)
+ {
+ // More samples to convert than for single event.
+ m_cb.buffer_size_left -= m_cb.active_channels;
+ nrf_saadc_buffer_init((nrf_saadc_value_t *)&m_cb.p_buffer[m_cb.buffer_size -
+ m_cb.buffer_size_left],
+ m_cb.active_channels);
+ }
+ else if ((m_cb.buffer_size_left == m_cb.active_channels) &&
+
+ (m_cb.p_secondary_buffer != NULL))
+ {
+ // Samples to convert for one event, prepare next buffer.
+ m_cb.conversions_end = true;
+ m_cb.buffer_size_left = 0;
+ nrf_saadc_buffer_init((nrf_saadc_value_t *)m_cb.p_secondary_buffer,
+ m_cb.active_channels);
+ }
+ else if (m_cb.buffer_size_left == m_cb.active_channels)
+ {
+ // Samples to convert for one event, but no second buffer.
+ m_cb.conversions_end = true;
+ m_cb.buffer_size_left = 0;
+ }
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
+ }
+ if (nrf_saadc_event_check(NRF_SAADC_EVENT_CALIBRATEDONE))
+ {
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE);
+ NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_CALIBRATEDONE));
+ m_cb.adc_state = NRF_SAADC_STATE_IDLE;
+
+ nrf_drv_saadc_evt_t evt;
+ evt.type = NRF_DRV_SAADC_EVT_CALIBRATEDONE;
+ m_cb.event_handler(&evt);
+ }
+ if (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED))
+ {
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
+ NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_STOPPED));
+ m_cb.adc_state = NRF_SAADC_STATE_IDLE;
+ }
+ else
+ {
+ uint32_t limit_flags = m_cb.limits_enabled_flags;
+ uint32_t flag_idx;
+ nrf_saadc_event_t event;
+
+ while (limit_flags)
+ {
+ flag_idx = __CLZ(limit_flags);
+ limit_flags &= ~((1UL << 31) >> flag_idx);
+ event = FLAG_IDX_TO_EVENT(flag_idx);
+ if (nrf_saadc_event_check(event))
+ {
+ nrf_saadc_event_clear(event);
+ nrf_drv_saadc_evt_t evt;
+ evt.type = NRF_DRV_SAADC_EVT_LIMIT;
+ evt.data.limit.channel = LIMIT_EVENT_TO_CHANNEL(event);
+ evt.data.limit.limit_type = LIMIT_EVENT_TO_LIMIT_TYPE(event);
+ NRF_LOG_DEBUG("Event limit, channel: %d, limit type: %s.\r\n", evt.data.limit.channel, (uint32_t)EVT_TO_STR(evt.data.limit.limit_type));
+ m_cb.event_handler(&evt);
+ }
+ }
+ }
+}
+
+
+ret_code_t nrf_drv_saadc_init(nrf_drv_saadc_config_t const * p_config,
+ nrf_drv_saadc_event_handler_t event_handler)
+{
+ ret_code_t err_code;
+
+ if (m_cb.state != NRF_DRV_STATE_UNINITIALIZED)
+ {
+ err_code = NRF_ERROR_INVALID_STATE;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+ if (event_handler == NULL)
+ {
+ err_code = NRF_ERROR_INVALID_PARAM;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+
+ if (p_config == NULL)
+ {
+ p_config = &m_default_config;
+ }
+
+ m_cb.event_handler = event_handler;
+ nrf_saadc_resolution_set(p_config->resolution);
+ nrf_saadc_oversample_set(p_config->oversample);
+ m_cb.low_power_mode = p_config->low_power_mode;
+ m_cb.state = NRF_DRV_STATE_INITIALIZED;
+ m_cb.adc_state = NRF_SAADC_STATE_IDLE;
+ m_cb.active_channels = 0;
+ m_cb.limits_enabled_flags = 0;
+ m_cb.conversions_end = false;
+
+ nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
+ nrf_drv_common_irq_enable(SAADC_IRQn, p_config->interrupt_priority);
+ nrf_saadc_int_enable(NRF_SAADC_INT_END);
+
+ if (m_cb.low_power_mode)
+ {
+ nrf_saadc_int_enable(NRF_SAADC_INT_STARTED);
+ }
+
+ nrf_saadc_enable();
+
+ err_code = NRF_SUCCESS;
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+
+ return err_code;
+}
+
+
+void nrf_drv_saadc_uninit(void)
+{
+ ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
+
+ nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
+ nrf_drv_common_irq_disable(SAADC_IRQn);
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
+
+ // Wait for ADC being stopped.
+ uint32_t timeout = HW_TIMEOUT;
+
+ while (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED) == 0 && timeout > 0)
+ {
+ --timeout;
+ }
+ ASSERT(timeout > 0);
+
+ nrf_saadc_disable();
+ m_cb.adc_state = NRF_SAADC_STATE_IDLE;
+
+ for (uint32_t channel = 0; channel < NRF_SAADC_CHANNEL_COUNT; ++channel)
+ {
+ if (m_cb.psel[channel].pselp != NRF_SAADC_INPUT_DISABLED)
+ {
+ (void)nrf_drv_saadc_channel_uninit(channel);
+ }
+ }
+
+ m_cb.state = NRF_DRV_STATE_UNINITIALIZED;
+}
+
+
+ret_code_t nrf_drv_saadc_channel_init(uint8_t channel,
+ nrf_saadc_channel_config_t const * const p_config)
+{
+ ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
+ ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
+ // Oversampling can be used only with one channel.
+ ASSERT((nrf_saadc_oversample_get() == NRF_SAADC_OVERSAMPLE_DISABLED) ||
+ (m_cb.active_channels == 0));
+ ASSERT((p_config->pin_p <= NRF_SAADC_INPUT_VDD) &&
+ (p_config->pin_p > NRF_SAADC_INPUT_DISABLED));
+ ASSERT(p_config->pin_n <= NRF_SAADC_INPUT_VDD);
+
+ ret_code_t err_code;
+
+ // A channel can only be initialized if the driver is in the idle state.
+ if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
+ {
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+
+#ifdef NRF52_PAN_74
+ if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) || (p_config->acq_time == NRF_SAADC_ACQTIME_5US))
+ {
+ nrf_saadc_disable();
+ }
+#endif //NRF52_PAN_74
+
+ if (!m_cb.psel[channel].pselp)
+ {
+ ++m_cb.active_channels;
+ }
+ m_cb.psel[channel].pselp = p_config->pin_p;
+ m_cb.psel[channel].pseln = p_config->pin_n;
+ nrf_saadc_channel_init(channel, p_config);
+ nrf_saadc_channel_input_set(channel, p_config->pin_p, p_config->pin_n);
+
+#ifdef NRF52_PAN_74
+ if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) || (p_config->acq_time == NRF_SAADC_ACQTIME_5US))
+ {
+ nrf_saadc_enable();
+ }
+#endif //NRF52_PAN_74
+
+ NRF_LOG_INFO("Channel initialized: %d.\r\n", channel);
+ err_code = NRF_SUCCESS;
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+
+
+ret_code_t nrf_drv_saadc_channel_uninit(uint8_t channel)
+{
+ ASSERT(channel < NRF_SAADC_CHANNEL_COUNT)
+ ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
+
+ ret_code_t err_code;
+
+ // A channel can only be uninitialized if the driver is in the idle state.
+ if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
+ {
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+
+ if (m_cb.psel[channel].pselp)
+ {
+ --m_cb.active_channels;
+ }
+ m_cb.psel[channel].pselp = NRF_SAADC_INPUT_DISABLED;
+ m_cb.psel[channel].pseln = NRF_SAADC_INPUT_DISABLED;
+ nrf_saadc_channel_input_set(channel, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
+ nrf_drv_saadc_limits_set(channel, NRF_DRV_SAADC_LIMITL_DISABLED, NRF_DRV_SAADC_LIMITH_DISABLED);
+ NRF_LOG_INFO("Channel denitialized: %d.\r\n", channel);
+
+ err_code = NRF_SUCCESS;
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+
+
+uint32_t nrf_drv_saadc_sample_task_get(void)
+{
+ return nrf_saadc_task_address_get(
+ m_cb.low_power_mode ? NRF_SAADC_TASK_START : NRF_SAADC_TASK_SAMPLE);
+}
+
+
+ret_code_t nrf_drv_saadc_sample_convert(uint8_t channel, nrf_saadc_value_t * p_value)
+{
+ ret_code_t err_code;
+
+ if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
+ {
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+ m_cb.adc_state = NRF_SAADC_STATE_BUSY;
+ nrf_saadc_int_disable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END);
+ nrf_saadc_buffer_init(p_value, 1);
+ if (m_cb.active_channels > 1)
+ {
+ for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
+ {
+ nrf_saadc_channel_input_set(i, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
+ }
+ }
+ nrf_saadc_channel_input_set(channel,
+ m_cb.psel[channel].pselp, m_cb.psel[channel].pseln);
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
+
+ uint32_t timeout = HW_TIMEOUT;
+
+ while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
+ {
+ timeout--;
+ }
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
+
+ NRF_LOG_INFO("Conversion value: %d, channel.\r\n", *p_value, channel);
+
+ if (m_cb.active_channels > 1)
+ {
+ for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
+ {
+ nrf_saadc_channel_input_set(i, m_cb.psel[i].pselp, m_cb.psel[i].pseln);
+ }
+ }
+
+ if (m_cb.low_power_mode)
+ {
+ nrf_saadc_int_enable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END);
+ }
+ else
+ {
+ nrf_saadc_int_enable(NRF_SAADC_INT_END);
+ }
+
+ m_cb.adc_state = NRF_SAADC_STATE_IDLE;
+
+ err_code = NRF_SUCCESS;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+
+
+ret_code_t nrf_drv_saadc_buffer_convert(nrf_saadc_value_t * p_buffer, uint16_t size)
+{
+ ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
+ ASSERT((size % m_cb.active_channels) == 0);
+ ret_code_t err_code;
+
+
+ nrf_saadc_int_disable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
+ if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION)
+ {
+ nrf_saadc_int_enable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+ if (m_cb.adc_state == NRF_SAADC_STATE_BUSY)
+ {
+ if ( m_cb.p_secondary_buffer)
+ {
+ nrf_saadc_int_enable(NRF_SAADC_INT_END);
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+ else
+ {
+ m_cb.p_secondary_buffer = p_buffer;
+ m_cb.secondary_buffer_size = size;
+ if (!m_cb.low_power_mode)
+ {
+ while (nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED) == 0);
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
+ nrf_saadc_buffer_init(p_buffer, size);
+ }
+ nrf_saadc_int_enable(NRF_SAADC_INT_END);
+ err_code = NRF_SUCCESS;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+ }
+ nrf_saadc_int_enable(NRF_SAADC_INT_END);
+ m_cb.adc_state = NRF_SAADC_STATE_BUSY;
+
+ m_cb.p_buffer = p_buffer;
+ m_cb.buffer_size = size;
+ m_cb.p_secondary_buffer = NULL;
+
+ NRF_LOG_INFO("Function: %d, buffer length: %d, active channels: %d.\r\n",
+ (uint32_t)__func__, size, m_cb.active_channels);
+
+ if (m_cb.low_power_mode)
+ {
+ m_cb.buffer_size_left = size;
+ nrf_saadc_buffer_init(p_buffer, m_cb.active_channels);
+ }
+ else
+ {
+ nrf_saadc_buffer_init(p_buffer, size);
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
+ }
+
+ err_code = NRF_SUCCESS;
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+
+
+ret_code_t nrf_drv_saadc_sample()
+{
+ ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
+
+ ret_code_t err_code = NRF_SUCCESS;
+ if (m_cb.adc_state != NRF_SAADC_STATE_BUSY)
+ {
+ err_code = NRF_ERROR_INVALID_STATE;
+ }
+ else if (m_cb.low_power_mode)
+ {
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
+ }
+ else
+ {
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
+ }
+
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+
+
+ret_code_t nrf_drv_saadc_calibrate_offset()
+{
+ ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
+
+ ret_code_t err_code;
+
+ if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
+ {
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+
+ m_cb.adc_state = NRF_SAADC_STATE_CALIBRATION;
+
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE);
+ nrf_saadc_int_enable(NRF_SAADC_INT_CALIBRATEDONE);
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_CALIBRATEOFFSET);
+ err_code = NRF_SUCCESS;
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+
+
+bool nrf_drv_saadc_is_busy(void)
+{
+ return (m_cb.adc_state != NRF_SAADC_STATE_IDLE);
+}
+
+
+void nrf_drv_saadc_abort(void)
+{
+ if (nrf_drv_saadc_is_busy())
+ {
+ nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
+ nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
+
+ if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION)
+ {
+ m_cb.adc_state = NRF_SAADC_STATE_IDLE;
+ }
+ else
+ {
+ // Wait for ADC being stopped.
+ uint32_t timeout = HW_TIMEOUT;
+
+ while ((m_cb.adc_state != NRF_SAADC_STATE_IDLE) && (timeout > 0))
+ {
+ --timeout;
+ }
+ ASSERT(timeout > 0);
+ }
+
+ m_cb.p_buffer = 0;
+ m_cb.p_secondary_buffer = 0;
+ NRF_LOG_INFO("Conversion aborted.\r\n");
+ }
+}
+
+
+void nrf_drv_saadc_limits_set(uint8_t channel, int16_t limit_low, int16_t limit_high)
+{
+ ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
+ ASSERT(m_cb.event_handler); // only non blocking mode supported
+ ASSERT(limit_low >= NRF_DRV_SAADC_LIMITL_DISABLED);
+ ASSERT(limit_high <= NRF_DRV_SAADC_LIMITH_DISABLED);
+ ASSERT(limit_low < limit_high);
+ nrf_saadc_channel_limits_set(channel, limit_low, limit_high);
+
+ uint32_t int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_LOW);
+ if (limit_low == NRF_DRV_SAADC_LIMITL_DISABLED)
+ {
+ m_cb.limits_enabled_flags &= ~(0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
+ nrf_saadc_int_disable(int_mask);
+ }
+ else
+ {
+ m_cb.limits_enabled_flags |= (0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
+ nrf_saadc_int_enable(int_mask);
+ }
+
+ int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_HIGH);
+ if (limit_high == NRF_DRV_SAADC_LIMITH_DISABLED)
+ {
+ m_cb.limits_enabled_flags &= ~(0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
+ nrf_saadc_int_disable(int_mask);
+ }
+ else
+ {
+ m_cb.limits_enabled_flags |= (0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
+ nrf_saadc_int_enable(int_mask);
+ }
+}
+#endif //NRF_MODULE_ENABLED(SAADC)
diff --git a/drivers_nrf/saadc/nrf_drv_saadc.h b/drivers_nrf/saadc/nrf_drv_saadc.h
new file mode 100644
index 0000000..45b4204
--- /dev/null
+++ b/drivers_nrf/saadc/nrf_drv_saadc.h
@@ -0,0 +1,326 @@
+/**
+ * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form, except as embedded into a Nordic
+ * Semiconductor ASA integrated circuit in a product or a software update for
+ * such product, must reproduce the above copyright notice, this list of
+ * conditions and the following disclaimer in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * 4. This software, with or without modification, must only be used with a
+ * Nordic Semiconductor ASA integrated circuit.
+ *
+ * 5. Any software provided in binary form under this license must not be reverse
+ * engineered, decompiled, modified and/or disassembled.
+ *
+ * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
+ * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+ * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+/**
+ * @addtogroup nrf_saadc SAADC HAL and driver
+ * @ingroup nrf_drivers
+ * @brief @tagAPI52 Successive Approximation Analog-to-Digital Converter (SAADC) APIs.
+ * @details The SAADC HAL provides basic APIs for accessing the registers of the SAADC peripheral.
+ * The SAADC driver provides APIs on a higher level.
+ *
+ * @defgroup nrf_drv_saadc SAADC driver
+ * @{
+ * @ingroup nrf_saadc
+ *
+ * @brief @tagAPI52 Successive Approximation Analog-to-Digital Converter (SAADC) driver.
+ */
+
+#ifndef NRF_DRV_SAADC_H__
+#define NRF_DRV_SAADC_H__
+
+#include "sdk_config.h"
+#include "nrf_saadc.h"
+#include "sdk_errors.h"
+#include "nrf_drv_common.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * @brief Value that should be set as high limit to disable limit detection.
+ */
+#define NRF_DRV_SAADC_LIMITH_DISABLED (2047)
+/**
+ * @brief Value that should be set as low limit to disable limit detection.
+ */
+#define NRF_DRV_SAADC_LIMITL_DISABLED (-2048)
+
+/**
+ * @brief Macro for setting @ref nrf_drv_saadc_config_t to default settings.
+ */
+#define NRF_DRV_SAADC_DEFAULT_CONFIG \
+ { \
+ .resolution = (nrf_saadc_resolution_t)SAADC_CONFIG_RESOLUTION, \
+ .oversample = (nrf_saadc_oversample_t)SAADC_CONFIG_OVERSAMPLE, \
+ .interrupt_priority = SAADC_CONFIG_IRQ_PRIORITY, \
+ .low_power_mode = SAADC_CONFIG_LP_MODE \
+ }
+
+/**
+ * @brief Macro for setting @ref nrf_saadc_channel_config_t to default settings
+ * in single ended mode.
+ *
+ * @param PIN_P Analog input.
+ */
+#define NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(PIN_P) \
+ { \
+ .resistor_p = NRF_SAADC_RESISTOR_DISABLED, \
+ .resistor_n = NRF_SAADC_RESISTOR_DISABLED, \
+ .gain = NRF_SAADC_GAIN1_6, \
+ .reference = NRF_SAADC_REFERENCE_INTERNAL, \
+ .acq_time = NRF_SAADC_ACQTIME_10US, \
+ .mode = NRF_SAADC_MODE_SINGLE_ENDED, \
+ .burst = NRF_SAADC_BURST_DISABLED, \
+ .pin_p = (nrf_saadc_input_t)(PIN_P), \
+ .pin_n = NRF_SAADC_INPUT_DISABLED \
+ }
+
+/**
+ * @brief Macro for setting @ref nrf_saadc_channel_config_t to default settings
+ * in differential mode.
+ *
+ * @param PIN_P Positive analog input.
+ * @param PIN_N Negative analog input.
+ */
+#define NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_DIFFERENTIAL(PIN_P, PIN_N) \
+ { \
+ .resistor_p = NRF_SAADC_RESISTOR_DISABLED, \
+ .resistor_n = NRF_SAADC_RESISTOR_DISABLED, \
+ .gain = NRF_SAADC_GAIN1_6, \
+ .reference = NRF_SAADC_REFERENCE_INTERNAL, \
+ .acq_time = NRF_SAADC_ACQTIME_10US, \
+ .mode = NRF_SAADC_MODE_DIFFERENTIAL, \
+ .pin_p = (nrf_saadc_input_t)(PIN_P), \
+ .pin_n = (nrf_saadc_input_t)(PIN_N) \
+ }
+
+/**
+ * @brief Analog-to-digital converter driver configuration structure.
+ */
+typedef struct
+{
+ nrf_saadc_resolution_t resolution; ///< Resolution configuration.
+ nrf_saadc_oversample_t oversample; ///< Oversampling configuration.
+ uint8_t interrupt_priority; ///< Interrupt priority.
+ bool low_power_mode; ///< Indicates if low power mode is active.
+} nrf_drv_saadc_config_t;
+
+/**
+ * @brief Driver event types.
+ */
+typedef enum
+{
+ NRF_DRV_SAADC_EVT_DONE, ///< Event generated when the buffer is filled with samples.
+ NRF_DRV_SAADC_EVT_LIMIT, ///< Event generated after one of the limits is reached.
+ NRF_DRV_SAADC_EVT_CALIBRATEDONE ///< Event generated when the calibration is complete.
+} nrf_drv_saadc_evt_type_t;
+
+/**
+ * @brief Analog-to-digital converter driver done event data.
+ */
+typedef struct
+{
+ nrf_saadc_value_t * p_buffer; ///< Pointer to buffer with converted samples.
+ uint16_t size; ///< Number of samples in the buffer.
+} nrf_drv_saadc_done_evt_t;
+
+/**
+ * @brief Analog-to-digital converter driver limit event data.
+ */
+typedef struct
+{
+ uint8_t channel; ///< Channel on which the limit was detected.
+ nrf_saadc_limit_t limit_type; ///< Type of limit detected.
+} nrf_drv_saadc_limit_evt_t;
+
+/**
+ * @brief Analog-to-digital converter driver event structure.
+ */
+typedef struct
+{
+ nrf_drv_saadc_evt_type_t type; ///< Event type.
+ union
+ {
+ nrf_drv_saadc_done_evt_t done; ///< Data for @ref NRF_DRV_SAADC_EVT_DONE event.
+ nrf_drv_saadc_limit_evt_t limit; ///< Data for @ref NRF_DRV_SAADC_EVT_LIMIT event.
+ } data;
+} nrf_drv_saadc_evt_t;
+
+/**
+ * @brief ADC event handler.
+ *
+ * @param[in] p_event Pointer to an ADC event. The event structure is allocated on
+ * the stack, so it is valid only within the context of
+ * the event handler.
+ */
+typedef void (* nrf_drv_saadc_event_handler_t)(nrf_drv_saadc_evt_t const * p_event);
+
+/**
+ * @brief Function for initializing the SAADC.
+ *
+ * @param[in] p_config Pointer to a configuration structure. If NULL, the default one is used.
+ * @param[in] event_handler Event handler provided by the user.
+ *
+ * @retval NRF_SUCCESS If initialization was successful.
+ * @retval NRF_ERROR_INVALID_STATE If the driver is already initialized.
+ * @retval NRF_ERROR_INVALID_PARAM If event_handler is NULL.
+ */
+ret_code_t nrf_drv_saadc_init(nrf_drv_saadc_config_t const * p_config,
+ nrf_drv_saadc_event_handler_t event_handler);
+
+/**
+ * @brief Function for uninitializing the SAADC.
+ *
+ * This function stops all ongoing conversions and disables all channels.
+ */
+void nrf_drv_saadc_uninit(void);
+
+
+/**
+ * @brief Function for getting the address of a SAMPLE SAADC task.
+ *
+ * @return Task address.
+ */
+uint32_t nrf_drv_saadc_sample_task_get(void);
+
+/**
+ * @brief Function for initializing an SAADC channel.
+ *
+ * This function configures and enables the channel.
+ *
+ * @retval NRF_SUCCESS If initialization was successful.
+ * @retval NRF_ERROR_INVALID_STATE If the ADC was not initialized.
+ * @retval NRF_ERROR_NO_MEM If the specified channel was already allocated.
+ */
+ret_code_t nrf_drv_saadc_channel_init(uint8_t channel,
+ nrf_saadc_channel_config_t const * const p_config);
+
+
+/**
+ * @brief Function for uninitializing an SAADC channel.
+ *
+ * @retval NRF_SUCCESS If uninitialization was successful.
+ * @retval NRF_ERROR_BUSY If the ADC is busy.
+ */
+ret_code_t nrf_drv_saadc_channel_uninit(uint8_t channel);
+
+/**
+ * @brief Function for starting SAADC sampling.
+ *
+ * @retval NRF_SUCCESS If ADC sampling was triggered.
+ * @retval NRF_ERROR_INVALID_STATE If ADC is in idle state.
+ */
+ret_code_t nrf_drv_saadc_sample(void);
+
+/**
+ * @brief Blocking function for executing a single ADC conversion.
+ *
+ * This function selects the desired input, starts a single conversion,
+ * waits for it to finish, and returns the result.
+ *
+ * The function will fail if ADC is busy.
+ *
+ * @param[in] channel Channel.
+ * @param[out] p_value Pointer to the location where the result should be placed.
+ *
+ * @retval NRF_SUCCESS If conversion was successful.
+ * @retval NRF_ERROR_BUSY If the ADC driver is busy.
+ */
+ret_code_t nrf_drv_saadc_sample_convert(uint8_t channel, nrf_saadc_value_t * p_value);
+
+/**
+ * @brief Function for issuing conversion of data to the buffer.
+ *
+ * This function is non-blocking. The application is notified about filling the buffer by the event handler.
+ * Conversion will be done on all enabled channels. If the ADC is in idle state, the function will set up Easy
+ * DMA for the conversion. The ADC will be ready for sampling and wait for the SAMPLE task. It can be
+ * triggered manually by the @ref nrf_drv_saadc_sample function or by PPI using the @ref NRF_SAADC_TASK_SAMPLE
+ * task. If one buffer is already set and the conversion is ongoing, calling this function will
+ * result in queuing the given buffer. The driver will start filling the issued buffer when the first one is
+ * completed. If the function is called again before the first buffer is filled or calibration is in progress,
+ * it will return with error.
+ *
+ * @param[in] buffer Result buffer.
+ * @param[in] size Buffer size in words.
+ *
+ * @retval NRF_SUCCESS If conversion was successful.
+ * @retval NRF_ERROR_BUSY If the driver already has two buffers set or calibration is in progress.
+ */
+ret_code_t nrf_drv_saadc_buffer_convert(nrf_saadc_value_t * buffer, uint16_t size);
+
+/**
+ * @brief Function for triggering the ADC offset calibration.
+ *
+ * This function is non-blocking. The application is notified about completion by the event handler.
+ * Calibration will also trigger DONE and RESULTDONE events.
+ *
+ * The function will fail if ADC is busy or calibration is already in progress.
+ *
+ * @retval NRF_SUCCESS If calibration was started successfully.
+ * @retval NRF_ERROR_BUSY If the ADC driver is busy.
+ */
+ret_code_t nrf_drv_saadc_calibrate_offset(void);
+
+/**
+ * @brief Function for retrieving the SAADC state.
+ *
+ * @retval true If the ADC is busy.
+ * @retval false If the ADC is ready.
+ */
+bool nrf_drv_saadc_is_busy(void);
+
+/**
+ * @brief Function for aborting ongoing and buffered conversions.
+ * @note @ref NRF_DRV_SAADC_EVT_DONE event will be generated if there is a conversion in progress.
+ * Event will contain number of words in the sample buffer.
+ */
+void nrf_drv_saadc_abort(void);
+
+/**
+ * @brief Function for setting the SAADC channel limits.
+ * When limits are enabled and the result exceeds the defined bounds, the limit handler function is called.
+ *
+ * @param[in] channel SAADC channel number.
+ * @param[in] limit_low Lower limit (valid values from @ref NRF_DRV_SAADC_LIMITL_DISABLED to
+ * @ref NRF_DRV_SAADC_LIMITH_DISABLED). Conversion results below this value will trigger
+ * the handler function. Set to @ref NRF_DRV_SAADC_LIMITL_DISABLED to disable this limit.
+ * @param[in] limit_high Upper limit (valid values from @ref NRF_DRV_SAADC_LIMITL_DISABLED to
+ * @ref NRF_DRV_SAADC_LIMITH_DISABLED). Conversion results above this value will trigger
+ * the handler function. Set to @ref NRF_DRV_SAADC_LIMITH_DISABLED to disable this limit.
+ */
+void nrf_drv_saadc_limits_set(uint8_t channel, int16_t limit_low, int16_t limit_high);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // NRF_DRV_SAADC_H__
+
+/** @} */